
SIMULATION OF CIRCUIT CREATION IN TOR: PRELIMINARY

RESULTS

WILLIAM BOYD, NORMAN DANNER, AND DANNY KRIZANC

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT USA
e-mail address: whboyd@wesleyan.edu

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT USA
e-mail address: ndanner@wesleyan.edu

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT USA
e-mail address: dkrizanc@wesleyan.edu

Abstract. We describe a methodology for simulating Tor relay up/down behavior over
time and give some preliminary results.

1. Introduction

Tor [Dingledine et al., 2004] is a low-latency anonymity network. To communicate
anonymously with Bob, Alice forms a circuit through Tor consisting of three relays and
tunnels her TCP traffic through that circuit. Layered (onion) encryption is used to ensure
that each relay only knows its immediate neighbors in the circuit. In order to minimize
latency, Tor does not implement techniques such as batching and re-ordering which can be
used to provide very strong anonymity guarantees. As such, it is usually assumed that Tor
is vulnerable to timing analysis attacks. In such an attack, Eve controls the first and last
relay in a circuit and is able to identify when two streams at either end actually belong
to the same communication flow by examining timing information of the data packets.
Analyses of these (and other) attacks are often done by constructing ad-hoc simulations of
the network. Not only are such simulations sometimes poorly justified, their ad-hoc nature
makes it difficult to compare attacks and defenses, because each simulation is different.
Even fairly sophisticated models of Tor, such as the one given by Feigenbaum et al. [2007]
in terms of I/O automata, often fail to take into account time-dependent relay behavior,
even though this sort of behavior can be crucial for attacks.

We propose the development of more principled simulations that capture emergent
behavior of the network. In particular, many attacks involve manipulating circuits through
compromised relays; detecting such attacks often requires a notion of what constitutes

1998 ACM Subject Classification: C.2.2 [Computer-Communication Networks] Applications—Tor;
I.6.4 [Simulation and Modeling] Model Validation and Analysis; I.6.8 [Simulation and Modeling] Types
of Simulation—Discrete event.

Key words and phrases: Anonymity; clustering; hidden Markov models; simulation; Tor.

c© William Boyd, Norman Danner, and Danny Krizanc
Creative Commons

1



2 WILLIAM BOYD, NORMAN DANNER, AND DANNY KRIZANC

“normal” relay performance and uptime. Replays of past behavior provide an accurate but
necessarily limited model of behavior. In this short paper, we describe our work in progress
to (i) characterize the behavior of individual Tor relays, (ii) capture this characterization
in a generative model, specifically, a set of hidden Markov models, (iii) use these models
to generate representative Tor relay behavior, and (iv) evaluate the “goodness-of-fit” of
this generated behavior. In the longer term, we hope to have a generative model of many
observable quantities of the Tor network such as relay failures, latency, throughput, etc. Our
hope is that such a generative model could be used as a uniform testbed for analyzing attacks
and defenses as well as proposals for changes to the Tor protocol itself. Our generative model
is based on observations of the deployed network rather than explicitly simulating details of
the Tor protocol, network links, etc., so it effectively adapts itself to changes in the network,
without changes in the architecture of the model itself.

Our starting point is work of Danner et al. [2009], who analyze a denial-of-service attack
described by Borisov et al. [2007]. In this attack, Eve compromises some number of entry
and exit relays. If a circuit passes through a compromised relay but it is not the case
that both the entry and exit relay are compromised, then Eve kills the circuit, causing the
client to reform the circuit. In this way, Eve increases the probability that she controls
both the entry and exit relays. From there she can perform data correlation attacks (see,
e.g., Murdoch and Zieliński [2007]) to confirm that streams at either end of the circuit are
actually the same flow. As an example of problems we wish to avoid, Borisov et al. associate
a single failure rate to each relay, and then use that to analyze reliability and security of
the network under this attack; but this a very poor approximation of actual relay behavior,
as actual relay failure can be heavily time-dependent.

