
Privacy Injector — Automated Privacy Enforcement
through Aspects

Chris Vanden Berghe1,2 and Matthias Schunter1

1 IBM Research, Zurich Research Laboratory
Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

{vbc,mts }@zurich.ibm.com
2 Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
chrisvdb@cs.kuleuven.be

Abstract

Protection of personal data is essential for customer acceptance. Even though existing
privacy policies can describe how data shall be handled, privacy enforcement remains
a challenge. Especially for existing applications, it is unclear how one can effectively
ensure correct data handling without completely redesigning the applications. In this
paper we introduce Privacy Injector, which allows us to add privacy enforcement to
existing applications.

Conceptually Privacy Injector consists of two complementary parts, namely, a pri-
vacy metadata tracking and a privacy policy enforcement part. We show how Privacy
Injector protects the complete life cycle of personal data by providing us with a practical
implementation of the “sticky policy paradigm.” Throughout the collection, transforma-
tion, disclosure and deletion of personal data, Privacy Injector will automatically assign,
preserve and update privacy metadata as well as enforce the privacy policy. As our ap-
proach is policy-agnostic, we can enforce any policy language that describes which
actions may be performed on which data.

1 Introduction

An increasing number of enterprises make privacy promises to meet customer demand
or to implement privacy regulations. As a consequence, enterprises aim at protecting
data against accidental misuse, including unwarranted disclosure and over-retention.
Recent approaches towards formalizing privacy regulations have addressed the issue of
how permitted data usage can be formalized [3, 10, 14, 16]. However, in practice two
major challenges remain. The first challenge is to assess theactual privacy status of
an enterprise, i.e., what data is stored and what data has been collected under what
policy. The second challenge is how to enforce the given privacy promise consistently
throughout existing and new applications.

A first step in addressing these challenges has been the “sticky policy paradigm” as
proposed in Karjoth et al. [16]. This paradigm requires thata privacy promise made to
a data subject stick to the data to later identify how this data can be used. For cross-
enterprise transfer, policy refinement can be used to enforce sticky policies [3]. How-
ever, for enterprise-internal use, there is no clear concept how policies can be reliably



2

associated with data and how policies can be managed. This holds in particular for
existing enterprise applications in which privacy enforcement was not included as a
non-functional design requirement.

In this paper we introduce Privacy Injector, which leverages the Aspect-Oriented
Software Development (AOSD) [9] paradigm to modularize andencapsulate privacy
enforcement. This allows us to add privacy enforcement functionality late in the soft-
ware development cycle or even in the maintenance phase of applications. Privacy Injec-
tor consists of aprivacy metadata trackingpart and aprivacy policy enforcementpart.
The former is a practical implementation of the aforementioned sticky policy paradigm,
whereas the latter is responsible for the actual enforcement of the sticky policies.

The privacy metadata tracking part consists of three components. The first compo-
nent,privacy metadata assignment, is responsible for assigning the appropriate privacy
metadata to data that enters the system. This is achieved by instrumenting the input
vectors of the execution platform, i.e., all functions responsible for collecting external
data. The second component,metadata-preserving data operations, is responsible for
preserving and updating this privacy metadata when operations are performed on this
data. This is achieved by instrumenting all data operationsto update the privacy meta-
data to reflect changes resulting from the operations. The third component,metadata
persistence, is responsible for preserving, restoring, updating and removing privacy
metadata when data is made persistent, retrieved, modified or removed, respectively.
This is accomplished by leveraging the event systems exposed by persistence services.

The privacy policy enforcement part ensures that the appropriate tests and actions
specified by the privacy policy are performed upon usage and disclosure of the data.
The different ways in which data can be disclosed are called output vectors, which are
again instrumented and retrofitted with the policy-enforcing functionality. For example,
when an application calls the API for sending e-mail, this function is intercepted and
the required conditions and obligations, as described by the privacy metadata attached
to the function’s parameters, are checked and the necessaryactions performed.

We rely on the Aspect-Oriented Software Development paradigm for implement-
ing the instrumentation, i.e., for making the connection between Privacy Injector and
the target application. Our method is platform-independent, although we focus on Java
to illustrate our concepts for this paper. Privacy Injectordoes not require the source
code of the target applications; however it makes some assumptions about the target
applications that will be discussed later in this paper.

The goal of this work is to show that Privacy Injector provides a useful methodology
for implementing the sticky policy paradigm and enforcing privacy in applications in
which privacy enforcement was not included as a design goal.In this paper we focus
on preventingunwarranted disclosure of personal data; other possible and potentially
valuable use-cases, e.g., preventing over-retention of personal data, are only touched
upon briefly.

1.1 Outline

In Section 2 we discuss related work on privacy policies, privacy enforcement, flow
control, and aspect-oriented software development. In Section 3 we discuss the life
cycle of personal data. In Section 4 we introduce Privacy Injector conceptually, whereas



3

Section 5 is devoted the implementation details of our prototype. In Section 6 describes
the benefits and limitations of our approach, and Section 7 concludes the paper.

2 Related Work

2.1 Privacy Policies and Policy Attachment

We distinguish privacy policies and privacy notices. Formalized privacy policies were
described in [3, 10, 14, 16]. Privacy policy languages formalize which users can perform
which operations on given data types for which purpose [5]. In addition, privacy policies
can specify conditions (such as usage only during day-time;see [21]) or obligations
(such as limited retention; see [4, 7, 13, 27]). Similarly tothe approach described in this
paper, privacy policies aim at enterprise-internal use.

Privacy notices, on the other hand, formalize the privacy promises of an enterprise to
end-users. The World Wide Web Consortium has standardized the Platform for Privacy
Preferences (P3P) that allows enterprises to declare whichdata is collected and how it
will be used [22]. The adoption rate of P3P, however, remainsrelatively low [8].

