
Private Resource Pairing

Joseph A. Calandrino? and Alfred C. Weaver

University of Virginia
Charlottesville, Virginia

{jac4dt, acw}@cs.virginia.edu

Abstract. Protection of information confidentiality can result in ob-
struction of legitimate access to necessary resources. This paper explores
the problem of pairing resource requestors and providers such that nei-
ther must sacrifice privacy. While solutions to similar problems exist,
these solutions are inadequate or inefficient in the context of private
resource pairing. This work explores private resource-pairing solutions
under two models of participant behavior: honest-but-curious behavior
and potentially malicious behavior. Without compromising security, the
foundation of these solutions demonstrates significant performance ben-
efits over a popular solution to the similar private matching problem.

1 Introduction

In privacy-critical scenarios, the need to protect information confidentiality can
impede valid resource requests. Resource providers may refuse to even confirm
possession of a resource to requestors that have not demonstrated a need to
access the resource. Such a scenario would force requestors to first reveal their
queries accompanied by justifications. As a request query alone may contain or
imply confidential data, requestors need some assurance that a provider can sat-
isfy a request before revelation of the request. If both entities refuse to compro-
mise privacy, a reasonable request could go unfulfilled. Private resource pairing
links resource providers and legitimate requestors while preserving privacy.

Several recent papers have explored the similar private matching problem,
in which operators of two separate databases wish to establish common en-
tries without revealing non-matching elements [2, 8, 11, 12]. By treating request
queries as single-entry databases and forcing providers to maintain databases of
resource metadata, existing solutions to the private matching problem can, with
minor modification, solve the private resource-pairing problem for honest-but-
curious participants. This paper presents schemes with two primary advantages
over such a solution:
? This research was partially performed under an appointment to the Department

of Homeland Security (DHS) Scholarship and Fellowship Program, administered by
the Oak Ridge Institute for Science and Education (ORISE) through an interagency
agreement between the U.S. Department of Energy (DOE) and DHS. ORISE is man-
aged by Oak Ridge Associated Universities (ORAU) under DOE contract number
DE-AC05-06OR23100. All opinions expressed in this paper are the author’s and do
not necessarily reflect the policies and views of DHS, DOE, or ORAU/ORISE.

– Efficiency: The unique constraints of private resource pairing allow the use
of pre-computation and other techniques that significantly decrease the com-
putational costs of searches over a popular private matching solution.

– Security: While a private matching solution exists that prevents participant
dishonesty [12], its technique is incompatible with private resource pairing.
This paper proposes several methods for thwarting dishonest behavior.

1.1 Motivating Scenarios

Under a number of circumstances, a solution to the private resource-pairing
problem would allow organizations to come closer to the ideal of precisely pairing
entities with needed resources. Two such scenarios arise in the medical and
national intelligence domains.

Medical Scenario. Suppose that an incapacitated tourist with no identification
arrives at a hospital in the United States. The safety of any treatment for the
patient’s condition is highly dependent upon her medical history. In addition,
the patient’s condition, while serious, will not dramatically deteriorate during
the time a doctor would require to review the patient’s record. Further, assume
that some biometric or combination of biometrics could allow unique, perfectly
reproducible identification of any human. Prior to administering treatment, the
hospital may wish to use the patient’s biometric to make an emergency request
for relevant records from all health centers in the country or a particular region.

In the United States, no centralized repository exists for medical records, and
security and medical data ownership issues presently preclude the use of such a
repository [18]. Therefore, a searching party would need to approach numerous
medical centers and inquire as to whether those centers possess records related
to the patient. Given a reasonable alternative, most people would prefer not
to disclose their hospital visits to unnecessary parties. To comply with federal
medical privacy standards, health centers are also unlikely to disclose lists of their
patients [14]. In this scenario, a system for privately pairing record requestors
and possessors would be desirable to protect patient privacy. Such a system must
enforce requestor need to know and prevent provider forgery of record possession.

National Intelligence Scenario. Presume that a security analyst determines
that a particular landmark may be at risk. Numerous agencies may possess
data related to the landmark or threat. To protect information confidentiality,
agencies may have strict policies against revealing even metadata pertaining
to resources they possess. For example, an agency may have records of related
threats but wish to appear unaware of the threats by restricting access to both
the records and data regarding the records. Similarly, the analyst may be reluc-
tant to reveal the metadata that interests her. In this scenario, necessary privacy
hampers necessary availability. A private pairing method would be desirable to
link the analyst with resources essential to assess and respond to the threat.

1.2 Paper Overview

The remainder of this paper is organized as follows. Section 2 presents existing
work related to private resource pairing. Section 3 sets forth security goals. Sec-
tion 4 provides a system for privately pairing resource requestors and providers
given that entities are honest but curious. Section 5 suggests extensions to the
system to prevent malicious behavior. Section 6 evaluates the theoretical cost,
applied performance, and security of the honest but curious protocol as com-
pared to a private matching solution. Finally, section 7 presents a summary and
recommendations for future work.

Throughout this paper, assume that all sets are totally ordered, are trans-
mitted in order, and are initially ordered by element insertion time.

2 Related Work

2.1 Private Matching

In 2003, Agrawal, Evfimievski, and Srikant presented the notion of minimal in-
formation sharing across private databases [2]. Their paper establishes protocols
to allow two entities maintaining separate databases to determine query results
across both databases without revealing information beyond the result or requir-
ing a trusted third party. Agrawal et al. address the intersection query problem,
also known as the private matching problem, and several other query types. As-
suming Alice wishes to learn the intersection between her and Bob’s databases,
the Agrawal, Evfimievski, and Srikant private matching solution (AgES) is:

1. Alice and Bob agree on a commutative encryption function, f , and select
appropriate secret keys, eA, eB ∈ keyF . Note that, for commutative encryp-
tion, feA

(feB
(x)) = feB

(feA
(x)) given x ∈ domF and eA, eB ∈ keyF .

