Privacy Injector — Automated Privacy Enforcement
through Aspects

Chris Vanden BergHe? and Matthias Schuntér

1 IBM Research, Zurich Research Laboratory
Saumerstrasse 4, CH-8803 Ruschlikon, Switzerland
{vbc,mts }@zurich.ibm.com
2 Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium
chrisvdb@cs.kuleuven.be

Abstract

Protection of personal data is essential for customer &anep. Even though existing
privacy policies can describe how data shall be handledagyienforcement remains
a challenge. Especially for existing applications, it icle@ar how one can effectively
ensure correct data handling without completely redesttie applications. In this
paper we introduce Privacy Injector, which allows us to adudagy enforcement to
existing applications.

Conceptually Privacy Injector consists of two complemgnfrarts, namely, a pri-
vacy metadata tracking and a privacy policy enforcemertt pée show how Privacy
Injector protects the complete life cycle of personal dgtproviding us with a practical
implementation of the “sticky policy paradigm.” Throughdlue collection, transforma-
tion, disclosure and deletion of personal data, Privaadiajr will automatically assign,
preserve and update privacy metadata as well as enforceitlaeyppolicy. As our ap-
proach is policy-agnostic, we can enforce any policy laggutnat describes which
actions may be performed on which data.

1 Introduction

An increasing number of enterprises make privacy promisesget customer demand
or to implement privacy regulations. As a consequenceygrses aim at protecting
data against accidental misuse, including unwarrantedodisre and over-retention.
Recent approaches towards formalizing privacy regulati@ve addressed the issue of
how permitted data usage can be formalized [3, 10, 14, 16veder, in practice two
major challenges remain. The first challenge is to assesadfual privacy status of
an enterprise, i.e., what data is stored and what data hasdodlected under what
policy. The second challenge is how to enforce the giverapyipromise consistently
throughout existing and new applications.

A first step in addressing these challenges has been thky'stidicy paradigm” as
proposed in Karjoth et al. [16]. This paradigm requires thativacy promise made to
a data subject stick to the data to later identify how thisdan be used. For cross-
enterprise transfer, policy refinement can be used to emfsticky policies [3]. How-
ever, for enterprise-internal use, there is no clear canteeyw policies can be reliably



associated with data and how policies can be managed. This hoparticular for
existing enterprise applications in which privacy enfoneat was not included as a
non-functional design requirement.

In this paper we introduce Privacy Injector, which levesatfee Aspect-Oriented
Software Development (AOSD) [9] paradigm to modularize andapsulate privacy
enforcement. This allows us to add privacy enforcementtfanality late in the soft-
ware developmentcycle or even in the maintenance phaseldagons. Privacy Injec-
tor consists of grivacy metadata trackingart and grivacy policy enforcemermtart.
The former is a practical implementation of the aforemerdibsticky policy paradigm,
whereas the latter is responsible for the actual enforceofehe sticky policies.

The privacy metadata tracking part consists of three compisn The first compo-
nent,privacy metadata assignmeid responsible for assigning the appropriate privacy
metadata to data that enters the system. This is achieveadsbyrinenting the input
vectors of the execution platform, i.e., all functions msgible for collecting external
data. The second componentetadata-preserving data operatigns responsible for
preserving and updating this privacy metadata when opamtire performed on this
data. This is achieved by instrumenting all data operationgpdate the privacy meta-
data to reflect changes resulting from the operations. Tiné tomponentmetadata
persistencgis responsible for preserving, restoring, updating anmdosgng privacy
metadata when data is made persistent, retrieved, modifieghmoved, respectively.
This is accomplished by leveraging the event systems exidnspersistence services.

The privacy policy enforcement part ensures that the apjateptests and actions
specified by the privacy policy are performed upon usage aaodure of the data.
The different ways in which data can be disclosed are calledut vectors, which are
again instrumented and retrofitted with the policy-enfogdunctionality. For example,
when an application calls the API for sending e-mail, thisdion is intercepted and
the required conditions and obligations, as described éytlvacy metadata attached
to the function’s parameters, are checked and the necesstéoyps performed.

We rely on the Aspect-Oriented Software Development pgradbr implement-
ing the instrumentation, i.e., for making the connectiotwegen Privacy Injector and
the target application. Our method is platform-independdthough we focus on Java
to illustrate our concepts for this paper. Privacy Injealoes not require the source
code of the target applications; however it makes some g#sums about the target
applications that will be discussed later in this paper.

The goal of this work is to show that Privacy Injector provd@euseful methodology
for implementing the sticky policy paradigm and enforcingy@cy in applications in
which privacy enforcement was not included as a design diodhis paper we focus
on preventinginwarranted disclosure of personal datather possible and potentially
valuable use-cases, e.g., preventing over-retention rsbpal data, are only touched
upon briefly.

1.1 Outline

In Section 2 we discuss related work on privacy policiesygny enforcement, flow
control, and aspect-oriented software development. Ini@e8 we discuss the life
cycle of personal data. In Section 4 we introduce Privagydigr conceptually, whereas



Section 5 is devoted the implementation details of our pypi®. In Section 6 describes
the benefits and limitations of our approach, and Sectiom¢lades the paper.

2 Related Work

2.1 Privacy Policies and Policy Attachment

We distinguish privacy policies and privacy notices. Fdineal privacy policies were
describedin[3,10, 14, 16]. Privacy policy languages fdimeavhich users can perform
which operations on given data types for which purpose fedddition, privacy policies
can specify conditions (such as usage only during day-tsee;[21]) or obligations
(such as limited retention; see [4, 7, 13, 27]). Similarlytte approach described in this
paper, privacy policies aim at enterprise-internal use.

Privacy notices, on the other hand, formalize the privaoyses of an enterprise to
end-users. The World Wide Web Consortium has standardieeBIlatform for Privacy
Preferences (P3P) that allows enterprises to declare vdaitzhis collected and how it
will be used [22]. The adoption rate of P3P, however, remagtegively low [8].