When comparing the two approaches, languages for enterprise-internal privacy
practices and technical privacy policy enforcement offer finer-grained distinction of
users, purposes, etc.

An open challenge is how to implement sound policy management for privacy poli-
cies and how policies can be enforced, namely, how policies can be attached to data and
how they can be enforced automatically. Karjoth et al. [16] propose the “sticky policy
paradigm” that defines that a privacy promise made to the datasubject should stick to
the data to later identify how this data may be used. As addressed in [2, 3], sticky pol-
icy transfer between enterprises can be implemented using policy comparison. Policy
attachment and enforcement for legacy applications remainan open challenge.

2.2 Privacy Policy Enforcement

Privacy policy enforcement has several aspects, dependingon the life cycle of the per-
sonal data that is collected and used (see Section 3). For data protection during col-
lection, consistent use of privacy notices is essential. Privacy notices can be formal-
ized using P3P [22], whereas their consistent use can be verified using the Watchfire
tool [30]. Enforcement of privacy policies depends heavilyon the systems that store
and handle personal data. IBM has published technologies for declaring and enforcing
privacy policies for Java Beans [12].

For policy enforcement inside databases, the concept of Hippocratic databases has
been described in [1]. The core idea is to use SQL rewriting toinclude policy evalua-
tion into the (modified) databased query that is actually being processed. This enables
the database to automatically return the subset of records where usage is authorized.
For newly built applications in which policy authorizationcan be delegated to an au-
thorization engine, various authorization engines have been designed, including the one
described in [21]. These engines enable an application to query whether a certain use
of data is allowed.



4

2.3 Flow Control

Language-based information flow security was surveyed by Sabelfeld and Myers in
[28]. The main focus of current research is to statically determine potential flows
and whether a program complies with a desired flow-control policy. Flow-control ap-
proaches that perform static checking need to perform a worst-case analysis to catch all
potential violations. To resolve this problem, Myers [19, 20] proposes a Java extension
called JFlow that annotates Java code using flow-control constructs. This enables a pre-
compiler that performs a static verification and then generates Java code that performs
additional run-time checks.

The advantage of Privacy Injector over the existing approaches lies mainly in its
practical applicability. For example, it does not require to have the application’s source
code available. Nor does it require a modified runtime or special language constructs; a
simple configuration file specifying the policy suffices in most cases. Finally, no flow-
control policy must be known at compile time, in contrast to the existing approaches
where this forms a major obstacle in their acceptance because the privacy policy actu-
ally consented to is only determined at run-time.

Three design choices contribute to this improved practicalapplicability: the use of
the AOSD paradigm, some assumptions made about the applications (discussed further)
and a different adversary model. Rather than aiming at also identifying and preventing
hidden information flow, we focus on an adversary model in which a non-malicious
developer accidentally uses or discloses data in a manner violating the privacy policy.

2.4 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) [9] is a software engineering
paradigm that enables theSeparation of Concerns[23], i.e., the breaking down of appli-
cations into components that minimize the overlap in functionality. In particular, AOSD
focuses on the modularization and encapsulation of cross-cutting concerns.

Cross-cutting concerns are areas of interest that cannot easily be separated and en-
capsulated through existing software development paradigms such as object-oriented
or procedural programming. Logging is the archetypical example, as it touches every
logged component, and existing software development paradigms force program code
responsible for the logging functionality to be scattered throughout these components.

AOSD refers to software development as a whole, including design, testing, etc.,
whereas Aspect-Oriented Programming (AOP) [18] refers specifically to the program-
ming part. Several distinct AOP implementations exist, each providing language con-
structs to express both the cross-cutting concerns (the advice) as well as the points in
the application at which the advice should be integrated (the join points), and tools for
performing the actual integration (weaving). In this work we will use AspectJ [17, 25],
which is the most popular and widely supported AOP implementation for Java.

AspectJ provides a fine-grained qualification of the join points, called pointcuts,
enabling instrumentation of methods, constructors, field access, etc., of which the se-
lection is based on a combination of name, return type, parameters, etc. The actual
weaving step of AspectJ is performed at the byte-code level,and thus no access to the
target application’s source code is required to provide it with additional functionality.



5

Although the principle of separation of concerns originally served mainly as a
guideline for structuring application functionality, it has more recently been applied
to separate the non-functional from the functional application requirements. One im-
portant non-functional application requirement that has proved difficult to separate or
modularize with standard software development tools and methodologies is security.
One reason for that is the cross-cutting nature of security.In [31] De Win et al. investi-
gate the usefulness of AOP for secure software development.

3 The Life Cycle of Personal Data

Protecting personal data throughout its entire life cycle is essential to implement a given
privacy notice. We now define a life cycle model of personal data as well as the corre-
sponding privacy metadata that is required to track the lifecycle and usage of personal
data. Figure 1 shows the UML sequence diagram representation [6] of the life cycle
of some personal data given out by data subject DS to enterprise A, which stores it in
storage A and discloses it in turn to enterprise B. The arrowsrepresent the direction
of the data flow resulting from an action, the parameters represent the context required
for enforcing the privacy of a particular action. The quotesrepresent changes to the pa-
rameters, e.g.,consentis the consent given by the data subject to enterprise A, whereas
consent’refers to the consent given to enterprise B (i.e., a subset ofthe original con-
sent) andconsent”refers to the additional consent requested by enterprise B.The boxed
area shows the domain in which Privacy Injector is active, i.e., the enterprise-internal
usage of personal data. Privacy enforcement for cross-enterprise transfer can however
also benefit from it. In Section 4 we show how the life cycle phases are protected by
Privacy Injector.

