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Motivation

Typical anonymity systems are encryption and re-

routing based (e.g. Onion Routing, Tor, Freedom,
TARZAN, NetCamo, ...)

Many flow-path-reconstruction attacks to anonymity
systems (Zhu et al., Levine et al., Danezis, etc.) do
not scale well.

Q: How can flow-based attacks be scaled?

Hyp: Precondition the available traffic data.




Flow Identification vs. Flow Separation
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paths
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Overview of Talk

Blind Source Separation (BSS) and Independent
Component Analysis (ICA)

Flow Separation in Mix Networks
Experimental Evaluation

- Single-Mix case

- Scalability of attack

- Mix-Network case

Conclusion / Outlook




Interlude: Blind Source Separation

Methodology in statistical signal processing to recover
source signals from a set of observed mixtures.

Cocktail Party Problem: Extract individual’s voice from
mixture of voices at party.

Let F,(1), .., F (1) be unobserved independent “source”
signals.

Let O,(1), .., O (t) be observation of mixtures.
Mixing Maftrix A:

Q: How to re-construct Fi(7)?




Blind Source Separation (II) [3F. Cardoso 1998]

® Source Separation uses “spatial” diversity.

e "Blindness”: Blind Source Separation re-constructs source signals
F(t) using only
- observed data O(t)
- assumption of independence among F(1) s

- possibly additional a priori information about F(?)

® Algorithms

- Observation: Unless mixing matrix is non-mixing, it turns

vector of independent entries into vector of non-independent
entries.

— Separation restores independence.
- e.g. minimization of mutual information.




Blind Source Separation: Issues

More source signals than observations (over-complete base
problem)

- Algorithms exist when number of sources is known.
- Incomplete separation: some sources remain mixed.
Convolutive Mixing Matrices (algorithms exist)

Noisy observations

Non-invertible mixing matrices

- Row vectors of mixing matrices of MIXes are linearly
dependent

- Multicast traffic
- Incomplete separation: some sources remain mixed.
Estimations of separated sources are scaled and lifted.




Flow Separation as BSS Problem

Source and observation signals as ftime series.

Given O, = [0, 0/, 05, .., O] - observations of packet counts at

Port P.
Recover F; = [f, F, F, .., F ] for each flow.
Assumptions:

- No congestion at sender and MIX
- Observations are synchronized
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Identifying Separated Flows: Frequency Matching

Matching of spectrum highly effective for identifying separated
flows:

Captures dynamics of flows, in particular TCP.
Insensitive to lifting and scaling.
Effective for flow aggregates.
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Insensitive to congestion in network.

Some flows are known a priori: Flow-path-reconstruction

Flow characteristics unknown: Detailed traffic map across mix
network can be determined.

Metric for accuracy in experiments:

- Frequency Matching Rate: Probability that separated Flow Fg
matches best with actual Flow F,.




Experimental Evaluations: Setup

ns-2 simulations

Network:

* n x n MIX
- 10 Mbit/s link speed
* 10 ms link delay

Traffic:
- FTP flow
- HTTP flows
- avg page size 2kB
- UDP 1 flows
- 2500 kbit/s
* 13 ms bursts
* 6 ms idle time
- UDP 2 flows
- 4000 kbit/s
* 12 ms bursts
* 5 ms idle time
- 32 sec of traffic




2 X 2 MIX, mixed traffic, no multicast

actual flows separated flows
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2 X 2 MIX, mixed traffic, with multicast

actual flows separated flows
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2 X 2 MIX, mixed traffic, with multicast

separated flows

actual flows

FTP

UDP 1 (mcast)
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Separation works just fine, but Frequency
Matching not able to correctly match UDP

Flows. On the other hand, MSE matches
correctly.
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2 x 2 MIX, TCP-only traffic
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Scalability I: Congesting the (2 x 2) Mix
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We increase the size of aggregates.




Scalability II: Larger MIX sizes
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MIX Networks
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MIX Networks: Cross-Correlation Map

Use dynamic programming to link up separated
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MIX Networks

Anonymity Degree with h possible paths (Serjantov
et al., Diaz et al., etc.) :
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Countermeasures?

1. Link padding to render observations redundant.
2. Add noise, e.g. through pool-type batching.

3. Increase dependency across flows by adding
dependent dummy traffic.

4. Pad aggregate flows to render packet counts Gaussian.
— Causes most traditional BSS algorithms to fail.

— Does not work for newer BSS algorithms that
consider time structure of signals.




Conclusion

Flow separation as anonymity attack.

Flow separation as preconditioner for other anonymity
attacks.

Classical example for Blind Source Separation.
Outlook: BSS in wireless networks.

- Traffic and power as signals.
- Flexible placement of sensors.




