
Proceedings on Privacy Enhancing Technologies ; 2016 (4):356–372

Armon Barton* and Matthew Wright

DeNASA: Destination-Naive AS-Awareness in
Anonymous Communications
Abstract: Prior approaches to AS-aware path selection

in Tor do not consider node bandwidth or the other

characteristics that Tor uses to ensure load balancing

and quality of service. Further, since the AS path from

the client’s exit to her destination can only be inferred

once the destination is known, the prior approaches may

have problems constructing circuits in advance, which is

important for Tor performance. In this paper, we pro-

pose and evaluate DeNASA, a new approach to AS-

aware path selection that is destination-naive, in that it

does not need to know the client’s destination to pick

paths, and that takes advantage of Tor’s circuit selec-

tion algorithm. To this end, we first identify the most

probable ASes to be traversed by Tor streams. We call

this set of ASes the Suspect AS list and find that it con-

sists of eight highest ranking Tier 1 ASes. Then, we test

the accuracy of Qiu and Gao AS-level path inference on

identifying the presence of these ASes in the path, and

we show that inference accuracy is 90%. We develop an

AS-aware algorithm called DeNASA that uses Qiu and

Gao inference to avoid Suspect ASes. DeNASA reduces

Tor stream vulnerability by 74%. We also show that

DeNASA has performance similar to Tor. Due to the

destination-naive property, time to first byte (TTFB) is

close to Tor’s, and due to leveraging Tor’s bandwidth-

weighted relay selection, time to last byte (TTLB) is

also similar to Tor’s.
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1 Introduction

Tor is a popular anonymous communication system that

allows Internet users to access the web anonymously
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or circumvent censorship [10]. Past research has shown

that end-to-end timing attacks [30] and traffic corre-

lation attacks [24, 29] may be used to deanonymize

Tor users by eavesdropping adversaries who simultane-

ously observe both traffic from a client to the Tor net-

work and traffic from the Tor network to the client’s

requested destination. Thus, any autonomous systems

(ASes) that are traversed on both of those sections of

the path from the client to her destination would make

ideal candidates for adversarial eavesdropping vantage

points [11, 12, 19]. Adversaries that observe traffic from

those vantage points are termed AS-level adversaries.

To evaluate the risks posed by AS-level adversaries,

it is necessary to determine the set of ASes that appear

on both of those sections of the path. One method is

to infer the AS-level path, using Qiu and Gao AS-level

path inference [27]. Another method is to infer the AS-

level path using traceroute measurements [23]. Recently,

Juen et al. found that Qiu and Gao AS-level path in-

ference significantly overestimates the number of ASes

traversed by Tor traffic; thus, this method directly is not

suitable for predicting or mitigating the risk of AS-level

adversaries to Tor [21].

All previously proposed AS-aware path selection

methods [11, 20, 28] share a key disadvantage: the signif-

icant performance benefit from pre-constructing circuits

is diminished due to needing to check the circuits for

adversarial eavesdropping vantage points once the des-

tination is known and possibly construct new circuits if

no safe ones are available. Starov et al. show an increase

in page load time by 41% in their AS-aware Tor client,

Astoria [28]. They suggest that the performance loss in

page load times are due to: 1) the inability to preemp-

tively construct circuits to the same degree as Vanilla

Tor, and 2) the time cost of computing AS-level paths

and checking those paths for adversarial vantage points.

1.1 Contributions

In this paper, we first show empirical results suggesting

that Qiu and Gao AS-level path inference, though un-

reliable for full paths, is sufficiently reliable in detecting
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high-ranking ASes [5]. We then propose a novel method

for AS-awareness in Tor that leverages the reliable in-

formation from Qiu and Gao’s approach and evaluate

its anonymity and network performance.

In particular, we first identify the most probable ad-

versarial eavesdropping vantage points, denoted as Sus-

pect ASes, to be traversed by Tor streams. Then, we test

the Qiu and Gao AS-level path inference method for

its ability to infer the presence of each individual Sus-

pect AS in the path and show that the mean accuracy

is 90%. Based on this finding, we developed DeNASA,

a novel AS-aware path selection algorithm that does

not need to know the client’s destination in advance

and thereby can take advantage of the performance op-

timization achieved by having pre-constructed circuits

that are fully ready to be used. We term this property as

being destination-naive. We designed a TorPS [31] sim-

ulation in which 34.4% of Tor streams were vulnerable.

This is slightly higher than what most previous works

suggest [11, 12, 19, 20]. We show in the simulation that

DeNASA reduces Tor stream vulnerability by 74%.

We also implement this AS-aware path selection al-

gorithm in the Tor source code and test its network per-

formance in Shadow. We show that TTFB is not signifi-

cantly different than Vanilla Tor due to the destination-

naive property. Using the same simulation we show that

TTLB is not significantly different than Vanilla Tor.

2 Background

2.1 Tor

Tor is a circuit-based low-latency anonymous commu-

nication system designed to anonymize TCP-based ap-

plications [10]. Tor consists of approximately 7000 re-

lays [15] distributed throughout the world making up

an overlay network across the Internet. Each Tor relay

is deployed voluntarily by people around the world who

wish to support anonymous communications and can

supply the bandwidth and computational power. These

volunteer-run nodes accommodate millions of users each

day [15]. Each user’s Tor client selects a path (called a

circuit) through the Tor network of exactly three Tor

relays in which each relay in the path knows its prede-

cessor and successor, but no other relays in the path.

In the circuit, the first hop is called a guard relay, the

second hop is called a middle relay, and the third hop is

called an exit relay. The circuit-building design is some-

times referred to as onion routing, where the client ne-

gotiates session keys with each successive hop in the

path incrementally until the final hop is reached where

traffic proceeds from the final hop to the destination

unencrypted. A client can connect to several different

destination websites through one circuit due to the fact

that each circuit can be shared by several TCP streams.

In Tor, steps are taken to ensure low-latency web

browsing. During circuit construction, there are delays

due to the use of public key cryptography and network

latency. These delays are mitigated by allowing clients

to construct circuits in advance of using them for com-

municating. The process for selecting relays attempts

to balance traffic over the available router bandwidth in

the Tor network. The bandwidth capacity of the routers

is periodically delivered to each client via the consen-

sus, a document containing information about Tor re-

lays. Load balancing is then achieved by selecting each

router in proportion to its bandwidth capacity.

To prevent various attacks such as the predecessor

attack [26, 33, 35], the selective denial of service at-

tack [4], and statistical profiling attacks, clients use a

single guard node as the first hop for every circuit she

makes. This reduces the risk that an attacker will control

the first hop on some of a user’s circuits. A new guard

is chosen only if the presently selected guard ever be-

comes unavailable, or if a period of 60 days to 9 months

is reached [9], thereby reducing the probability of rotat-

ing to a compromised guard [19].