2. Alice and Bob, using a common one-way collision resistant hash function
[11] from domD (the domain of potential database entries) to domF , hash
all entries in their databases: Ah = {h(a)|a ∈ A} and Bh = {h(b)|b ∈ B}.

3. Alice and Bob encrypt the elements in Ah and Bh, producing AeA
= {feA

(ah)
|ah ∈ Ah} and BeB

= {feB
(bh)|bh ∈ Bh} then reorder Aeh

and Beh
lexico-

graphically. Alice maintains the dataset {(a, feA
(h(a)))|a ∈ A}.

4. Alice and Bob exchange AeA
and BeB

.
5. Alice computes BeB ,eA

= {feA
(beB

)|beB
∈ BeB

} = {feA
(feB

(bh))|bh ∈ Bh}.
Bob computes AeA,eB

= {feB
(aeA

)|aeA
∈ AeA

} (= {feA
(feB

(ah))|ah ∈ Ah})
and uses the result to create the set {(feA

(ah), feA
(feB

(ah)))|ah ∈ Ah}.
6. Bob returns {(feA

(ah), feA
(feB

(ah))|ah ∈ Ah} to Alice.
7. Alice joins {(a, feA

(h(a)))|a ∈ A} and {(feA
(ah), feA

(feB
(ah))|ah ∈ Ah} on

feA
(h(a)) to get {(a, feA

(feB
(h(a))))|a ∈ A}.

8. Alice extracts all a ∈ A such that the corresponding feA
(feB

(a)) matches
some value in BeB ,eA

. These values comprise the intersection of A and B.

Agrawal et al. demonstrate the computation and communication benefits of
their protocol over a solution using circuit-based protocols.

AgES assumes semi-honest, or honest-but-curious, behavior of protocol par-
ticipants. This means that entities adhere to the protocol but may analyze data
to derive additional information [2, 9]. For example, neither Alice nor Bob will
falsely claim element possession, but Alice may perform cryptanalysis on BeB

.
Entities may demonstrate semi-honesty at minimum to protect their reputations,
but a lack of protection measures is often inadequate. Entities may even prefer
protocols in which they cannot lie to prevent false accusations of impropriety.

Li, Tygar, and Hellerstein explore private matching solutions under semi-
honest and malicious models [12]. A malicious model assumes that entities may
lie or deviate arbitrarily from the protocol. To prevent bogus possession claims,
Li et al. propose data ownership certificates (DOCs). DOCs are not directly
applicable to private resource pairing, however. A requestor may not possess a
desired resource, so the requestor may not have its metadata’s DOCs. Both enti-
ties must have DOCs to verify each other’s1. While this property is desirable for
private matching, an alternate solution is necessary for private resource pairing.

Li et al. present a hash-based alternative to AgES, but this alternative fails to
ensure privacy without DOCs. Assume Alice and Bob agree on a hash function
and trade hashed items. From that point on, Alice can guess and check for any
item she desires, regardless of whether she possesses that item, in Bob’s set.

Freedman, Nissim, and Pinkas as well as Kissner and Song have proposed
private matching protocols based on homomorphic encryption [8, 11]. Future re-
search may wish to explore private resource pairing using homomorphic encryp-
tion. Note that the notion of malicious behavior in [8] and [11] differs from that of
[12] and this paper, which consider ownership of data. For example, assume that
businesses have databases of customers indexed by unique consumer identifiers.
If the space of identifiers is small, a business may falsely claim all consumers as
customers. Ownership mechanisms can expose or prevent dishonesty.

2.2 Additional Work

Private information retrieval (PIR) allows parties to retrieve database entries
without disclosing which entries they desire [7]. Unfortunately, PIR offers no
assurance that parties need the data they retrieve. Nonetheless, an efficient PIR
implementation would be useful to this paper’s solutions (see sections 4 and 5).

Waters, Balfanz, Durfee, and Smetters present a method to allow searches
on encrypted audit logs [21]. The scheme could protect provider privacy and
1 For the certified hash and certified AgES protocols in [12], Bob provides Alice with

σ = {b||B}sk for each value b he possesses, where B is a unique id for Bob. Alice must
possess pk to verify σ (the verification method is VERIFY(pk, b||B, σ)). If everyone
knew pk, the only unknown is b. If b’s domain is small and Bob is honest, Alice
could mount a brute force attack, running VERIFY for all possible values of b for
the σ value until VERIFY returns true. When VERIFY returns true, Alice can be
confident that she found the entry in Bob’s database corresponding to the σ value.
Repeating this process for all of Bob’s σ values yields all values in Bob’s database.

enforce need to know for resource requestors. Requestors would need to reveal
potentially confidential search strings to a third party, however.

Song, Wagner, and Perrig present a means of searching on encrypted data
[20]. Their work allows the use of encrypted queries to search encrypted data on
untrusted servers. Unfortunately, to make an encrypted query, the entity that
encrypted the data (or a third party) must learn the query. For private pairing,
providers would learn requestors’ searches.

Zero-knowledge proofs allow a prover to demonstrate possession of a piece
of information to a verifier without revealing the information. For example, a
prover could demonstrate possession of Alice’s unique identity-confirming key
without revealing the key itself [17]. Unfortunately, a verifier must know the
precise information for which a prover will seek to demonstrate possession, even
if the information itself can remain private. For example, a verifier must know
that the prover is demonstrating possession of Alice’s key. Thus, such proofs
would require one party to publicly reveal its requests or possessions.

