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Mix-net

Mix-net protects privacy of messages in network communication. A
mix-net consists of a set of mix servers, each receiving as input a
list of ciphertexts and outputting either a permuted list of the
re-encrypted ciphertexts, or a permuted list of the corresponding
plaintexts.
Mix-net participants:

• Users send messages to mix-net.

• Mix servers perform mixing of the input messages and produce
an output, which is used as input to other mix-servers.
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• Verifier verifies correctness of the mix-net operation.

• Bulletin board is a shared memory where all participants have
read access to and can append messages after being
authenticated. It simulates an authenticated broadcast channel.

• Adversary tries to compromise resiliency of the mix-net. We
assume static adversary.
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Mix-net Requirements

A mix-net is resilient if it satisfies privacy, robustness and
verifiability.

• privacy: the adversary cannot output a pair of input and the
corresponding output with probability non-negligibly greater
than random guess.

• verifiability: the verification can detect and reveal the identities
of the cheating servers with overwhelming probability. If only
publicly available information is used, the mix-net is called
universally verifiable.

• robustness: ensures that the probability of producing incorrect
output is negligibly less than 1.
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Cryptographic tools

El Gamal encryption p and q are primes, p = 2kq + 1, g is a
generator of subgroup Gq of order q in Z∗p . Private key is x ∈ Zq,
public key is (y, g) where y = gx.
A ciphertext of message m ∈ Gq is (α, β) where α = mys, β = gs,
s ∈R Zq. The plaintext is computed as m := α/βx. A re-encryption
of ciphertext (α, β) is (α× yr, β × gr), where r ∈R Zq.
Schnorr identification P shows knowledge of private key x to V

1. P −→ V : a commitment w = ge, where e ∈R Zq

2. P ←− V : a challenge c ∈R Zq

3. P −→ V : a response s = e + cx mod q

V then verifies that gs = wyc.
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Disjunctive Schnorr identification P shows he knows one of
private keys x1 or x2 to V. Assume P possesses x1.

1. P −→ V : two commitments w1 = ge1
1 , w2 = gs2

2 y−c2
2 , where

e1, e2, c2, s2 ∈R Zq

2. P ←− V : a challenge c ∈R Zq

3. P −→ V : responses s1 = e1 + c1x1 mod q, s2, c1 = c⊕ c2, c2

V then checks if gsi
i = wiy

ci
i for i ∈ {1, 2}.

Pairwise permutation network A pairwise permutation network
is a permutation that is constructed from switching gates and
requires n log2 n− n + 1 switching gates. A switching gate is a
permutation for two input items.
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Permutation Matrix A matrix (Aij)n×n is a permutation matrix
⇔ ∃ φ so that ∀i, j ∈ {1, ..., n}

Aij =





1 mod q if φ(i) = j

0 mod q otherwise

Theorem 1 (Aij)n×n is a permutation matrix ⇔ ∀i, j, k ∈ {1, ..., n}

n∑

h=1

AhiAhj =





1 mod q if i = j

0 mod q otherwise
(1)

n∑

h=1

AhiAhjAhk =





1 mod q if i = j = k

0 mod q otherwise
(2)

PET’03



Breaking and Mending Resilient Mix-nets 9

Furukawa-Sako01 Mix-net

Input to a mix-server is El Gamal ciphertexts {(gi,mi)|i = 1, ..., n}
encrypted by (y, g). Output is {(g′i,m′

i)|i = 1, ..., n}
The mix-server proves knowledge of a permutation matrix (Aij)n×n

and {ri|i = 1, ..., n}

g′i = gri

n∏

j=1

g
Aji

j (3)

m′
i = yri

n∏

j=1

m
Aji

j (4)
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Based on Theorem 1, this can be done by proving:

• {g′i} can be expressed as (3) using a matrix satisfying (1).

• {g′i} can be expressed as (3) using a matrix satisfying (2).

• The matrix and {ri} in these statements are the same.

• For each (g′i,m
′
i), the same ri and {Aij} is used.
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Furukawa-Sako01 Verification Protocol

Suppose {g̃, g̃1, ..., g̃n} so that under discrete logarithm assumption,
infeasible to obtain {ai} and a satisfying g̃a

∏n
i=1 g̃i

ai = 1.

