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Abstract. Recent work has focused on removing explicit network identifiers
(such as MAC addresses) from the wireless link layer to protect users’privacy.
However, despite comprehensive proposals to conceal all information encoded in
the bits of the headers and payloads of network packets, we find that a straightfor-
ward attack on a physical layer property yields information that aids in the profil-
ing of users. In this paper, a statistical technique is developed to associatewire-
less packets with their respective transmitters solely using the signal strengths of
overheard packets. Through experiments conducted in a real indooroffice build-
ing environment, we demonstrate that packets with no explicit identifiers canbe
grouped together by their respective transmitters with high accuracy. Wenext
show that this technique is sufficiently accurate to allow an adversary to conduct
a variety of complex traffic analysis attacks. As an example, we demonstrate that
one type of traffic analysis—a website fingerprinting attack—can be successfully
implemented after packets have been associated with their transmitters. Finally,
we propose and evaluate techniques that can introduce noise into the measure-
ments of such physical layer phenomena to obfuscate the identifiers derived from
them.

1 Introduction

The inherent broadcast nature of wireless communication coupled with widespread
availability of commodity receivers and little regulationin the industrial, scientific, and
medical (ISM) radio bands poses a significant privacy concern for users of 802.11 tech-
nology. The threat is that third parties who eavesdrop on communications may profile
users by their actions and track their movements. For example, even when message
confidentiality is provided by mechanisms such as WEP or WPA, traditional 802.11
packets reveal every user’s identifying MAC address, whichenables any third party to
monitor or track other users in the network. Given an explicit MAC address identifier,
it is trivial to associate packets with their transmitting device.

However, even without explicit network identifiers, it has been demonstrated that
otherimplicitly identifyinginformation can be used to profile and possibly track users [1].
For example, suppose that a user predictably visits a set of webpages on a regular ba-
sis. Such browsing habits can be used to construct an identifying profile for that user.



This type of identifying information is defined as animplicit identifier. In this paper,
we present a technique that constructs implicit identifiersusing information obtained
from the physical layer in combination with more traditional traffic analysis methods.
We show that such identifiers can be constructed even when state of the art privacy
protections are applied.

Motivation: An Identifier-Free Link Layer. To eliminate the transmission of implic-
itly and explicitly identifying information at the link layer, recent work has focused
on providing identifier-free link layer protocols that obfuscate all transmitted bits to
increase privacy with respect to third party eavesdroppers[2–4]. By concealing fields
such as addresses, these protocols greatly increase the difficulty for unintended recipi-
ents to associate sequences of packets to their sources or destinations. Thus, to a large
extent, they defend against attacks such as location tracking and traffic analysis that re-
quire correlating sequences of packets. While previous workhas been limited in scope
to addressing the removal of identifiers from the link layer,we demonstrate that there
exists a significant amount of identifying information preserved within the properties
of the wireless physical layer.

Reconstructing Packet Sequences Using Physical Layer Information. Our goal is
to develop a method to classify packets by their transmitterfrom information revealed
by the physical layer. When only a single device is active and transmitting in a wire-
less network, it is trivial to associate the transmitted packets with that device. However,
when several devices are active, their transmissions can beinterleaved or mixed, thus
making it difficult to separate sequences by their sources. In order to implicitly identify
devices using traffic analysis techniques, it is necessary to isolate and group the se-
quences of packets transmitted by each device. We present, implement, and evaluate a
statistical technique to associate packets with their respective sources when multiple de-
vices are transmitting simultaneously. This method reliesonly on information provided
by the physical layer and, thus, it is effective even when implicit and explicit identifiers
are removed from the link layer. Our approach is based on recording the strength of
received signals from several locations and applying a clustering algorithm to classify
the packets by transmitting device. The method is practical, since it utilizes commod-
ity hardware and requires no training or cooperation from the wireless devices in the
network.

While our approach will determine which packets originated at the same source, it
won’t identify sources by name. However, we demonstrate that our packet grouping is
accurate enough to enable complex traffic analysis attacks,which use features such as
packet timings and sizes, that reveal more about who the useris and what he is doing.
Examples of the types of information that can be inferred through traffic analysis attacks
include videos watched [5], passwords typed [6], web pages viewed [7, 8], languages
and phrases spoken [9], and applications run [10]. While any of these traffic analysis
methods can be applied, we show that the reconstructed packet sequences that we derive
can be used to perform a practical website fingerprinting attack with a high enough level
of success for wireless users to be concerned.