3 Security Criteria

Li et al. [12] offer three goals for assessing the security of private matching solu-
tions under semi-honest and malicious scenarios. This paper adopts two of the
goals (the third is not applicable): (1) the protocol leaks no information beyond
input size and (2) participants cannot lie regarding element possession. If parties
cannot lie regarding possession, AgES leaks no information even in a malicious
scenario [12]. Any protocol trivially prevents lying in a semi-honest scenario.
Note that Li et al. do not address lying via omission. Allowance of nondisclosure
may be desirable, so this paper presents a compromise: individuals can check
that their resources are available (see section 5.2). With several exceptions (see
section 4.2), [12] and this paper allow collusion.

Devious parties may mount other attacks, such as denial-of-service attacks
against protocol participants. While more efficient solutions may be more resis-
tant to some attacks, this paper does not explicitly consider these threats.

4 Semi-Honest Case Solution

This paper first presents a protocol for private resource pairing under a semi-
honest behavior model. Section 5 presents extensions to the semi-honest protocol
to allow enforcement of need to know and proof of resource possession.

4.1 Basic Scheme

A one-time setup process is necessary for participants in this private resource
pairing protocol. Resource requestors and providers, which may be overlapping
sets, agree on a common commutative encryption scheme and hash function.
Providers choose random encryption keys and hash then encrypt metadata per-
taining to their resources. Finally, providers publish the encryptions to potential

requestors directly or to host servers. By maintaining constant keys and pub-
lishing encryptions a single time, providers can efficiently handle searches later.

When a requestor wishes to search for and acquire resources tagged with a
given piece of metadata, it chooses a random encryption/decryption key pair
and hashes then encrypts the metadata. The requestor gives the ciphertext to
the provider, who encrypts the ciphertext again using its key and returns the
result. The requestor decrypts the ciphertext and matches the result to provider-
published records. If the requestor finds a match, it approaches the provider and
requests resources related to the metadata. By decrypting a single item of meta-
data rather than re-encrypting every published piece of metadata, requestors
decrease their computation. A more rigorous explanation follows shortly.

4.2 Assumptions

This protocol makes several assumptions. First, a requestor’s identity alone must
imply nothing confidential to providers or servers. Second, providers must pub-
lish encrypted metadata all at once (i.e., provider metadata must not change
frequently), or others must be unable to draw undesirable conclusions from meta-
data publication order, modification, or removal. If providers use host servers,
requestors must download all data from a given server. Otherwise, a server could
infer whether and on what encrypted value a search is satisfied even if the under-
lying metadata is unknown. Private information retrieval may be unreasonable:
even a search over sorted data will require log n values. Also, servers must be
unable to collude to determine which servers a requestor checks. If servers col-
luded, they could identify the provider that satisfied a request or infer that a
request went unsatisfied. Finally, this paper assumes that metadata is not fuzzy.

4.3 Detailed Process

This paper’s protocol for private resource pairing under the semi-honest model
(henceforth shPRP) requires separate setup and search processes.

Setup. The setup process for a resource provider, P , with resource metadata
MP ⊆ M , where M is the set of all possible metadata, is:

1. P , all other providers, and all potential requestors agree on a commuta-
tive encryption function, f , and a common one-way collision resistant hash
function, h, that maps from domM to domF .

2. P selects a random encryption key, eP , such that eP ∈ keyF .
3. P computes hashes of its resource metadata: Ph = {h(mP)|mP ∈ MP }.
4. P encrypts the elements in Ph, producing PeP

= {feP
(ph)|ph ∈ Ph}.

5. P reorders PeP
lexicographically if others could infer private information

from MP ’s order.
6. P publishes PeP

to potential requestors, host servers, or both.

If an escrow service is desirable, P may provide eP , the related decryption
key, or both to the service. If P publishes metadata to host servers, P must
choose a signature scheme and accompany each published item with a signature.

Search and Acquisition The following process allows a resource requestor,
R, to obtain access to P ’s resources with metadata m:

1. R generates a random encryption key, eR ∈ keyF , and the corresponding
decryption key, dR.
– R must generate a new random key pair each time it enters the search

process. If R reuses a key, providers could determine whether R previ-
ously sought the same value, even if they cannot identity the value.

– If R is also a provider, R must not use its provider key. Otherwise, R’s
published data would reveal whether R already possesses resources with
the metadata it seeks.

2. R computes the hash of m: mh = h(m).
3. R encrypts mh: meR

= feR
(mh).

4. R presents meR
to P .

5. P encrypts meR
: meR,eP

= feP
(meR

) = feP
(feR

(mh)) = feR
(feP

(mh)).
6. P returns meR,eP

to R.
7. R decrypts meR,eP

: meP
= fdR

(meR,eP
) = feP

(mh).
8. If P hosts its data on a server, R downloads PeP

, the accompanying signa-
tures, and any items necessary to verify P ’s signatures (public key, etc.).

9. R searches PeP
for a match to meP

.
– If R finds a match and PeP

is from a server, R may verify the corre-
sponding signature.

– If R finds no match and PeP
is from a server, R may verify signatures

to ensure that the server did not remove data.
10. If R finds a match, R asks P for resources with metadata m.