When comparing the two approaches, languages for entefiptisrnal privacy
practices and technical privacy policy enforcement offeerfigrained distinction of
users, purposes, etc.

An open challenge is how to implement sound policy managéfoeprivacy poli-
cies and how policies can be enforced, namely, how polidade attached to data and
how they can be enforced automatically. Karjoth et al. [I®jpose the “sticky policy
paradigm” that defines that a privacy promise made to thesldigect should stick to
the data to later identify how this data may be used. As addckem [2, 3], sticky pol-
icy transfer between enterprises can be implemented usiligypromparison. Policy
attachment and enforcement for legacy applications rearawpen challenge.

2.2 Privacy Policy Enforcement

Privacy policy enforcement has several aspects, dependitige life cycle of the per-
sonal data that is collected and used (see Section 3). Farpdatection during col-
lection, consistent use of privacy notices is essentialaBy notices can be formal-
ized using P3P [22], whereas their consistent use can biegetsing the Watchfire
tool [30]. Enforcement of privacy policies depends heawitythe systems that store
and handle personal data. IBM has published technologiegefdaring and enforcing
privacy policies for Java Beans [12].

For policy enforcement inside databases, the concept qiddimtic databases has
been described in [1]. The core idea is to use SQL rewritingd¢tude policy evalua-
tion into the (modified) databased query that is actuallpg@rocessed. This enables
the database to automatically return the subset of recoh#senusage is authorized.
For newly built applications in which policy authorizatican be delegated to an au-
thorization engine, various authorization engines haealikesigned, including the one
described in [21]. These engines enable an application éoyquhether a certain use
of data is allowed.



2.3 Flow Control

Language-based information flow security was surveyed tpelBed and Myers in
[28]. The main focus of current research is to staticallyedmine potential flows
and whether a program complies with a desired flow-contrbtpad-low-control ap-
proaches that perform static checking need to perform atveaise analysis to catch all
potential violations. To resolve this problem, Myers [19] Broposes a Java extension
called JFlow that annotates Java code using flow-contrdtcoects. This enables a pre-
compiler that performs a static verification and then getesrdava code that performs
additional run-time checks.

The advantage of Privacy Injector over the existing apgreadies mainly in its
practical applicability. For example, it does not requadive the application’s source
code available. Nor does it require a modified runtime or isphéanguage constructs; a
simple configuration file specifying the policy suffices in shoases. Finally, no flow-
control policy must be known at compile time, in contrasttie existing approaches
where this forms a major obstacle in their acceptance bedhaesprivacy policy actu-
ally consented to is only determined at run-time.

Three design choices contribute to this improved practpalicability: the use of
the AOSD paradigm, some assumptions made about the ajptisédiscussed further)
and a different adversary model. Rather than aiming at dksatifying and preventing
hidden information flow, we focus on an adversary model inclwka non-malicious
developer accidentally uses or discloses data in a manoletinig the privacy policy.

2.4 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) [9] is a safev engineering
paradigm that enables tiseparation of Concerrj23], i.e., the breaking down of appli-
cations into components that minimize the overlap in fuorelity. In particular, AOSD
focuses on the modularization and encapsulation of crodsig concerns.

Cross-cutting concerns are areas of interest that cansity ba separated and en-
capsulated through existing software development pamasliguch as object-oriented
or procedural programming. Logging is the archetypicahex, as it touches every
logged component, and existing software development jgaredforce program code
responsible for the logging functionality to be scattetadtghout these components.

AOSD refers to software development as a whole, includirgigte testing, etc.,
whereas Aspect-Oriented Programming (AOP) [18] refersifipally to the program-
ming part. Several distinct AOP implementations existhegaviding language con-
structs to express both the cross-cutting concerns (thieedas well as the points in
the application at which the advice should be integrateel jiin points), and tools for
performing the actual integration (weaving). In this wor& will use AspectJ [17, 25],
which is the most popular and widely supported AOP implerigo for Java.

AspectJ provides a fine-grained qualification of the joinnp®i called pointcuts,
enabling instrumentation of methods, constructors, fieltkas, etc., of which the se-
lection is based on a combination of name, return type, patens, etc. The actual
weaving step of AspectJ is performed at the byte-code lewel thus no access to the
target application’s source code is required to provideati additional functionality.



Although the principle of separation of concerns originakrved mainly as a
guideline for structuring application functionality, iel more recently been applied
to separate the non-functional from the functional appilicarequirements. One im-
portant non-functional application requirement that hasved difficult to separate or
modularize with standard software development tools anthoa®logies is security.
One reason for that is the cross-cutting nature of sectmifidg1] De Win et al. investi-
gate the usefulness of AOP for secure software development.

3 The Life Cycle of Personal Data

Protecting personal data throughout its entire life cyslesisential to implement a given
privacy notice. We now define a life cycle model of personahde well as the corre-
sponding privacy metadata that is required to track theclfde and usage of personal
data. Figure 1 shows the UML sequence diagram represem{&fiof the life cycle
of some personal data given out by data subject DS to ergerpriwhich stores it in
storage A and discloses it in turn to enterprise B. The arn@psesent the direction
of the data flow resulting from an action, the parametersesgnt the context required
for enforcing the privacy of a particular action. The quatsresent changes to the pa-
rameters, e.ggonsentis the consent given by the data subject to enterprise A, easer
consent'refers to the consent given to enterprise B (i.e., a substteobriginal con-
sent) anadconsent’refers to the additional consent requested by enterprisé&boxed
area shows the domain in which Privacy Injector is active, the enterprise-internal
usage of personal data. Privacy enforcement for crossgaige transfer can however
also benefit from it. In Section 4 we show how the life cycle ggegare protected by
Privacy Injector.