In analyzing the effectiveness of this denial-of-service attack and possible detection
algorithms, we collected lifecycle data for relays in the deployed network. A lifecycle for
a given relay R is a function `R : {0, 1, . . . } → {0, 1}. The idea is that we “probe” R
some number of times. A probe consists of constructing a circuit of the form (G,R,E) and
downloading a small file through the circuit, where G and E are relays that we control.
Probe t succeeds (`R(t) = 1) if the file is successfully downloaded and otherwise the probe
fails (`R(t) = 0). The probe of R may fail for many reasons; there may be transient network
failures; R may refuse to allow a circuit (perhaps because of bandwidth limiting); R may
not be in consensus during the probe. We consider all failure modes to be the same for
this analysis, though it would be easy to treat different modes as distinct provided we can
determine the reason for the failure.

Our analyses of the denial-of-service attack rely on replaying collected data of this
form [Danner et al., 2009]. For example, we propose a detection algorithm that constructs
circuits, records whether the circuit construction was successful, and then uses this infor-
mation to detect the attack, making use of the fact that circuits that include compromised
relays are more likely to fail. To simulate the execution of the algorithm, we “run” it on the
replayed data under the assumption that a subset of the highly-reliable relays are actually
under the control of an attacker (who would then “kill” uncontrolled circuits). Because
some (replayed) relays are down at the “time” the detection algorithm is run, we get a
more realistic assessment of the effectiveness of the detection algorithm in the presence of
noise.

We are interested in lifecycle data because our measurements have shown that the
following is a very good predictor of successful circuit creation: perform a single probe of
each relay in the deployed network; then predict that a given circuit creation attempt will



SIMULATION OF CIRCUIT CREATION IN TOR: PRELIMINARY RESULTS 3

Figure 1: Visualization of lifecycle data for the deployed network. Each relay is represented
as a vertical line. Each probe of the entire network is represented as a horizontal
line. The pixel for relay R at probe t is white if `R(t) = 0, black if `R(t) = 1.
Relays are sorted left-to-right in decreasing order of number of successes.

succeed if and only if each of the relays was successfully probed. Unsurprisingly, for any
fixed relay R, the sequence `R is far from random; as an example, the lifecycles of the
deployed Tor network as measured over a 30-hour period in mid-March 2011 (100 probes
per relay) is visualized in Figure 1.

In this paper, we start with this collected lifecycle data to construct a generative model
of relay lifecycles. The intent is that such a model displays the same emergent behavior as
the collected data, while not being tied to replaying exactly the data that was collected.
Our generative model is constructed as follows:

(1) Collect lifecycle data of the deployed network. We consider each relay’s lifecycle to
be a binary string, and all such strings have the same length. Let the set of lifecycle
strings be S.

(2) Use an appropriate clustering algorithm to group the lifecycles into a comparatively
small number of clusters.

(3) For each cluster C, train a hidden Markov model λC that produces lifecycles “sim-
ilar” to the ones in C.

(4) To generate a new lifecycle, choose a λC with probability |C|/|S| and use it to
generate a lifecycle. To generate a set S′ of new lifecycles, do this |S′| times.

In the remainder of this note we describe the model in more detail. We also discuss an
important but oft-neglected aspect of simulation: measuring how well a proposed simulation
models the observed phenomenon. There is still much work to be done; in particular, we
want to be able to model more interesting behavior than just lifecycles, such as latency
and throughput. But the current work leads us to believe that our approach has a lot of
promise.

2. Lifecycle clustering

We expect relays (as described by their lifecycles) to fall into a number of relatively
well-defined categories. For example, there are many relays which exhibit perfect uptime
over the course of an observation run, and some which exhibit regular uptime/downtime
cycles as their administrators take them off-line at night or over weekends. A clustering
algorithm partitions a set of observations (lifecycles) without an a priori definition of what
constitutes a category. By clustering lifecycles and choosing a representative of each cluster,
we obtain a simplified model of the network, in which each representative can be used to
generate lifecycles comparable to those in the cluster it represents. Furthermore, we can
easily modify the network model to provide insight into the behavior of the real network
under various assumptions. If, for example, we wanted to observe network behavior when