5 Malicious Case Extensions

As section 6.3 argues, shPRP does not leak information even under a malicious
model. Therefore, malicious case extensions must protect against two forms of
potential participant dishonesty without leaking information. First, dishonest re-
questors could request either metadata searches for or direct access to resources
for which they have no valid need. Providers can eliminate this issue by forc-
ing requestors to prove their need to search for metadata and access resources.
Second, dishonest providers could falsely claim possession of resources to coax
requestors to reveal secret search metadata. By forcing providers to prove pos-
session of resources related to metadata, the protocol can prevent this issue. This
section considers a number of possible scenarios and, for completeness, offers so-
lutions under each scenario. Under several scenarios, the solution uses a trusted
external party, which future work may be able to eliminate.

Note that the modified protocol retains all assumptions of section 4.2.

5.1 Proving Need to Know

To prevent superfluous searches and resource accesses, resource providers must
have the ability to verify the legitimacy of requests. To demonstrate the need

to perform a search or to access a given resource, requestors present tickets to
potential providers in steps four and ten of the shPRP search and acquisition
process (see section 4.3). In step four, the ticket only verifies the right to search
for the encrypted metadata, meR

; it does not reveal the metadata. In step ten,
the ticket contains plaintext metadata, since the provider cannot confirm that
meR

represents m. Note that, to generate tickets containing meR
and m, the

ticket supplier must receive both items and verify that meR
represents m.

The process by which a requestor, R, may acquire tickets from a supplier, S,
is as follows (the order of steps two and three is arbitrary):

1. R presents m and meR
to S.

2. S verifies that meR
represents m:

(a) S generates a random encryption key, eS ∈ keyF for the common re-
questor/provider commutative encryption function.

(b) Using the common hash function, S computes the hash of m: mh = h(m).
(c) S encrypts mh: meS

= feS
(mh).

(d) S presents meS
to R.

(e) R encrypts meS
: meS ,eR

= feR
(meS

) = feR
(feS

(mh)) = feS
(feR

(mh)).
(f) R returns meS ,eR

to S.
(g) S encrypts meR

: meR,eS
= feS

(meR
) (= feS

(feR
(mh)) if meR

is valid).
(h) S checks that meS ,eR

matches meR,eS
.

3. S verifies R’s right to search for and acquire resources with metadata m
(implementation specific verification process).

4. S returns tickets for m and meR
.

Tickets can be universal or restricted to a subset of potential providers if
circumstances warrant only a limited search. A network of trust must connect
ticket suppliers so providers can confirm the validity of any ticket. Various models
exist for establishing trust, such as direct and distributed trust models [13]. This
choice is implementation-specific; the use of any model is acceptable.

Two ticket supplier models exist: internal and external. Both models assume
that ticket suppliers cannot initiate searches and will not collude with malicious
requestors to allow illicit access to data or resources.

An internal supplier model assumes that potential requestors are part of
larger organizations and that they may reveal searches to ticket-granting parties
in their organizations. The ticket-granting party verifies that present conditions
warrant a search. In the medical scenario, a set of trained hospital administrators
could be on-call for search verification. When a doctor explains the situation,
the verifier can determine, based on established standards, whether the situation
warrants a search. If the verifier concludes that it does, she can provide the doctor
with appropriately constrained tickets. This solution presumes the existence of
robust audit mechanisms and severe penalties to deter and detect collusion.

In the event that no impartial party exists inside a requestor’s organization,
requestors and providers could form agreements, contractual or otherwise, with
trusted external parties to verify the need to search. In this case, requestors must
also trust the verification party with their search metadata. External verification
is appropriate and perhaps necessary for cases such as business agreements in

which parties agree to limited, circumstance-dependent resource sharing. Mem-
bers of either business may possess bias in interpretation of the agreement, cre-
ating the possible need for an impartial arbitrator.

5.2 Proving Resource Possession

As with proving need to know, this section presents two models for proving
resource possession. In one model, metadata implies an obvious owner of all
associated resources. For example, a patient with a unique biometric could have
legal control over medical records tied to her biometric [14], making her the
effective owner of the records. Under the second model, metadata either does
not imply an owner or implies numerous owners. For example, “explosives” may
be applicable to many intelligence resources, but the word does not imply an
owner of those resources. A solution under the second model is also applicable
to the first, since entities can ignore implied ownership. A solution for the first
scenario is preferable when possible, however, as it allows owners to better control
their resources. In both cases, solutions rely on identity-based signatures.

Identity-Based Signatures. Identity-based cryptosystems and signature
schemes, first proposed by Shamir, allow the use of one’s identity as its public
key [19]. For example, Alice may sign her messages using a private key associated
with her unique identity (“alice@petworkshop.org”). To verify her signature, Bob
can simply pass the message, the signature, a master public key, public parame-
ters, and “alice@petworkshop.org” to a verification method. Bob does not need
to acquire Alice’s public key to verify her signatures. Alice needs to obtain her
private key from a private key generator, however, unless she possesses the sys-
tem’s master secret, which allows the generation of private keys for all identities.
Shamir presented the first identity-based signature (IBS) scheme in [19].

Key Privacy, IBC Privacy, and IBS Privacy. Bellare, Boldyreva, Desai,
and Pointcheval [3] first formalized the property of key privacy in public-key
cryptosystems. Given this property, an adversary that possesses a piece of ci-
phertext cannot gain a non-negligible advantage in determining which public key
out of a given set produced the ciphertext. For example, RSA lacks key privacy
because an adversary can gain an advantage based on the public modulus [3].

Calandrino and Weaver [6] extend the notion of key privacy to multiple
identity-based cryptosystem instantiations. If a cryptosystem possesses IBC pri-
vacy, an adversary can gain no more than a negligible advantage in determining
which instantiation produced a given piece of ciphertext. Instantiations may
share common parameters if such a choice does not undermine security [6].