End-to-end timing attacks are performed by adver-

saries who passively observe traffic on both ends of a Tor

stream, and thereby correlate traffic in order to identify

the client and her requested destination. The Tor design

is not resilient to end-to-end timing attacks, nor does

it claim to be. An attacker passively watching traffic

patterns on both ends of a Tor circuit will be able to

deanonymize the user with high probability [10].

2.2 Network Layer Routing

The Internet can be viewed as an aggregate of Au-

tonomous Systems (ASes) that are linked together at

the network layer by high-bandwidth lines and fast

routers. Each AS is a LAN that is owned and oper-

ated by a single organization, such as a company, gov-

ernment agency, university, or Internet service provider.

Between ASes, the routing protocol on the Internet is
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BGP (Border Gateway Protocol), which is fundamen-

tally a distance vector protocol. BGP routers adhere

to routing policies which include political, security, and

economic constraints. For example, a corporate AS in

Israel might be unwilling to forward transit traffic orig-

inating from an AS in Iran. On the other hand, the

same AS in Israel might want to receive packets originat-

ing from other parts of the world which transit through

ASes in Iran. The routing policies at each BGP router

may differ; however, each BGP router keeps track of the

exact path used to a particular destination, and it tells

all neighbors the exact path it used to reach that par-

ticular destination. When a BGP router needs to reach

a destination, it asks all neighbors what path they took

and selects the best path based on its routing policies.

2.3 AS-Level Path Inference

Inferring AS-level paths from arbitrary source and desti-

nation pairs across the Internet is essential in analyzing

a path for AS-level adversaries. A popular method for

inferring AS-level paths is to perform a traceroute from

the source to the destination. However, reliably compil-

ing and distributing a complete database of traceroute

data between all clients, Tor routers, and destinations

to all users would be prohibitively expensive. We require

a different approach.

2.3.1 Qiu and Gao Path Inference

ASes form business relationships with each other based

on a variety of political, security, and economic con-

straints. A model introduced by Gao[13] abstracts these

relationships into three types: customer-to-provider,

provider-to-customer, and peer-to-peer. A customer al-

ways provides monetary transfer to the provider in ex-

change for the provider providing bandwidth to the

customer. In peer-to-peer relationships, the two ASes

have agreed to exchange traffic between each other on a

quid-pro-quo basis, allowing monetary savings on tran-

sit costs between them [7]. We can imagine the ASes

organized in graph theoretic terms as a forest of trees,

with customers as leaves at the bottom and higher-level

providers as root nodes at the top. Peer-to-peer rela-

tionships are extra edges that link the branches in the

tree and can link different trees, particularly between

root nodes.

Mao et al. introduce a method to infer AS-level

paths by using this model of relationships [22]. In this

method, a path is considered valid if, for every AS pro-

viding transit, there is a payee that is the neighbor of the

transit provider. An invalid path is one in which there

is at least one transit provider not paid by a neighbor in

the path [7]. Valid paths are denoted as possessing the

valley-free property: considering the tree-based graph

structure of inter-AS relationships, there should be no

path that goes down towards the customer leaves and

then goes back up towards the root nodes.

Qiu and Gao[27] proposed an improvement on AS-

level path inference by exploiting known paths that ap-

pear in BGP routing tables and inferring AS paths based

on this information. Their method is also extended to

infer a set of potential paths between a given source

and a given destination. They show that their algo-

rithm achieves an average accuracy of 60% for exactly

matching the entire path and 80% for matching the path

length. Additionally, they offer an AS path inference ser-

vice called Swordqiu where users are able to access the

most up-to-date inference results[3].

2.4 Related Work

2.4.1 Studies of the Threat

The vulnerability of Tor streams due to the threat of

AS-level adversaries has been evaluated by several re-

searchers. In Table 1, we summarize the findings of prior

works that used AS-path inference to determine the per-

centage of vulnerable streams in Tor.

In the Internet, traffic may be routed asymmetri-

cally, such that the AS path from the client to the server

(the forward path) is different than that for return traf-

fic from the server back to the client (the reverse path).

Most works assume that the attacker should either see

forward traffic from the client to the guard together with

forward traffic from the exit to the destination (Forward

in Table 1), or he should see reverse traffic from the

guard to the client together with reverse traffic from the

destination to the exit (Reverse in Table 1). This makes

traffic analysis easier so as to link the two ends of the

stream. A third case, based on the same assumption, is

that the attacker could succeed when seeing either the

Forward case or the Reverse case (F/R in Table 1).

More recently, however, it has been shown that the

attacker can also succeed when seeing forward traffic
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Author Forward Reverse F/R Asym 1 Guard

Feamster and Dingledine [12] 17.7% 16.1% NA NA No

Edmond and Syverson [11] 10.9% 11.1% 17.8% NA No

Wacek et al. [32] NA NA 27.4% NA No

Juen [20] 7.1% 7.2% 11.2% NA No

Starov et al. [28] NA NA NA 37.0% Yes

Juen et al. [21] 11.6% 12.1% 21.6% NA No

This Work 17.2% 17.9% NA 34.4% Yes

Table 1. Comparison of results on the rates of vulnerable streams. Traffic can be observed in the Forward direction, the Reverse

direction, either direction but the same on both ends (F/R), and either direction including asymmetrically (Asym).

from the client to the guard and reverse traffic from the

destination to the exit, or vice versa [29]. We call this

the asymmetric case (Asym in Table 1), and it covers

the broadest possible set of observations.

According to most results, 11% to 28% of forward or

reverse paths of Tor streams were vulnerable. According

to Starov et al., 37% of asymmetric paths were vulner-

able. Some reasons for the high variance in past results

are due to the variations in Tor network sizes, AS-path

inference techniques, and adversary models. We discuss

adversary models in section 2.4.1.

Somewhat differently from these works, Sun et al.

present a new attack suite called Raptor that can be

launched by ASes to compromise Tor users [29]. They

introduce an asymmetric traffic analysis attack that al-

lows an adversary to deanonymize users if the adversary

is able to observe any direction of the traffic at both

ends of the Tor path. Additionally, via BGP intercep-

tion they demonstrate a correlation attack on the live

Tor Network that takes advantage of asymmetric rout-

ing on the Internet.

Similar to several prior works [11, 20, 21], we use

Qiu and Gao’s method for AS-level path inference [27].

