

Provable Anonymous Networks

Evolution of Cryptography

- Classical Security
 - Try to find attacks
 - Found: System insecure
 - Not Found: Security unknown
- Provable Security
 - Define assumptions
 - Prove the absence of attacks
 - Not provable: Assumptions false
 - Provable: Secure under the assumptions
 - Reductions to prove security
 - Assume attacker can break the system
 - Construct an attacker breaking an assumption

Attacks on Cryptography

- Cryptographic security
 - Strongest attacker
 - Weakest goal
 - Negligible advantage
- Example: IND-CCA2
 - Chose two plaintexts
 - Distinguish ciphertexts
 - Use decryption oracle

c=m1 or m2?

Attacks on Anonymity

Current anonymous networks

- Reasonable attacker
- Strong goals
 - Look at attacks individually
 - Provide countermeasures
- Attacker can only learn little
 - But the whole is more than the sum of its parts...

Provable anonymity

- First approaches
- Some proves on MIXes

What is a Strong Attacker?

- Derive any information
 - Timing
 - Distance
 - Location
 - **—** ...
- Reduction to information/probability theory
 - Formal models are required
 - Verification, Model Checking

What are Reasonable Assumptions?

- Secure cryptography
 - Requires PKI
- Unobservability
 - Requires trust?
- Unlinkability
 - Prevent statistical evaluation

Back to GNUnet

- Very complex system
 - No formal model
 - No proves
- Broken by design
 - Unlinkability
 - Unobservability
- Leaks information
 - Even without attacks
 - Exploitable feature: Shortcuts

Comments, Questions?