Language-Based
Enforcement of Privacy
Policies

Katia Hayati and Martin Abadi
University of California, Santa Cruz

May 28, 2004

From privacy wishes to
enforcement

o Users may want privacy guarantees:
— Where their private data goes
— How it is used
— How long it is kept ...

 Some providers advertise privacy policies,
but policies:

— are subject to malice or error (and errors are
easy)

— don’t mean much without enforcement

Approaches to enforcement

e Dynamic monitoring
— DPM, RM from IBM (Bohrer et al, Hill and
Fritz)
 Formal reasoning on a model (Dreyer and
Olivier, Lategan and Olivier)

o Automated proofs relating different privacy
policies (Backes, Pfitzmann and Schunter)

A case for language-based
enforcement

Applies to actual code
Can be (mostly) static
lelps programmers reason about privacy

Provides privacy documentation for
system interfaces

Supports code auditing

Using Information-flow control

Information-flow control i1s mature

It can be used for guaranteeing secrecy
and integrity properties

—e.g., “low” subjects do not learn anything
about “high” data

Some of it Is at the language level, with
type systems, even for sophisticated
languages (ML, Java)

It seems relevant, but does it work?

Does it work?

e \WWe ground our work on P3P
— Well-defined

— Provides a checklist of important privacy
properties

* \We focus on three aspects of privacy:
— Basic control of information leaks
— Purposes
— Retention

e \We use Jif, an extension of Java with
iInformation flow types

Jif In a nutshell

e (Mostly) static type checking
e Variables are annotated with labels

 The owner of a piece of data can give it a
less restrictive label via declassification

owner readers

v » s
{Alice: Bob, Chuck}+ — alabe

v

principals

Basic control of information
leaks

Int{Private: } credit rating = 3;
Int{Public: } rebate = 0;

If (credit_rating >5) { 4 ERROR: public information
rebate = 10; / allowed to depend on

l private data

else {
rebate = 5;

}

The acts-for relation

e Principals can be ordered with an acts-
for relation

— If Alice acts-for Bob then Alice can do
everything Bob can

— Acts-for is reflexive and transitive
 In the previous example, Private should

have access to everything Public does
(but not vice versa)

Using acts-for

Int{Private: } credit rating = 3;
Int{Public: } rebate = 0;

: : acts-for relationships

If (rebate >0) { so check is necessary
credit_rating++;
}

| \

No error

Purposes

e Purpose Is a central privacy notion

— A purpose should be interpreted as an “upper
oound”

— Data can be collected for more than one
DUrpose

— Purposes may have subpurposes (not in P3P)
* \We model purposes with Jif principals

An example with purposes

class LogProcessor {

public int{\WWebAdmin: } total_hits(...) {

b ——— ERROR
} Incompaﬂme
labels

th{I\/Iarketing: } hits =
(new LogProcessor(...)).total_hits(...);

Multiple purposes and
subpurposes via acts-for

LogAdmin WebAdmin arketing

NPy

Admin WA _or_ Mktg

—» : acts-for

Retention

P3P retentions:
— no-retention
— stated-purpose
— legal-requirement
— business-practices
— Indefinitely
* We can view retention enforcement partly
as an information-flow problem

— Data marked as “no-retention” should not flow
iInto data marked “indefinitely”

Retentions In an extension of Jif

 We extend the labels with retentions, and
the ordering on labels accordingly

ERROR:

- ephemeral data flows
Into permanent data

Int{Marketing: ;; noretention} a = 1;
Int{Marketing: ;; indefinitely} b =a+1,

Int{Marketing: ;; indefinitely} c = 0; ~__thisis ok
Int{Marketing: ;; business} d =c+1,;

Assurance, the downside

 If a program typechecks, it could still
contain:

— labeling errors, e.q.:

 a principal called “Statistics” may perform non-
statistical functions

e a cookie which is only supposed to be retained
temporarily might be annotated as “legal-
requirement”

— Inappropriate declassifications

Assurance, the upside

* Annotations help focus auditing:

— declassifications are important and easy to
track

— checking that “Statistics” performs statistical
functions is a local problem

e Assurance could combine:
— the formal reasoning of the type system

— a statement asserting that the code does what
it IS supposed to do

— perhaps formal proofs

Conclusion

 Information-flow control can help in
supporting privacy policies

» Basic control of leaks, purposes and
retentions can be encoded using Jif or a
mild extension

 An annotated program is a better basis for
assurance than a plain program

Open problems

Suitability for large-scale software
engineering projects?

Stronger assurance

Additional privacy properties
— Anonymous use of data

Relating P3P policies with language-level
Interfaces

