
Language-Based
Enforcement of Privacy

Policies

Katia Hayati and Martín Abadi
University of California, Santa Cruz

May 28, 2004

From privacy wishes to
enforcement

• Users may want privacy guarantees:
– Where their private data goes
– How it is used
– How long it is kept ...

• Some providers advertise privacy policies,
but policies:
– are subject to malice or error (and errors are

easy)

– don’t mean much without enforcement

Approaches to enforcement

• Dynamic monitoring
– DPM, RM from IBM (Bohrer et al, Hill and

Fritz)

• Formal reasoning on a model (Dreyer and
Olivier, Lategan and Olivier)

• Automated proofs relating different privacy
policies (Backes, Pfitzmann and Schunter)

A case for language-based
enforcement

• Applies to actual code

• Can be (mostly) static

• Helps programmers reason about privacy

• Provides privacy documentation for
system interfaces

• Supports code auditing

Using information-flow control

• Information-flow control is mature
• It can be used for guaranteeing secrecy

and integrity properties
– e.g., “low” subjects do not learn anything

about “high” data

• Some of it is at the language level, with
type systems, even for sophisticated
languages (ML, Java)

• It seems relevant, but does it work?

Does it work?

• We ground our work on P3P
– Well-defined
– Provides a checklist of important privacy

properties

• We focus on three aspects of privacy:
– Basic control of information leaks
– Purposes
– Retention

• We use Jif, an extension of Java with
information flow types

Jif in a nutshell

• (Mostly) static type checking

• Variables are annotated with labels

• The owner of a piece of data can give it a
less restrictive label via declassification

{Alice: Bob, Chuck}

owner readers

principals

a label

Basic control of information
leaks

int{Private: } credit_rating = 3;
int{Public: } rebate = 0;

if (credit_rating > 5) {
rebate = 10;

}
else {

rebate = 5;
}

ERROR: public information
allowed to depend on
private data

The acts-for relation

• Principals can be ordered with an acts-
for relation
– If Alice acts-for Bob then Alice can do

everything Bob can

– Acts-for is reflexive and transitive

• In the previous example, Private should
have access to everything Public does
(but not vice versa)

Using acts-for

int{Private: } credit_rating = 3;
int{Public: } rebate = 0;

actsFor(Private, Public) {
if (rebate > 0) {

credit_rating++;
}

}

acts-for relationships
may change at runtime,
so check is necessary

no error

Purposes

• Purpose is a central privacy notion
– A purpose should be interpreted as an “upper

bound”

– Data can be collected for more than one
purpose

– Purposes may have subpurposes (not in P3P)

• We model purposes with Jif principals

An example with purposes

class LogProcessor {

 public int{WebAdmin: } total_hits(...) {
 ...
 }
}
...
int{Marketing: } hits =
 (new LogProcessor(...)).total_hits(...);

ERROR:
Incompatible
labels

Multiple purposes and
subpurposes via acts-for

Admin

LogAdmin WebAdmin Marketing

WA_or_Mktg

: acts-for

Retention

• P3P retentions:
– no-retention

– stated-purpose

– legal-requirement

– business-practices

– indefinitely

• We can view retention enforcement partly
as an information-flow problem
– Data marked as “no-retention” should not flow

into data marked “indefinitely”

Retentions in an extension of Jif

• We extend the labels with retentions, and
the ordering on labels accordingly

int{Marketing: ;; noretention} a = 1;
int{Marketing: ;; indefinitely} b = a+1;

int{Marketing: ;; indefinitely} c = 0;
int{Marketing: ;; business} d = c+1;

ERROR:
ephemeral data flows
into permanent data

this is ok

Assurance, the downside

• If a program typechecks, it could still
contain:
– labeling errors, e.g.:

• a principal called “Statistics” may perform non-
statistical functions

• a cookie which is only supposed to be retained
temporarily might be annotated as “legal-
requirement”

– inappropriate declassifications

Assurance, the upside

• Annotations help focus auditing:
– declassifications are important and easy to

track

– checking that “Statistics” performs statistical
functions is a local problem

• Assurance could combine:
– the formal reasoning of the type system

– a statement asserting that the code does what
it is supposed to do

– perhaps formal proofs

Conclusion

• Information-flow control can help in
supporting privacy policies

• Basic control of leaks, purposes and
retentions can be encoded using Jif or a
mild extension

• An annotated program is a better basis for
assurance than a plain program

Open problems

• Suitability for large-scale software
engineering projects?

• Stronger assurance

• Additional privacy properties
– Anonymous use of data

• Relating P3P policies with language-level
interfaces

