

Zurich Research Laboratory

An Efficient Anonymous Credentials System

Jan Camenisch IBM Research joint work w/ Anna Lysyanskaya, Ivan Damgård, Victor Shoup

May 30th, 2005

www.zurich.ibm.com

Outline

- I. Requirements of Anonymous Credential System
- II. Abstract Solution
- III. The Technical Bit
 - Signature Scheme
 - Commitments and Proof Protocols
 - **Encryption Scheme**

The Problem: Pseudonym System

The Problem, Even Larger: Extended Pseudonym System

Basic Requirements of Pseudonym System

- Protection of user's privacy
 - anonymity
 - unlinkeability (multi-use)

- Unforgeability of credentials
- Consistency of credentials (no pooling)

Extra Requirements of Pseudonym System

- Sharing of credentials
- Anonymity revocation
 - local
 - global

- Revocation of credentials
- Encoding of attributes
- One-show credential (e-cash)
 - off-line & on-line
- k-spendable credentials
-

IBM

Some History

- Chaum '85: introduced scenario
- Chaum & Evertse '87: solution based on a semi-trusted party
- Damgård '90: theoretical solution
- Brands '95-'99: one-show credentials with different attributes
- LRSW '99: practical solution for one-show credentials
- Camenisch-Lysyanskaya '00: efficient multi-show w/ attributes
- Verheulen '01: bi-linear map multi-show
- Camenisch-Lysyanskaya '04: Discrete log based.

Special cases: e-cash, group signatures, identity escrow

Proving Ownership Solution

之

Proving Ownership Solution

Proving Ownership Vs. **Using Blind Signatures**

Certificates can be used *multiple* times!

Certificates can be used only *once*!

Required Technologies

..... challenge is to do all this efficiently!

Zero-Knowledge Proofs of Knowledge of Discrete Logarithms [Schnorr '91,Chaum & Pedersen '92,....]

Given group $\langle g \rangle$ and element $\gamma \in \langle g \rangle$.

Prove *knowledge* of $x = \log_g y$ such that verifier only learns y and g.

Zero Knowledge Proofs II

Non-interactive (Fiat-Shamir heuristic):

 $PK{(\alpha): y = g^{\alpha}}(m)$

Logical combinations:

PK{(
$$\alpha,\beta$$
): $\gamma = g^{\alpha} \land z = g^{\beta} \land u = g^{\beta}h^{\alpha}$ }
PK{(α,β): $\gamma = g^{\alpha} \lor z = g^{\beta}$ }

Intervals and groups of different order (under SRSA):

$$\mathsf{PK}\{(\mathbf{\alpha}): \mathbf{y} = g^{\mathbf{\alpha}} \land \mathbf{\alpha} \in [\mathsf{A},\mathsf{B}]\}$$

 $\mathsf{PK}\{(\mathfrak{a}): \ \mathsf{y} = g^{\mathfrak{a}} \land z = g^{\mathfrak{a}} \land \mathfrak{a} \in [0,\min\{\operatorname{ord}(g),\operatorname{ord}(g)\}]\}$

Commitment Schemes

Group $G = \langle g \rangle = \langle h \rangle$ of order q

To commit to element $\times \mathcal{E}Z_q$:

- perfectly hiding, computationally binding (Pedersen): choose $r \in Z_q$ and compute $c = g^{x}h^{r}$
- computationally hiding, perfectly binding:
 choose r *E*Z_q and compute c = (g[×]h^r, g^r)

To commit to integer $\times \mathcal{E}Z$ (Damgård, Fujisaki):

• similarly, if order of G is not known, e.g., $G = QR_n$

The Strong RSA Assumption

Flexible RSA Problem: Given RSA modulus n and $z \in QR_n$ find integers e and u such that

 $u^e = z \mod n$

- Introduced by Barić & Pfitzmann '97 and Fujisaki & Okamoto '97
- Hard in generic algorithm model [Damgård & Koprowski '01]

Signature Scheme based on the SRSA Assumption I

Public key of signer: RSA modulus n and a_i , b, d $\in QR_n$,

Secret key: factors of n \mathbf{Y} To sign k messages m1, ..., mk $\in \{0,1\}^{\ell}$:

- choose random prime $e > 2^{\ell}$ and integer $s \approx n$
- compute c such that

$$d = a_1^{m1} \cdots a_k^{mk} b^s c^e \mod n$$

signature is (c,e,s)

Signature Scheme based on the SRSA Assumption II

- A signature (c,e,s) on messages m1, ..., mk is valid iff:
 - m1, ..., mk $\in \{0,1\}^{\ell}$:
 - e > 2[{]

•
$$d = a_1^{m1} \cdots a_k^{mk} b^s c^e \mod n$$

Theorem: Signature scheme is secure against adaptively chosen message attacks under SRSA assumption.