2:collect(Data Subject,Notice,Consent)

4:store()

5:retrieve()

7:transfer(Recipient,Policy’,Consent’)

6:use(Operation,User,Purpose)

8:getConsent(Policy’’)8:getConsent(Notice’’)

9:updateConsent(Consent’’) 9:updateConsent(Consent’’)

10:delete()

11:destroy()

Data Subject DS Enterprise A Storage A Enterprise B

11:destroy()

1:publish(Notice)

3:transform(Operation)

Fig. 1.Life cycle and flow of personal data.



6

Publication (1): Before actual collection of personal data, the enterprise publishes a
privacy notice describing the intended use of the the data subject’s personal data. This
is typically done by displaying a notice on a website or as part of a web form. This flow
is independent of the actual data flows and is therefore represented by a dotted line.

Collection (2): Data subject DS consents with the privacy notice and sends personal
information to the enterprise. During this data-collection flow, the collecting enterprise
associates the personal data with the privacy metadata required to enforce its privacy
notice to the data subject. The privacy metadata includes the following:

Data Subject: The person whose personal data has been collected
Privacy policy: The privacy policy that governs the data’s usage

Consent: Opt-in and opt-out choices as collected from the data subject

The identifier for the data subject is needed if the privacy notice promises notification
under certain circumstances. The privacy policy formalizes the intended use of the data
and governs the data’s usage. The privacy policy is a refinement of the privacy notice
that has been consented to by the data subject. For example, whereas a notice may say
“we share your data with our partners for processing orders”, the privacy policy should
list the actual partners. It is complemented by the consent,which defines opt-in and
opt-out choices that refine the usages defined in the privacy policy.

Transformation (3): Most data is subjected to several transformation operations
throughout its lifetime. These transformation operationstypically normalize, merge and
extract data to make it suitable for its environment and purpose. Although these oper-
ations are very common, they constitute a challenge that hasnot been addressed by
earlier approaches. In particular, ensuring that the associated privacy metadata remains
consistent with the transformed data is non-trivial.

Storage and Retrieval (4 & 5):One common type of data operation is storage and
retrieval using a database or other persistent storage. Theprivacy metadata associated
with the personal data should “survive” such storage and retrieval operations. For this,
the privacy metadata is stored and retrieved together with the data it belongs to. Persis-
tent storage media, e.g., relational databases, are typically not metadata-aware, and this
functionality will thus have to be provisioned by another system component.

Usage (6):When data is accessed by a certain user of the enterprise to perform a certain
operation for a given purpose, this usage must be authorized. The context (operation,
user and purpose) must be compared with the conditions described in the privacy policy
that is configured by the consent associated with the data. The usage can then either be
authorized and the obligations carried out, or else usage can be denied and potential
mis-use logged for auditing purposes. The actual context information required to make
the authorization decision is privacy-policy-dependent.In some cases the privacy policy
applies to the entire enterprise and thus no user information is required. In other cases,
additional context information, for example, about the country in which the operation
takes place, might be required.



7

Cross-enterprise transfer (7-11):Transfer of personal data is a special type of usage
in which there is a protocol between two enterprises. The sending enterprise first veri-
fies whether the personal data may be transferred to the recipient. If the privacy policy
and consent allow such a transfer, the data is transferred together with the original pri-
vacy policy and consent or else with a refined privacy policy and consent that adhere to
the original privacy policy and consent (see [3, 2, 15] for a policy management frame-
work for disclosures). For proper disclosure management, additional privacy metadata
is needed:

Sources: Organizations where data has been obtained
(Recipient,Policy’,Consent’): Recipients plus governing policies and consents

If an enterprise wants to use data for a purpose that has not been consented to during
collection, it can recursively request consent from the party from whom the data was
obtained (8 & 9). If a collecting enterprise has promised complete deletion, then it can
trigger recursive deletion of the data by requesting deletion to all data recipients and
then deleting its own data after obtaining appropriate acknowledgements (10 & 11).

4 Privacy Injector

In this section we introduce Privacy Injector, which leverages the AOSD paradigm to
modularize and encapsulate privacy enforcement. This allows us to add privacy enforce-
ment functionality late in the software development cycle or even to existing applica-
tions. Privacy Injector builds upon the idea behind context-sensitive string evaluation
(CSSE) [24], which defines a metadata tracking and validation system used for pre-
venting injection attacks. This paper shows how we can leverage and extend this idea
to create a practical privacy enforcement. Privacy Injector consists of two complemen-
tary parts: aprivacy metadata trackingpart and aprivacy policy enforcementpart. The
former is a practical implementation of the aforementionedsticky policy paradigm,
whereas the latter is responsible for the actual enforcement of the sticky policies.

4.1 Privacy Metadata Tracking

Three components make up the privacy metadata tracking part: the Privacy metadata
assignmentcomponent is responsible for assigning the appropriate privacy metadata
to data that enters the system. Themetadata-preserving data operationscomponent
is responsible for preserving and updating this privacy metadata when operations are
performed on it. And themetadata persistencecomponent is responsible for preserv-
ing, restoring, updating or removing privacy metadata whendata is made persistent,
retrieved, modified or removed, respectively.

Note that these components are mostly application- and enterprise-independent, and
thus only need to be developed once per execution platform (e.g., Java, .NET) and can
be used on a wide variety of applications and enterprises. Application- or enterprise-
specific customizations are possible through configurationsettings. In the remainder of
this section, we describe the privacy policy-tracking components in more detail.



8

Privacy Metadata Assignment The initial step in a policy-tracking system is the as-
signment of privacy metadata to personal data. In Privacy Injector, this is the respon-
sibility of the privacy metadata assignment component and performed upon entry of
personal data into the system through one of the input vectors. Typical input vectors
include parameters from web requests, direct input, web services requests, e-mail, etc.