Data Subject DS Enterprise A | Storage A | | Enterprise B

1:publish(Notice)

2:collect(Data Subject,Notice,Consent)

3:transform(Operation)

4:store()

\

5:retrieve()

-

6:use(Operation,User,Purpose)

7:transfer(Recipient,Policy’,Consent’)

8:getConsent(Notice”) 8:getConsent(Policy”)

/'Y

9:updateConsent(Consent”) 9:updateConsent(Consent”)

A

10:delete()

J 11:destroy() J 11:destroy()

Fig. 1. Life cycle and flow of personal data.




Publication (1): Before actual collection of personal data, the enterpriggighes a
privacy notice describing the intended use of the the ddiestis personal data. This
is typically done by displaying a notice on a website or as @igat web form. This flow
is independent of the actual data flows and is therefore septed by a dotted line.

Collection (2): Data subject DS consents with the privacy notice and send®pal
information to the enterprise. During this data-collectitow, the collecting enterprise
associates the personal data with the privacy metadaté&reddo enforce its privacy
notice to the data subject. The privacy metadata includefottowing:

Data SubjectThe person whose personal data has been collected
Privacy policy The privacy policy that governs the data’s usage
ConsentOpt-in and opt-out choices as collected from the data stibje

The identifier for the data subject is needed if the privadycegpromises notification
under certain circumstances. The privacy policy formalihe intended use of the data
and governs the data’s usage. The privacy policy is a refineofehe privacy notice
that has been consented to by the data subject. For exanipesas a notice may say
“we share your data with our partners for processing ordéns’privacy policy should
list the actual partners. It is complemented by the consehigh defines opt-in and
opt-out choices that refine the usages defined in the privaloyyp

Transformation (3): Most data is subjected to several transformation operstion
throughoutits lifetime. These transformation operatigpscally normalize, merge and
extract data to make it suitable for its environment and psiep Although these oper-
ations are very common, they constitute a challenge thanbabeen addressed by
earlier approaches. In particular, ensuring that the &ssutcprivacy metadata remains
consistent with the transformed data is non-trivial.

Storage and Retrieval (4 & 5):0One common type of data operation is storage and
retrieval using a database or other persistent storagepfivecy metadata associated
with the personal data should “survive” such storage antexetl operations. For this,
the privacy metadata is stored and retrieved together Wétltlata it belongs to. Persis-
tent storage media, e.g., relational databases, are lypicd metadata-aware, and this
functionality will thus have to be provisioned by anothesteyn component.

Usage (6):When data is accessed by a certain user of the enterpristome certain
operation for a given purpose, this usage must be authorizezlcontext (operation,
user and purpose) must be compared with the conditionsideddn the privacy policy
that is configured by the consent associated with the datau$age can then either be
authorized and the obligations carried out, or else usagebeadenied and potential
mis-use logged for auditing purposes. The actual contéatrimation required to make
the authorization decision is privacy-policy-dependergome cases the privacy policy
applies to the entire enterprise and thus no user informéagicequired. In other cases,
additional context information, for example, about theroy in which the operation
takes place, might be required.



Cross-enterprise transfer (7-11)Transfer of personal data is a special type of usage
in which there is a protocol between two enterprises. Thdisgrenterprise first veri-
fies whether the personal data may be transferred to thdestilf the privacy policy
and consent allow such a transfer, the data is transfergedtter with the original pri-
vacy policy and consent or else with a refined privacy poling eonsent that adhere to
the original privacy policy and consent (see [3, 2, 15] forodiqy management frame-
work for disclosures). For proper disclosure managemeidlitianal privacy metadata

is needed:

SourcesOrganizations where data has been obtained
(Recipient,Policy’,Consent’Recipients plus governing policies and consents

If an enterprise wants to use data for a purpose that has eotdmnsented to during
collection, it can recursively request consent from theypfiom whom the data was
obtained (8 & 9). If a collecting enterprise has promised plate deletion, then it can
trigger recursive deletion of the data by requesting dafeto all data recipients and
then deleting its own data after obtaining appropriate askedgements (10 & 11).

4 Privacy Injector

In this section we introduce Privacy Injector, which levgga the AOSD paradigm to
modularize and encapsulate privacy enforcement. Thiwalles to add privacy enforce-
ment functionality late in the software development cyaleween to existing applica-
tions. Privacy Injector builds upon the idea behind congextsitive string evaluation
(CSSE) [24], which defines a metadata tracking and validagicsstem used for pre-
venting injection attacks. This paper shows how we can &eand extend this idea
to create a practical privacy enforcement. Privacy Injectmsists of two complemen-
tary parts: grivacy metadata trackingart and grivacy policy enforcememtart. The
former is a practical implementation of the aforementiosdky policy paradigm,
whereas the latter is responsible for the actual enforceofehe sticky policies.

4.1 Privacy Metadata Tracking

Three components make up the privacy metadata trackingthafrivacy metadata
assignmentomponent is responsible for assigning the appropriateagyimetadata
to data that enters the system. Tinetadata-preserving data operationsmponent
is responsible for preserving and updating this privacyati@ta when operations are
performed on it. And thenetadata persistenagomponent is responsible for preserv-
ing, restoring, updating or removing privacy metadata wHata is made persistent,
retrieved, modified or removed, respectively.

Note that these components are mostly application- and@ite-independent, and
thus only need to be developed once per execution platfoign gava, .NET) and can
be used on a wide variety of applications and enterprisepliégiion- or enterprise-
specific customizations are possible through configurat@tings. In the remainder of
this section, we describe the privacy policy-tracking comgnts in more detail.



Privacy Metadata Assignment The initial step in a policy-tracking system is the as-
signment of privacy metadata to personal data. In Privactar, this is the respon-
sibility of the privacy metadata assignment component agrfiopmed upon entry of
personal data into the system through one of the input veclgpical input vectors
include parameters from web requests, direct input, webics requests, e-malil, etc.

