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What is a mix?

I A network node relaying traffic.

I Bitwise unlinkability between incoming and outgoing traffic
(cryptography).

I Destroys the timing correlations, by batching or delaying
messages.

Result: Cannot link senders and receivers of messages →
anonymity.
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What is a continuous mix?

I A mix that individually delays each message.

I The delay is selected out of a probability distribution (the
delay characteristic).

Obvious questions:

I How much anonymity do continuous time mixes provide?

I Is there an optimal delay characteristic?
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Getting formal

I Messages arrive to a single continuous mix according to a
poisson distribution (uniform distribution over the time line,
exponentially distributed delays). Message arrival rate λα.

I We denote the delay characteristic as f (β|α). The probability
a message that arrived at time α leaves the mix at time β.

I We use the information theoretic metric for anonymity: the
entropy of the probability distribution relating messages to
senders is the sender anonymity of the message.
Note: entropy is E [f (x)] =

∫
∞

−∞
f (x) log2 f (x)dx
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The anonymity of a single mix

I Messages arrive at times X1...K each distributed according to a
uniform distribution U(t) over the time interval of length T

I A single message comes out at time β.

I The sender anonymity of this message is:

A =

K∑
i=1

f ′(Xi |β)∑K
j=1 f ′(Xj |β)

log
f ′(Xi |β)∑K
j=1 f ′(Xj |β)

→ (1)

→ E [f ′(α|β)] − log λα (2)

I Interpretation: delay characteristic and volume of traffic

increase anonymity.
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Optimal delay strategy

I What is the optimal delay to maximize anonymity?
Infinite

I Given a particular expected latency?

I Answer: The exponential delay (sg-mix)

f (β|α) = µe−µ(β−α) . (3)

Anonymity: A = − log λαe
µ
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Stream based traffic analysis of continuous mixes

Characteristics of stream based systems

I Many smaller packets travel over the same route.

I Minimal batching to achieve low-latency (approximated by a
delay characteristic function).

I Used for web-browsing or ssh: some clear patterns of traffic.

Attacker objectives

I Trace a stream from a sender, through the network of mixes,
to the receiver.

I Possible because more information is available (than single
packet anonymous email).
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A simple case

We use a single exponential mix:

I The target stream of data f (t) goes into a mix.

I The mix has two outputs, padded with random messages up
to a certain volume.

I The mix delays each input message according to an
exponential distribution d(t).

I The attacker observes the messages output at times Xi on the
first link and Yj on the second link.

I From these he will try to guess which link contains the target
data.
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Model the continuous mix operation

I We pretend that the timings of output packets are random
samples of a function of the input target stream.

I The mix delays the stream f (t) according to the exponential
distribution d(t). We convolve them to get an estimate of the
where packets are likely to come out.

C (t) = (d ∗ f )(t) =

∫
d(x)f (t − x)dx (4)

I We see if link 1 or link 2 are most likely generated by C (t).
We do this using the likelihood ratio:

L(H0|Xi , Yj)

L(H1|Xi , Yj)
=

∏n
i=1 C (Xi )

∏m
j=1 u∏n

i=1 u
∏m

j=1 C (Yj)
> 1 (5)
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Just forget the maths . . .
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Analysis

I The attack is computationally cheap but requires a lot of data.

I Given enough messages the stream can be traced.

I We have derived confidence intervals.

I Longer delays, less traffic or more cover traffic make attack
slower.

I All of these make systems slower or expensive.

Future work

I Cover traffic is other streams and can be modeled.

I Compress the patterns, and extract features that detect
quickly.

I Active attacks that modulate input stream.
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Network traffic analysis: step 1

Entry

node 10

node 38

exit

I The objective of the attacker is to trace the route (shown
above).
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Network traffic analysis: step 2

Entry

I The attacker compares each link with the convolved target
input.
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Network traffic analysis: step 3

I A random walk is performed for one, two and three steps on
the weighted graph to provide the most likely destinations.

I The anonymity of the stream is greatly reduced (green stars
indicate actual destination)
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Conclusions

The anonymity of single continuous mixes:

I We can quantify it (assumption of traffic).

I There is an optimal strategy, the exponential mix.

Continuous stream analysis:

I Message based and connection based anonymous
communication systems exhibit patterns and can be attacked.

I The attacks presented go beyond proof-of-concept, are well
understood, robust and extensible.

The future?

I Attack and defense go hand in hand: new systems must take
into account these attacks and provide countermeasures.

I Are secure anonymous communication systems possible at all?
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