Modelling Unlinkability

Stefan Köpsell
Technische Universität Dresden
<sk13@inf.tu-dresden.de>

Sandra Steinbrecher Freie Universität Berlin <steinbrecher@acm.org>

Talk at PET 2003, Dresden

Contents:

- 1. Metrics for anonymity
- 2. Linkability influences anonymity
- 3. Unlinkability within one set
- 4. Unlinkability between sets
- 5. Attacks on unlinkability
- 6. Future tasks

Defining Anonymity

'Anonymity is the state of being not identifiable within a set of subjects, the anonymity set.' (Köhntopp/Pfitzmann, 2001)

Real world scenarios: A subject's anonymity is related to an action.

Communication systems: Sender/receiver anonymity Relationship anonymity

A human being's anonymity should be measured by

- Size of the respective anonymity set.
- Probability distribution on this anonymity set.

Approaches on measuring anonymity:

- 'Informal continuum' with 6 intermediate points from 'absolute privacy' to 'provably exposed':
 - proposed by Reiter/Rubin ,1998.
 - formalised as temporal probabilistic logic formulas by Shmatikov, 2002.
- Formal languages and logics:
 - Schneider/Sidiropoulos, 1996: Process algebraic formalisation in CSP.
 - Syverson/Stubblebine, 1999: Epistemic language based on group principals.
 - Hughes/Shmatikov, 2003: Function view.
- Information theoretic models:
 - Danezis/Serjantov, 2002. Diaz/Seys/Claessens/Preneel, 2002.

Anonymity in arbitrary scenarios

(Extension of Diaz et al. and Danezis/Serjantov, 2002)

 $U = \{u_1, \dots, u_n\} \qquad \{p_1, \dots, p_i\}$ e.g., set of senders

set of subjects probability distribution

 A_i set of actions. e.g., set of messages

Measuring anonymity in arbitrary scenarios

Attacker model: A priori: u_i executes a with probability $\frac{1}{n}$.

A posteriori: u_i executes a with probability $p_i \geq \frac{1}{n}$

It holds $\sum_{i=1}^{n} p_i = 1$.

Effective size of the anonymity probability distribution:

$$H(X) = -\sum_{i=1}^{n} p_i \log_2(p_i).$$

Information the attacker has learned: $(\max(H(X)) - H(X))$.

Degree of anonymity

Normalisation of the information:

$$d(U) := 1 - \frac{max(H(X)) - H(X)}{max(H(X))} = \frac{H(X)}{max(H(X))}.$$

Note the degree measures only the probability distribution not the size of the anonymity set!

The degree's maximum/minimum is reached if

$$d(U) = 0 \qquad \Leftrightarrow \qquad \exists i \in \{1, \dots, n\} : p_i = 1,$$

$$d(U) = 0 \Leftrightarrow \exists i \in \{1, \dots, n\} : p_i = 1,$$

 $d(U) = 1 \Leftrightarrow \forall i \in \{1, \dots, n\} : p_i = \frac{1}{n}.$

How linkability endangers anonymity

Example: 'Social' attacks in a dating service (Clayton et al., 2001)

Notions of Unlinkability

Anonymity (regarding a specific action) usually restricted to users.

Unlinkability applicable to arbitrary items within a given system.

'Unlinkability of two or more items means that within this system, these items are no more and no less related than they are related concerning the a priori knowledge.' (Köhntopp/Pfitzmann, 2001)

Unlinkability in electronic payment systems is slightly less restrictive:

'The privacy requirement for the users is that payments made by users should not be linkable (informally, linkability means that the a posteriori probability of matching is nonneglibly greater than the a priori probability) to withdrawals, even when banks cooperate with all the shops.'

(Brands 1993).

Unlinkability within one set

 $A = \{a_1, \dots, a_n\}$

 $\sim_{r(A)}$ set of items equivalence relation equivalence classes e.g., set of messages e.g., sent by same sender e.g., sent by specific user

 A_1,\ldots,A_l

Items are related to each other. \Leftrightarrow Items are in the same equivalence class.

Attacker model: A priori: A, but not $\sim_{r(A)}$.

A posteriori: something about $\sim_{r(A)}$.

Unlinkability of two items within one set

 $P(a_i \sim_{r(A)} a_j)$ a posteriori probability that a_i and a_j are related.

