Generalizing Mixes
Claudia Diaz
Andrei Serjantov
PET Workshop 26/03/2003

Outline
- What is a mix?
- Batching strategies
- Generalizing mixes: concept and examples
- Anonymity set size
- A new mix function
- Randomizing mixes: the Binomial mix
- Properties of the Binomial mix
- Conclusions and future work

Introduction
- What is a mix (Chaum81)?
 - Building block of anonymous communication systems
 - Router that hides correspondence between incoming and outgoing messages
 - Collects messages together, “mixes them up” and forwards them on

Batching strategies
- Timed / Threshold / Combination
 - Flushing: timeout and/or number of messages?
- No pool / pool / dynamic pool (Cortrell)
 - Does the mix keep some messages for the next round? Which criteria is used?
- Stop-and-go (Kesdogan98): a different concept
- Tradeoff anonymity / message delay

Generalizing mixes: the concept
- So far, mixes were described by the algorithm
- We represent the mix as a function P from the number of messages inside the mix to the probability of a message of being sent
- The function represents the mix at the time of flushing

Example 1: Timed mix

![Timed mix graph]
Example 2: Timed pool mix

Example 3: timed dynamic pool mix

Example 4: Threshold pool mix

Anonymity set size

- Anonymity: "state of being not identifiable within a set of subjects, the anonymity set" (Pfitzmann and Köhntopp)
- The effective size of the anonymity set can be computed using the entropy of the probability distribution that relates incoming and outgoing messages

Anonymity set size

- It depends on two parameters
 - Number of messages mixed
 - Distribution of probabilities
 - A priori or contextual information
 - Probability of a message leaving in each round (pool mixes): the more evenly distributed the probability of a message leaving in round r, the more anonymity

Anonymity set size

Probability of and output matching an input:

- \(n_r \): number of messages inside the mix at round \(r \)
- \(P(n_r) \): probability of a message leaving at round \(r \) (represented function)
- \(\text{prob}(i) \): probability of an outgoing message (round \(r \) matching an input at round \(i \))

\[
\text{prob}(i) = \prod_{r=1}^{r=i} P(n_r) \prod (1-P(n_r))
\]

Note: when the \(P(n_r) \) are high, the \(\text{prob}(i) \) are less evenly distributed \(\Rightarrow \) lower entropy, less anonymity, less delay
Tradeoff: anonymity / delay

- Given the two parameters that determine anonymity (number of messages mixed and distribution of probabilities):
 - If there are many messages, we can improve the delay (we can allow less evenly distributed prob(i) -> higher P(n_i))
 - If there are few messages we should guarantee sufficient anonymity (lower P(n_i))

Proposed mix function

- Using the graphical generalization of mixes, we can easily define an arbitrary P(n) function that satisfies particular requirements as:
 - Tolerated delay
 - Minimum anonymity set size
- Depending on the parameters of the system as:
 - Number of users
 - Traffic load

Proposed mix function

- We propose normal cumulative distribution function
- Properties:
 - Improved anonymity in low traffic conditions
 - Improved delay in heavy traffic conditions
 - Smooth growth

Proposed mix function: comparison to Cortell's mix (qualitative example)

Randomizing mixes: the Binomial Mix

- P(n) determined in previous designs the fraction of messages flushed. Now, we take it as a probability
- For each message we toss a biased coin and send it with probability p=P(n)
- The number of sent messages, s, follows a binomial distribution (on average s=np(n), the variance is np(1-p))
- Effect: the mix hides the number of messages contained in it, n

Guessing the number of messages contained in the mix

- The attacker has to guess n by observing s (applying Bayes’ rule)
- Practical results (simulator):
 - One observation of the output (average values):
 - The attacker guesses n with probability ~1%
 - In the 95% confidence interval lay ~17 values
 - The average entropy is 4.17 bits
 - Number of rounds of observation needed to estimate n with 95% confidence ~125
- Not practical to do it this way
The blending or \(n-1 \) attack

- In classical mixes: the attacker empties the mix of unknown messages, fills it with his messages and then lets the target message in: the target message has no anonymity.
- In the Binomial mix the attacker does not know how many messages are in the mix: how does he know when it is empty of unknown messages?

Advantages of the binomial mix

- The success of the blending attack is probabilistic.
- The attacker has to make a greater effort to attack the mix.
- If a dummy traffic policy is implemented, the fact of hiding the number of messages makes blending attacks harder.

Conclusions

- We propose a framework with which we can generalize classical pool mixes.
- The model gives us a new understanding of classical batching strategies.
- New batching strategies arise from the framework. We can have a tailored anonymity/delay tradeoff that adapts to fluctuations in the traffic load.
- We suggest a new an intuitive way of dealing with the anonymity set size, as a function of \(P(n) \)
- We have added randomness to the mix in order to increase the effort of the attacker when deploying blending attack. The success of this attack becomes probabilistic.

Future work

- Further analysis of the possibilities of the framework. Search other functions that may have interesting properties.
- Thorough analysis of the binomial mix and the implications of hiding the number of messages contained in it.
- Study the properties of the binomial mix when a dummy traffic policy is implemented.

Questions?

The blending attack in the Binomial mix

- **Attack model:** global, active, external attacker; can delay and insert messages.
- **Emptying phase:** the attacker floods the mix in order to increase \(p = P(n) \) to \(p_{\text{max}} = P(N_f) \). The success is probabilistic \((1 - \varepsilon)\), a function of the number of 'flooding' rounds.
- Number of rounds \(r: (1 - (1 - p_{\text{max}}))^r > 1 - \varepsilon \)

Note: the attacker has to assume worst case: \(n = N_{\text{max}} \)
Effort of the attacker to empty the mix

- Number of messages the attacker has to send to the mix: \(N_f + (r-1)(N_f+n)p_{max} \)
- Time needed (\(T \) is the timeout of the mix): \(rT \)
- Number of messages the attacker has to delay (assuming Poisson traffic with average \(\lambda \)): \(\lambda rT \)
- The flushing phase is similar to previous mixes