A Flexible Framework for Secret Handshakes

(Multi-Party Anonymous and Un-observable Authentication)

Gene Tsudik* and Shouhuai Xu**

Abstract. In the society increasingly concerned with the erosion of privacy, privacy-preserving techniques are
becoming very important. This motivates research in cryptographic techniques offering built-in privacy.

A secret handshake is a protocol whereby participants establish a secure, anonymous and unobservable communi-
cation channel only if they are members of the same group. This type of “private” authentication is a valuable tool
in the arsenal of privacy-preserving cryptographic techniques. Prior research focused on 2-party secret handshakes
with one-time credentials.

This paper breaks new ground on two accounts: (1) it shows how to obtain secure and efficient secret handshakes
with reusable credentials, and (2) it represents the first treatment of group (or multi-party) secret handshakes,
thus providing a natural extension to the secret handshake technology. An interesting new issue encountered in
multi-party secret handshakes is the need to ensure that all parties are indeed distinct. (This is a real challenge
since the parties cannot expose their identities.) We tackle this and other challenging issues in constructing
GCD - a flexible framework for secret handshakes. The proposed GCD framework lends itself to many practical
instantiations and offers several novel and appealing features such as self-distinction and strong anonymity with
reusable credentials. In addition to describing the motivation and step-by-step construction of the framework, this
paper provides a thorough security analysis and illustrates two concrete framework instantiations.

Keywords: secret handshakes, privacy-preservation, anonymity, credential systems, unobservability, key manage-
ment.

1 Introduction

Much of today’s communication is conducted over public networks which naturally prompts a number of concerns
about security and privacy. Communication security has been studied extensively and a number of effective and efficient
security tools and techniques are available.

Unfortunately, privacy concerns have not been addressed to the same extent. Yet, it is quite obvious to anyone who
keeps up with the news that our society is very concerned with privacy. At the same time, privacy is being eroded by
(often legitimate) concerns about crime, terrorism and other malfeasances. Furthermore, the proliferation of wireless
communication (among laptops, cell phones, PDAs, sensors and RFIDs) drastically lowers the bar for eavesdropping
and tracking of both people and their devices.

Popular techniques to provide communication privacy include email MIX-es, anonymizing routers and proxy web
servers as well as purely cryptographic tools, such as private information retrieval. Despite important advances, the
privacy continuum has not been fully explored. One particular issue that has not been widely recognized is the need for
unobservable, untraceable and anonymous authentication, i.e., privacy-preserving authentication. Such a notion
might seem counter-intuitive at first, since authentication traditionally goes hand-in-hand with identification. However,
in the context of groups or roles, authentication identifies not a distinct entity but a collection thereof. To this end,
some advanced cryptographic techniques have been developed, such as group signatures [1] and privacy-preserving
trust negotiation [9, 25].

We focus on interactive privacy-preserving mutual authentication; more specifically, on secret handshakes. A secret
handshake scheme (SHS) allows two or more group members to authenticate each other in an anonymous, unlinkable
and unobservable manner such that one’s membership is not revealed unless every other party’s membership is also
ensured.'

In more detail, a secure handshake allows members of the same group to identify each other secretly, such that
each party reveals its affiliation to others if and only if the latter are also group members. For example, in a 2-party
setting, an FBI agent (Alice) wants to authenticate to Bob only if Bob is also an FBI agent. Moreover, if Bob is not
an FBI agent, he should be unable to determine whether Alice is one (and vice versa). This property can be further
extended to ensure that group members’ affiliations are revealed only to members who hold specific roles in the group.
For example, Alice might want to authenticate herself as an agent with a certain clearance level only if Bob is also an
agent with at least the same clearance level.

* Contact Author. Department of Computer Science, University of California, Irvine. gts@ics.uci.edu.
** Department of Computer Science, University of Texas, San Antonio. shzu@cs.utsa.edu.
! This informal definition broadens the prior version [3] which limited secret handshakes to two parties.



In a more general sense, secret handshakes offer a means for privacy-preserving mutual authentication with many
possible applications, especially, in hostile environments.

Goals: We set out to develop techniques for supporting efficient multi-party secret handshakes while avoiding certain
drawbacks present in some or all of the previous 2-party secret handshake solutions. These drawbacks include: (1) use
of one-time credentials or pseudonyms, (2) ability of the group authority to cheat users, (3) requirement to maintain
information about many irrelevant groups (groups that one is not a member of), and (4) lack of support for handshakes
of three or more parties. Some of these drawbacks are self-explanatory, while others are clarified later in the paper.

1.1 Overview and Summary of Contributions

We are interested in multi-party secret handshakes, whereby m > 2 parties establish a secure, anonymous and unob-
servable communication channel provided that they are members of the same group. We achieve this by constructing
a secret handshake framework called GCD. This framework is essentially a compiler that transforms three main
ingredients — a Group signature scheme, a Centralized group key distribution scheme, and a Distributed group key
agreement scheme — into a secure secret handshake scheme. We formally specify this framework based on desired
functionality and security properties.