The assignment of the privacy metadata is achieved through instrumentation of the
API functions exposed by the execution platform responsible for the input vectors. For
example, by instrumenting the API functions for retrievingthe contents of cookies con-
tained in web requests, we ensure that all data returned by these functions will have the
appropriate privacy metadata assigned to it. Input received from persistent storage is
treated separately by the metadata persistence component.

The privacy metadata assignment component operates fully automatically; therefore
it relies on a configuration file that specifies for each input vector the conditions under
which certain privacy metadata is to be assigned to data of this input vector. A sim-
ple policy could specify that no user-provided web request parameters with the name
“credit card” are to be made persistent. A more complex policy could add that the re-
striction is only applicable under certain conditions, e.g., if the request originates from
a particular country. The relevant conditions depend on theinput vector. A conservative
default can be specified in case some input does not match the specified conditions.

As implementing privacy metadata assignment using traditional software develop-
ment methodologies requires code scattered throughout theapplications, it can be seen
as a cross-cutting concern that is suited for modularization through AOSD. AOSD al-
lows us to modularize this functionality into advice and pointcuts: the former contains
the actual program code responsible for the policy assignment, whereas the latter de-
scribe how the input vectors are to be intercepted and instrumented with the advice.

The location and representation of the privacy metadata areimplementation choices.
Conceptually, the policy travels together with the personal data. In practical implemen-
tations, however, the privacy metadata can be either storedin a system-wide policy
repository or truly be part of the data. The representation of the privacy metadata is also
an implementation issue, and, depending on the needs, it is possible to assign arbitrary
privacy metadata containing any combination of data (e.g.,consent data, data subject)
and privacy policy in either declarative or programmatic form.

Metadata-Preserving Data OperationsDuring its life cycle, data undergoes a chain
of operations that normalize and transform it into the desired form. A privacy metadata
tracking system has to ensure that the privacy metadata assigned is not lost but correctly
updated when such operations are performed on the data. In Privacy Injector, this is the
responsibility of the metadata-preserving data operations component.

To achieve this, all data-manipulation operations are intercepted and instrumented
to update the privacy metadata to reflect changes resulting from the operations on the
data, i.e., to make them “metadata-preserving.” For example, when two strings are con-
catenated, the privacy metadata of the resulting string will have to reflect to which policy
its different fragments adhere. Note that we intercept dataoperations at the level of the
primitive data types of the execution platform.



9

For this paper, we assume that personal data is stored in strings, and concentrate on
the string-level representation of data and correspondingstring-manipulation functions.
This is not an inherent limitation, and our method can equally be applied to other data
types and their corresponding data-manipulation functions. In the case of strings, we
assign privacy metadata per string fragment, as opposed to per string as a whole. This
allows fine-grained specification of which fragments adhereto which policy and hence
execution of the checks defined by the policy on only the relevant fragments.

Different transformation operations will yield differenteffects on the privacy meta-
data. Some operations, for example, changing the case of textual data, will have no
influence on the privacy status of the data and such operations do not affect the privacy
metadata. Other operations, for example anonymization [29], yield data that is no longer
personal and thus privacy metadata needs to be removed or updated to reflect this. Yet
other operations will result in a more complex interaction with the privacy metadata.
An example of a very interesting and common operation is the merging of data.

There are two complementary approaches for handling the metadata of merged per-
sonal data. The first is fine-grained policy association, in which different policies are
associated with the individual parts that constitute the data. The second approach is
policy algebras, in which the appropriate merged metadata is calculated. When no ac-
curate policy algebra is known for the operation, a conservative approach is to have the
merged data governed by the policies of all input data. In theexceptional case of contra-
dictory policies the most conservative action has to be selected or human intervention
has to be requested.

Metadata Persistence A particularly important data operation is persistence, most
commonly in relational databases. Privacy Injector specifies a metadata persistence
component responsible for preserving, restoring, updating or removing privacy meta-
data when data is stored, retrieved, modified or removed, respectively. One possibility to
implement this component to use a technique similar to the other components, namely,
the interception and instrumentation of the appropriate persistence functions. Another
related technique is SQL rewriting as used in Hippocratic databases [1]. However, im-
plementing either of these techniques is a daunting task as it would require parsing and
syntactical analysis of each SQL query to ensure correct privacy metadata persistence.

As an alternative, we propose a new technique that leveragesthe event system ex-
posed by persistence services. The goal of such services is to abstract data persistence
away from the applications. Applications therefore no longer perform SQL queries di-
rectly, but rely on the persistence service to store, retrieve and update their objects. The
developers only describe the mapping of a particular objectto database tables, and it is
the responsibility of the persistence service to perform the actual mapping between the
objects and the database. The best known persistence service is Hibernate [26].

The proposed metadata persistence component builds upon the fine-grained event
systems exposed by persistence services. Upon storing an object in the database, the
metadata persistence component will receive an event and examine the privacy meta-
data of the object. When indeed privacy metadata is attachedto this object, it will also
be made persistent. Similarly, when an object is restored, updated or removed, a corre-



10

sponding event will be sent to the metadata persistence component, which will respec-
tively restore, update or remove the persisted privacy metadata.

This rather unconventional use of the event system exposed by persistence services
allows us to turn the difficult problem of policy persistenceinto a more manageable one
as no parsing or syntactical analysis of SQL queries is required. On the other hand, this
comes at the expense of a reduced applicability of our method. We believe, however,
that the current trend towards the use of persistence services for enterprise applications
will continue as such persistence services themselves are rapidly becoming more mature
and the resulting applications prove more flexible and easier to maintain.