Comparably to the recent work of Starov et al., we as-

sume that adversaries can perform asymmetric traffic

analysis attacks to deanonymize users. Note that for all

entries in Table 1, apart from Starov et al. and This

Work, Tor was not configured to use the recently de-

ployed policy of using a single entry guard.

2.4.2 Defenses

Edman and Syverson proposed and evaluated an AS-

aware path selection algorithm in which computational

overhead is avoided on the client side by using a snap-

shot of the Internet AS-topology [11]. Akhoondi et al.

proposed a Tor client called LASTor that minimizes la-

tency in paths by considering geographic locations of

relays [1]. LASTor is designed to avoid paths in which

an AS can observe both sides. Juen et al. proposed

an AS/IX-aware algorithm that reduces Tor vulnera-

ble streams to 5.3%-11% [20]. Starov et al. presented an

AS-aware Tor client called Astoria which reduces the

number of vulnerable streams to under 5.1% [28].

Among these defenses, one common disadvantage

is that the significant performance benefit from pre-

constructing circuits is diminished due to the difficulty

in preemptively constructing safe circuits, particularly

ones that are fully ready to be used, and due to the cost

of computing and checking AS-level paths on the client

side. If no available circuits are safe, new ones should

be constructed, substantially increasing the delay be-

fore sending any requests to the server.

2.5 AS-Level Adversary Model

Due to the asymmetric nature of Internet routing, the

AS path from source to destination can be different from

the AS path from destination to source. In our model, we

assume that AS-level adversaries can exploit the asym-

metric nature of Internet routing to compromise users

by observing any direction of traffic at both ends of the

Tor path [28, 29]. We assume that the adversary may

control the routers in any AS in the Internet. Since we

do not know which ASes might be compromised, we

simply say that when an AS appears on both ends of

a path between the client and the destination, the AS

is well-positioned and the path is vulnerable. Minimiz-

ing the chance of a path vulnerability, so defined, also

reduces the risk for a user that any single compromised

AS could link her with her destinations.
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We now define this model more precisely. The for-

ward path is one in which data in the TCP connection

travels from client to guard and from exit to destination.

The set of ASes from the client (c) to guard (g) that are

traversed on the forward path are denoted as Pc→g. The

set of ASes from the exit (x) to destination (d) that are

traversed on the forward path are denoted as Px→d. If

Pc→g ∩ Px→d 6= ∅, then we say that the forward path is

vulnerable. Of course, the ASes in this intersection may

not be malicious or compromised by an adversary. As

we do not know, however, which ASes are malicious, we

assume that any AS can qualify.

Similarly, the reverse path is one in which data in

the TCP connection travels from destination to exit and

from guard to client. The set of ASes in between guard

to client that are traversed on the reverse path are de-

noted as Pg→c. The set of ASes in between destination

to exit that are traversed on the reverse path are de-

noted as Pd→x. If Pg→c ∩ Pd→x 6= ∅, then the reverse

path is vulnerable.

The combined asymmetric path from client to guard

is denoted as Pc↔g = Pc→g ∪ Pg→c. The asymmetric

path from exit to destination is denoted as Px↔d =
Px→d ∪ Pd→x.

The asymmetric path from the client to her desti-

nation is vulnerable if Pc↔g ∩ Px↔d 6= ∅.

3 AS-Level Adversaries

In this section, we simulate the Tor network by generat-

ing Tor streams using TorPS and analyze those streams

with Qiu and Gao AS-level path inference. The simu-

lation will serve as a benchmark for analyzing our AS-

aware approach (Section 4).

3.1 Experimental setup

TorPS [31] – a Tor path selection simulator – uses histor-

ical data to recreate network conditions that Tor users

experienced in the real world [19]. Under these con-

ditions, circuits are created according to past network

state, and streams are attached to these circuits accord-

ing to user behavior. Path selection in TorPS is based

on the code in Tor version 0.2.3.25.

In our experiment, we configure TorPS to use a sin-

gle guard and allow a new guard to be selected only

CC Mean daily users CC Mean daily users

US 16.47% ES 3.86%

DE 9.32% BR 3.71%

RU 7.21% IT 3.59%

FR 6.27% PL 2.47%

GB 4.42% JP 2.36%

Table 2. Top 10 countries by directly connecting users [15]

if the first guard is unavailable. We use the 176 top

Alexa [2] destination websites from 108 ASes that range

in genre from news, social media, search engines, blogs,

e-commerce, banking, classifieds, etc.

We test six distinct user models: 1) 5-destination,

2) 10-destination, 3) all-destinations, 4) 5.1-distinct, 5)

5.2-distinct, and 6) 5.3-distinct. The 5-destination user

model is one in which each client selects five destina-

tions uniformly at random from the set of 176 sites at

the start of the simulation. During the simulation, the

client then requests destinations uniformly at random

from this pre-selected set. Similarly, the 10-destination

user model specifies that each client selects from among

10 pre-selected destinations for each connection. The

all-destination user model is one in which all clients uni-

formly visit all 176 destinations.

We have three user models, 5.1-distinct, 5.2-distinct,

and 5.3-distinct, in which all users visit the same five

destinations. The goal of using these models is to show

the extent to which our findings depend on the user’s

choice of destinations. The five destinations for each

model were pre-selected uniformly at random from the

full set of destinations.

The client model is based on the top 10 countries by

directly connecting users according to Tor Metrics [15].

Table 2 shows this weighted distribution of clients ac-

cording to country. We simulate up to 10 clients from

distinct ASes for each country totaling 92 clients from

92 distinct ASes. Client ASes are chosen partly from the

list proposed by Edmond and Syverson [11], partly from

the list proposed by Juen [20], and partly from CAIDA

Top Ranking ASes [5].

We parsed a Tor Consensus from December 2014

and found that there were 353 ASes for all guard nodes

and 454 ASes for all exit nodes. In our experiments, we

simulate 49% of the Tor guard nodes from 329 ASes, and

43% of the Tor exit nodes from 380 ASes. Thus, 93% of
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Fig. 1. Probability of a Tor client building a vulnerable stream

using the default Tor path selection algorithm.

Tor guard ASes and 81% of Tor exit ASes are repre-

sented in our simulations. Each client in the simulation

builds 10,000 streams, and we thus build more than

900,000 streams per simulation. After all streams are

generated, we use them as input to Swordqiu, the Qiu

and Gao AS-level path inference tool. The forward, re-

verse, and asymmetric paths are analyzed and flagged as

vulnerable according to the adversary model described

in Section 2.5

3.2 Results

The probability of a Tor client building a vulnerable

stream using the default Tor path selection algorithm is

shown in Figure 1. The mean forward path and mean

reverse path vulnerability rates for all clients using the

5-dest user model was 17.2% and 17.9% respectively.