4 WILLIAM BOYD, NORMAN DANNER, AND DANNY KRIZANC

function kmedoids(X : set of binary sequences , k : int) : list of k sets of binary sequences

begin

Z ← [{x1},...,{xk}] (∗ xi chosen at random from X ∗)
C′ ← [{},...,{}] : list k sets of binary sequences

do

C ← C′

C′ ← [{},...,{}] : list of k sets of binary sequences

foreach x in X do

i ← the j that minimizes E(x, Z(j))

add x to C′[i]

endf

for i ← 0 to k do

Z[i] ← center of C′[i]

endf

while C′ 6= C

return C

end

Figure 2: Pseudocode for k-medoids approximation with Lloyd’s algorithm. Z[i] is the
center of cluster i and C[i] and C ′[i] are the old and new i-th cluster. A bit of
restructuring eliminates the unnecessary last calculation of centers and also makes
it easy to determine when a lifecycle has moved from one cluster to another.

high-profile relay operators are attacked or their relays blocked from access, we could reduce
the proportion of several high-uptime clusters in the model.

A clustering algorithm depends upon a metric on the objects being clustered. We have
considered several, but here will just concentrate on a version of edit-distance. To that end,
we define E(s, s′) to be the number of “edits” that must be made to s to obtain s′. The
edits that we allow are flipping a single bit and rotation by one position (the bit that is
“pushed off the end” is tacked on at the other end). Our rationale is that the first type of
edit can help minimize the effect of transient phenomena when identifying similar lifecycles.
Rotation also allows us to consider as similar two relays that have similar cyclic behavior
that start at slightly different times. For example, it is well-known that many relays are
shut down at night (and this can be seen in the visualization in Figure 1). We end up
considering such relays to be similar if “night-time” is approximately the same, but they
become less similar as that time diverges.

Xu and Wunsch [2005] provide a fine survey of a wide variety of clustering algorithms.
Here we just consider k-means clustering, which groups objects into a pre-determined num-
ber k of clusters in a way that attempts to minimize the average value of E(x, c) over all
objects, where c is the center of the cluster containing x. An exact solution is not feasible,
but the standard approximation algorithm, Lloyd’s algorithm, gives good results in time
O(nk) and space O(n+k) where n is the number of sequences. In Lloyd’s algorithm, initial
centers are selected, and then items are assigned to the cluster with the nearest center. New
centers are selected for each cluster, items are again assigned to the cluster with the nearest
center, and the process is repeated until it converges. k-means clustering is typically used
with Euclidean distance, for which it is easy to define the center of a cluster. With edit-
distance, computing this new center is not so straightforward. Thus we define the center of
a cluster C to be the sequence c ∈ C that minimizes

∑
s∈C(E(s, c))2. An algorithm that de-

fines “center” in this way is sometimes referred to as a k-medoids algorithm (see [Kaufman
and Rousseeuw, 1990, Ch. 2]). The k-medoids algorithm we use is shown in Figure 2.



SIMULATION OF CIRCUIT CREATION IN TOR: PRELIMINARY RESULTS 5

3. Hidden Markov models

Hidden Markov models are a commonly used statistical model for temporal processes
that obey the Markov property: the behavior of the process at any given point in time
depends on at most a constant, finite amount of its past state. Rabiner [1989] is a standard
reference, and we follow his presentation. If we have in hand a sequence of observations
and want to determine a Markov model that is likely to have generated that sequence, we
generate a hidden Markov model, which consists of the following data:

• A finite set Q of states.
• An alphabet Σ of output symbols; these correspond to our observations (so in the

case at hand, Σ = {0, 1}).
• A state transition probability distribution function A : Q × Q → [0, 1] giving the

probability of a transition from one state to another.
• An output symbol emission probability distribution function B : Q× Σ→ [0, 1] giv-

ing the probability of a given symbol being observed from a given state.
• A start state probability distribution function π : Q → [0, 1] giving the probability

that a given state is selected as the first state in a sequence.