1. P generates: δ, ρ, τ, α, αi, λ, λi ∈R Zq, i = 1, ..., n

2. P computes:

t = gτ , v = gρ, w = gδ, u = gλ, ui = gλi , i = 1, ..., n

g̃i
′ = g̃ri

n∏

j=1

g̃j
Aji , i = 1, ..., n (5)

g̃′ = g̃α
n∏

j=1

g̃j
αj (6)
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g′ = gα
n∏

j=1

g
αj

j (7)

m′ = yα
n∏

j=1

m
αj

j (8)

ṫi = g

∑n

j=1
3αjAji+τλi , i = 1, ..., n (9)

v̇i = g

∑n

j=1
3α2

jAji+ρri , i = 1, ..., n (10)

v̇ = g

∑n

j=1
α3

j+τλ+ρα (11)

ẇi = g

∑n

j=1
2αjAji+δri , i = 1, ..., n (12)

ẇ = g

∑n

j=1
α2

j+δα (13)

3. P −→ V :
t, v, w, u, {ui}, {g̃i

′}, g̃′, g′,m′, {ṫi}, {v̇i}, v̇, {ẇi}, ẇ, i = 1, ..., n

4. P ←− V : challenges {ci|i = 1, ..., n}, ci ∈U Zq
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5. P −→ V :

s =
n∑

j=1

rjcj + α

si =
n∑

j=1

Aijcj + αi mod q, i = 1, ..., n

λ′ =
n∑

j=1

λjc
2
j + δ mod q

6. V verifies:

g̃s
n∏

j=1

g̃j
sj = g̃′

n∏

j=1

g̃j
′cj (14)

gs
n∏

j=1

g
sj

j = g′
n∏

j=1

g
′cj

j (15)
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ys
n∏

j=1

m
sj

j = m′
n∏

j=1

m
′cj

j (16)

gλ′ = u
n∏

j=1

u
c2

j

j (17)

tλ
′
vsg

∑n

j=1
(s3

j−c3
j ) = v̇

n∏

j=1

v̇j
cj ṫj

c2
j (18)

wsg

∑n

j=1
(s2

j−c2
j ) = ẇ

n∏

j=1

ẇj
cj (19)
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Intuition

• (5),(6),(7),(8),(14), (15) and (16) show prover’s knowledge of
matrix (Aij) and {ri} satisfying (3) and (4)

• (9),(10),(11),(17) and (18) show (Aij) satisfying (2)

• (12),(13),(19) show (Aij) satisfying (1)

• based on Theorem 1, (Aij) is a permutation matrix
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Millimix

It is efficient for small input batches because each mix server needs
O(nlogn) exponentiations with low constant coefficient.
Each mix server simulates a pairwise permutation network. The
mix server proves the correctness of each of its switching gate using
the following verification protocol.

PET’03



Breaking and Mending Resilient Mix-nets 17

Verification Protocol for Switching Gate

Input is El Gamal ciphertexts (α1, β1), (α2, β2) of plaintexts m1,
m2 respectively. Output is El Gamal ciphertexts (α′1, β

′
1), (α′2, β

′
2)

of plaintexts m′
1, m′

2 respectively. The server proves statements:

• Statement 1: m1m2 = m′
1m

′
2 using Plaintext Equivalent Proof

(PEP ) for (α1α2, β1β2) and (α′1α
′
2, β

′
1β
′
2).

• Statement 2: m1 = m′
1 OR m1 = m′

2 using DISjunctive
Plaintext Equivalent Proof (DISPEP )

PEP proves (α′, β′) is a re-encryption of (α, β) by using Schnorr
identification protocol

• Compute (ys, gs) = ((α/α′)z(β/β′), yzg) as Schnorr public key

PET’03



Breaking and Mending Resilient Mix-nets 18

• (α′, β′) re-encrypts (α, β) ⇔ ∃γ ∈ Zq: (ys, gs) = ((yzg)γ , yzg)

• Prover uses Schnorr identification protocol to show that it
knows γ

DISPEP proves (α1, β1) is a re-encryption of one of (α′1, β
′
1) and

(α′2, β
′
2) by using Disjunctive Schnorr identification protocol. Proof

in [2]:

• Compute (ys1, gs1) = (α1/α′1, β1/β′1) and
(ys2, gs2) = (α1/α′2, β1/β′2) as Schnorr public keys

• Use Disjunctive Schnorr identification protocol to show
knowledge of one of the Schnorr private keys, which is also the
El Gamal private key x of the ciphertexts

• This requires the mix-server to know the El Gamal private key
x, which is not acceptable
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• We will show a revised version of this protocol which uses the
approach in PEP and removes this problem

Modified DISPEP :
Compute

(ys1, gs1) = ((α1/α′1)
z1(β1/β′1), y

z1g)