The distribution of these two data sets are not statis-

tically different. This suggests that, for all clients, the

probability of building a vulnerable stream is statisti-

cally the same in either direction. Hence, targeting one

direction over the other for AS-awareness does not give

us any added advantage.

The mean asymmetric path vulnerable stream rate

for all clients using the 5-destination user model was

34.4%. The best and worst case vulnerable stream rate

for a client was approximately 12% and 60% respec-

tively. For 70% of clients, between 22% and 41% of

their streams were vulnerable. A perhaps surprising re-

sult was that all user models, including the three 5.x-

distinct models in which all clients visited the same five

destinations, produced statistically similar vulnerable

streams for all clients. This suggests that clients may not

evade the threat posed by well-positioned ASes simply

by reducing the number of requested destinations nor
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Fig. 2. Probability of Suspect AS being able to observe both sides

of a Tor stream, given that the Tor stream was vulnerable.

by varying their destination distribution. The reason for

this is the similar exit relay distribution for all circuits

over time. This is because, whether going to different

destinations or the same destination, the locations of

the ever-changing exit relays provide a sufficient sam-

ple of ASes to get typical vulnerable stream rates. This

notion, which we discuss further in Section 4, leads to

our observation that certain ASes are predictably likely

to be traversed from certain Tor exit nodes regardless

of the destination. In the remaining TorPS experiments,

we use the 5-destination user model.

3.3 Suspect ASes

We observed a relatively small set of ASes that were con-

sistently well-positioned in the generated Tor streams.

We term this set of ASes as the Suspect ASes. From

among the vulnerable streams in our experiments, we

compute the percentage of times that each AS appeared

on both ends of the stream, i.e. that each AS was in po-

sition to compromise the user’s anonymity. Note that

more than one AS may appear on both ends of a given

stream. The results in Figure 2 show that the Suspect

AS set does not significantly change for different user

models. The top two ASes, AS3356 (Level 3 Commu-

nications) and AS1299 (TeliaSonera International Car-

rier), accounted for 27% to 38% and 20% to 37% of the

vulnerable streams, respectively. Another 27% to 61%

of vulnerable streams were due to the set of six other

ASes shown in Figure 2. In the three 5.x-distinct user

models, we do see that some of the Suspect ASes are

more or less common for different sets of destinations.

The set of the top six ASes, however, remains the same

for all user models.
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Fig. 3. Probability of a Tor client building a vulnerable stream

under various adversary models that assume different number of

compromised Suspect ASes. The Vanilla-5dest data set assumes

any AS may be compromised.

Next, we evaluate the significance of the Suspect AS

set. We augment the data from the simulation by tuning

the adversary model and specifying that the adversary

may only compromise Suspect ASes. By increasing the

length of the Suspect AS set, we show in Figure 3 how

the fraction of vulnerable streams increases. We observe

that when the adversary controls a Suspect AS set of

len=1 (3356) and len=2 (3356 and 1299), 32% and 9%

of clients build zero vulnerable streams, respectively. As

the adversary’s resources increase from len=1 to len=6,

the mean vulnerable stream rate increases from 10.7%

to 33.4%. However, when increasing the Suspect AS

set length from len=6 to len=8, vulnerable streams in-

creased by only 0.4%. When it is assumed that any AS

may be compromised by the adversary as described in

our adversary model (Section 2.5), the mean vulnera-

ble stream rate increased by only 0.6% to 34.4%. These

results indicate that adversaries have little to gain by

targeting ASes that are outside the Suspect AS set.

The eight Suspect ASes shown in Figure 2 will be

used as input to our AS-aware approach described in

Section 4.

3.4 Qiu and Gao Accuracy

We now evaluate the accuracy of Qiu and Gao path in-

ference and its ability to predict whether or not a Sus-

pect AS is in a path for arbitrary source-destination

pairs. The accuracy of Qiu and Gao AS-level path in-

ference with regards to assessing Tor has been recently

questioned by Juen et al. [21]. They find that only 20%

of inferred paths match paths acquired from traceroute
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Fig. 4. True Positive, True Negative, and Accuracy rates of Qiu

and Gao AS-level path inference and its ability to predict Suspect

ASes in CAIDA traceroute paths.

measurements and that Qiu and Gao path inference sig-

nificantly overestimates the number of ASes traversed

by Tor traffic. They conclude that Qiu and Gao infer-

ence is not suitable for predicting or mitigating the risk

of AS adversaries to Tor.

We note, however, that a path inference algorithm

like the Qiu and Gao approach may still be accurate

for identifying individual ASes on a path and for the

eight members of our Suspect AS set in particular. In

this case, an algorithm for AS-aware path selection that

relies only on predicting the presence of these key ASes

may be viable based on Qiu and Gao inference.

To determine the accuracy of Qiu and Gao in de-

termining the presence or absence of the Suspect ASes,

we set up an experiment where Qiu and Gao path in-

ference is tested using a CAIDA traceroute data set [6]

as ground truth. We are only concerned with how Qiu

and Gao inference performs in predicting whether or not

a Suspect AS is in the traceroute path. A Positive (P )
case is one in which the AS is actually in the tracer-

oute path, and a Negative (N) case is one in which the

AS is not. A True Positive (TP ) case is one in which

Qiu and Gao inference correctly identifies that the AS

is in the traceroute path. A True Negative (TN) case is

one in which Qiu and Gao inference correctly identify

that the AS is not in the traceroute path. In Figure 4,

we present the results of three metrics of Qiu and Gao

inference with respect to finding Suspect ASes:

True Positive Rate (TPR) = TP/P

True Negative Rate (TNR) = TN/N

Accuracy (A) = (TP + TN)/(P +N)
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We find that Qiu and Gao inference has a mean

accuracy of 90% taken over the eight Suspect ASes. We

note that the TPR is quite low in some cases while the

accuracy is high. This is due to the fact that Negative

cases occurred 100 to 1000 times more frequently than

Positive cases, causing the P/N ratio to be small.

We conclude that, with this accuracy, Qiu and Gao

inference is suitable for predicting and mitigating AS-

level adversaries in our simulation. On the other hand,

our approach is designed in such a way that traceroute

measurements or Qiu and Gao inference, or a combina-

tion of both, can be used in deployment.

4 AS-Awareness

We now introduce DeNASA, a new AS-aware approach

to Tor path selection that is destination-naive, in that

it allows clients to pre-build circuits that are fully ready

to be used without knowing the requested destination

in advance.