From the functionality perspective, existing solutions are only able to support 2-party secret handshakes [3], [14,
35]. Our framework represents the first result that supports truly multi-party secret handshakes. Moreover, our work
is first to solve the problem of partially-successful secret handshakes.?

From the security perspective, our framework has two novel features. First, it can be resolved into concrete schemes
that provide the novel and important self-distinction property which ensures the uniqueness of each handshake
participant. In other words, it guarantees that the protocol is a multi-party computation with the exact number
of players that claim to be participating. Without self-distinction, a malicious insider can easily impersonate
any number of group members by simultaneously playing multiple roles in a handshake protocol.®> Thus, an honest
participant may be fooled into making a wrong decision when the number of participating parties is a factor in the
decision-making policy. We also note that self-distinction is trivial for 2-party secret handshakes. However, it becomes
more challenging for handshakes of three or more, since the parties cannot simply expose their identities; otherwise,
anonymity would be lost.

Second, in contrast with prior work [3,14] which relies on one-time credentials to achieve unlinkability — this
ensures that multiple handshake sessions involving the same participant(s) cannot be linked by an adversary — our
approach provides unlinkability with multi-show (or reusable) credentials. This greatly enhances its usability. More-
over, our approach does not require users to be aware of other groups, in contrast with [35].

In addition, our framework has some interesting flexibility features. In particular, it is model-agnostic: if the

building blocks operate in the asynchronous communication model (with guaranteed delivery), so does the resulting
secret handshake scheme. Also, it supports a set of selectable properties that can be tailored to application needs
and semantics (e.g., the two specific instantiations have two different sets of properties). Finally, it lends itself to
many practical instantiations: we present two concrete examples where a handshake participant computes only O(m)
modular exponentiations and sends/receives O(m) messages, where m is the number of handshake participants.
Organization: Section 2 presents our system model and definitions of secret handshake schemes. Then we proceed
to discuss the design space and lay the foundation for the framework in Section 3. The models and definitions for the
three building blocks are discussed in Sections 4, 5, and 6. Next, Section 7 presents the actual GCD framework and
the analysis of its properties, followed by two concrete instantiations in Section 8. Some practical issues are considered
in Section 9 and related work is overviewed in Section 10. The paper concludes with the summary and future research
directions.
Appendix: For the sake of clarity and because of space limitations, we placed some technical material into the
Appendix. Appendices A, B, C and D describe the formal security properties of, respectively: (1) secret handshake
schemes, (2) group signature schemes, (3) group key distribution schemes, and (4) distributed group key agreement
schemes. Appendices E, F and G contain security proofs for the framework and one of its instantiations. Appendix H
overviews a specific group signature scheme used in the second instantiation.

2 A partially successful handshake occurs whenever not all parties engaged in a handshake protocol are members of the same
group. For example, if 5 parties take part in a secret handshake and 2 of them are members of group A, while the rest are
members of group B, the desired outcome is for both the former and the latter to complete the secret handshake protocol
and determine that their respective handshakes were performed with 2 and 3 members, respectively. Our scheme achieves
this desired goal.

3 This is reminiscent of the well-known Sybil attack [19], which is nevertheless different and not addressed in the present paper.



2 Secret Handshakes: Model and Definition

In this section, we specify the system model and discuss the security of secret handshakes.

Let % be a security parameter and U be a set of all users: U = {U; | 0 < i < n} where n is bounded by poly(k).
Let G be a set of groups, where each group* G € G is a set of members managed by a group authority GA, which is
responsible for admitting members, revoking their membership and updating system state information. For simplicity’s
sake we assume that each user is a member of exactly one group. (Of course, all results can be easily generalized to
the case that users are allowed to join multiple groups.) An adversary A is allowed to corrupt various participants.
All participants (including A) are modeled as probabilistic polynomial-time algorithms.

We assume the existence of anonymous channels between all the legitimates participants, where the term “anony-
mous” means that an outside attacker cannot determine identities of the G.A, group members, as well as the dynamics
and size of a group, and that a malicious insider cannot determine the identities of other honest group members as
well as the the dynamics and size of the group. This assumption is necessary in most privacy-preserving authentication
schemes; otherwise, anonymity could be trivially compromised. However, we note that the fact that secret handshake
protocols themselves rely on anonymous channels does not necessarily present a problem. This is because a typical
secret handshake application would be in a wireless setting where all communication is done via broadcast which offers
receiver anonymity as a “built-in” feature.® (See Section 9 for further discussion of practical issues.)

Fig. 1. Definition of Multi-Party Secret Handshake Schemes

SHS.CreateGroup: executed by G.A to establish a group G. It takes as input appropriate security parameters, and outputs
a cryptographic context specific to this group. The context may include a certificate/membership revocation list,
CRL, which is originally empty. The cryptographic context is made public, while the CRL is made known only to
current group members.