Experimental Validation. In order to demonstrate the efficacy of our method, we
evaluate our technique by conducting experiments in a real indoor office building en-
vironment. A set of passive listening sensors are deployed and signal strength read-



ings are collected for wireless transmitters scattered throughout the building. We apply
our packet clustering technique, which uses straight-forward statistical methods, and
the results show that packets are correctly correlated to their transmitting devices with
71%–85% accuracy, depending on the number of transmitters in the network. We eval-
uate how these reconstructed sequences of packets can be used to perform a website
fingerprinting traffic analysis attack, as in [7, 8]. Our results demonstrate that we can
fingerprint a website with 41%–55% accuracy using the reconstructed sequences of
packets. As more sophisticated clustering approaches are possible, we consider these
results as an establishment of a lower bound on attainable accuracy.
Obscuring Physical-Layer Information. Finally, we explore two unique methods to
mitigate the effectiveness of using the physical layer to associate packets to transmit-
ters. Both of these methods introduce additional noise to obscure the properties of the
physical layer. The first method is for the transmitter to randomly vary the power level
at which it sends packets. The second is to use a directional antenna and change the
antenna’s orientation while transmitting. Both of these techniques show promise; we
demonstrate that both the packet clustering accuracy and traffic analysis accuracy are
degraded in the presence of devices that either vary their transmit power level or utilize
a directional antenna.
Outline. The remainder of this paper is organized as follows: In Section 2, we discuss
our threat model and in Section 3, we provide a brief description of wireless physical-
layer properties and present our method at a high level. Section 4 describes the ex-
perimental validation with which we demonstrate the effectiveness of our technique.
Section 5 presents our approach to traffic analysis and the results of the website fin-
gerprinting attacks on packets that have been clustered by source device. Preliminary
solutions are evaluated in Section 6. Finally, avenues of future work and concluding
remarks are provided in Section 7.

2 Threat Model

The primary goal of this attack is to passively and accurately correlate packets to their
transmitting device using only information revealed by thewireless physical layer. We
assume that messages are sent using an identifier-free link layer, eliminating an eaves-
dropper’s ability to associate messages to devices using explicit identifiers such as a
MAC address or other implicit information leaked at the linklayer. It is trivial to corre-
late packets when it is known that only a single device is active at any particular time.
However, we assume a more common situation in which several devices may trans-
mit at arbitrary times, possibly with interspersed transmissions. Analyses of wireless
traces have shown that there are often many simultaneously active devices at tight time
scales [3].
Attack. Even when identifiers are removed from the link layer, it is possible to label
packets by their sources using only the implicit characteristics of the physical layer. An
eavesdropper can use the sequence of packets associated with a particular device to per-
form more complex traffic analysis attacks, even if the packets are encrypted. The attack
is completely passive and users can be subjected to this attack without their knowledge.



In addition, this technique requires only commodity hardware and no resource-intensive
training.

Having accurately grouped packets by their transmitting device, an adversary can
perform traffic analysis attacks. The effectiveness of these attacks is dependent on an
adversary’s ability to associate packets sent to their respective transmitting devices.
We assume that the adversary performs a traffic analysis attack on packets observed
during a short time period, as wireless users are more likelyto leave the network as
time progresses.
Adversary. The adversary places several commodity 802.11 wireless sensors in chosen
positions around a target location (such as a building). Also, the attacker has the ability
to estimate how many devices are present in the area. This canbe achieved through
visual inspection, an automated machine vision method, or areliable estimate of the
expected number of devices.
Victims. The victims use a standard 802.11 wireless device to communicate using an
identifier-free link layer protocol, and transmit at a constant power level. Also, the user
is using an application, such as a web browser, that is vulnerable to traffic analysis
attacks. Users remain stationary while they transmit, but are free to move when their
transmitters are silent.

3 Packet Source Classification

Background and Intuition. Our packet association technique uses information leaked
solely at the physical layer. When a commodity 802.11 wireless card receives a packet,
it records the signal strength of the received packet as a received signal strength indica-
tion (RSSI) value. In a simplified signal propagation model,wireless signals fade with
distance as they propagate over physical space. Thus, the RSSI values roughly correlate
with the distance between the transmitter and receiver. This means that the same trans-
mission will be received at different RSSI levels dependingon the distance between
the transmitter and receiver. Using these RSSI values, we show that it is possible to
passively identify the device that transmitted a particular set of packets.