When metadata implies an owner, the possession scheme’s security relies on
IBS systems with a novel property called IBS privacy. Suppose that multiple
instantiations of an IBS scheme exist. Instantiations may share some parame-
ters but have unique master secrets, meaning that each instantiation produces a
unique mapping between identities and private keys. Assume that an adversary

chooses an identity, and an arbitrary instantiation produces the identity’s signa-
ture of a nonce. The adversary receives the signature but not the nonce. If, for
some parameters, no adversary can reliably determine the instantiation that pro-
duced the signature, the scheme provides IBS privacy under those parameters.
Appendix A offers a more formal description.

Metadata Implies an Owner. Assume that metadata implies an owner of
associated resources. To allow proof of resource possession, some setup is manda-
tory. Owners must agree on an IBS scheme and parameters necessary for IBS
privacy. Each owner generates a unique instantiation of the scheme with the
common parameters. Owners publish parameters needed to verify their signa-
tures. Either requestors and providers or public repositories must maintain lists
of owners’ public parameters. If a repository maintains the data, private infor-
mation retrieval or total repository downloads must be reasonable so repository
operators cannot infer which owner’s resources a requestor seeks. Given a large
number of non-colluding servers, PIR may be feasible: requestors will seek a
small amount of data at a predetermined index, the owner’s identity.

To prove possession, additional steps are needed between steps four and five
of the shPRP setup process (see section 4.3). For each metadata item mP ∈ MP :

1. P determines the owner, O, that mP implies.
2. P presents mP and the corresponding value peP

∈ PeP
to O.

3. O verifies that peP
represents mP :

(a) O generates a random encryption key, eO ∈ keyF for the common re-
questor/provider commutative encryption function.

(b) Using the common function, O computes the hash of mP : mh = h(mP).
(c) O encrypts mh: meO

= feO
(mh).

(d) O presents meO
to P.

(e) P encrypts meO
: meO,eP

= feP
(meO

) = feP
(feO

(mh)) = feO
(feP

(mh)).
(f) P returns meO,eP

to O.
(g) O encrypts peP

: peP ,eO
= feO

(peP
) (= feO

(feP
(mh)) if peP

is valid).
(h) O checks that peP ,eO

matches meO,eP
.

4. O verifies that P possesses resources related to metadata mP (implementa-
tion specific verification process).

5. O signs peP
using its IBS scheme instantiation and the private key associated

with P ’s identity.
6. O returns the signature of peP

to P .
7. P downloads the public parameters for O’s IBS scheme instantiation.
8. P verifies the signature of peP

using P ’s identity as the public key.

The order of steps three and four is arbitrary.
Signing with the private key associated with the provider’s identity prevents

two providers from using the same encryption keys and sharing signed values.
Because values in PeP

are polynomial-time indistinguishable from random values
and owners use IBS private signature schemes, an adversary will have at most a
negligible advantage in determining the owner behind any given signature.

Following acquisition of signatures, P can reorder them lexicographically and
publish them. If P reordered by the original encryptions, adversaries could esti-
mate the pre-signed data ranges and attempt to infer the signing instantiations.

If owners can privately retrieve server data, they can verify at any time that
servers host their data to detect malicious data removal.

Because only an owner possesses its master secret, only it can produce its
private keys and generate its signatures. Owners can delegate signing responsi-
bilities to a trusted party and can provide master secrets to an escrow system.
If one resource owner’s master secret is compromised, only that owner’s data is
compromised. Generating a new master secret and replacing associated published
signatures would be straightforward, but this procedure could be problematic if
others could infer confidential information from updates. If an owner updates
its parameters at nearly the same time a provider updates its published data,
an adversary can infer that the provider’s published metadata related to the
owner’s resources. This paper leaves resolution of update issues to future work.

With two exceptions, the search process is the same for requestors as under
shPRP. First, a requestor must obtain the owner’s public parameters. Second,
using the provider’s identity as a public key, requestors must attempt to ver-
ify published values as the signature of meP

in step nine of the shPRP search
process. If a value verifies, the provider possesses a desired resource.

In the medical scenario, patients could serve as owners of their medical
records for the purpose of proving resource possession. When a patient receives
medical care, she could provide her unique identifier to the medical center and
authorize a delegated service to sign the encrypted hash of her identifier. If a hos-
pital needs to retrieve the patient’s records, it could use her identifier to retrieve
the public parameters of her signature scheme instantiation and verify published
signatures. Because medical centers would retain possession of records, such a
system deliberately sidesteps disagreements over medical data ownership [18].

Metadata Does Not Imply an Owner. Assume that metadata does not
imply a single owner of associated resources. Thus, no single party has a legiti-
mate right to confirm or deny possession of resources associated with metadata.
For requestors to accept possession claims, a trusted third party, centralized or
distributed, seems necessary to validate provider possession based on established
rules. Requestors can later verify possession without the third party, preventing
the third party from collecting request data. The third party acts as a universal
resource owner and maintains an identity-based signature system.

In this case, the publication process is the same as when metadata implies
an owner, except the owner is always the trusted third party. The search and
acquisition process is also the same, but requestors can store the single owner’s
parameters instead of retrieving parameters during each search. This scheme
suffers from an issue common to identity-based cryptography: the key revocation
problem. If any private key is compromised, the universal owner has two options:

– Publish a potentially huge exception list. In this case, the third party must
maintain backup system(s) for the exceptions. Requestors would need to
either store exception lists or have the ability to privately check the list.

– Change the master secret. This impractical option would entail reproducing
all signatures. Gradual migration to a new master secret may be more rea-
sonable. For example, if the key for “provider” is compromised, the party
could immediately migrate all ‘p’ keys and gradually migrate other keys.