4.2 Privacy Policy Enforcement

The privacy policy enforcement part ensures that the appropriate tests and actions spec-
ified by the privacy policy are performed upon usage and disclosure of the data. The dif-
ferent ways in which data can be disclosed are called output vectors, which are again in-
tercepted and instrumented with the policy-enforcing functionality. For example, when
an application calls the API for sending e-mail, this function is intercepted and the re-
quired conditions and obligations, as described by the privacy metadata attached to the
function’s parameters, are checked and the necessary actions performed.

Privacy Injector is policy-agnostic and only responsible for ensuring that the spec-
ified policy is notified of all relevant uses of the personal data and provided with the
correct contextual information. The policy itself is executable, and can either be pro-
grammatically defined or interpret a declarative privacy policy configured during the
privacy policy assignment.

As such, the conditions and actions supported are only limited by the expressiveness
of the programming or privacy policy language used. Conditions are typically specified
in function of the context of the usage or disclosure (e.g., usage/disclosure type, time
of day, recipient, ...) and the attached privacy metadata (e.g., data subject, consent,
type of data, ...). Practically, actions are mostly limitedby their effect on the target
application. Typical actions include logging the request,blocking the request (e.g., by
throwing an exception), notifying the data subject, delaying the request while asking
for additional consent, etc. Yet another possible action ischanging or removing the
personal information being disclosed, e.g., obscuring allbut 4 digits of a credit-card
number. This can however impact the application in unforeseen ways, and should thus
be done with utmost caution.

5 Prototype Implementation

In this section we introduce a prototype implementation of Privacy Injector and focus
on the technical aspects of implementing the concepts introduced in Section 4. Imple-
menting a complex system such as Privacy Injector involves making several important
and less important design decisions. Although we describe many of the particular de-
sign decisions we made in the prototype, the goal of this section is not to convince the
reader that these are the best ones possible. The goal is rather to demonstrate the prac-
tical feasibility of Privacy Injector, to learn and find limitations, and finally to provide
a feeling of how a production system might look.



11

5.1 Architecture

Our prototype targets Java applications and is implementedin AspectJ; it consists of
a combination of Java classes and aspects that together forma general-purpose and
highly flexible privacy enforcement framework. In its current state, the prototype does
not include support for metadata persistence.

All interception points (input vectors, string operations, and output vectors) target
API calls of the applications to the underlying Java platform, and the prototype can
thus be seen as a layer between these two. An advantage of thischoice, compared with
instrumenting the platform itself, is that this API layer isstandard over all platform
implementations. This make our prototype compatible with all Java implementations.

The datatype targeted is strings for the reasons discussed in Section 4.1. Privacy
metadata (PM) are objects that contain the privacy context as well as the privacy policy.
Strings and PM objects are linked together by means of a central repository.

The focus is on extensibility rather than completeness. Forexample, only a few
input and output vectors are implemented, but implementations for more can easily be
plugged in. The prototype does, however, contain its own minimalist policy language
that allows full declarative configuration of the prototypefor many common tasks.

We distinguish between four components, which will be detailed further below:
configuration, PM assignment, PM preservation, and policy enforcement. These com-
ponents map largely to the conceptual components of Section4.

5.2 Configuration

The prototype supports configuration through an XML-based configuration file, which
enables most common and many less common tasks be achieved without programming.
At the same time, it also supports flexible programmatic configuration through user-
provided interceptors for input and output vectors, or specialized PM factories, i.e.,
classes that generate PM objects.

Figure 2 depicts the set of Java classes that form the configuration component and
the three steps that make up the configuration phase: readingof the configuration file,
initialization of the specified PM factories, and registration of the PM factories with the
relevant input vectors.

The first step entails reading and parsing the XML-based configuration file. This
configuration file specifies the PM factories and their initialization context, as well as
the conditions under which data received from certain inputvectors is assigned PM
from these factories. An example configuration file looks as follows:

<PIConfiguration>
<PM id="onlyLocalEmail" factory="pi.pmfactory.Generic ">

<!-- initialization context -->
</PM>
<PMAssignment>

<inputvector>pi.inputVector.Http</inputvector>
<conditions>

<regexp target="http.requestedUrl">some regexp</regex p>
<test>com.company.pi.RequestorTest</test>
<regexp target="http.requestedParam">another regexp</ regexp>

</conditions>
<PM ref="onlyLocalEmail"/>

</PMAssignment>
</PIConfiguration>



12

Configuration
Component

config.xml

HTTP input vector

condition

PMFactory

file input vector

DB input vector

PMFactory

2: instantiates

3: registers

1
: re

a
d

s

Fig. 2.Configuration phase of the prototype.

The second step is to initialize the specified PM factories described in the<PM> el-
ements of the configuration file. A PM factory is a Java class that follows the factory
design pattern [11] to create specialized PM objects. In this excerpt one PM factory of
type “pi.pmfactory.Generic ” and with id “onlyLocalEmail ” is specified. The
PM element also contains an optional initialization context (not shown here), which
will be discussed as part of the PM assignment phase.

The third and final step is to configure the actual PM assignment by linking the
different PM factories with the relevant input vectors. This link is described in the
<PMAssignment > elements of the configuration file and contains a reference tothe
relevant input vector, the conditions under which PM shouldbe assigned, and a ref-
erence to the PM factory responsible for creating the PM objects. Two types of con-
ditions are supported: regular expressions on the context exposed by the input vector
(e.g., the requestedURL in case of the HTTP input vector) andarbitrary user-provided
programmatic tests. These conditions are then initialized(e.g., regular expressions are
pre-compiled for efficiency) and together with the PM factory registered at the inter-
ceptor for the input vector specified.

After these three steps, Privacy Injector is fully configured, and assignment of PM
can commence.