However, several factors affect a packet’s RSSI value in real world environments,
which makes accurately associating packets to their transmitting devices using physi-
cal layer information a very challenging task. From the perspective of the receiver, the
RSSI values of different packets from the same transmitter often vary over time due to
unobservable factors such as multipathing, interference from other devices, and unpre-
dictable fading [11]. A robust packet association method cannot assume a static envi-
ronment. Hence, our technique uses statistical methods to cluster packets to their true
transmitting device. In practice, we find it necessary to obtain multiple RSSI readings
from several spatially disparate sensors for accurate classification. This is due both to
inherent ambiguity when using one sensor (transmissions from two different locations
might result in similar RSSI values when the transmissions propagate over roughly the
same distance) as well as to the high level of unpredictable temporal variability in RSSI
readings. Figure 1(a), for instance, shows the RSSI values recorded from multiple pack-
ets sent over time from five distinct transmitting devices, whose corresponding physical
locations are given in Figure 1(b). While the values are similar for each device, there is
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Fig. 1—A visualization of the RSSI values from five transmitters at different locations.The packets are color coded by
physical location.

some unpredictable fluctuation due to the inherent noise in the physical environment.
When transmitters are close to one another, it is helpful to apply statistical techniques
and multiple RSSI readings to overcome this noise.

Packet Association Technique.As the first step in the method to associate packets to
their respective transmitters using physical layer information, we assume that an adver-
sary can deployn passive sensors to record the RSSI values of every packet received.
For each received packetpi , the RSSI values are combined into a feature vector of the
form (RSSIi1,RSSIi2, ...,RSSIin). Since the RSSI values are inherently noisy, we use the
k-means clustering algorithm to group packets by their respective transmitting devices.
In order to perform source classification,k-means requires the RSSI feature vectors and
the number of devices (k), which we assume is known (or closely estimated) by the at-
tacker. Whilek-means is computationally inexpensive, it is probabilistic in nature and,
therefore, is not guaranteed to provide a globally optimal solution. For this reason, it
is common to executek-means repeatedly to arrive at a stable clustering result. More
details onk-means clustering can be found in [12].

4 Experimental Validation

To demonstrate the efficacy of our physical layer clusteringtechnique, we present a
series of experiments conducted with 802.11 devices in a real indoor office building
environment. In this section, we describe the methodology used to collect real RSSI
values. To understand how the packet clustering technique performs in practice, we
present a set of metrics with which to evaluate its ability toaccurately associate packets
to wireless devices. We characterize the clustering technique’s performance with re-
spect to how the number of devices effects clustering accuracy, the influence of device
proximity (or the physical distance between devices) on clustering accuracy, and how
the number of listening sensors effects clustering accuracy.



4.1 Clustering Evaluation Metrics

It is necessary to define the metrics that will be used to evaluate the correctness of the
packet clustering technique. In general, it is assumed thateach packet transmitted from
devicei is initially labeled inclass i. k-means (or any clustering algorithm) attempts to
provide a mapping between the initial class labels and an arbitrarily chosenclusterlabel
j. It is trivial to determine when the clustering algorithm has returned a perfect clustering
solution; this occurs when every initial class labeli is mapped uniquely toprecisely one
cluster labelj. However, evaluating the accuracy of clustering results when the class to
cluster label mapping is not perfect is, indeed, a challenging task.

In order to describe the accuracy of the clustering solutionthat adequately captures
the variety of clustering errors that occur, we apply theF-Measuremetric from infor-
mation retrieval [13]. Suppose thatC is the set of class labels,K is the set of cluster
labels, andnij is the number of data points from classi that are placed in clusterj. The
F-Measure is defined in terms ofprecisionandrecall, which are defined as follows.

Definition 1 Recall is the fraction of data points from initial class i that are in cluster
j. Recall is calculated as R(ci ,kj) =

nij

|ci |
, for each class ci ∈ C and cluster kj ∈ K.

Definition 2 Precision is the fraction of data points within cluster j that are members
of class i. Precision is calculated as P(ci ,kj) =

nij

|kj |
, for each class ci ∈ C and cluster

kj ∈ K.