The assignment of the privacy metadata is achieved thraogjhumentation of the
API functions exposed by the execution platform respoeditdl the input vectors. For
example, by instrumenting the API functions for retrievihg contents of cookies con-
tained in web requests, we ensure that all data returneddsg lunctions will have the
appropriate privacy metadata assigned to it. Input redefk@m persistent storage is
treated separately by the metadata persistence component.

The privacy metadata assignment component operates tutyratically; therefore
it relies on a configuration file that specifies for each inpdter the conditions under
which certain privacy metadata is to be assigned to dataisfiriput vector. A sim-
ple policy could specify that no user-provided web requesameters with the name
“credit card” are to be made persistent. A more complex palmuld add that the re-
striction is only applicable under certain conditions, gifghe request originates from
a particular country. The relevant conditions depend orirthet vector. A conservative
default can be specified in case some input does not matcpéedied conditions.

As implementing privacy metadata assignment using tiauhdi software develop-
ment methodologies requires code scattered throughoapiplecations, it can be seen
as a cross-cutting concern that is suited for modularingtioough AOSD. AOSD al-
lows us to modularize this functionality into advice andrgouts: the former contains
the actual program code responsible for the policy assigmméhereas the latter de-
scribe how the input vectors are to be intercepted and im&nted with the advice.

The location and representation of the privacy metadatagiementation choices.
Conceptually, the policy travels together with the persdata. In practical implemen-
tations, however, the privacy metadata can be either storadsystem-wide policy
repository or truly be part of the data. The representatfaheprivacy metadata is also
an implementation issue, and, depending on the needs,aslge to assign arbitrary
privacy metadata containing any combination of data (eansent data, data subject)
and privacy policy in either declarative or programmaticrio

Metadata-Preserving Data Operations During its life cycle, data undergoes a chain
of operations that normalize and transform it into the aebform. A privacy metadata
tracking system has to ensure that the privacy metadagnaskis not lost but correctly
updated when such operations are performed on the datavatPinjector, this is the
responsibility of the metadata-preserving data operatimmponent.

To achieve this, all data-manipulation operations arerdefeted and instrumented
to update the privacy metadata to reflect changes resuhimg the operations on the
data, i.e., to make them “metadata-preserving.” For examghen two strings are con-
catenated, the privacy metadata of the resulting strindhaile to reflect to which policy
its different fragments adhere. Note that we intercept dp&ations at the level of the
primitive data types of the execution platform.



For this paper, we assume that personal data is storedrigstand concentrate on
the string-level representation of data and corresporstiigg-manipulation functions.
This is not an inherent limitation, and our method can equadl applied to other data
types and their corresponding data-manipulation funstidm the case of strings, we
assign privacy metadata per string fragment, as opposeertstfing as a whole. This
allows fine-grained specification of which fragments adherghich policy and hence
execution of the checks defined by the policy on only the seiefragments.

Different transformation operations will yield differeeffects on the privacy meta-
data. Some operations, for example, changing the case wfatedata, will have no
influence on the privacy status of the data and such opesatiomot affect the privacy
metadata. Other operations, for example anonymizatigny&d data that is no longer
personal and thus privacy metadata needs to be removed ateapi reflect this. Yet
other operations will result in a more complex interactiathvthe privacy metadata.
An example of a very interesting and common operation is tagging of data.

There are two complementary approaches for handling thadatg of merged per-
sonal data. The first is fine-grained policy association, lirictv different policies are
associated with the individual parts that constitute thia.d@he second approach is
policy algebras, in which the appropriate merged metadgatalculated. When no ac-
curate policy algebra is known for the operation, a congmevapproach is to have the
merged data governed by the policies of all input data. Ireiteeptional case of contra-
dictory policies the most conservative action has to becsstieor human intervention
has to be requested.

Metadata Persistence A particularly important data operation is persistencesmo
commonly in relational databases. Privacy Injector spexifi metadata persistence
component responsible for preserving, restoring, updaiimremoving privacy meta-
data when data is stored, retrieved, modified or removepentively. One possibility to
implement this component to use a technique similar to theratomponents, namely,
the interception and instrumentation of the appropriatsipence functions. Another
related technique is SQL rewriting as used in Hippocratialbases [1]. However, im-
plementing either of these techniques is a daunting taskvasid require parsing and
syntactical analysis of each SQL query to ensure correcagyimetadata persistence.

As an alternative, we propose a new technique that levethgesvent system ex-
posed by persistence services. The goal of such serviceslsstract data persistence
away from the applications. Applications therefore no lengerform SQL queries di-
rectly, but rely on the persistence service to store, naréad update their objects. The
developers only describe the mapping of a particular oltijedatabase tables, and it is
the responsibility of the persistence service to perforendttual mapping between the
objects and the database. The best known persistenceesertdibernate [26].

The proposed metadata persistence component builds updiméigrained event
systems exposed by persistence services. Upon storingject @b the database, the
metadata persistence component will receive an event aandieg the privacy meta-
data of the object. When indeed privacy metadata is attaichtbds object, it will also
be made persistent. Similarly, when an object is restonediated or removed, a corre-



10

sponding event will be sent to the metadata persistence aoemp, which will respec-
tively restore, update or remove the persisted privacy datta

This rather unconventional use of the event system expospédiigistence services
allows us to turn the difficult problem of policy persisteric® a more manageable one
as no parsing or syntactical analysis of SQL queries is requOn the other hand, this
comes at the expense of a reduced applicability of our metedbelieve, however,
that the current trend towards the use of persistence ssrfac enterprise applications
will continue as such persistence services themselveapidly becoming more mature
and the resulting applications prove more flexible and eésimaintain.