Fortunately, because the third party need not reveal or store private keys, private
keys are nearly as difficult to compromise as the master secret.

6 Evaluation of shPRP

The AgES protocol offers the closest match to shPRP, making it the most log-
ical comparison for theoretical cost, actual performance, and security. In a pri-
vate resource-pairing scenario, AgES treats requestors as operators of one-entry
databases containing the desired metadata. To fairly compare the protocols,
several assumptions are necessary:

– Providers and requestors have settled on commutative encryption and hash
functions prior to entering the protocol.

– Even if shPRP uses host servers, it does not create signatures. Signature
costs would be dependent on implementation decisions.

– Once complete, AgES performs step ten of the shPRP search process.
– Providers publish lexicographically ordered encryptions.

shPRP has an inherent advantage over AgES because shPRP is a custom pri-
vate resource-pairing solution. For example, the requirements of private match-
ing prevent AgES’s use of pre-computation. Nevertheless, as a leading private
matching solution, AgES provides the most appropriate comparison.

6.1 Theoretical Costs

Assume that Cge
, Cgd

, Ce, and Cd are the costs of generating public keys, gener-
ating private keys, encrypting, and decrypting for the chosen encryption scheme.
Ch is the cost of hash computation with the chosen hash function. m and c are
the metadata and metadata ciphertext lengths. A provider has p metadata items.

Under AgES, no setup procedure is necessary. For the search and acquisition
process, the total computational cost is 2Cge

+ (Ch + 2Ce)(p + 1) + p log p + p,
while the communication cost is (p + 2)c + m. Note that, with AgES, requestors
and providers generate new private keys each time they enter the search and
acquisition process. The setup process for shPRP has a total computational
cost of Cge + (Ch + Ce)p + p log p, while the communication cost is pc. The
computational cost for the search and acquisition process is Cge

+Cgd
+Ch+2Ce+

Cd + log p. If requestors download metadata from a server, the communication
cost is (p + 2)c + m. Otherwise, the communication cost is 2c + m. Table 1 and
Table 2 summarize these results in greater detail.

Table 1. Computational cost comparison. See section 6.1 for variable definitions.

Setup

AgES shPRP

Provider - Cge + (Ch + Ce)p + p log p
Requestor - -
Total - Cge + (Ch + Ce)p + p log p

Search and Acquisition

AgES shPRP

Provider Cge + Chp + Ce(p + 1) + p log p Ce

Requestor Cge + Ch + Ce(p + 1) + p Cge + Cgd + Ch + Ce + Cd + log p
Total 2Cge + (Ch + 2Ce)(p + 1) + p log p + p Cge + Cgd + Ch + 2Ce + Cd + log p

Table 2. Communication cost comparison. See section 6.1 for variable definitions.

AgES
shPRP

w/ Host Server w/o Host Server

Setup - pc pc

Search and Acquisition (p + 2)c + m (p + 2)c + m 2c + m

After the initial setup, shPRP significantly lightens the computational costs
for requestors and providers while producing equivalent or better communication
costs. Provider computational cost during the search and acquisition process is
critical, as a reduction in cost allows providers to handle more requests per given
time. The importance of reducing this cost underscores the value of performing
pre-computation during the setup process. These theoretical results also suggest
an improvement to the AgES private matching protocol. If, in the protocol of
section 2.1, Alice has a smaller dataset than Bob and Ce ≈ Cd, she should not
encrypt Bob’s set in step five. She should instead decrypt her feA

(feB
(h(a)))

values between steps seven and eight and match those against Bob’s set.

6.2 Actual Performance

A series of tests compared the performance of AgES to shPRP. Java-based im-
plementations of shPRP and portions of the AgES protocol allowed direct com-
parisons. SHA-1 and Pohlig-Hellman [15] with a common modulus served as
the hash function and commutative encryption scheme respectively. The sorting
algorithm was a modified mergesort with guaranteed n log n performance [10].
For the tests, providers maintained 10,000 metadata items. To achieve a fair
comparison, the AgES implementation contained a straightforward optimiza-
tion: requestors encrypt provider-published data line-by-line (instead of all at
once), checking each result against the re-encryption of the desired metadata.
When a match exists, the optimization reduces requestor encryptions by 50% on
average. Tests ran on a 3.2 GHz Pentium 4 with 512 MB of RAM. Table 3 shows
the results, and Appendix B offers additional details of the evaluation process.

Table 3. Comparison of actual computational costs. See section 6.2 for details.

AgES shPRP Speedup

Setup
Provider - 50,514 ms -
Requestor - - -
Total - 50,514 ms -

Search and Acquisition
Provider 50,530 ms 16 ms 3158
Requestor 40,059 ms 116 ms 345
Total 90,589 ms 132 ms 686

These results demonstrate a strong performance benefit for shPRP. After
the setup process, requestor computation time decreases by 99.7%, and provider
computation time almost entirely disappears. Also note that shPRP scales better
than AgES (see Table 1).

The results also demonstrate shPRP’s practicality. Providers in shPRP al-
ways perform a single encryption during the search process, so a provider’s ex-
pected computational cost is a constant, reasonable 16 ms for any amount of pub-
lished metadata. The quantity of metadata has a marginal impact on requestor
computational costs, as requestors search an ordered list of the encryptions.
This cost grows logarithmically with the number of published values and aver-
ages only 116 ms for 10,000 metadata items, so shPRP is also computationally
viable for requestors. A requestor’s work is parallelizable, making shPRP even
more practical. Search communication costs are negligible if a requestor stores
all provider-published data. With host servers, however, communications costs
can become a constraining factor for large quantities of published encryptions.