Recall and precision can be combined into the F-Measure, which provides an adequate
measure of clustering accuracy. The F-Measure is a weightedharmonic mean of recall
and precision in which both are weighted equally; it is defined below in Equation 1.

F(ci ,kj) =
2R(ci ,kj)P(ci ,kj)

R(ci ,kj) + P(ci ,kj)
(1)

A single F-Measure value can be derived for a particular clustering result by performing
the class to cluster mappings, and scaling by the fraction ofthe total data pointsN that
are in that class, as illustrated in Equation 2.

F(C,K) =
∑

ci∈C

|ci |

N
max
kj∈K

{F(ci ,kj)} (2)

We use F-Measure as our primary metric for expressing clustering accuracy in the fol-
lowing evaluation of our physical layer packet clustering technique.

4.2 Experimental Setup

In order to understand how our physical layer packet clustering technique works in
practice, we deployed five 802.11 wireless devices to act as sensors in a 75m× 50m



Fig. 2—Wireless devices are placed at 58 distinct physical locations in an office building.

indoor office building. Each sensor, a commodity Linux desktop machine, passively
listens for packets on a fixed 802.11 channel. This allows thesensors to record RSSI
values from all audible packets on that particular channel.To collect RSSI measure-
ments, we moved around with a laptop computer and transmitted packets at a constant
power level of 16 dBm at 58 distinct physical locations throughout the office space.
The layout of the office space, marked with the positions of the passive sensors and the
locations where the laptop transmitted packets, is provided in Figure 2.

Since we only used a single wireless device to transmit packets at multiple locations,
in order to construct scenarios with multiple devices, we combined packets transmitted
at multiple locations. For example, combining packets fromfive randomly chosen trans-
mitter locations into a single network trace effectively represents a scenario in which
five distinct devices are present. Finally, in order to evaluate the clustering technique,
we assume that each device transmits precisely 100 packets.
Setup for Evaluating Variable Number of Devices and Sensors. To evaluate how
the number of devices effects the clustering algorithm’s accuracy, we vary the network
size from 5, 10, 15, 20, and 25 devices. In order to ensure thatthere is no bias in the
selection of the device’s locations that may influence the performance of the clustering
algorithm, we generate 100 randomly chosen device locationconfigurations for each
network size3. Next, we perform clustering on these device location configurations.
Recall that sincek-means is not guaranteed to provide a globally optimal solution, it is
necessary to perform the clustering several times to arriveat a stable clustering solution;
we observed that the algorithm stabilized after approximately 100 runs, therefore we
performk-means clustering 100 times on each device location configuration. First, we
keep the number of sensors fixed at five to measure the effect ofvarying the number of
devices. Next, to evaluate the number sensors on clusteringaccuracy, we also vary the
number of sensors from one to five.

3 Although we collected RSSI measurements at 58 distinct positions, we chose to limit the num-
ber of devices to 25 in any experiment to allow for variety in the randomly chosen locations of
the devices included in the experiments.
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Setup for Evaluating Device Proximity. To examine the effect of device proximity
on clustering accuracy, we conducted experiments in which the network size is fixed at
two devices. Device location configurations are constructed by choosing each unique
pair of device locations from the 58 total points. We use Euclidean distance between
the two devices as a proximity metric.

4.3 Packet Clustering Results

We next present the results of our physical layer packet clustering technique in terms
of its ability to accurately associate packets with their respective transmitting device.
In particular, we examine three factors that we believe to besignificant with respect to
clustering accuracy: (1) the number of devices in the observation space, (2) the number
of sensors in the observation space, and (3) the device proximity, as defined by the
physical Euclidean distance between devices.
Effect of Number of Devices on Accuracy.The average clustering accuracy across the
different number of devices is provided in Figure 3 (with 95%confidence intervals). In
general, the accuracies decrease as the number of devices increase; thus, it can be con-
cluded that the clustering algorithm performs better on a smaller number of devices and
produces additional clustering errors as more devices are introduced. However, the 20
and 25 device experiments produced similar clustering accuracies, so there is evidence
that the clustering accuracy may, in fact, level off as the number of devices reaches a
critical threshold. In Section 5 we show that the clusteringaccuracy is marginally worse
when the number of packets transmitted by each device is not constant for all devices.
Effect of Number of Sensors on Accuracy.As shown in Figure 4, the clustering ac-
curacy is surprisingly high when just one sensor is used for each device configuration.
However, as more sensors are added, the accuracy for each configuration increases grad-
ually, with diminishing returns, as the number of sensors reaches three or higher. This
indicates that the resources required—in terms of number of sensors to deploy—are
very minimal, making the packet clustering technique very practical for a low resource
adversary.
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RSSI Feature Vectors

RSSI Packet 1:   -60, -55, -80, -70, -50

RSSI Packet 2:   -61, -54, -78, -67, -51

                                 ...