4.2 Privacy Policy Enforcement

The privacy policy enforcement part ensures that the apia@ests and actions spec-
ified by the privacy policy are performed upon usage anddsck of the data. The dif-
ferent ways in which data can be disclosed are called ougmibvs, which are again in-
tercepted and instrumented with the policy-enforcing fiomality. For example, when
an application calls the API for sending e-mail, this fuantis intercepted and the re-
quired conditions and obligations, as described by theapyivnetadata attached to the
function’s parameters, are checked and the necessaryagtioformed.

Privacy Injector is policy-agnostic and only responsildednsuring that the spec-
ified policy is notified of all relevant uses of the personakdand provided with the
correct contextual information. The policy itself is exeaale, and can either be pro-
grammatically defined or interpret a declarative privacligyoconfigured during the
privacy policy assignment.

As such, the conditions and actions supported are onlydifrhity the expressiveness
of the programming or privacy policy language used. Coadgiare typically specified
in function of the context of the usage or disclosure (e.gage/disclosure type, time
of day, recipient, ...) and the attached privacy metadat,(data subject, consent,
type of data, ...). Practically, actions are mostly limiteg their effect on the target
application. Typical actions include logging the requékicking the request (e.g., by
throwing an exception), notifying the data subject, deigythe request while asking
for additional consent, etc. Yet another possible actiochianging or removing the
personal information being disclosed, e.g., obscurindatl4 digits of a credit-card
number. This can however impact the application in unfaeseays, and should thus
be done with utmost caution.

5 Prototype Implementation

In this section we introduce a prototype implementation iRy Injector and focus

on the technical aspects of implementing the conceptsdotred in Section 4. Imple-

menting a complex system such as Privacy Injector involvaking several important

and less important design decisions. Although we descriéeyrof the particular de-

sign decisions we made in the prototype, the goal of this@ee not to convince the

reader that these are the best ones possible. The goalés tattlemonstrate the prac-
tical feasibility of Privacy Injector, to learn and find litations, and finally to provide

a feeling of how a production system might look.



11

5.1 Architecture

Our prototype targets Java applications and is implementédpectJ; it consists of
a combination of Java classes and aspects that togetherafgyemeral-purpose and
highly flexible privacy enforcement framework. In its curtetate, the prototype does
not include support for metadata persistence.

All interception points (input vectors, string operatipaad output vectors) target
API calls of the applications to the underlying Java platfoand the prototype can
thus be seen as a layer between these two. An advantage ofitlié®, compared with
instrumenting the platform itself, is that this API layerggandard over all platform
implementations. This make our prototype compatible witava implementations.

The datatype targeted is strings for the reasons discuss8ddtion 4.1. Privacy
metadata (PM) are objects that contain the privacy contewtadl as the privacy policy.
Strings and PM objects are linked together by means of aaaepository.

The focus is on extensibility rather than completeness.aéxample, only a few
input and output vectors are implemented, but implemeaiatior more can easily be
plugged in. The prototype does, however, contain its owrninmafist policy language
that allows full declarative configuration of the prototyfjpe many common tasks.

We distinguish between four components, which will be dethfurther below:
configuration, PM assignment, PM preservation, and polidgreement. These com-
ponents map largely to the conceptual components of Segtion

5.2 Configuration

The prototype supports configuration through an XML-basediguration file, which

enables most common and many less common tasks be achighedtygrogramming.
At the same time, it also supports flexible programmatic ¢améition through user-
provided interceptors for input and output vectors, or sdezed PM factories, i.e.,
classes that generate PM objects.

Figure 2 depicts the set of Java classes that form the coafignrcomponent and
the three steps that make up the configuration phase: reafithg configuration file,
initialization of the specified PM factories, and registratof the PM factories with the
relevant input vectors.

The first step entails reading and parsing the XML-based gordtion file. This
configuration file specifies the PM factories and their ifitation context, as well as
the conditions under which data received from certain infagtors is assigned PM
from these factories. An example configuration file looksadieWs:

<PIConfiguration>

<PM id="onlyLocalEmail" factory="pi.pmfactory.Generic ">
<l-- initialization context -->
</PM>

<PMAssignment>
<inputvector>pi.inputVector.Http</inputvector>
<conditions>

<regexp target="http.requestedUrI">some regexp</regex p>
<test>com.company.pi.RequestorTest</test>
<regexp target="http.requestedParam">another regexp</ regexp>

</conditions>
<PM ref="onlyLocalEmail"/>
</PMAssignment>
</PIConfiguration>



12

Configuration | 3: registers
Component
PMFactory

ey HTTP input vector
’z)\p file input vector
%} DB input vector

config.xml PMFactory

Fig. 2. Configuration phase of the prototype.

Speal |

The second step is to initialize the specified PM factoriesdeed in the<PM> el-
ements of the configuration file. A PM factory is a Java class thllows the factory
design pattern [11] to create specialized PM objects. méRkterpt one PM factory of
type “pi.pmfactory.Generic " and with id “onlyLocalEmail " is specified. The
PM element also contains an optional initialization cobfgot shown here), which
will be discussed as part of the PM assignment phase.

The third and final step is to configure the actual PM assigtirbgrinking the
different PM factories with the relevant input vectors. §link is described in the
<PMAssignment > elements of the configuration file and contains a referenteeo
relevant input vector, the conditions under which PM shdwddassigned, and a ref-
erence to the PM factory responsible for creating the PMatbjefwo types of con-
ditions are supported: regular expressions on the conxgxsed by the input vector
(e.g., the requestedURL in case of the HTTP input vector)abdrary user-provided
programmatic tests. These conditions are then initial{eegl, regular expressions are
pre-compiled for efficiency) and together with the PM fagtoggistered at the inter-
ceptor for the input vector specified.

After these three steps, Privacy Injector is fully confighyrend assignment of PM
can commence.