 $P(a_i \not\sim_{r(A)} a_j)$ a posteriori probability that a_i and a_j are not related.

$$P(a_i \sim_{r(A)} a_j) + P(a_i \not\sim_{r(A)} a_j) = 1 \quad \forall a_i, a_j \in A.$$

Degree of (i, j)-unlinkability:

$$d(i,j) := H(i,j) = -P(a_i \sim_{r(A)} a_j) \cdot \log_2(P(a_i \sim_{r(A)} a_j))$$
$$-P(a_i \not\sim_{r(A)} a_j) \cdot \log_2(P(a_i \not\sim_{r(A)} a_j)) \in [0,1].$$

The minimum/maximum is reached if

$$d(i,j) = 0 \qquad \Leftrightarrow \qquad (P(a_i \sim_{r(A)} a_j) = 1 \quad \lor \quad P(a_i \sim_{r(A)} a_j) = 0)$$
$$d(i,j) = 1 \qquad \Leftrightarrow \qquad P(a_i \sim_{r(A)} a_j) = P(a_i \not\sim_{r(A)} a_j) = \frac{1}{2}.$$

Linkability of k > 2 items within one set

Probability that the distribution of the elements a_{i_1}, \ldots, a_{i_k} on equivalence classes in $\{a_{i_1}, \ldots, a_{i_k}\}$ is the same as in A:

$$P\left(\left(\sim_{r(A)}|_{\{a_{i_1},...,a_{i_k}\}}\right)=\left(\sim_{r(A)}\right)\right).$$

 I_k index set enumerating equivalence relations on $\{a_{i_1}, \ldots, a_{i_k}\}$:

$$\sum_{j \in I_k} P\left(\left(\sim_{r_j(A)} |_{\{a_{i_1}, \dots, a_{i_k}\}} \right) = \left(\sim_{r(A)} \right) \right) = 1.$$

It holds $|I_k| = 2^{k-1}$ and $\max(H(i_1, ..., i_k)) = k - 1$

Degree of (i_1, \ldots, i_k) -unlinkability:

$$d(i_1, \dots, i_k) := \frac{H(i_1, \dots, i_k)}{k - 1}$$

$$= -\sum_{j \in I_k} \frac{1}{k - 1} \left[P\left((\sim_{r_j(A)} |_{\{a_{i_1}, \dots, a_{i_k}\}}) = (\sim_{r(A)}) \right) \right.$$

$$\cdot \log_2 \left(P\left((\sim_{r_j(A)} |_{\{a_{i_1}, \dots, a_{i_k}\}}) = (\sim_{r(A)}) \right) \right) \right] \in [0, 1].$$

Unlinkability between sets

 $U = \{u_1, \dots, u_n\}$ relation $\sim_{r(U,A)}$ $A = \{a_1, \dots, a_k\}$ e.g., set of users a user sent a message e.g., set of actions

Through $\sim_{r(U,A)}$ an equivalence relation $\sim_{r(A)}$ on A is defined as 'is related to the same item in U'.

Attacker model A priori: A and U, but not $\sim_{r(U,A)}$ and $\sim_{r(A)}$. A posteriori: something about $\sim_{r(U,A)}$ and $\sim_{r(A)}$.

 $P(u_i \sim_{r(U,A)} a_j)$ a posteriori probability that u_i and a_j are related.

 $P(u_i \not\sim_{r(U,A)} a_j)$ a posteriori probability that u_i and a_j are not related.

It holds

$$P(u_i \sim_{r(U,A)} a_j) + P(u_i \not\sim_{r(U,A)} a_j) = 1 \quad \forall u_i \in U, a_j \in A.$$

Degree of (u_i, a_j) -unlinkability:

$$d(u_{i}, a_{j}) = H(u_{i}, a_{j})$$

$$= -P(a_{i} \sim_{r(A)} a_{j}) \cdot \log_{2}(P(a_{i} \sim_{r(A)} a_{j}))$$

$$-P(a_{i} \not\sim_{r(A)} a_{j}) \cdot \log_{2}(P(a_{i} \not\sim_{r(A)} a_{j})) \in [0, 1].$$

Attacks on Unlinkability

- 1. **Existential break:** There exist any two items which unlinkability decreases.
- 2. **Selective break:** The attacker chooses the items which unlinkability should decreases.
 - (a) Chosen subset of items
 - (b) Chosen Item

In contrast to authentication or encryption systems existential breaks cannot be neglected!

Structure of the linkability relation

Attacker's knowledge about the structure of the relation $\sim_{r(A)}$ on the given set A of items influence his probability distribution of unlinkability:

A priori: A e.g., set of messages

A posteriori: sizes of A_1, \ldots, A_l e.g., number of messages

from one sender

Impact on the a posteriori probabilities in an existential break: $a_{i_1}, \ldots, a_{i_t} \in_R A$ lie in the same equivalence class with probability

$$P(a_{i_1} \sim_{r(A)} \dots \sim_{r(A)} a_{i_t}) = \frac{\sum_{v=1}^l \binom{|A_v|}{t}}{\binom{n}{t}} \text{ with } \binom{n}{t} = 0 \text{ for } n < t.$$

Theorem 1. It is impossible that all pairs of items a_{i_1} and a_{i_2} chosen arbitrarily from A with |A| > 1 have degree of unlinkability $d(i_1, i_2) = 1$.

Future tasks

- Constructing sup-optimal equivalence classes: Which distribution is best for given parameters?
- Analysing linkable interests of users and the impact of this linkability on their anonymity: How can a better anonymity set be constructed?
- Combining different linkability relations on sets (e.g., different communication layers).
- Examples on the application layer: How often should pseudonyms be used depending on the sets and linkability relations?