RSSI Packet n:   -62, -55, -79, -66, -49

  

Combined RSSI/Website Packet Data

Packet 1:   -60, -55, -80, -70, -50, 64 bytes

Packet 2:   -61, -54, -78, -67, -51, 128 bytes

                                       ...

Packet n:   -62, -55, -79, -66, -49, 24 bytes

Website Packet1:    64 bytes

Webste Packet 2:   128 bytes

                           ...

Website Packet n:   24 bytes

Packet Sizes

Fig. 6—Example of combining RSSI and website datasets.

Effect of Device Proximity on Accuracy. Since there is a correlation between RSSI
values and physical locality, it is the case that packets transmitted by wireless devices
that are close to one another will be received with similar RSSI values at the listening
sensors. There is, in fact, a relationship between proximity and clustering accuracy
(as depicted in Figure 5). In the case where the two devices are closest, the clustering
technique has an average accuracy of approximately 93%, while the average approaches
perfect accuracy when the two devices are at least 25–30mapart. This demonstrates that
there is a relationship between device proximity to one another and clustering accuracy.

5 Application: Website Fingerprinting

Having evaluated the packet clustering technique in isolation, we now explore how
this technique can be used to perform complex traffic analysis attacks. In particular,
we demonstrate that the ability to associate packets with their transmitting devices with
relatively high accuracy provides sufficient information to perform a sophisticated web-
site fingerprinting traffic analysis attack in which the source of an encrypted HTTP
session is discovered using only packet size information [7]. While we could have cho-
sen to demonstrate the utility of our packet clustering technique with a variety of other
classes of traffic analysis attacks, website fingerprintingis a sufficiently complex prob-
lem which can be practically implemented by an attacker.

In this section, we first present the traffic analysis methodology. Next, using our real
RSSI data in combination with encrypted HTTP traces, we demonstrate the efficacy of
a website fingerprinting attack using packets that have beenassociated to their respec-
tive transmitters using our packet clustering method. The results of this traffic analysis
attack are presented in terms of website identification accuracy. Recall that our packet
clustering technique assumes that the number of devices is known a priori; we finally
explore the extent to which the number of devices can be specified imprecisely, and
show the website fingerprinting accuracy that results in those cases.



5.1 Traffic Analysis Methodology

In order to apply our real RSSI data to the problem of website fingerprinting, it is
necessary to combine the RSSI data with an encrypted HTTP dataset. Liberatore and
Levine [7] provide a dataset consisting of several instances of encrypted connections to
many distinct websites over the course of several months. Toperform a simplified web-
site fingerprinting attack in combination with our packet clustering, we extract multiple
traces of 25 different websites from this dataset. In general, to perform a website finger-
printing attack it is necessary to partition the website trace data into two disjoint sets, a
training set, and a validation (or testing) set, and consider the task of website identifi-
cation as a classification problem: given an unlabeled website instance, it is necessary
to identify the website using the training set. We constructour website training set by
collecting precisely 20 instances of each of the 25 websitesthat we wish to identify.

Next, the validation set is constructed. Since the encrypted HTTP dataset was col-
lected in a wired setting, it is necessary to affix wireless physical layer RSSI values to
the encrypted HTTP packets. This is accomplished by appending an RSSI feature vec-
tor onto each website packet as follows. Suppose that the setW consists of 25 websites
and thatwi ∈ W consists of a set ofj packets, with their respective packet sizessj .4

Next, suppose that the set of physical locationsL consists of the 58 positions where
RSSI values were collected.r(lk) consists of all RSSI feature vectors that are recorded
when the transmitter is at locationlk ∈ L. The following procedure is used to combine
the RSSI dataset with the encrypted HTTP dataset.

1. A websitewi ∈ W is chosen at random andwi is removed fromW.
2. A physical locationlk ∈ L is chosen at random andlk is removed fromL.
3. For each packetpj ∈ wi , an RSSI feature vectorr j(lk) is appended ontopj .