Getting a Signature on a Secret Message

Proof of Knowledge of a Signature Observe:

> - Let c' = c b^{s'} mod n with randomly and s' - then d = c'^e $a_1^{m1} \dots a_k^{mk} b^{s^*} \pmod{n}$,

i.e., (c',e, s*) is a also a valid signature!

Therefore, to prove knowledge of signature on some m

• provide c'

• PK{(
$$\epsilon, \mu 1, ..., \mu k, \sigma$$
): d:= c' $\epsilon a_1^{\mu 1} \cdot ... \cdot a_k^{\mu k} b^{\sigma}$
 $\wedge \mu 1 \in \{0,1\}^{\ell} \wedge \epsilon \in 2^{\ell+1} \pm \{0,1\}^{\ell} \}$

Į

Zurich Research Laboratory

Proof of Knowledge of a Signature

Using second Commitment

$$-C = a_1^{sk} b^{s*}$$

To prove knowledge of signature on some m

- provide c'

 $C = a_1^{\mu 1} b^{\sigma^*} \wedge d := c'^{\epsilon} a_1^{\mu 1} \cdot ... \cdot a_k^{\mu k} b^{\sigma}$

ð

Verifiable Encryption

The Decision Composite Residuosity Assumption

The DCR Problem: Given *n* and *x*, decide whether or not

$$x \in (Z^*_{n^2})^n$$

- Introduced by Paillier '99.
- If n = (2p'+1)(2q'+1) then $Z_{n^2}^* = Z_2 \times Z_2 \times Z_n \times Z_{p'q'}$.
- $(1+n)^{u} = (1+un) \mod n^2$.

An Encryption Scheme

Public Key: n and g, $Y_1, Y_2, Y_3 \in \langle (g')^{2n} \rangle$, where g' $\in \mathbb{Z}_{n^2}^*$,

Secret Key: $x_i = \log Y_i$

Encryption message $m \in [0,n]$ under label L:

$$-\mathbf{u} := g^{\mathbf{r}}, \mathbf{e} := Y_1^{\mathbf{r}} (1+n)^{\mathbf{m}}, \mathbf{v} := abs(Y_2Y_3^{\mathbf{H}(\mathbf{u},\mathbf{e},\mathbf{L})})^{\mathbf{r}}$$

- output (u,e,v).

where abs() maps (a mod n^2) to $(n^2 - a \mod n^2)$ if $a > n^2/2$, and (a mod n^2) otherwise, where $0 < a < n^2$.

An Encryption Scheme

Decryption of ciphertext (u,e,v) under label L:

- verify v = abs(v) and $u^{2(x_2 + H(u,e,L)x_3)} = v^2$.

 $-\hat{c} := (e/u^{\times 1})^{2+}$ where $t = 2^{-1} \mod n$,

- if n | (\hat{c} -1) output m := (\hat{c} -1)/n, otherwise output ⊥

Intuition: remember $(1+n)^a = 1+an \pmod{n^2}$

so $(e/u^{x_1}) = Y_1^r (1+n)^m / (g^r)^{x_1} = (1+n)^m = 1+mn$

Theorem: *Encryption scheme is secure against adaptively chosen ciphertext attacks under DCR assumption.*

Verifiable Encryption of a Discrete Logarithm

Let $d = a_1^{sk} a_2^{nym} b^s c^e$ (mod n) be a driver's license

and (u,v,e) be an encryption of nym.

To prove that (u,v,e) indeed encrypts m:

PK{(ε, μ1, μ2, ρ, σ):

$$d := c'^{\epsilon} a_{1}^{\mu 1} a_{2}^{\mu 2} b^{\sigma} \wedge \mu 1, \mu 2 \in \{0,1\}^{\ell} \wedge \mu^{2} = g^{2\rho} \wedge e^{2} = Y_{1}^{2\rho} (1+n)^{2\mu 2} \wedge v^{2} = (Y_{2}Y_{3}^{H(u,e,L)})^{2\rho} \}$$

Conclusion & Outlook

- Efficient Anonymous Credentials and more!
- TCG TPM V1.2 will have some of this

Was known in theory; soon your computer will have it.

• EU Project PRIME will have all of this

www.prime-project.eu.org

- Plans:
 - Open source
 - Lots of more research :-)

Thanks for your attention!