Acid Mixes

Alessandro Acquisti UC Berkeley acquisti@sims.berkeley.edu

What is that?

- A variation on mix-net protocols that (attempts to)
 address reliability and trust issues while maintaining
 anonymity and preserving ACID properties.
- The variation is, itself, a "mix":
 - Chaum (1981): mix-nets.
 - Chaum (1991): group signatures.
 - Stajano and Anderson (1999): cocaine auction protocol.
- Applications: flexible, but more efficient in targeted communications. For example:
 - Voting systems.
 - Payments.

Vanilla mix-net

Issues discussed in the literature

• Trust.

Reliability.

Often, trade-offs between the two.

Vanilla acid mix

More precisely...

Let users interact...

...through untrusted third party (mix)...

...splitting information...

...and broadcasting it.

Analysis

- Compare to Chaum (1981) voting mix-net protocol:
 - Candidate sends identification+key (pseudonym) through mix-net, then votes.
- Here:
 - Identification sent separately from key.
 - Mixed through other users.
- How?
 - Stajano and Anderson (1999). Message 3. can be broadcasted anonymously – does not contain identifying information (or, see Pfitzmann and Waidner [1986]).

Strengths, weaknesses, and attacks

Strengths

- Untrusted third party.
- Untrusted senders.
- Flexible.

Weaknesses

Efficiency (depending on application).

Attacks

- Intersection attack.
- Adversary observes in/out communication and owns some senders: OK.
- Adversary sees in/out communication and owns all senders ("n-1 attack"): Not OK.

Applications

- (Messaging)
- Payments
 - Sender/buyer unlinkabilty.
- Voting
 - · Receipt free.
 - Universally verifiable.
 - Open-ended ballot question.
 - (caveats.)

For the record

- 1. $C_{C \perp t} \rightarrow F : E_{C \perp tPR} \{ E_{F \perp PB} \{ C \perp transaction \perp id, C \perp amount, C \perp tPB, C \perp tPBT, C \perp t \} \}$
- 2. $F \rightarrow C_{C,\pm}: E_{C,\pm PB}\{C_{-transaction_id}, T_{1,\dots,n}^{C,\pm}\}$
- 3. $C_{C_t} \rightarrow * : E_{C_tPR} \{C_tPB, n_{C_t}\}$
- 4. $[1, 2, ..., X]_{[1,2,...,X] \perp (t+1)} \rightarrow C_{C \perp t}$: $E_{C \perp tPB} \{ E_{[1,2,...,X] \perp (t+1)PR} \{ [1, 2, ..., X] \perp (t+1)PB, E_{C \perp tPR} \{ C \perp tPB, n_{C \perp t}, \} \} \}$
- 5. $C_{C,t} \to F$, $[1, 2, ..., X]_{[1,2,...,X],(t+1)}$: $E_{C,tPR} \{n_{C,t}, [C, 1, 2, ..., X], (t+1) PB, [C, 1, 2, ..., X], (t+1) PBT \}$
- 6. $[C, 1, 2, ..., X]_{[C,1,2,...,X] \perp t} \rightarrow F, [C, 1, 2, ..., X]_{[C,1,2,...,X] \perp t+1}$: $E_{[C,1,2,...,X] \perp tPR} \left\{ S, E_{F_PB} \left\{ T_{1,...,n_{c-t}}^{[C,1,2,...,X] \perp t}, [C, 1, 2, ..., X] \perp tPRT \right\} \right\}$
- 7. $F \to *: E_{F_PR} \{ E_{C_(t+1)PB} \{ T_{1,...,n_{C_t}}^{C_(t+1)} \}, E_{1_(t+1)PB} \{ T_{1,...,n_{C_t}}^{1_(t+1)} \}, ..., E_{X_(t+1)PB} \{ T_{1,...,n_{C_t}}^{X_(t+1)} \} \}$

acquisti@sims.berkeley.edu