5.3 PM Assignment

The PM-assignment component is responsible for assigning the specified PM objects to
data received by the target application through one of its input vectors. As this requires
the ability to intercept input-vector API calls made by the target application, the PM-
assignment component consists of AspectJ aspects rather than plain Java classes. The
core part is an abstract aspect that is subclassed by concrete aspects, which are organized
per input vector and responsible for the actual interception and PM assignment. The
framework can easily be extended further by plugging in a newaspect targetting the
desired input vector. Figure 3 shows the four steps involved: interception of the input,
validation of the conditions, creation of the PM, and assignment of the PM to the data.

The interception step is driven by the pointcuts and advice (cf. Section 2.4)
declared in the aspects. The pointcuts specify join points for all the relevant



13

PMAssignment
Component

input vector

1
: in

te
rc

e
p

ts

HTTP input vector

condition

PMFactory

file input vector

DB input vector

2: validates

3: creates

PMRepository

data PM
4: assigns

context

Fig. 3.Privacy metadata assignment phase of the prototype.

methods pertaining to the input vector. For the HTTP input vector, on which
is the prototype focuses, this means all methods for extracting data from an
HTTP request object. For example,javax.servlet.Servlet.getParameter() or
javax.servlet.http.Cookie.getValue() . The advice used is so-calledafter ad-
vice, which is executed after the call to the API function returns, and is capable of
inspecting the returned value before it is passed on to the calling application.

Each input vector has a (possibly empty) set of PM factories that were registered
with it during the configuration phase. In the second step theconditions associated with
these PM factories are validated. These conditions are typically tests on the context
exposed by the aspect, i.e., on the set of parameters relevant to that particular input
vector. For the HTTP input vector, such a condition could be related to the resource
requested or to the authentication status of the requester.Only if all conditions of a PM
factory hold, is the third step performed on that PM Factory.Otherwise, control will be
returned to the application without assigning PM.

In the third step, the actual PM object is created by calling the creation method of
the PM factory. A PM factory is a factory that creates objectsthat subclass the PM class.
The configuration file can specify an arbitrary user-provided factory or the generic one
as in our example. The latter provides less flexibility, but requires only configuration
and no programming from the user’s part. The configuration excerpt shows the PM
factory initialization context used to configure the generic factory:

<PM id="onlyLocalEmail" factory="pi.pmfactory.Generic ">
<context>

<param name="inputVector"/>
<param name="http.requester" as="dataSubject"/>
<param name="http.requestTime" as="timestamp"/>
<text as="comment">some comment</text>

</context>
<policies>

<!-- description of policies -->
</policies>

</PM>

This initialization context is passed on to the PM factory during its initialization in
the configuration phase. The syntax of the initialization context is PM-factory-specific;
shown here is the syntax for the generic PM factory. The initialization context contains
two parts: the context, which describes the metadata that should be maintained, and the



14

policies, which describes the policy (cf. Section 5.5). In our example, the generic PM
factory is configured to maintain four pieces of metadata in the PM objects it generates:
the input vector, the requester, the time of the request, anda comment. Theas specifies
the name under which the metadata is accessible.

In the final step, the PM generated is packaged into a PM container and stored in the
central PM repository. A PM container is a data structure that allows one to associate
multiple PM objects with possibly overlapping string fragments. It also provides an
API for convenient and efficient lookup and manipulation of the associated PM. This
PM container is then added to the central PM repository, which is essentially a weak
hash table enabling efficient lookup through an specializedAPI. By using aweakhash
table3 the PM of data that is no longer in use will be removed automatically.

After this step all input data that fulfilled the specified conditions will have the
appropriate PM associated with it.

5.4 PM Preservation

The goal of this phase is to preserve and update the PM assigned in the assignment
phase. Efficiency is a major concern of this phase as almost every string operation is
affected, even if none of the operands contain PM. And, as in atypical application only
a small fraction of the strings has PM attached, special careshould be taken to make
operations on these strings particularly low-overhead. Figure 4 shows the four steps
of the PM preservation phase: interception of the data operations, retrieval of the PM,
updating of the PM, and storage of the PM.

string operation

1
: in

te
rc

e
p
ts

4: stores

PMRepository

data PM

2: retrieves
PMPreservation

Component
3: transforms

Fig. 4.Metadata-preservation phase of the prototype.

In the interception step, all relevant string operations are intercepted. Java has two
types of string-like data, String and StringBuffer, with the difference between the two
being that the former is immutable whereas the latter is not.This means that the relevant
operations are operations that have at least one stringbuffer operand or that return a
string and have at least one string operand. The PM preservation component provides
pointcuts for all calls to these functions.

In the second step, the PM of all operands is retrieved from the PM repository. The
repository has an API for doing this, requiring only one efficient hash table lookup per
operand. If no PM is found, control is returned to the application.

3 A special type of hash table whose elements do not count as referents for the garbage collector.



15

The third step requires by far the largest development effort as it needs the ability
to reflect the semantics of all relevant string operations onthe PM correctly. For our
prototype, we initially focused on the most common operations. Many of the operations
fall into the class of operations that return string(buffers) that merely have a copy of the
original PM of their operands attached or no PM at all. In the former case, the original
PM is cloned, in the latter control is returned to the application. Other operations require
more complex manipulation of the PM, e.g., a merge of the PM oftwo operands or
a selection of a fragment of the PM. For this we leverage the API provided by the
PMContainer class, which facilitates common operations such as retrieval of the PM of
string fragments and merging of PM containers.

The final step is storing the updated PM in the PM repository.

5.5 Policy Enforcement

In this last phase, the actual enforcement of the privacy policy is performed. The frame-
work is responsible for notifying and providing the contextto the PM objects attached
to data passed to an output vector. The actual validation of the conditions and execution
of the appropriate actions are the responsibility of the PM objects.