This process is repeated for each of the wireless devices. After the procedure is exe-
cuted, each packet consists of the tuplepj = (r j(lk),sj), and thus each website packet in
our validation set has been marked with a feature vector of RSSI values from our real
RSSI data. This process is illustrated in Figure 6. It is now possible (1) to execute our
physical layer packet clustering technique to associate each individual packet with its
respective transmitter, and next (2) to launch a website fingerprinting attack to identify
the website that is contained within the encrypted packets.For the website classification
phase, we apply the naı̈ve Bayes classifier provided byWeka [14], as in [7].

5.2 Traffic Analysis Results

We now present experimental results of our physical layer clustering technique applied
to the task of performing a website fingerprinting traffic analysis attack. As in the exper-
iments presented in Section 4, we construct different scenarios by varying the number
of wireless devices from 5, 10, 15, 20, to 25. However, instead of including an equal
number of generic packets, we make the assumption that everydevice downloads a sin-
gle randomly selected webpagewi and include allpj ∈ wi packets with affixed RSSI
vectors from a randomly selected positionlk ∈ L using the process described above.

4 Each packet’s size is a multiple of the encryption algorithm’s block size, which is 8 bytes,
since 3DES encryption is used.
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We first explore the performance of the clustering algorithmon the website data.
A key distinguishing feature of the website data is that eachwebsite has a different
and arbitrary number of packets. For some websites, the device transmits several hun-
dred packets, while for others, the device transmits less than ten packets. The clustering
performance for our different device configurations is shown in Figure 8. Clustering
devices that transmit a non-uniform number of packets does not appear to be a sig-
nificant factor in clustering accuracy; the clustering accuracy for the website data is
only marginally lower (72%–82% accuracy) than for the equalpacket data (given in
Figure 3).

Given the clustering algorithm’s ability to accurately cluster encrypted website data,
we next perform a website fingerprinting attack on the packets that are clustered by
wireless device. Using the naı̈ve Bayes classifier, the attack is able to correctly identify
the encrypted web page between 40%–55% of the time. This accuracy is significantly
greater than random chance, in which an adversary simply guesses the website. In this
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case, the expected accuracy is 1/25 = 4%. For comparison, if packets are perfectly clus-
tered, the website fingerprinting attack achieves 92% accuracy (for each device config-
uration). The accuracy of the website identification is strongly linked to the accuracy of
the clustering result; for example, in the 5 device network,both the clustering and web-
site identification accuracies are the highest, and each respective accuracy degrades as
the number of devices increases. The website fingerprintingaccuracies for each number
of devices are provided in Figure 7.
Traffic Analysis When k is Not Known Precisely. We finally explore the likely sce-
nario in which the adversary cannot obtain the precise number of devices (k) in the
wireless network. To explore the feasibility of performingtraffic analysis in this case,
we conduct experiments with 10, 15, and 20 devices where thek value is not correct. In
particular, for a 10 device network, we varyk from 5 to 15, for a 15 device network,k
varies from 10 to 20, and for a 20 device network,k varies from 15 to 25. The website
fingerprinting accuracies for each network ask varies are given in Figure 9.5 Even in
the cases when the adversary’sk estimate is off by as much as 5 (either higher or lower
than the true value), the website fingerprinting accuracy decreases by at most 17%.

6 Solution: Obfuscating Physical Layer Information

We demonstrated a unique method to correlate packets with their transmitting devices
using only information that is provided by the physical layer. Given the ease and relative
accuracy with which this method can be applied to perform more sophisticated traffic
analysis tasks, we explore techniques to mitigate the amount of information present at
the physical layer that an adversary can use to associate packets with wireless transmit-
ters. This serves as a basis to protect users’ privacy from identifying information that
is leaked by the physical layer. In particular, the solutions focus upon manipulating the
physical layer properties that influence the RSSI values that are recorded by (1) varying
the transmission power at which packets are sent, and (2) exploiting directionality (with
a directional antenna) to focus the signal in specific directions.