A (non-hidden) Markov model with states Q, state transition probability distribution A,
and initial state q0 is a special case of a hidden Markov model: Σ = Q, B(q, q′) = 1 if q′ = q
and 0 otherwise, and π(q) = 1 if q = q0 and 0 otherwise.

An HMM λ generates an observation sequence O ∈ Σ∗ as follows:

(1) Choose an initial start state using π; call this the current state s.
(2) Repeat the following some finite number of times:

(a) Use B(s, ·) to choose a symbol to emit.
(b) Use A(s, ·) to choose the new current state s.

Given an observation sequence, we would like to determine the HMM that is most likely
to have generated that sequence. The solution to this problem breaks down to solving the
following three problems:

(1) Given an HMM λ and observation sequence O determine Pr[O | λ], the probability
that λ generates O. There is a straightforward dynamic programming algorithm
known as the forward algorithm to compute this probability.

(2) Given an HMM λ and observation sequence O determine the state sequence for λ
that is most likely to generate O. The Viterbi algorithm is a dynamic programming
algorithm to compute the state sequence.

(3) Given an HMM λ and observation sequence O, adjust the parameters of λ to obtain
a new HMM λ′ that is more likely to generate O. The Baum-Welch algorithm
performs what is essentially a hill-climbing procedure to estimate new parameters
based on the solutions to the previous two problems.

For details of all three algorithms, we refer the reader to Rabiner [1989].
Iterating the Baum-Welch algorithm finds a local maximum of Pr[O | λ]. Because

the search space is very hilly, in practice one applies the algorithm from many different
randomly-chosen initial positions and chooses the best local maximum. The Baum-Welch
algorithm trains an HMM on a single observation sequence, whereas we will want an HMM
that is trained on a set of such sequences. A simple solution to this problem is to train the
HMM on the concatenation of the sequences in the sets. Assuming we do not allow too



6 WILLIAM BOYD, NORMAN DANNER, AND DANNY KRIZANC

Figure 3: Collected data and our simulation. The collected data is the left and middle
figures and the simulated data is the right figure. The middle figure is the same
as Figure 1. The left figure shows the same data after clustering; clusters are
sorted by failure rate of the center of the cluster, and lifecycles within a cluster
are sorted by failure rate. Blue lines (visible in electronic version) separate the
clusters. Pixel values are as in Figure 1.

many states in the resulting HMM, the spurious transitions at the concatenation boundaries
should not have a significant effect on the result.

4. Preliminary results

We cluster the lifecycle data displayed in Figure 1 using k-medoids clustering with edit-
distance. We follow a rule-of-thumb that says that

√
N/2 is often a reasonable number of

clusters when there are N items in the original dataset. We observed about 3500 relays, so
we use 41 clusters. For each computed cluster C, we concatenate the sequences in C into a
single sequence, then apply the Baum-Welch algorithm to train an HMM λC for the cluster.
In our runs, the median number of states is 8 (with a maximum of 10). We then produce
a simulation of the Tor network by repeating the following 3500 times:

(1) Choose an HMM λ; λC is chosen with probability |C|/3500.
(2) Generate an observation sequence using λ as described above.

In Figure 3 we display a visualization of the original data along with our simulation. As
we can see, some (but not all) of the emergent behavior seems to have been captured in this
simulation. Although we do not see the “peak” of successfully-probed relays (corresponding
to the above-mentioned diurnal pattern that has been already observed) strongly, it is
visible. And likewise we see some of the additional uptime behavior of at the edges. It looks
as though there may have been some transient problem in our data collection (indicated



SIMULATION OF CIRCUIT CREATION IN TOR: PRELIMINARY RESULTS 7

by the two visible vertical white lines) but that same problem does not show up in the
simulated lifecycles; this might be considered to be either a feature or a bug of the model.

5. Assessment

To properly assess the quality of any simulation, we need a measure by which to do
such an assessment. This is a general problem in simulation studies, and appears to be a
very difficult problem. However, we believe we can make a start by proposing the following.
We think that a quality measure ought to satisfy the following two properties:

(1) The best simulation of a data set is the data set itself.
(2) A simulation that cannot produce a given data set is a poor simulation.