5.3 PM Assignment

The PM-assignment componentis responsible for assighanggecified PM objects to
data received by the target application through one of fisinectors. As this requires
the ability to intercept input-vector API calls made by theget application, the PM-
assignment component consists of AspectJ aspects ratireptain Java classes. The
core partis an abstract aspect that is subclassed by ceasgcts, which are organized
per input vector and responsible for the actual intercepdind PM assignment. The
framework can easily be extended further by plugging in a aspect targetting the
desired input vector. Figure 3 shows the four steps involirgdrception of the input,
validation of the conditions, creation of the PM, and assignt of the PM to the data.
The interception step is driven by the pointcuts and advife $ection 2.4)
declared in the aspects. The pointcuts specify join poiats dll the relevant



13

input vector

sideosajul 1|

PMRepository

PMFactory

HTTP input vector
file input vector
DB input vector

Fig. 3. Privacy metadata assignment phase of the prototype.

methods pertaining to the input vector. For the HTTP inputtee on which
is the prototype focuses, this means all methods for extigictiata from an
HTTP request object. For exampj&yax.servlet.Servlet.getParameter() or
javax.servlet.http.Cookie.getValue() . The advice used is so-callafter ad-
vice, which is executed after the call to the API function retyraisd is capable of
inspecting the returned value before it is passed on to tiagapplication.

Each input vector has a (possibly empty) set of PM factohies were registered
with it during the configuration phase. In the second stegtimglitions associated with
these PM factories are validated. These conditions aredilpitests on the context
exposed by the aspect, i.e., on the set of parameters relevéimat particular input
vector. For the HTTP input vector, such a condition could élated to the resource
requested or to the authentication status of the requéstéy.if all conditions of a PM
factory hold, is the third step performed on that PM Fact@therwise, control will be
returned to the application without assigning PM.

In the third step, the actual PM object is created by calllmgdreation method of
the PM factory. A PM factory is a factory that creates objéuss subclass the PM class.
The configuration file can specify an arbitrary user-proglithetory or the generic one
as in our example. The latter provides less flexibility, lrduires only configuration
and no programming from the user’s part. The configuraticcegx shows the PM
factory initialization context used to configure the geaéactory:

<PM id="onlyLocalEmail" factory="pi.pmfactory.Generic ">
<context>
<param name="inputVector"/>
<param name="http.requester" as="dataSubject"/>
<param name="http.requestTime" as="timestamp"/>
<text as="comment">some comment</text>
</context>
<policies>
<l-- description of policies -->
</policies>
</PM>

This initialization context is passed on to the PM factoryidg its initialization in
the configuration phase. The syntax of the initializationteat is PM-factory-specific;
shown here is the syntax for the generic PM factory. Thealiuthtion context contains
two parts: the context, which describes the metadata tlwatidtve maintained, and the



14

policies, which describes the policy (cf. Section 5.5). ir example, the generic PM
factory is configured to maintain four pieces of metadata@RM objects it generates:
the input vector, the requester, the time of the requestaamminment. Thas specifies
the name under which the metadata is accessible.

In the final step, the PM generated is packaged into a PM awartand stored in the
central PM repository. A PM container is a data structure éilaws one to associate
multiple PM objects with possibly overlapping string fragmts. It also provides an
API for convenient and efficient lookup and manipulation lvé associated PM. This
PM container is then added to the central PM repository, wliessentially a weak
hash table enabling efficient lookup through an specialfget By using aweakhash
table® the PM of data that is no longer in use will be removed autoradyi.

After this step all input data that fulfilled the specified daions will have the
appropriate PM associated with it.

5.4 PM Preservation

The goal of this phase is to preserve and update the PM assigrthe assignment
phase. Efficiency is a major concern of this phase as almesy etring operation is
affected, even if none of the operands contain PM. And, asypiaal application only
a small fraction of the strings has PM attached, special shoeld be taken to make
operations on these strings particularly low-overheaguié 4 shows the four steps
of the PM preservation phase: interception of the data tipas retrieval of the PM,
updating of the PM, and storage of the PM.

string operation

BLENENH

2: retrieves
PMPreservation

Component

PMRepository
i [ D8:transforms

4 stores

Fig. 4. Metadata-preservation phase of the prototype.

In the interception step, all relevant string operatioresiatercepted. Java has two
types of string-like data, String and StringBuffer, witlettifference between the two
being that the former isimmutable whereas the latter isTias means that the relevant
operations are operations that have at least one strirggboifierand or that return a
string and have at least one string operand. The PM presam@imponent provides
pointcuts for all calls to these functions.

In the second step, the PM of all operands is retrieved fraP repository. The
repository has an API for doing this, requiring only one éffit hash table lookup per
operand. If no PM is found, control is returned to the appiica

3 A special type of hash table whose elements do not countares for the garbage collector.



15

The third step requires by far the largest development &dfoit needs the ability
to reflect the semantics of all relevant string operationshenPM correctly. For our
prototype, we initially focused on the most common operaid/lany of the operations
fall into the class of operations that return string(bujehat merely have a copy of the
original PM of their operands attached or no PM at all. In thrarfer case, the original
PM s cloned, in the latter control is returned to the appitra Other operations require
more complex manipulation of the PM, e.g., a merge of the PNof operands or
a selection of a fragment of the PM. For this we leverage thé gkBvided by the
PMContainer class, which facilitates common operatiot s1$ retrieval of the PM of
string fragments and merging of PM containers.

The final step is storing the updated PM in the PM repository.

5.5 Policy Enforcement

In this last phase, the actual enforcement of the privadgypd performed. The frame-
work is responsible for notifying and providing the contexthe PM objects attached
to data passed to an output vector. The actual validatiameoédnditions and execution
of the appropriate actions are the responsibility of the Rijects.

