"Unmixing" Mix Traffic or Using Blind Source Separation to Partition Flows Anonymous Communication Systems

Ye Zhu and Riccardo Bettati

Department of Computer Science Texas A&M University

Motivation

- Typical anonymity systems are encryption and rerouting based (e.g. Onion Routing, Tor, Freedom, TARZAN, NetCamo, ...)
- Many flow-path-reconstruction attacks to anonymity systems (Zhu et al., Levine et al., Danezis, etc.) do not scale well.
- Q: How can flow-based attacks be scaled?
- Hyp: Precondition the available traffic data.

Flow Identification vs. Flow Separation

Given: Observations O₁, ..., O₄

Flow-Path Reconstruction: -Identify flows and paths $F_1: P_1 \rightarrow P_3$ and/or $F_2: P_1 \rightarrow P_4$ and/or $F_3: P_2 \rightarrow P_3$ and/or $F_4: P_2 \rightarrow P_4$

Flow Separation:

-Identify a group of flows, or flow aggregates, without paths

 $\{F_1, F_2, F_3, F_4\}$

Overview of Talk

- Blind Source Separation (BSS) and Independent
 Component Analysis (ICA)
- Flow Separation in Mix Networks
- Experimental Evaluation
 - Single-Mix case
 - Scalability of attack
 - Mix-Network case
- Conclusion / Outlook

Interlude: Blind Source Separation

- Methodology in statistical signal processing to recover source signals from a set of observed <u>mixtures</u>.
- Cocktail Party Problem: Extract individual's voice from mixture of voices at party.
- Let F₁(t), ..., F_n(t) be <u>un</u>observed independent "source" signals.
- Let $O_1(t)$, ..., $O_n(t)$ be observation of mixtures.
- <u>Mixing Matrix</u> A:

 $O_i(t) = \Sigma_j \ a_{ij} \ F_j(t)$

• Q: How to re-construct $F_j(t)$?

- Source Separation uses "spatial" diversity.
- "Blindness": Blind Source Separation re-constructs source signals
 F_j(t) using <u>only</u>
 - observed data $O_i(t)$
 - assumption of independence among $F_i(t)$'s
 - possibly additional a priori information about $F_i(t)$
- Algorithms
 - Observation: Unless mixing matrix is non-mixing, it turns vector of independent entries into vector of non-independent entries.
 - Separation restores independence.
 - e.g. minimization of mutual information.

Blind Source Separation: Issues

- More source signals than observations (over-complete base problem)
 - Algorithms exist when number of sources is known.
 - Incomplete separation: some sources remain mixed.
- Convolutive Mixing Matrices (algorithms exist)
- Noisy observations
- Non-invertible mixing matrices
 - Row vectors of mixing matrices of MIXes are linearly dependent
 - Multicast traffic
 - Incomplete separation: some sources remain mixed.
- Estimations of separated sources are scaled and lifted.

Flow Separation as BSS Problem

- Source and observation signals as time series.
- Given O_i = [oⁱ₁, oⁱ₂, oⁱ₃, ..., oⁱ_n] observations of packet counts at Port P_i.
- Recover $F_j = [f_{i'}^j, f_{i'}^j, f_{j'}^j, \dots, f_{i'}^j]$ for each flow.
- Assumptions:
 - No congestion at sender and MIX
 - Observations are synchronized

Identifying Separated Flows: Frequency Matching

- Matching of spectrum highly effective for identifying separated flows:
 - 1. Captures dynamics of flows, in particular TCP.
 - 2. Insensitive to lifting and scaling.
 - 3. Effective for flow aggregates.
 - 4. Insensitive to congestion in network.
- Some flows are known a priori: Flow-path-reconstruction
- Flow characteristics unknown: Detailed traffic map across mix network can be determined.
- Metric for accuracy in experiments:
 - Frequency Matching Rate: Probability that <u>separated</u> Flow F_B matches best with <u>actual</u> Flow F_A .

Experimental Evaluations: Setup

2 x 2 MIX, mixed traffic, no multicast

2 x 2 MIX, mixed traffic, with multicast

2 x 2 MIX, mixed traffic, with multicast

2 x 2 MIX, TCP-only traffic

No Multicast: frequency matching

Scalability I: Congesting the (2×2) Mix

We increase the size of aggregates.

MIX Networks

- TCP traffic
- Pareto cross-traffic

MIX Networks: Cross-Correlation Map

Use dynamic programming to link up separated flow aggregates to generate flow paths

MIX Networks

Countermeasures?

- 1. Link padding to render observations redundant.
- 2. Add noise, e.g. through pool-type batching.
- 3. Increase dependency across flows by adding dependent dummy traffic.
- 4. Pad aggregate flows to render packet counts Gaussian.
 - Causes most traditional BSS algorithms to fail.
 - Does not work for newer BSS algorithms that consider time structure of signals.

Conclusion

- Flow separation as anonymity attack.
- Flow separation as preconditioner for other anonymity attacks.
- Classical example for Blind Source Separation.
- Outlook: BSS in wireless networks.
 - Traffic and power as signals.
 - Flexible placement of sensors.