First, let us define Tsus, probability table that is

input to the algorithm. Tsus is a table with rows equal

to the number of Exit ASes and columns equal to the

number of Suspect ASes. An Exit AS is an AS that a

Tor exit relay resides in – denoted as ASex. In Tsus, each

value (PRi,j) represents the probability that a Suspect

AS ASsus
i will be traversed between an Exit AS ASex

j

and possible destinations. Tsus values are obtained by

inferring the AS-level path from all Exit ASes to all

Destinations in our simulation.

In particular, (PRi,j) is calculated as follows: Let

ASsus
i denote the ith Suspect AS, ASex

j denote the jth

Exit AS, Destk denote the kth Destination, and let q be

the total number of Destinations. Then PRi,j is equal

to the total number of paths where ASsus
i appears from

ASex
j to Destk for all 1 ≤ k ≤ q, divided by the total

number of paths from ASex
j to Destk for all 1 ≤ k ≤ q.

In a realistic deployment, it would not be practical

to perform traceroute measurements from Internet des-

tinations such as popular Web servers to Tor exit relays.

As such, we obtain Tsus from forward paths from exit to

destination, and not reverse paths from destination to

exit. This means not having access to reverse path mea-

surements if traceroute is used for AS path inference.

Instead, we obtain Tsus from Qiu and Gao inference or

by performing traceroute measurements from Tor exit

relays to destinations across the Internet.

Data: Pc↔g

Data: Suspect AS list

Data: Tsus

Data: τ (a tunable parameter)

flag = 1;

select guard from Guard List;

while flag do

select exit via Tor algorithm;

foreach ASsus in Pc↔g do

if PRASsus,ASex < τ then

flag = 0;

else

flag = 1;

break;

end

end

end
Algorithm 1: e-select, AS-aware path selection.

4.1 AS-Aware Path Selection Algorithm

Two methods make up the DeNASA path selection al-

gorithm. The first method is called e-select (see Algo-

rithm 1), and it determines how a client selects the exit

relay. The data inputs are pc↔g, Suspect AS list, Tsus,

and τ (a tunable threshold). First, the client selects a

guard node from the guard list. Then, via bandwidth

weighting, the client selects an exit node. For all Sus-

pect ASes that appear in the path from client to guard,

if the value PRAS,Exit is less than τ , the chosen exit is

accepted. If not, the algorithm selects and tests more

exits until a suitable one is found. τ can be tuned from

0.0 (maximum security) to 1.0 (maximum flexibility).

The second method, called g-select, determines how

a client adds guards to the guard list. In this method,

a client first selects a potential guard via the Tor guard

selection algorithm and then ensures that there is not

a Suspect AS in the asymmetric path from client to

guard. The client cycles through all live guards until

one is found that meets this constraint. If there are no

guards that meet the constraint, the client will select a

guard as per the standard Tor guard selection algorithm.

For g-select, the Suspect AS list length is reduced to

len=2 (3356 and 1299) in order to not introduce a guard

placement attack (discussed in section 4.4).

Methods 1 and 2 can be switched on or off indepen-

dently of each other. When both methods are switched

on, we call the algorithm g&e-select.
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Fig. 5. Empirical CDF of the Fraction of Vulnerable Streams for

e-select: τ = 0.1, g-select, and g&e-select τ = 0.1 compared to

Vanilla Tor.

4.2 AS-Awareness Evaluation

To evaluate DeNASA’s performance with respect to

anonymity, we use the simulation described in Section 3

but with the new path selection algorithms implemented

in TorPS. In the simulation, we generated over 900,000

streams for each curve. These streams were used as in-

put to Qiu and Gao inference, and streams were flagged

as being vulnerable based on the adversary model de-

scribed in Section 2.5.

For e-select:, g-select, and g&e-select:, TsuspectT able

was trained using a subset of 92 destinations located

in 55 ASes. Then, AS-awareness was tested using the

full set of 176 destinations located in 108 ASes. This

simulates clients requesting destinations that are both

inside and outside of our training set.

The results can be seen in Figure 5 and are shown

along with our results for Vanilla Tor. The e-select

method performed best when τ was set to 0.1; this

method reduced the mean vulnerable stream rate to

14.7%. The mean vulnerable stream rate for g-select was

21.7%. Finally, g&e-select with τ = 0.1 had the best per-

formance with a mean vulnerable stream rate of 8.8%

compared to Vanilla Tor – a 74% decrease.

4.3 Client Location Diversity

To explore whether clients in different locations would

have different levels of security in our scheme, we aug-

ment the data to reveal the performance of the AS-aware

methods with respect to the client’s location by country.

The mean vulnerable stream rate for clients in the

countries in the top 10 by directly connecting users to
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Fig. 6. Mean vulnerable stream rate for the top 10 countries by

directly connecting users for e-select: τ = 0.1, g-select, and g&e-

select τ = 0.1 compared to Vanilla Tor.

Tor is shown in Figure 6. We observe that clients from all

countries benefit from using any AS-aware method com-

pared to Vanilla Tor; clients from all countries benefit

more by using e-select over g-select; and clients from all

countries apart from Poland and Japan benefit the most

by using g&e-select over all other methods. Clients from

Poland and Japan benefit the same by using g-select or

g&e-select.

Clients from all countries realized an 81% to 85%

decrease in mean vulnerable stream rate from Vanilla

Tor compared to g&e-select.

4.4 G-select Evaluation

The g-select method may introduce a threat if: 1) a large

set of clients can only access a few guards, or 2) a large

set of guards are strictly accessible from few network

locations. The first threat would give adversaries more

opportunities to deploy relays that are positioned on

both sides of Tor streams. The second threat would let

the adversary gain information about the client’s net-

work location with high probability, based on the client’s

choice of guard. In this section we address both of these

concerns. We also discuss how the results impact load

distribution on guard nodes with g-select in use.

4.4.1 Guard Placement Attack

If clients have access to few guards that satisfy the g-

select constraints, the g-select method may introduce a

new attack we call the guard placement attack. A guard
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Fig. 7. Empirical CDF of available guards from 771 simulated

guard nodes for clients using g-select with varying Suspect AS list

length.

placement attack is a relay-level attack [19] in which an

attacker places a guard in a location that satisfies the g-

select constraint for a set of clients who otherwise have

few other guards to choose from. This causes the clients

to select the attacker’s guard with high probability and

thereby harms their anonymity. This attack can be miti-

gated by relaxing the Suspect AS list length for g-select.

When g-select is in use, we denote all guards that satisfy

the g-select constraints and become available to clients

as available guards. Figure 7 shows the available guards

out of the 771 simulated guard nodes for clients using

g-select. In each case, the Suspect AS list length was re-

laxed. When the full Suspect AS list was used (len=8 ),

75% of clients had access to at most 51 guards. In other

words, an adversary launching a guard placement at-

tack in this scenario would be competing with at most

51 guards to potentially compromise 75% of clients.