Recall that PM objects are created by PM factories that can beeither user-provided
or of the generic type. Factories can contain a hard-coded programmatic policy or a
declarative one, described in a factory-specific manner in the<PM> part of the configu-
ration file. By plugging in a policy language interpreter, the framework can be extended
to support arbitrary policy languages. The following XML shows an example of the
configuration of the generic PM factory:

<PM id="onlyLocalEmail" factory="pi.pmfactory.Generic ">
<context>

<!-- stored privacy context, discussed in PM Assignment -->
</context>
<policies>

<policy>
<outputvector>email</outputvector>
<conditions>

<regexp target="email.recipient">ˆ.+@mycompany.com$< /regexp>
</conditions>
<actions>

<log file="/path/to/log/file"/>
</actions>

</policy>
<default>

<actions>
<custom method="pi.Actions.pageOperator"/>
<exception class="pi.IllegalDisclosureException">

disclosure not in accordance with privacy policy
</exception>

</actions>
</default>

</policies>
</PM>

The <policy > element pertains to the email output vector, and describes which
actions have to be performed under which conditions. The conditions are specified using
a syntax identical to that of the PM assignment conditions and can refer to both context
exposed by the output vector and metadata stored in the PM object. In the example, the



16

condition specifies a limitation on the domain of the email recipients. If all conditions
hold, the specified action, in this case log, is performed. Iffor none of the specified
policies, both output vector and conditions match, the optional default policy actions
are performed. In the example, a custom method is executed and an exception is thrown.

Figure 5 shows the three steps of the policy-enforcement phase: interception of the
output vectors, retrieval of the PM, and execution of the specified policy.

Policy Enforcement
Component

output vector

1
: in

te
rc

e
p

ts

PMRepository

data PM
2: retrieves

context

assigned
metadata

Policy
condition

action
PM

3: executes

Fig. 5.Policy-enforcement phase of the prototype.

Our primary focus is prevention of unwarranted disclosure of personal data. The
first step of the policy-enforcement step will then also be tointercept all calls to output
vectors, as this is where disclosure takes place. The outputvector in our example is the
Java mail API. We defined aspects grouped per output vector that provide pointcuts for
all calls to methods used for sending data through the outputvector. The advice is so-
calledaround advicethat allows us to alter the program flow, for example by throwing
exceptions or altering the data passed to the output vector.

The next step is to verify whether the data being sent has PM attached to it. This is
done in the same way as in the PM preservation phase by checking the PM repository. If
the data has no PM attached to it, control is returned to the program and the disclosure
is allowed to take place unchanged.

In the final step the policy specified by the PM is executed. Forthis, a pre-defined
method is invoked which receives the context surrounding the call to the output vector,
e.g., which output vector, the parameters, etc. Using the provided context together with
the metadata stored in the PM object, the appropriate actions are performed. The generic
PM factory supports logging, exception throwing, and executing arbitrary commands.

6 Discussion

6.1 Assumptions and Limitations

In this section we discuss limitations and assumptions related to Privacy Injector.
The most important assumption made by Privacy Injector is the use of a persis-

tence service by the target application. This is because, asmentioned in Section 4, the
metadata persistence component relies on the event system of the persistence service
for correctly preserving metadata when data is stored and retrieved. The impact of the
assumption is eased by the momentum persistence services currently enjoy.



17

We also assume that for privacy enforcement we are mainly interested in textual
data and hence that, at finest granularity, privacy-relateddata is contained in variables
of the string type. This can be considered a pragmatic consideration that will suffice for
many real-world applications. Related to this is the assumption that applications do not
access strings in a low-level manner, but through the stringAPI functions. This holds
in almost all cases for high-level languages such as Java, but might not hold for C.

Privacy Injector is inherently platform-independent, butassumes a provision for
intercepting library functions, either at the platform layer (instrumentation of the library
functions) or at the application layer (instrumentation ofthe library function calls).

Finally, Privacy Injector is particularly suited for preventing unwarranted disclosure
of personal data, as the focus on the limited and well-definedset of input and output
vectors provided by the platform allows the creation of a reusable framework. For use-
cases with other requirements, it currently remains an openquestion whether the desired
functionality can also be made generally applicable.

6.2 Correctness

When implementing a privacy-enforcement system, it is reasonable to expect a certain
level of guarantee that the system enforces the policy as specified. As Privacy Injector
is a complex system that interacts with all components of a system, a formal correctness
proof is beyond the state of the art. When assessing the possibility to create a complete
and correct Privacy Injector implementation, one has to keep two properties in mind.

The first is that the Privacy Injector framework is largely reusable and requires im-
plementation only once. This has the advantage that it can bedone by experts that
submit it to rigorous testing, resulting in high-quality code.

The second is that Privacy Injector can implement a fail-safe mode, by requiring
that metadata be assigned to all data and failing when this assertion does not hold.
When no real privacy metadata is attached to the data, a placeholder indicating that the
metadata framework functioned correctly is attached. Related to this, a policy should
always specify a safe default action when none of the conditions specified hold (as in
the example provided in Section 5).

7 Conclusions and Future Work

In this paper we introduced Privacy Injector, which leverages the Aspect-Oriented Soft-
ware Development paradigm to create a fully modularized privacy-enforcement sys-
tem. Privacy Injector can be seen as a practical implementation of the sticky policy
paradigm and conceptually consists of two complementary parts, namely a privacy
metadata tracking and a privacy policy enforcement part.

