

Privacy Enhancing Technologies 2003

An Analysis of GNUnet and the Implications for Anonymous, Censorship-Resistant Networks

Dennis Kügler

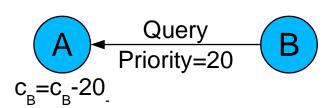
Federal Office for Information Security, Germany

Dennis.Kuegler@bsi.bund.de

Anonymous, Censorship-Resistant Networks

- Anonymous Peer-to-Peer Networks
 - Gnutella
 - Searching is relatively anonymous
 - Downloading is not anonymous
- Censorship-Resistant Networks
 - Eternity Service
 - Distributed storage medium
 - Attack resistant
- Anonymous, Censorship-Resistant Networks
 - Freenet
 - GNUnet

GNUnet: Obfuscated, Distributed Filesystem



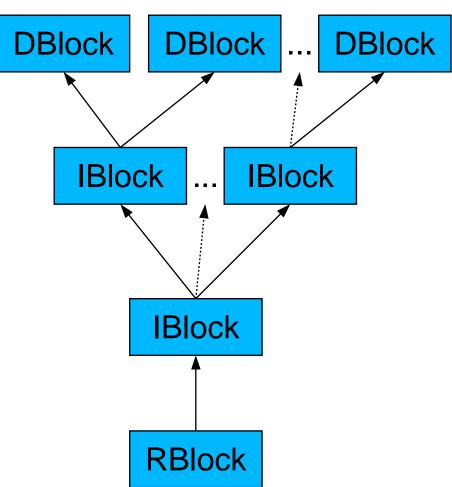
- Content Hash Key: [H(B),H(E_{H(B)}(B))]
 - Content encryption: H(B)
 - Unambiguous filename: $H(E_{H(B)}(B))$
- Content replication
 - Caching while delivering
 - Based on unambiguous filename
- Searchability
 - Keywords

GNUnet: Peer-to-Peer MIX Network

- Initiating node
 - Downloads content
- Supplying nodes
 - Store content unencrypted
- Intermediary nodes
 - Forward and cache encrypted content
 - Plausible deniability due to encryption
- Economic model
 - Based on credit
 - Charge for queries
 - Pay for responses

GNUnet Encoding

DBlocks


- 1KB of the content
- Content hash encrypted

IBlocks

- CHKs of 25 DBlocks
- Organized as tree
- Content hash encrypted

RBlock

- Description of the content
- CHK of the root IBlock
- Keyword encrypted

The Attacker Model

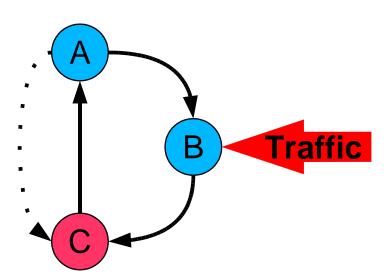
Attacker

- Controls malicious nodes that behave correctly
- Prepares dictionary of interesting keywords
- Observes queries and responses
 - Queries for known keywords
 - Queries for known IBlocks and DBlocks
 - Responses containing known IBlocks and DBlocks

Goals

- Uncover initiating node
- Uncover supplying node(s): Censorship

Classical Attacks



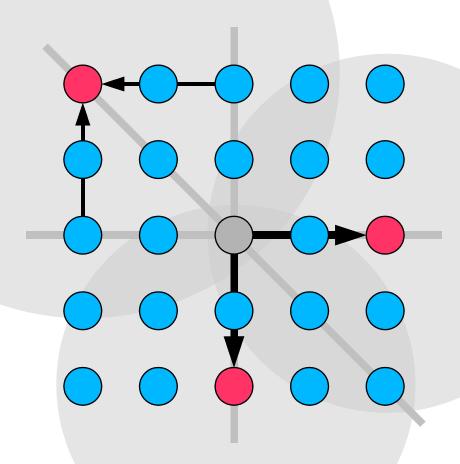
- Intersection Attack
 - Not all nodes participate in every (MIX) batch
 - Remove nodes not involved in routing linkable traffic
- Predecessor Attack
 - Log identity of preceding node
 - All nodes are logged with equal probability
 - Initiator is logged more often
- Both attacks are not discussed in GNUnet

The Shortcut Attack

- Shortcuts do not hurt anonymity?
 - Remove nodes from anonymity set
- Simplification
 - Guess preceding node
 - Verify guess afterwards
 - No flooding required

Comments from the GNUnet Team

Only <u>outbound</u> traffic is considered for indirection!


- Flooding requires credit
 - Shortcut attack may become even more powerful
 - Improved attack does not require flooding at all
- Introduces additional intersection attack: DDoS

GNUnet doesn't setup static paths!

- Every query is routed individually (with preference)
 - Route queries to nodes that have responded recently
 - Further queries are likely to use the shortcut
- Attacks are more likely without static paths
 - Predecessor Attack
 - Triangulation & Encircling Attack

Triangulation & Encircling Attack

Censoring GNUnet

- Rubber Hose Cryptanalysis
 - Censor infrequently requested content
 - Force nodes to remove content
- Content Filtering
 - Censor frequently requested content
 - Legally enforced by law

Rubber Hose Cryptanalysis

- Distance Attack
 - Determine nodes providing illegal content
 - Use low, increasing TTL to query nodes

GNUnet uses a different notion of TTLs

- Relative Time: TTL

Absolute Time: TTL + T_{node}

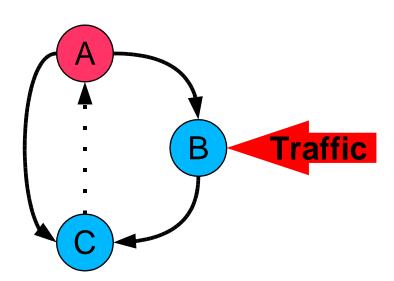
Routing Queries and Responses

Routing Table

- Order entries by absolute time
- Fixed number of entries
 - Discard only overstocked entries
 - Relative TTL may become negative!

Responses

- Only after entry has been allocated long enough
- Probably received response from another node


Intersection Attack

Linkability reduces deniability

Reverse Shortcut Attack

- Reverse Shortcut Attack
 - Remove nodes from anonymity set
- Simplification
 - Guess following node
 - Verify guess afterwards
 - No flooding required

Content Filtering

- Every block is unique identified by $H(E_{H(B)}(B))$
- Censoring with licenses
 - Search for illegal content
 - Issue *negative licenses* for indexed content
 - Prohibits delivering the block
 - Issue positive license upon request otherwise
 - Allows delivering the block
 - Time restricted
 - Need not check content
 - Licenses are cached in GNUnet

Conclusion

- We have presented some attacks on GNUnet
 - Linkability should be prevented at all costs
 - Setup paths as static as possible
 - Shortcut Attacks cannot be fixed easily
 - Economic model cannot replace trust
 - PGP Web of Trust?
 - Unique identifiers enable content filtering
 - Content filtering perhaps won't be realized
 - ...but it shows weaknesses in the concept
- So, is GNUnet a sound approach?