6.3 Security

Because shPRP is a modification of AgES, its security may rest on AgES’s secu-
rity as shown in [2] and [12] provided that, under the assumptions of section 4.2,
the changes do not compromise security. The modifications are:

– Providers publicly reveal encrypted metadata.
– Providers may use an encryption key indefinitely.
– Providers may publish to host servers.
– Requestors decrypt re-encrypted data instead of re-encrypting provider data.

Appendix C argues that, under the given assumptions, none of these modifi-
cations adversely impacts security. This argument does not rely on semi-honest
participant behavior, meaning that, like AgES [12], shPRP does not leak infor-
mation even under a malicious behavioral model.

7 Summary and Conclusion

A chief concern of many privacy-critical organizations is protection of informa-
tion against illegitimate access. This emphasis can result in restrictive systems

that successfully thwart objectionable parties yet also deter privacy-constrained
requestors with valid claims. Private resource pairing attempts to connect such
resource requestors and providers without violating privacy. While existing work
addresses similar issues, no known prior work directly addresses this issue in a
satisfactory manner. Research on private resource pairing uncovered several in-
teresting topics warranting further research, including weaknesses in the present
system and extensions that would make the present system more useful.

Several weaknesses exist in the present private pairing model. During the
search process, requestors receive indefinite search capabilities for a given piece of
metadata. A provider’s encrypted metadata is constant as long as its key remains
constant. During that period, a provider may publish additional metadata that
a requestor has no right to search. The present private resource-pairing scheme
would also allow curious parties to make numerous undesirable inferences if a
provider modifies its metadata set or an owner updates its key. In addition, the
malicious case extensions rely on a trusted third party in several cases. Means
of reducing or removing these weaknesses are desirable.

Additional research could also add functionality. For example, some entities
may partition resources by classification levels and limit searches by requestor
clearance level. If providers use multiple keys and verification tickets include
clearance data, this paper’s solutions are sufficient, but more elegant solutions
may exist. Also, organizations may have valid reasons for revealing only a subset
of metadata or resources related to metadata. A means of ensuring that providers
reveal appropriate data would be helpful, particularly if owners do not exist or
cannot monitor metadata. Finally, future projects may wish to examine cases
where a requestor’s identity is confidential, host servers may collude, or metadata
is fuzzy ([16] may offer insight for working with fuzzy metadata).

This paper presents a practical semi-honest solution that, under the unique
constraints of private resource pairing, offers a 686-time computational speedup
over the similar AgES protocol without compromising security. In addition, this
work suggests means of preventing malicious participant behavior. The shPRP
protocol and its extensions for preventing malicious behavior provide a concrete
basis for future work in private resource pairing.

8 Acknowledgments

We thank David Evans for helpful advice and assistance in finding related work.

References

1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, H. Shi. Searchable encryption 2: Consistency properties, rela-
tion to anonymous IBE, and extensions (Full version). Cryptology ePrint Archive,
Report 2005/254, 2005. http://eprint.iacr.org/2005/254/.

2. R. Agrawal, A. Evfimievski, R. Srikant. Information sharing across private
databases. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pages 86-97. ACM Press, 2003.

3. M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval. Key-privacy in public-key en-
cryption. In Proc. of Advances in Cryptology ASIACRYPT 01. Springer-Verlag,
2001. LNCS 2248.

4. D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano. Public key encryption with
keyword search. In Proc. of EUROCRYPT 2004, pages 506-522. Springer-Verlag,
2004. LNCS 3027.

5. D. Boneh, M. Franklin. Identity-based encryption from the Weil pairing. In Proc.
of CRYPTO 2001, pages 213-229. Springer-Verlag, 2001. LNCS 2248.

6. J. A. Calandrino, A. C. Weaver. Identity-based cryptosystem privacy. University of
Virginia Technical Report CS-2006-15. 2006.

7. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan. Private information retrieval. In
Journal of the ACM, Vol. 45, No. 6, pages 965-982. ACM Press, 1998.

8. M. J. Freedman, K. Nissim, B. Pinkas. Efficient private matching and set inter-
section. In Proc. of EUROCRYPT 2004, pages 1-19. Springer-Verlag, 2004. LNCS
3027.

9. O. Goldreich. Secure multi-party computation. Manuscript, version 1.4. 2002. Avail-
able at http://www.wisdom.weizmann.ac.il/ oded/pp.html

10. Java 2 Platform Standard Edition 5.0 API Specification. 2004. Available at
http://java.sun.com/j2se/1.5.0/docs/api/

11. L. Kissner, D. Song. Privacy-preserving set operations. In Proc. of CRYPTO 2005,
pages 241 - 257. Springer-Verlag, 2005. LNCS 3621

12. Y. Li, J. D. Tygar, J. M. Hellerstein. Private matching. In Computer Security in
the 21st Century, pages 25-50. Springer, 2005.

13. Liberty Alliance Project. Liberty Trust Models Guidelines. Version 1.0. 2003.
Available at http://www.projectliberty.org/specs/liberty-trust-models-guidelines-
v1.0.pdf

14. Office for Civil Rights, U.S. Department of Health and Human Services.
Health Insurance Portability and Accountability Act (HIPAA). Available at
http://www.hhs.gov/ocr/hipaa/

15. S. C. Pohlig, M. E. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. In IEEE Transactions on Information
Theory, IT-24, pages 106-110. 1978.

16. A. Sahai, B. Waters. Fuzzy identity based encryption. In Proc. of EUROCRYPT
2005, pages 457-473. Springer-Verlag, 2005. LNCS 3494.

17. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 1994.

18. R. Schoenberg, C. Safran. Internet based repository of medical records that retains
patient confidentiality. In British Medical Journal, Volume 321, pages 1199-1203. 11
November 2000.

19. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. of
CRYPTO 84, pages 47-53. Springer-Verlag, 1985. LNCS 196.

20. D. X. Song, D. Wagner, A. Perrig. Practical techniques for searches on encrypted
data. In Proc. of 2000 IEEE Symposium on Security and Privacy. 2000.

21. B. R. Waters, D. Balfanz, G. Durfee, D. K. Smetters. Building an encrypted and
searchable audit log. In Proc. of 11th Annual Network and Distributed System
Security Symposium. 2004.

Appendix A: IBS Privacy

Define an identity-based signature scheme as a set of four algorithms: IBS =
(Setup,KeyExtract, Sign, V erify). Setup accepts a security parameter, k, and

any given common parameters, commonParams, and generates a set of public
parameters, params; a random master secret, s; and the corresponding master
public key, pk. KeyExtract accepts a master secret, public parameters, and an
identity, id, for which the private key, vid, is to be extracted. Sign accepts a
user’s secret key, public parameters, and a message, m, and it outputs the signa-
ture, sig. V erify accepts a master public key, public parameters, an identity, a
message, and a signature. It outputs true or false. If an identity-based signature
scheme, IBS, possesses IBS privacy, an adversary, A, is unable to gain more
than a negligible advantage at guessing the value b in the following experiment
(Expibs−priv−b

IBS,A (k)):

1. The challenger computes (params0, s0, pk0) = Setup(commonParams, k)
and (params1, s1, pk1) = Setup(commonParams, k) and presents params0,
pk0, params1, and pk1 to A.

2. A may use an oracle to derive secret keys for any identities under either
instantiation. Eventually, A must choose a valid identity, id. A must not
have queried for the secret keys corresponding to id. A returns id to the
challenger and may save any state information.

3. The challenger randomly selects a bit b ∈ {0, 1} and a random nonce, n,
within the message space, computes sig = Sign(vid,b, paramsb, n), and re-
turns sig to A.

4. A may use the oracle again to derive private keys but may not derive private
keys associated with id. Eventually, A must submit a guess, b′, for b based
on all known information, including saved state data.

A’s advantage is defined as:

Advibs-priv
IBS,A (k) = Pr[Expibs-priv-1

IBS,A (k) = 1]− Pr[Expibs-priv-0
IBS,A (k) = 1]

A’s advantage is negligible if Advibs-priv
IBS,A (k) is a negligible function over k.

Shamir’s original identity-based signature scheme lacks IBS privacy. Each in-
stantiation must use a different, publicly available modulus [19]. Thus, the same
technique for distinguishing between public keys in RSA systems is applicable
to this identity-based signature scheme.

Appendix B: Evaluation Process

Only shPRP providers have a setup process. Therefore, the setup duration for
requestors and AgES providers is trivially zero. Fourteen trials, with the two
highest and two lowest results excluded, established the average setup duration
of shPRP providers. An equivalent procedure assessed shPRP provider perfor-
mance during the search and acquisition process. In AgES, providers are active
at two points during the search process: to supply encrypted metadata and
to encrypt requestor metadata. These tasks precisely correspond to the shPRP
provider setup and search processes. Thus, the AgES provider average is the sum
of the shPRP averages for each task. AgES and shPRP requestors underwent two

rounds of testing. In the first round, requestors performed fourteen searches for
existing metadata. In the second round, requestors searched for fourteen nonex-
istent metadata items. The overall average was the mean of all results, excluding
the two highest and two lowest results from each round. Results do not include
time waiting on providers or downloading data.

Appendix C: Security of shPRP

Recall that the modifications of AgES for shPRP are:

– Providers publicly reveal encrypted metadata.
– Providers may use an encryption key indefinitely.
– Providers may publish to host servers.
– Requestors decrypt re-encrypted data instead of re-encrypting provider data.

This section argues that, given the assumptions of section 4.2, none of these
changes result in shPRP leaking more information than AgES, which does not
leak information in the semi-honest or malicious case.

Through public revelation of metadata, a provider, P , allows any curious
entity (requestors, other providers, host servers, etc.) to acquire and analyze the
provider’s encrypted metadata hashes. This set of encrypted hashes is equivalent
to the set that P , with metadata MP , would provide to a curious party, C, with
metadata set MC = ∅, under the AgES protocol. Agrawal et al. demonstrate
that C can learn only |MP | and MC ∩MP = ∅ from this data [2].

Similarly, shPRP’s use of constant provider keys makes cryptanalysis no less
difficult. C could store and perform cryptanalysis on the equivalent set of en-
crypted hashes it receives from P under the AgES protocol. In both cases, se-
curity against cryptanalysis is dependent on choice of commutative encryption
function, hash function, and key length. The use of constant provider encryp-
tion keys does mean that the encryption of a piece of metadata will remain
constant, however. Because encryptions remain constant and providers publicly
disclose encrypted data, curious parties may observe and draw inferences from
the publication time of data if providers do not publish data all at once. Also,
a curious party could trivially observe modification or removal of encryptions.
To avoid issues with publication, modification, and removal, section 4.2 states
that either providers must publish all data in unison or inferences must reveal
no confidential data. Future work may establish a more satisfactory solution.

Provider signatures and the assumptions of section 4.2 prevent host servers
from imperceptibly modifying data or drawing undesirable inferences. Beyond
attacks that this paper explicitly does not consider (see section 3), host servers
introduce no additional known weaknesses.

Finally, a requestor’s choice to decrypt data rather than re-encrypt it has
no impact on security. Nothing prevents entities from decrypting legitimately
acquired data from the AgES protocol.