5 We do not provide clustering accuracies for the experiments wherek is imprecise, since the
F-Measure is ill-defined in this situation.
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Fig. 13—The average website classification accuracy for
devices that transmit at variable power levels, constant trans-
mit power devices, and all devices in a network with 15 total
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Intuition. To provide an intuition behind these techniques, first consider an RSSI plot
for a single wireless device with a directional antenna oriented in four different di-
rections provided in Figure 11. The packets sent in each of the four directions appear
to form their own distinct clusters—this phenomenon, as we will demonstrate, has an
adverse effect on clustering accuracy, and, therefore, reduces an adversary’s ability to
perform traffic analysis attacks on the correlated packets.Next, the additional variance
that is introduced in the signal space as a result of a single transmitter varying its power
levels from 10–20 dBm, as depicted in Figure 12, results in a cluster that encompasses
a significantly large portion of the signal space. As a result, we show that clustering
accuracy degrades, which reduces its usefulness for performing traffic analysis.

6.1 Transmit Power Fluctuation

To understand the extent to which variable transmission power levels can be used to
protect devices from leaking identifying information at the physical layer, we conduct
experiments in which devices may wish to mitigate the effectiveness of our attack by
sending each packet at a randomly chosen transmit power level between 10–20 dBm.
All other devices in the network transmit their packets at a fixed 16 dBm. Experiments
are conducted with 15 total devices in which 1, 3, 6, 9, and 12 devices transmit their
packets at a randomly chosen power level. The impact of this technique on cluster-
ing accuracy is shown in Figure 10. As the number of devices with variable transmit
power levels increases, the clustering algorithm’s accuracy decreases as a result of the
additional variance in the received signal strengths that is introduced.

This reduction in clustering accuracy has a negative impacton the accuracy of the
website fingerprinting traffic analysis attack. As depictedin Figure 13, the traffic anal-
ysis accuracy remains relatively high for the devices that transmit at a constant power
level in comparison to the case in which all devices transmitat a variable power level.
However, for those devices that vary their transmit power levels, the website finger-
printing accuracy is reduced to approximately 30%. This demonstrates the effective-



ness of varying transmit power levels on mitigating traffic analysis for those devices
that actively transmit packets at variable power levels. The traffic analysis accuracy for
normal devices is marginally reduced, and thus, if a device desires protection, then it
should actively fluctuate its transmit power levels.

6.2 Directional Antennas

We next explore how directional antennas can be used to obscure identifying informa-
tion leaked by the physical layer. To understand how directionality effects an adver-
sary’s ability to correlate packets with their transmitters, experiments are conducted
with 15 total devices in which the number of directional transmitters varies from 1,
3, 6, 9, to 12. Clustering accuracy, provided in Figure 10, decreases as the number of
directional transmitters in the network increases. In general, the clustering accuracy
decreases in a similar fashion as in our experiments with thevariable transmit power
levels, but the experiments with 9 and 12 directional antenna transmitters have lower
clustering accuracies than their counterparts in the transmit power fluctuation experi-
ments.

The degradation of clustering accuracy helps to mitigate traffic analysis. As shown
in Figure 14, the website fingerprinting attack yields an accuracy of 30% for the direc-
tional antenna transmitters. However, the non-directional transmitting devices show a
similar vulnerability to traffic analysis as in the experiments of Section 5.

6.3 Discussion

Note that transmitting at a variable power level provides a similar degree of protection
from traffic analysis as the directional antenna technique—and thus either technique
provides a viable solution. Providing variable transmit power capabilities is straight-
forward, by modifying an existing commodity 802.11 driver to effectively randomize
the card’s transmit power levels. In addition, low-cost directional antennas, such as
sectored or MIMO antennas, are becoming widely available. However, it is likely that
both of these techniques may reduce network performance. Therefore, it is necessary
to understand the trade-offs between privacy and performance when considering these
solutions.

7 Future Directions and Conclusions

In this paper, we experimentally demonstrate that even whenexplicit identifiers are
removed from wireless packets at the link layer, a significant amount of identifying in-
formation remains preserved within the wireless physical layer. As future work, we plan
to address several open issues with regard to the methods presented. First, the packet
clustering technique assumes that the adversary can closely estimate the correct num-
ber of devices in the network—we plan to investigate methods to derive the number of
devices automatically, perhaps from the properties of the physical signals themselves.
In addition, whilek-means clustering provides relatively high accuracy, it isnot opti-
mal. We plan to explore additional clustering algorithms that may be better suited to



our problem. As a final avenue of future work, we will study thepotential benefits of
combining timing information with the information contained at the physical layer to
improve our technique’s ability to accurately correlate packets with their transmitting
devices.
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