(ys2, gs2) = ((α1/α′2)
z2(β1/β′2), y

z2g)

as Schnorr public keys.
Assume w.l.o.g. that (α1, β1) is a re-encryption of (α′1, β

′
1), then

∃γ1 ∈ Zq such that (ys1, gs1) = ((yz1g)γ1 , yz1g).
Mix-server uses Disjunctive Schnorr identification protocol with
(ys1, gs1), (ys2, gs2) to show that it knows γ1.
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Attacking Furukawa-Sako01 Scheme

Break correctness with a success chance of at least 50%
Let a be a generator of Zp, then akq 6= 1 and a2kq = 1. The mix
server modifies one of the output ciphertexts as

g′i0 = gri0 gφ−1(i0)

m′
i0 = yri0 mφ−1(i0)a

kq

Modifying m′
i0

only affects equation (16) in verification protocol
If ci0 is even, aci0kq = 1. So

m
′ci0
i0

= (yri0 mφ−1(i0)a
kq)ci0 = (yri0 mφ−1(i0))

ci0

Therefore, equation (16) remains correct and the verification
protocol still accepts
In a similar way, the mix server can modify g′i0
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Countermeasure

m′
i0

/∈ Gq. So the attack can be detected by checking whether
g′i,m

′
i ∈ Gq, i = 1, ..., n

If k = 1, it requires one extra modular multiplication. If k 6= 1, two
extra modular exponentiations are required
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Security

The attack only affects Lemma 1 in [1]. We show the short-coming
of the original proof and how the fix completes the proof.

Lemma 1 Assume P knows {Aij}, {ri}, {αi} and α satisfying (5)
and (6), and {si} and s satisfying (14). If (15) and (16) hold with
non-negligible probability, then either the relationships





g′ = gα
∏n

j=1 g
αj

j

g′i = gri
∏n

j=1 g
Aji

j , i = 1, ..., n

m′ = yα
∏n

j=1 m
αj

j

m′
i = yri

∏n
j=1 m

Aji

j , i = 1, ..., n

hold or P can generate nontrivial integers {ai} and a satisfying
g̃a

∏n
i=1 g̃i

ai = 1 with overwhelming probability.
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Proof Replace g̃′ and {g̃′i} in (14) by those in (5) and (6):

g̃

∑n

j=1
rjcj+α−s

n∏

i=1

g̃i

∑n

j=1
Aijcj+αi−si = 1

Therefore, either




s =
∑n

j=1 rjcj + α

si =
∑n

j=1 Aijcj + αi

hold or P can generate nontrivial integers {ai} and a satisfying
g̃a

∏n
i=1 g̃i

ai = 1
Replace s and {si} in (15):

1 = b0

n∏

i=1

bci
i (20)
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where

b0 =
gα

∏n
j=1 g

αj

j

g′

bi =
gri

∏n
j=1 g

Aji

j

g′i
, i = 1, ..., n

At this point, proof in [1] concludes bi = 1, i = 0, ..., n. However, it
is only correct if bi ∈ Gq
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Millimix Attack

An attack similar to one against Furukawa-Sako01 mix-net can be
applied to Millimix.
A second attack exploits the fact that the exponents z in PEP and
z1, z2 in DISPEP can be arbitrarily chosen. Let (α1, β1) and
(α2, β2) be input to a switching gate of a malicious mix-server. The
server computes output as follows.

(α′1, β
′
1) = (α1y

−r1−s1z1g−s1 , β1g
−r1)

(α′2, β
′
2) = (α2y

−r2+s1z1−szgs1−s, β2g
−r2)

Using PEP and DISPEP the server can still show that: (i)
(α′1α

′
2, β

′
1β
′
2) is the re-encryption of (α1α2, β1β2), and (ii) either

(α′1, β
′
1) or (α′2, β

′
2) re-encrypts (α1, β1). To show (i), the server
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computes

(α/α′, β/β′) = (α1α2/α′1α
′
2, β1β2/β′1β

′
2)

= (yr1+r2+szgs, gr1+r2)

(ys, gs) = ((α/α′)z(β/β′), yzg) = ((yzg)r1+r2+sz, yzg)

= (gr1+r2+sz
s , gs)

Now Schnorr identification protocol will be performed as follows.