Define a model M of lifecycle data to be any process that, given n, produces a set of
n lifecycle sequences. Furthermore, for a given set S of lifecycle sequences, we require that
Pr[S | M], the probably thatM produce S on input |S|, be defined. We can then define the
quality of the model relative to a fixed set S0 (such as our collected data) to be Pr[S0 | M].
With this quality measure:

(1) The model M0 that just returns S0 is the highest-quality model possible, since
Pr[S0 | M0] = 1.

(2) A modelM that cannot reproduce S0 is a lowest-quality model, as Pr[S0 | M] = 0.

With this quality measure, we compared several combinations of different clustering al-
gorithms and distance metrics, and all resulted in seemingly-close quality. Other models
that we expect to be poor in fact compare poorly to our model. An example is a model
that produces |S0| sequences, each of which is a Bernoulli process that chooses failure with
probability equal to the average failure rate of all relays represented in S0.

This notion of quality is very preliminary and needs work. For example, M0 is the
highest-quality model possible relative to S0, but would be a lowest-quality model relative
to a dataset S that is identical to S0 except for a single change of one bit of one lifecycle.
Nonetheless, we feel it is a useful starting point for discussion.

6. Conclusions

We have presented a generative model of Tor relay lifecycles based on collecting such
data, clustering it, and then training hidden Markov models on the resulting clusters. Pre-
liminary investigations indicate that this is a promising approach to simulating at least
some properties of Tor. We have also presented an initial proposal of quality-measurement
for any proposed model.

More work needs to be done to determine appropriate distance metrics and clustering
algorithms. Showing that we can use a similar methodology to accurately simulate more
sophisticated phenomena (such as inter-relay latency and throughput) is a necessary step.
Finally, we need to understand how to define a generative model in general, and to compare
different generative models. Little work has been done in this area, though Kleinberg [2003]
and Carlsson and Memoli [2010] provide some very interesting ideas on the related question
of assessing the quality of clustering algorithms.



8 WILLIAM BOYD, NORMAN DANNER, AND DANNY KRIZANC

References

N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial of service or denial of security?
In Proceedings of the 14th ACM Conference on Computer and Communications Security
(CCS 2007), pages 92–102, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-703-2.
doi: 10.1145/1315245.1315258.

G. Carlsson and F. Memoli. Classifying clustering schemes. 2010.
http://arxiv.org/abs/1011.5270v2.

N. Danner, D. Krizanc, and M. Liberatore. Detecting denial of service attacks in Tor.
In R. Dingledine and P. Golle, editors, Financial Cryptography and Data Security: 13th
International Conference, FC 2009, volume 5628 of Lecture Notes in Computer Science,
pages 273–284. Springer-Verlag, 2009. doi: 10.1007/978-3-642-03549-4 17.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
In Proceedings of the 13th USENIX Security Symposium, August 2004.

J. Feigenbaum, A. Johnson, and P. Syverson. A model of onion routing with provable
anonymity. In S. Dietrich and R. Dhamija, editors, Financial Cryptography and Data
Security: 11th International Conference, FC 2007, volume 4886 of Lecture Notes in Com-
puter Science, pages 57–71. Springer-Verlag, 2007.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, 1990.

J. Kleinberg. An impossibility theorem for clustering. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 446—453,
2003.

S. J. Murdoch and P. Zieliński. Sampled traffic analysis by Internet-exchange-level ad-
versaries. In N. Borisov and P. Golle, editors, Proceedings of the Seventh Work-
shop on Privacy Enhancing Technologies, PET 2007, Ottawa, Canada, volume 4776
of Lecture Notes in Computer Science, pages 167–183. Springer-Verlag, 2007. doi:
10.1007/978-3-540-75551-7 11.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989. doi: 10.1109/5.18626.

R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural
Networks, 16(3):645–678, May 2005. doi: 10.1109/TNN.2005.845141.


	1. Introduction
	2. Lifecycle clustering
	3. Hidden Markov models
	4. Preliminary results
	5. Assessment
	6. Conclusions
	References