On the other hand, when the Suspect AS list length

was relaxed to len=2, 94% of clients had access to be-

tween 101 to 695 guards, and 6% of clients had access

to at most 100 guards. In this case, an adversary would

be competing with at most 100 guards to potentially

compromise 6% of clients. If the adversary intends to

potentially compromise a larger percentage of clients,

the number of guards to compete with grows linearly,

increasing the cost of the attack. Similarly, when the

Suspect AS list length was relaxed to len=1, 94% of

clients had access to between 154 to 749 guards, and

6% of clients had access to at most 153 guards.

Based on these results, we believe that the longest

Suspect AS list with an allowable risk from the guard

placement attack is len=2. Therefore, a Suspect AS list
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Fig. 8. Empirical PDF of fraction of Guards that are reachable

form client connecting countries when g-select is in use.

CC Prob. CC Prob.

GB 14% FR 9%

JP 14% DE 9%

IT 12% ES 8%

BR 11% PL 7%

RU 10% US 6%

Table 3. Distribution of origin countries from which clients may

access guards when using g-select.

of len=2 (3356 and 1299) for the g-select method is used

in all simulations in this study.

4.4.2 Client’s Guard Choice

The guard placement attack would present an addi-

tional threat to clients if an adversary could determine

a client’s network location with high probability based

on the client’s guard choice. To address this concern, we

analyzed reachability of guards from different countries

when using g-select. As shown in Figure 8, 55% of guards

were reachable from all 10 countries, and an additional

42% of guards were reachable from four to nine coun-

tries. However, 3% of guards were reachable from just

one to three countries. If an adversary deployed a guard

within this 3%, for example, the adversary could gain in-

formation about the client’s country of origin with high

probability. On the other hand, this attack is limited

to a small subset of guards. Moreover, In Section 6.1.2,

we introduce some suggestions that we believe would

decrease the threat presented by the guard placement

attack.
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For all guards in our simulation, the distribution

of origin countries from which clients may access guards

when using g-select is shown in Table 3. Clients from GB

and JP were represented approximately twice as much

as clients from US and PL. For the majority of guards,

the distribution indicates that an adversary should not

be able to gain information about a client’s origin coun-

try with high probability.

In future work, a similar study can be done to evalu-

ate how much information an adversary can gain about

a client’s AS-level network location based on the client’s

guard choice when using g-select.

Note that the guard placement attack was evaluated

with respect to the top ten client connecting countries

in Tor, representing approximately 60% of directly con-

necting (non-Bridge) Tor users [15]. In future work, an

evaluation can be done in which significantly more coun-

tries are included.

4.4.3 Guard Load Distribution

The results in this section indicate that, when g-select is

in use: 1) most clients have access to a large set of guard

nodes, and 2) most guard nodes are reachable from sev-

eral client connecting countries. Hence, there should be

no added congestion from g-select due to imbalanced

guard load distribution. Additionally, in Section 5 we

show that network performance of g-select supports our

assertion that no significant congestion is added to the

Tor Network when g-select is in use.

4.5 Shifting Suspects

The rate at which Tor streams were vulnerable for

Vanilla, g-select, e-select, and g&e-select was 0.34, 0.22,

0.15, and 0.09 respectively. In Figure 9, we show the

conditional probabilities – before and after DeNASA is

applied – of a Suspect AS being able to observe both

sides of a Tor stream, given that the Tor stream was

vulnerable. The results indicate that g-select and g&e-

select are properly avoiding AS3356 and AS1299 as ex-

pected. Additionally, the probability of being positioned

on both ends is shifted from AS3356 and AS1299 to

other Suspect ASes after DeNASA is applied. However,

in these results, there is no indication that the proba-

bility of being well-positioned significantly increases for

ASes that are outside the Suspect AS set. Hence, we
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Fig. 9. Conditional probabilities – before and after DeNASA is

applied – of Suspect ASes being able to observe both sides of a

Tor stream given that the Tor stream was vulnerable.

believe that DeNASA does not cause ASes that are out-

side the Suspect AS set to be in a better position to

attack by shifting a significant amount of Tor connec-

tions through those ASes.

A strategic adversary is one who knows DeNASA

is being applied to circuit selection, and thereby tar-

gets Suspect ASes that have a high probability of be-

ing well-positioned after DeNASA is applied. For g-

select and g&e-select, the conditional probability of be-

ing well-positioned increased dramatically for some Sus-

pect ASes. Due to the rate at which Tor streams were

vulnerable for g-select, Figure 9 shows that g-select

users may not gain any additional advantage against

a strategic adversary who specifically targets other Sus-

pect ASes. On the other hand, due to the rate at which

Tor streams were vulnerable for g&e-select, Figure 9

shows that g&e-select users do in fact gain a significant

advantage against strategic adversaries who target other

Suspect ASes.

4.6 AS-path lengths

Selecting a guard such that the path from client to guard

does not contain AS3356 or AS1299 may cause clients to

select guards that are geographically near compared to

vanilla guard selection. This may be indicated by shorter

AS-path lengths from client to guard. Selecting guards

that are near to the client has some advantages. Sun et

al. suggest that the risk of asymmetric traffic analysis

due to BGP churn is mitigated when guards are selected

that are closer to the client [29]. This subtopic of how

g-select affects AS-path length is left for future work.
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In the next section, we evaluate network perfor-

mance of our proposed methods. We discuss more about

deployment issues for DeNASA in Section 6.

5 Network Performance

To evaluate the network performance of Tor when us-

ing our AS-aware path selection algorithm, we simu-

late the Tor network in Shadow, a large-scale discrete-

event Tor simulator. Shadow enables us to efficiently

run accurate Tor Network experiments by modeling

live network characteristics such as relay contributed

bandwidth, bandwidth distribution from entry, mid-

dle, and exit relays, and geographic distributions of re-

lays [16, 18]. Shadow runs real Tor software that allows

researchers to experiment with modifications to Tor by

directly modifying the Tor source code. Client perfor-

mance in Shadow simulations is statistically similar to

performance achieved through the live Tor network due

to the use of the live Tor consensus.

The destination-naive property of DeNASA al-

lows for statistically similar TTFB values compared to

vanilla Tor because circuits can be pre-built without

knowing the requested destination in advance, as de-

scribed in Section 4. Additionally, relays are chosen with

bandwidth weighted selection as a first priority during

circuit construction. Thus, TTLB performance in De-

NASA should be similar to vanilla Tor.