1. P −→ V : a commitment w = ge
s

2. P ←− V : a challenge c

3. P −→ V : a response s = e + c(r1 + r2 + sz)

V then check if gs
s = wyc

s. This equation is correct and PEP has
been broken.
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To show (ii), we note that

(ys1, gs1) = ((α1/α′1)
z1(β1/β′1), y

z1g) = ((yz1g)r1+s1z1 , yz1g)

= (gr1+s1z1
s1 , gs1)

Disjunctive Schnorr identification protocol can be performed as
follows.

1. P −→ V : two commitments w1 = ge1
s1, w2 = gs2

s2y
−c2
s2

2. P ←− V : a challenge c

3. P −→ V : responses s1 = e1 + c1(r1 + s1z1), s2, c1 = c⊕ c2, c2

V then check that gsi
si = wiy

ci
si , i = 1, 2 holds
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Countermeasure

z must be either chosen by the verifier after the switching gate has
produced output. Or in non-interactive version, prover provides
(z, c, s). A verifier then verifies

z
?= H(α′ ‖ β′ ‖ α ‖ β) mod q

c
?= H(g′ ‖ y′ ‖ g′sy′c) mod q

where (y′, g′) = ((α/α′)z(β/β′), yzg) and H : {0, 1}∗ → 2|q| is a
hash function
DISPEP can be modified similarly. Both z1 and z2 must be either
chosen by the verifier after the switching gate has produced the
output, or computed as
z1 = z2 = H(α′1 ‖ β′1 ‖ α′2 ‖ β′2 ‖ α1 ‖ β1 ‖ α2 ‖ β2).
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Security

We show revised Lemma 2 in [2] and its proof, Lemma 3 in [2] can
be revised similarly.

Lemma 2 Let (α, β) and (α′, β′) be two ciphertexts for which
PEP produces accept response.

• if z is chosen by the prover, then (α′, β′) is not necessarily a
valid re-encryption of (α, β).

• if z is chosen by the verifier or computed by hash function as
shown above, then either (α′, β′) is a valid re-encryption of
(α, β) or the prover can find the El Gamal private key x.
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Proof Let z be chosen by verifier. Suppose K is the set of z ∈ Zq

such that prover knows o ∈ Zq satisfying (α/α′)z(β/β′) = (yzg)o.
The probability that PEP outputs accept is |K|/q. With
sufficiently large q, we can assume |K| ≥ 3.
Assume distinct elements z0, z1, z2 ∈ K. Let α/α′ = gu and
β/β′ = gv. Prover knows o0, o1, o2 ∈ Zq satisfying
(α/α′)zi(β/β′) = (yzig)oi , i = 0, 1, 2 and so has the following
system of three linear equations with three unknowns u, v and x:





z0u + v − o0z0x = o0

z1u + v − o1z1x = o1

z2u + v − o2z2x = o2

As α, β, α′, β′ ∈ Gq, then u, v, x must exist, and so the system must
have a solution. If the solution is unique, the prover will be able to
solve it and find the value of x and that demonstrates a knowledge
extractor for x.
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On the other hand, if the system has more than one solution, the
following determinants are equal zero.

det =

∣∣∣∣∣∣∣∣

z0 1 −o0z0

z1 1 −o1z1

z2 1 −o2z2

∣∣∣∣∣∣∣∣
= 0

detx =

∣∣∣∣∣∣∣∣

z0 1 −o0

z1 1 −o1

z2 1 −o2

∣∣∣∣∣∣∣∣
= 0

This implies that,

0 = det + z0detx

= (o2 − o1)(z0 − z1)(z0 − z2)

and so o2 = o1. This leads to u = vx, which means that
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α/α′ = (β/β′)x and so (α′, β′) is a valid re-encryption of (α, β).

Lemma 3 Let (α1, β1), (α′1, β
′
1) and (α′2, β

′
2) be ciphertexts for

which DISPEP produces accept response.

• if z1 and z2 are chosen by the prover, then (α1, β1) is not
necessarily a valid re-encryption of either (α′1, β

′
1) or (α′2, β

′
2).

• if z1 and z2 are chosen by the verifier or computed by hash
function as shown above, then either (α1, β1) is a valid
re-encryption of either (α′1, β

′
1) or (α′2, β

′
2) or the prover can

find the El Gamal private key x.
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Conclusion

Two attacks against resilient mix-nets
Countermeasures and security and efficiency analysis
First attack against Furukawa-Sako01 mix-net can also be used
against a number of other mix-nets. It could have wider
implications proofs that are based on discrete logarithm assumption
Second attack breaks the verification protocol of Millimix. It can
be countered by carefully choosing the challenge.
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