We showed how these two parts together protect the entire life cycle of personal
data. Throughout the collection, transformation, disclosure and deletion of personal
data, Privacy Injector will automatically assign, preserve and update privacy metadata
as well as enforce the privacy policy specified. Through the use of aspects, Privacy
Injector can be used to add privacy enforcement to existing applications as well as a
framework for building privacy-aware applications.



18

We also described a prototype implementation of Privacy Injector, aimed at demon-
strating the practical feasibility of the concepts introduced in the paper. For this proto-
type we focused on Java and relied on the AspectJ flavor of the Aspect-Oriented Soft-
ware Development paradigm. We focused on disclosure control to prevent unwarranted
disclosure of personal data.

Currently, we are further extending our prototype to include support for metadata
persistence through the use of the fine-grained event systemprovided by Hibernate.
This will allow us to test our prototype in a real-world environment. As future work,
we will add a provision for storing accounting information in the privacy metadata,
providing us with the ability to keep a detailed history of all operations performed on
any piece of personal information.

References

1. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hippocratic
databases. InProceedings of the 28th Int’l Conf. on Very Large Databases (VLDB), Hong
Kong, 2002.

2. Michael Backes, Walid Bagga, Günter Karjoth, and Matthias Schunter. Efficient comparison
of enterprise privacy policies.19th ACM Symposium on Applied Computing, Special Track
Security, Nicosia, Cyprus, 2004.

3. Michael Backes, Birgit Pfitzmann, and Matthias Schunter.A toolkit for managing enterprise
privacy policies. 8th European Symposium on Research in Computer Security (ESORICS
2003), Lecture Notes in Computer Science, 2808:162–180, 2003.

4. Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekerat. Obligation mon-
itoring in policy management. InProceedings of the 3rd IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), pages 2–12, 2002.

5. Piero A. Bonatti, Ernesto Damiani, Sabrina De Capitani diVimercati, and Pierangela Sama-
rati. A component-based architecture for secure data publication. InProceedings of the 17th
Annual Computer Security Applications Conference, pages 309–318, 2001.

6. Grady Booch, Jim Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

7. N. Damianou, N. Dulay, E. Lupo, and M. Sloman. The ponder policy specification language.
Policies for Distributed Systems and Networks (Policy 2001), Lecture Notes in Computer
Science 1995, pages 18–39, 2001.

8. S. Egelman, L. Cranor, and A. Chowdhury. An analysis of p3p-enabled web sites among
top-20 search results. InProceedings of the Eighth International Conference on Electronic
Commerce, 2006.

9. Robert Filman, Tzilla Elrad, Siobhán Clarke, and MehmetAkşit. Aspect-Oriented Software
Development. Addison-Wesley, 2004.

10. Simone Fischer-Hübner.IT-security and privacy: Design and use of privacy-enhancing se-
curity mechanisms, volume 1958 ofLecture Notes in Computer Science. Springer, 2002.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

12. IBM. Declarative privacy monitoring. Web page at http://alphaworks.ibm.com/tech/dpm.
13. Sushil Jajodia, Michiharu Kudo, and V. S. Subrahmanian.Provisional authorization. In

Proceedings of the E-commerce Security and Privacy, pages 133–159. Kluwer Academic
Publishers, 2001.



19

14. Günter Karjoth and Matthias Schunter. A privacy policymodel for enterprises. InProceed-
ings of the 15th IEEE Computer Security Foundations Workshop (CSFW), pages 271–281,
2002.

15. Günter Karjoth, Matthias Schunter, and Els Van Herreweghen. Enterprise privacy practices
vs. privacy promises - how to promise what you can keep.4th IEEE International Workshop
on Policies for Distributed Systems and Networks (Policy ’03), Lake Como, Italy, pages 135–
146, 2003.

16. Günter Karjoth, Matthias Schunter, and Michael Waidner. The platform for enterprise pri-
vacy practices – privacy-enabled management of customer data. In Proceedings of the Pri-
vacy Enhancing Technologies Conference, volume 2482 ofLecture Notes in Computer Sci-
ence, pages 69–84. Springer, 2002.

17. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ.Lecture Notes in Computer Science, 2072:327–355,
2001.

18. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors,Proceedings of the European Conference on Object-OrientedProgram-
ming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

19. A. Myers and B. Liskov. Protecting privacy using the decentralized label model.ACM
Transactions on Software Engineering and Methodology, pages 410–442, 2000.

20. Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProceedings
of the Symposium on Principles of Programming Languages, pages 228–241, 1999.

21. Oasis. eXtensible Access Control Markup Language (XACML). Web page athttp://
www.oasis-open.org/committees/tc home.php?wg abbrev=xacml .

22. Platform for Privacy Preferences (P3P). W3C Recommendation, April 2002. http://
www.w3.org/TR/2002/REC-P3P-20020416/ .

23. David L. Parnas. On the criteria to be used in decomposingsystems into modules, 1972.
24. Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks through

context-sensitive string evaluation. InProceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID2005), pages 124–145, 2005.

25. AspectJ Project. The AspectJ home page. Web page at http://eclipse.org/aspectj/.
26. Hibernate Project. Hibernate. Web page at http://hibernate.org/.
27. Carlos Ribeiro, Andre Zuquete, Paulo Ferreira, and Paulo Guedes. SPL: An access control

language for security policies with complex constraints. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2001.

28. A. Sabelfeld and A. Myers. Language-based information-flow security, 2003.
29. Latanya Sweene. k-anonymity: A model for protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.
30. Watchfire. Watchfire. Web page at http://watchfire.com/.
31. Bart De Win, Frank Piessens, Wouter Joosen, and Tine Verhanneman. On the importance of

the separation-of-concerns principle in secure software engineering. InProceedings of the
ACSA Workshop on the Application of Engineering Principlesto System Security Design,
pages 1–10, 2003.