5.1 Tor Model

The Shadow configuration that we used consists of: 500

clients from the top 10 countries by directly connect-

ing users shown in Table 2 [15]; 370 Tor relays sampled

from the December 2014 consensus; and 70 destination

servers from the Alexa list of top websites [2]. Table 4

shows the distribution of guard locations for the top 10

most common guard locations from our Tor model.

All clients and relays were assigned – based on their

AS – to an enhanced network topology of 17,250 ver-

tices and 150 million edges [17]. In this model, there are

two classes of clients, web clients and perf clients. Web

clients choose destination servers uniformly at random

and then perform HTTP GET requests to download 320

KiB files from the modeled Tor network [16]. Each client

measures the time from when the first request is made to
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Fig. 10. Empirical CDF of the Fraction of Vulnerable Streams for

e-select: τ = 0.1, g-select, and g&e-select τ = 0.1 compared to

Vanilla Tor for streams generated in Shadow simulations.

CC Prob. CC Prob.

DE 42% GR 7%

US 23% NL 6%

FR 20% GB 4%

RU 8% UA 4%

CZ 8% SE 4%

Table 4. Distribution of guard locations for the top 10 most

common guard locations from the Shadow simulation.

when the first byte is received (TTFB) and last byte is

received (TTLB). Relays are selected by clients during

circuit construction using bandwidth weights published

in the consensus and according to one of the following

path selection algorithms: vanilla, e-select, g-select, or

g&e-select. Perf clients download 50 KiB files through

the modeled Tor network. We validate our Tor model

against live Tor by comparing the results of perf clients

to historical Tor data from Tor Metrics [15].

We verify that the AS-aware methods are modeled

correctly in Tor by generating streams from the shadow

simulations similar to what was done with TorPS in

Section 4. The results can be seen in Figure 10. The

mean vulnerable stream rate for vanilla path selection,

g-select, e-select:τ = 0.1, and g&e-select:τ = 0.1 were

34%, 16%, 15%, and 7% respectively. The results from

the Shadow simulations were similar to the TorPS sim-

ulations and are shown in Table 5. The fundamental dif-

ferences between the two simulations were: 1) the Tor

Simulator g&e-select:0.1 e-select g-select vanilla

TorPS 8.8% 14.7% 21.7% 34.4%

Shadow 7% 15% 16% 34%

Table 5. Vulnerable Stream Comparison for TorPS vs. Shadow
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Fig. 11a. Time to first byte values for Shadow perf clients com-

pared to live Tor perf [15] for fixed file size downloads of 50Kib.
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Fig. 11b. Time to first byte values for web clients when using

g-select, e-select:0.1, e-select:0.2, and e-select:0.3 compared to

vanilla Tor.
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Fig. 11c. Time to first byte values for web clients when using

g&e-select:0.1, g&e-select:0.2, and g&e-select:0.3 compared to

vanilla Tor.
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Fig. 11d. Time to last byte values for Shadow perf clients com-

pared to live Tor perf [15] for fixed file size downloads of 50Kib.
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Fig. 11e. Time to last byte values for web clients when using

g-select, e-select:0.1, e-select:0.2, and e-select:0.3 compared to

vanilla Tor.
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Fig. 11f. Time to last byte values for web clients when using

g&e-select:0.1, g&e-select:0.2, and g&e-select:0.3 compared to

vanilla Tor.
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network size was significantly smaller for the Shadow

simulations, and 2) the number of streams generated

from the Shadow simulations were significantly less.

5.2 Performance Results

In Figures 11a and 11d, we plot live Tor performance for

fixed file size downloads of 50 Kib from historical Tor

network data from Tor Metrics [15] during the period of

December 2014. The live performance can be compared

to Shadow perf clients to validate that client perfor-

mance in our model was statistically similar to that of

live Tor. We tuned the client-to-relay ratio of our simu-

lation so that TTLB would be very similar for Shadow

and live Tor, as we see in Fig. 11d. For these settings,

however, TTFB is slower in live Tor than our Shadow

simulations (Fig. 11a).

Figures 11b and 11e show TTFB and TTLB val-

ues for g-select, e-select:0.1, e-select:0.2, and e-select:0.3

compared to vanilla Tor. On the most secure setting for

e-select (τ = 0.1), 80% of downloads were from approx-

imately 0.0s to 0.5s slower in TTFB and 0.0s to 2.5s

slower in TTLB compared to vanilla Tor. As τ is in-

creased to 0.3, the difference in TTFB and TTLB for

e-select compared to vanilla Tor approach zero. These

results indicate that exit nodes are being slightly over-

loaded when e-select constraints are set high (τ = 0.1).

However, as the e-select constraints are relaxed, the exit

node selection becomes diverse enough such that no sig-

nificant congestion is added to the Network.

The TTFB and TTLB values for g-select were sim-

ilar to vanilla Tor. These results and results from Fig-

ure 7 indicate that guard nodes are not being overloaded

when g-select is in use.

Figures 11c and 11f show TTFB and TTLB val-

ues for g&e-select:0.1, g&e-select:0.2, and g&e-select:0.3

compared to vanilla Tor. The TTFB and TTLB perfor-

mance for each g&e-select method was very similar to

vanilla Tor. When g-select is combined with e-select, the

exit node selection policy is relaxed due to the guaran-

tee that AS3356 and AS1299 are not in the path from

client to guard. This allows clients to select exit nodes

that would otherwise not satisfy the e-select constraints.

This leads to some exit nodes being not as loaded when

g&e-select is in use compared to e-select, and thus g&e-

select:0.1 outperforms e-select:0.1 in TTFB and TTLB.

6 Discussion and Future Work

In this section we discuss some deployment ideas for

g-select and e-select, and caveats within the DeNASA

approach. We additionally suggest ideas for future work.

6.1 G-select

The g-select method requires less modification to Tor

compared to e-select. In this method, the client would

perform AS-path inference once every two to nine

months (when a client chooses a new guard) or when the

current guard becomes unavailable. In our current ver-

sion, the client would choose a guard in which AS3356

and AS1299 are not exist in the path from the client to

the guard. Deploying g-select does not require any mod-

ification to Tor relays or directory authorities because

all the work is done on the client side.

6.1.1 Mobile clients

The frequency that the g-select method may be called

from the client side will increase if the client is mo-

bile. A mobile client will be connecting from different

ASes over time and thus must re-evaluate the path be-

tween client to guard more often. Moreover, the g-select

method may cause mobile clients to add more guards

to their guard list compared to stationary clients. This

may cause mobile clients to be more vulnerable to relay-

level adversaries who control a percentage of deployed

guard nodes [19].