Recall that PM objects are created by PM factories that casither user-provided
or of the generic type. Factories can contain a hard-codegrammatic policy or a
declarative one, described in a factory-specific manndrdr:PM> part of the configu-
ration file. By plugging in a policy language interpretee framework can be extended
to support arbitrary policy languages. The following XMLosts an example of the
configuration of the generic PM factory:

<PM id="onlyLocalEmail" factory="pi.pmfactory.Generic ">
<context>
<l-- stored privacy context, discussed in PM Assignment -->
</context>
<policies>
<policy>
<outputvector>email</outputvector>
<conditions>
<regexp target="email.recipient">".+@mycompany.com$< /regexp>
</conditions>
<actions>
<log file="/path/to/log/file"/>
</actions>
</policy>
<default>
<actions>
<custom method="pi.Actions.pageOperator"/>
<exception class="pi.lllegalDisclosureException">
disclosure not in accordance with privacy policy
</exception>
</actions>
</default>
</policies>
</PM>

The <policy > element pertains to the email output vector, and descritheshw
actions have to be performed under which conditions. Thditions are specified using
a syntax identical to that of the PM assignment conditiormsam refer to both context
exposed by the output vector and metadata stored in the Pé¢tobj the example, the



16

condition specifies a limitation on the domain of the emaiipnts. If all conditions
hold, the specified action, in this case log, is performedoifnone of the specified
policies, both output vector and conditions match, theamati default policy actions
are performed. In the example, a custom method is executegraexception is thrown.

Figure 5 shows the three steps of the policy-enforcemerstghiaterception of the
output vectors, retrieval of the PM, and execution of thecHjgal policy.

output vector

sydedieul - |

PMRepository -
\ 2: retrieves | Policy Enforcement | 3: executes (etaday
Component -

Fig. 5. Policy-enforcement phase of the prototype.

Our primary focus is prevention of unwarranted disclosurparsonal data. The
first step of the policy-enforcement step will then also bmtercept all calls to output
vectors, as this is where disclosure takes place. The ouggtdr in our example is the
Java mail API. We defined aspects grouped per output veabptbvide pointcuts for
all calls to methods used for sending data through the owgxibr. The advice is so-
calledaround advicehat allows us to alter the program flow, for example by thrayvi
exceptions or altering the data passed to the output vector.

The next step is to verify whether the data being sent has Ridhad to it. This is
done in the same way as in the PM preservation phase by clygbld®®M repository. If
the data has no PM attached to it, control is returned to tbgram and the disclosure
is allowed to take place unchanged.

In the final step the policy specified by the PM is executed.tRig; a pre-defined
method is invoked which receives the context surroundiegtil to the output vector,
e.g., which output vector, the parameters, etc. Using theiged context together with
the metadata stored in the PM object, the appropriate acéiaperformed. The generic
PM factory supports logging, exception throwing, and exieguarbitrary commands.

6 Discussion

6.1 Assumptions and Limitations

In this section we discuss limitations and assumptionge@lo Privacy Injector.

The most important assumption made by Privacy Injector ésube of a persis-
tence service by the target application. This is becausmesdioned in Section 4, the
metadata persistence component relies on the event systéma persistence service
for correctly preserving metadata when data is stored aniéved. The impact of the
assumption is eased by the momentum persistence serviteattyienjoy.



17

We also assume that for privacy enforcement we are maingrasted in textual
data and hence that, at finest granularity, privacy-reldggd is contained in variables
of the string type. This can be considered a pragmatic cerssiidn that will suffice for
many real-world applications. Related to this is the asgionphat applications do not
access strings in a low-level manner, but through the s#iRbfunctions. This holds
in almost all cases for high-level languages such as Javajilght not hold for C.

Privacy Injector is inherently platform-independent, lissumes a provision for
intercepting library functions, either at the platforméayinstrumentation of the library
functions) or at the application layer (instrumentationtaf library function calls).

Finally, Privacy Injector is particularly suited for preweng unwarranted disclosure
of personal data, as the focus on the limited and well-defssdf input and output
vectors provided by the platform allows the creation of ssedalie framework. For use-
cases with other requirements, it currently remains an gpestion whether the desired
functionality can also be made generally applicable.

6.2 Correctness

When implementing a privacy-enforcement system, it isorable to expect a certain
level of guarantee that the system enforces the policy asfgak As Privacy Injector
is a complex system that interacts with all components oktesy, a formal correctness
proof is beyond the state of the art. When assessing theljildgdb create a complete
and correct Privacy Injector implementation, one has t@ke® properties in mind.

The first is that the Privacy Injector framework is largelysable and requires im-
plementation only once. This has the advantage that it cagobe by experts that
submit it to rigorous testing, resulting in high-qualityd=

The second is that Privacy Injector can implement a faiksabde, by requiring
that metadata be assigned to all data and failing when tisisréen does not hold.
When no real privacy metadata is attached to the data, ahgllsr indicating that the
metadata framework functioned correctly is attached. tedl#o this, a policy should
always specify a safe default action when none of the camtditspecified hold (as in
the example provided in Section 5).

7 Conclusions and Future Work

In this paper we introduced Privacy Injector, which leveaathe Aspect-Oriented Soft-
ware Development paradigm to create a fully modularizedagsi-enforcement sys-
tem. Privacy Injector can be seen as a practical implenientaf the sticky policy
paradigm and conceptually consists of two complementarispaamely a privacy
metadata tracking and a privacy policy enforcement part.

We showed how these two parts together protect the enteeyi€le of personal
data. Throughout the collection, transformation, disetesand deletion of personal
data, Privacy Injector will automatically assign, pregeand update privacy metadata
as well as enforce the privacy policy specified. Through tbe of aspects, Privacy
Injector can be used to add privacy enforcement to existppli@ations as well as a
framework for building privacy-aware applications.



18

We also described a prototype implementation of Privacgdtar, aimed at demon-

strating the practical feasibility of the concepts introdd in the paper. For this proto-
type we focused on Java and relied on the AspectJ flavor of #pe@-Oriented Soft-
ware Development paradigm. We focused on disclosure ddotpsevent unwarranted
disclosure of personal data.