On the other hand, if a client only makes small

movements to adjacent ASes within their geographic

area, the AS path from client to guard may not change

enough to cause the client to select a new guard. How

client mobility affects guard selection when using the

g-select method is an open question for future work.

Since relay-level attacks are effective [19] and prob-

ably cheaper than AS-level attacks to deploy, we would

suggest reducing the chance of success for a relay-level

attacker by having g-select not trigger a new guard

selection when a mobile client connects from different

ASes until the effects of client mobility have been fur-

ther studied in future work. Furthermore, future work

would include an analysis showing DeNASA’s resilience

against relay-level adversaries in general.
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6.1.2 Constraints

In g-select, we needed to pick a trade-off in the length of

the Suspect AS list, where longer lists prevented more

AS-level attacks but led to increased vulnerability to

guard placement attacks. The trade-off is not the same

for every client, however, as some clients have more

available guards even with a longer list. It might be

possible for clients to measure their own susceptibility

to guard placement attacks and then choose an appro-

priate setting for the list length. This would allow less

restricted clients to have greater protection against AS-

level adversaries, with minimal additional risk of guard

placement attacks, while more restricted clients could

use a list of length zero if needed.

For g-select, the Suspect AS list combination

(AS3356 and AS1299) was selected based on the results

shown in Figure 7. The data shown accounts for eight

out of 28 possible combinations of the Suspect AS list,

for len = 2. It might be possible to tune the Suspect

AS list combinations to allow restricted clients to have

greater protection against the guard placement attack.

The g-select method introduces constraints which

determine how clients select guards. The constraints

change based on client’s location. The constraints may

also vary if g-select is modified such that random com-

binations of the Suspect AS list are used for each client.

These characteristics, or other modifications to g-select,

may cause g-select to naturally induce Tor guard nodes

into non-disjoint guard-sets [9, 14]. Future work would

include an analysis of how g-select may induce guard-

sets and what the implications may be for anonymity.

6.2 E-select

We now discuss deployment of the e-select method.

The client side requirements for e-select are: the AS

path from client to guard (discussed in Section 6.1),

the Suspect AS list (found in Section 3 to be the eight

highest ranking Tier 1 ASes, but subject to change over

time), and Tsus. Thus, the deployment challenge in the

e-select method is in obtaining Tsus, and obtaining the

Suspect AS list. For Tsus we propose two methods. The

first method is designed around using Qiu and Gao AS-

path inference, and the second is designed around using

traceroute measurements for inferring AS-paths.

The Qiu and Gao deployment requires the directory

authorities to perform AS-path inference from all exit

relays to a number of AS destinations. The number of

AS destinations will be determined by how often Tsus

is recalculated. For example, if the directory authorities

are configured to deliver a new Tsus to the clients every

week, then the number of AS destinations will be deter-

mined by how many AS-paths that can be inferred in

this amount of time.

With a larger destination set size, Tsus values should

be more accurate. Though it is not feasible to infer AS-

paths for all possible AS destinations, our results show

that AS-awareness can be achieved for a larger set of

AS destinations than what was originally inferred for

calculating Tsus. In Section 4, we calculated Tsus for a

subset of 55 AS destinations and tested AS-awareness

for the full set of 108 AS destinations. This simulated

clients requesting destinations that are both inside and

outside the training set. On the other hand, traceroute

measurements can be performed from all exit nodes to

a number of AS destinations. The results can be aggre-

gated at the directory authorities where Tsus would be

calculated and delivered to all clients. In this method,

only forward paths from exit to destination are realisti-

cally attainable. The accuracy may be enhanced if Qiu

and Gao inference is used to acquire the reverse paths

from destination to exit in combination with traceroute

measured paths. We calculated Tsus from forward paths

only in order to simulate the constraint of not having

access to reverse path measurements.

One disadvantage of using traceroute measurements

from exit relays is that compromised exit relays may

spoof AS paths if traceroute measurements are used

from exit to destination to obtain Tsus. In particular,

the compromised exit could remove any suspect ASes

and thereby increase its probability of being selected by

Tor clients using e-select. Assuring reliable traceroutes

initiated from a potentially unreliable host is a challeng-

ing problem to be sure.

6.3 Suspect AS List

The Suspect AS list is expected to change as the un-

derlying AS topology of the Internet changes and as the

Tor Network scales. As such, we suggest that the Sus-

pect AS list should be computed and updated by the

directory authorities and sent to clients along with the

Tsus. The Suspect AS list can be computed by running

a simulation at the directory authorities similar to the

TorPS simulation in Section 3.
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6.4 Destination Set

As discussed in Section 3.1, 176 destinations were used

from the top websites according to Alexa [2] that range

in genre from news, social media, search engines, blogs,

e-commerce, banking, classifieds, and more.

Originally, 200 destinations were selected. For 24

destinations, however, the AS paths from some exits to

those destinations, or from those destinations to some

exits were not resolvable with the AS path inference

method. For this reason, we removed these 24 destina-

tions from the destination set.

In a realistic deployment of DeNASA, destinations

could be chosen based on actual AS destinations that

are requested by Tor users.

6.5 Improvements

The DeNASA method could be enhanced to evade IX

adversaries. In this deployment, the set of Suspect ASes

would additionally include sets of peering ASes that

peer at Internet Exchange Points. Tsus would addition-

ally include probabilities that a TCP connection would

traverse a set of peering ASes from an exit AS. The

sets of peering ASes would additionally be considered

via Tsus during circuit creation for e-select, and during

guard selection for g-select. The effects of an enhanced

DeNASA method to evade IX adversaries is left for fu-

ture work.

7 Conclusions

Our work is in response to the call for more sophisti-

cated path selection algorithms in anonymous commu-

nications which resist the prevalent threat of AS-level

adversaries. As such, we have demonstrated the effec-

tiveness of our destination-naive AS-aware scheme in

terms of anonymity and network performance. First, we

identified the most probable ASes to be traversed by

Tor streams. We call this set of ASes the Suspect AS

set and found that it consists of eight highest ranking

Tier 1 ASes. Then, we validated the accuracy of Qiu and

Gao AS-level path inference on identifying the individ-

ual ASes from the eight members of our Suspect AS set.

We developed an AS-aware algorithm that reduces Tor

stream vulnerability by 74% simply by avoiding Suspect

ASes. We demonstrate that DeNASA has performance

similar to Tor. Due to the destination-naive property,

time to first byte is close to Tor’s, and due to leveraging

Tor’s bandwidth-weighted relay selection, time to last

byte is also similar to Tor’s.
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