Currently, we are further extending our prototype to inelsdipport for metadata

persistence through the use of the fine-grained event systewided by Hibernate.
This will allow us to test our prototype in a real-world emiiment. As future work,
we will add a provision for storing accounting informatiamthe privacy metadata,
providing us with the ability to keep a detailed history df@berations performed on
any piece of personal information.

References

10.

11.

12.
13.

. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikand, dimong Xu. Hippocratic

databases. IRroceedings of the 28th Int’l Conf. on Very Large DatabasésdB), Hong
Kong 2002.

. Michael Backes, Walid Bagga, Glinter Karjoth, and Mast$chunter. Efficient comparison

of enterprise privacy policiesl9th ACM Symposium on Applied Computing, Special Track
Security, Nicosia, Cypry2004.

. Michael Backes, Birgit Pfitzmann, and Matthias Schuraoolkit for managing enterprise

privacy policies. 8th European Symposium on Research in Computer SecuriRES
2003), Lecture Notes in Computer Scien2@08:162—180, 2003.

. Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Dumiwdjesekerat. Obligation mon-

itoring in policy management. IRroceedings of the 3rd IEEE International Workshop on
Policies for Distributed Systems and Networks (POLI@dpes 2—-12, 2002.

. Piero A. Bonatti, Ernesto Damiani, Sabrina De CapitaMidiercati, and Pierangela Sama-

rati. A component-based architecture for secure datagativn. InProceedings of the 17th
Annual Computer Security Applications Conferenuzges 309-318, 2001.

. Grady Booch, Jim Rumbaugh, and Ivar Jacobs®he Unified Modeling Language User

Guide Addison-Wesley, 1998.

. N. Damianou, N. Dulay, E. Lupo, and M. Sloman. The pondéicpspecification language.

Policies for Distributed Systems and Networks (Policy 20Q&cture Notes in Computer
Science 1995ages 18-39, 2001.

. S. Egelman, L. Cranor, and A. Chowdhury. An analysis of-pabled web sites among

top-20 search results. Proceedings of the Eighth International Conference on tbeic
Commerce2006.

. Robert Filman, Tzilla Elrad, Siobhan Clarke, and Meh#uegit. Aspect-Oriented Software

DevelopmentAddison-Wesley, 2004.

Simone Fischer-HubnelT-security and privacy: Design and use of privacy-enhagce-
curity mechanismssolume 1958 of_ecture Notes in Computer Scienc&pringer, 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns: Elements of Reusable
Object-Oriented SoftwareAddison-Wesley, 1995.

IBM. Declarative privacy monitoring. Web page at htdghaworks.ibm.com/tech/dpm.
Sushil Jajodia, Michiharu Kudo, and V. S. Subrahmani&novisional authorization. In
Proceedings of the E-commerce Security and Privpages 133-159. Kluwer Academic
Publishers, 2001.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.
27.

28.

29.

30.
31.

19

Gunter Karjoth and Matthias Schunter. A privacy poliegdel for enterprises. IRroceed-
ings of the 15th IEEE Computer Security Foundations Wonkl@5FW) pages 271-281,
2002.

Gunter Karjoth, Matthias Schunter, and Els Van Herghwea. Enterprise privacy practices
VS. privacy promises - how to promise what you can kekp.|EEE International Workshop
on Policies for Distributed Systems and Networks (Poli®@), @ake Como, Italypages 135—
146, 2003.

Gunter Karjoth, Matthias Schunter, and Michael Waidrighe platform for enterprise pri-
vacy practices — privacy-enabled management of custontar daProceedings of the Pri-
vacy Enhancing Technologies Conferena@ume 2482 of_ecture Notes in Computer Sci-
ence pages 69-84. Springer, 2002.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kenstdeffrey Palm, and William G.
Griswold. An overview of AspectJLecture Notes in Computer Scien@972:327-355,
2001.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, CMiaeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programgiiln Mehmet Aksit and Satoshi
Matsuoka, editorsProceedings of the European Conference on Object-OrieRtedram-
ming volume 1241, pages 220-242. Springer-Verlag, Berlindeleierg, and New York,
1997.

A. Myers and B. Liskov. Protecting privacy using the ddéralized label model. ACM
Transactions on Software Engineering and Methodalpages 410-442, 2000.

Andrew C. Myers. JFlow: Practical mostly-static infation flow control. InProceedings
of the Symposium on Principles of Programming Languagages 228241, 1999.

Oasis. eXtensible Access Control Markup Language (XACMWVeb page ahttp:/
WWww.oasis-open.org/committees/tc _home.php?wg _abbrev=xacml

Platform for Privacy Preferences (P3P). W3C RecomntandaApril 2002. http://
www.w3.0rg/TR/2002/REC-P3P-20020416/

David L. Parnas. On the criteria to be used in decompasiatems into modules, 1972.
Tadeusz Pietraszek and Chris Vanden Berghe. Defendaigst injection attacks through
context-sensitive string evaluation. Rroceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID20@ages 124-145, 2005.

AspectJ Project. The Aspect] home page. Web page dtddtipse.org/aspectj/.

Hibernate Project. Hibernate. Web page at http://nitexorg/.

Carlos Ribeiro, Andre Zuquete, Paulo Ferreira, andd@uledes. SPL: An access control
language for security policies with complex constraintsPioceedings of the Network and
Distributed System Security Symposium (ND3®)1.

A. Sabelfeld and A. Myers. Language-based informatiimn-security, 2003.

Latanya Sweene. k-anonymity: A model for protectingamy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based SystEd(5):557-570, 2002.

Watchfire. Watchfire. Web page at http://watchfire.com/.

Bart De Win, Frank Piessens, Wouter Joosen, and TineaMagman. On the importance of
the separation-of-concerns principle in secure softwageneering. InProceedings of the
ACSA Workshop on the Application of Engineering PrincipteSystem Security Design
pages 1-10, 2003.