SHS.AdmitMember: executed by GA to admit a user to the group under its jurisdiction. We assume that GA admits
members according to a certain admission policy. Specification and enforcement of such policy is out the scope of
this paper. After executing the algorithm, group state information has been appropriately updated, the new member
holds some secret(s) as well as a membership certificate(s), and existing members obtain updated system information
from GA via the aforementioned authenticated anonymous channel.

SHS.RemoveUser: executed by GA. It takes as input the current CRL and a user identity U; such that U; € U and
U; € G. The output includes an updated CRL which includes the newly revoked certificate for U;. The state update
information is sent to the existing group members through the authenticated anonymous channel.

SHS.Update: executed by each current group member upon receiving, via the authenticated anonymous channel, system
state update information from GA. It is used to update each member’s system state information.

SHS.Handshake(A): executed by a set A of m users purporting to be members of a group G, where A = {Us,...,Un}
and m > 2. The input to this protocol includes the secrets of all users in A, and possibly some public information
regarding the current state of the systems. At the end of a protocol execution, it is ensured that each U; € A
determines that A\ {U;} C G if and only if each U; € A (j # ¢) discovers A\ {U;} C G.

SHS.TraceUser: executed by G.A. On input of a transcript of a successful secret handshake protocol SHS.Handshake(A),
GA outputs the identities of all m participants involved in the handshake, i.e., U1, ..., Up,.

A secret handshake scheme (SHS) consists of the algorithms and protocols shown in Figure 1. We note that the
definition says nothing about the participants establishing a common key following (or during) a successful handshake.
It is indeed straightforward to establish such a key if a secret handshake succeeds. However, allowing further commu-
nication based on a newly established key would require concealing the outcome of the handshake. (See also Section
9.) The definition also does not ensure any form of “agreement” in the sense of [20], since the adversary is assumed
to have complete control over all communication, and can corrupt parties. This also explains why we only achieve a
somewhat weak form of traceability.

Desired security properties are informally specified in Figure 2. In order to highlight the intuition, the formal
treatment is deferred to Appendix A. We notice that for certain applications full-unlinkability may be desirable,
while for certain other applications unlinkability and self-distinction may be desirable. In other words, the
framework specifies the important properties, while leaving the decision on which subset of the properties to satisfy
to the specific applications.

1 We use “group” to refer to a set of users, unless explicitly stated otherwise.
5 This does not contradict our claim in Section 1 that wirelessness heightens privacy concerns. Although eavesdropping is easier
in wireless networks, receiver anonymity is, at the same time, also easier to achieve in wireless (rather than in wired) networks.



Fig. 2. Informal Security for Multi-Party Secret Handshake Schemes

Correctness: If all handshake participants {Ux, ..., Un,} belong to the same group, the protocol returns “1”; other-
wise, the protocol returns “0”.

Resistance to impersonation: an adversary A ¢ G who does not corrupt any members of G has only a negligible
probability in convincing an honest user U € G that A € G. This remains to be true even if A plays the roles of
multiple participants.

Resistance to detection: no adversary A ¢ G can distinguish between an interaction with an honest user U € G
and an interaction with a simulator. This remains to be true even if A plays the roles of multiple participants.
Full-unlinkability: no adversary A is able to associate two handshakes involving a same honest user U € G, even
if A € G and A participated in both executions, and U has been corrupt. This remains to be true even if A plays
the roles of multiple participants.

Unlinkability: no adversary A is able to associate two handshakes involving a same honest user U € G, even
if A € G and A participated in both executions. This remains to be true even if A4 plays the roles of multiple

participants.
* Indistinguishability to eavesdroppers: no adversary .A who does not participate in a handshake protocol can
distinguish between a successful handshake between {U1,...,Un} C G and an unsuccessful one, even if A € G.

* Traceability: G.A can trace all users involved in the handshake session of a given transcript.

* No-misattribution: no coalition of malicious parties (including any number of group members and the G.A) is able
to frame an honest member as being involved in a secret handshake.

Self-distinction: each participant is ensured that all the participants are distinct.

Remark: If needed, our definitions of resistance to impersonation and resistance to detection can be nat-
urally extended to capture the case when A corrupts some group members but does not use their secrets in the
subsequent handshake protocols.

The flavor of traceability achieved in the framework is relatively weak since the protocol participant who is last
to send out the values (to facilitate traceability) can always neglect to do so. However, we observe that this holds in
other schemes, even in those based on one-time credentials [3, 14]. The subtle issue is that the last sender could always
use a “fake” token before other (honest) participants can verify its validity. This is inevitable because of the basic
impossibility result in [20]. While there are some purely theoretical ways to mitigate this problem, we are interested
in efficient (i.e., practical) solutions. Consequently, we are prepared to tolerate some unfairness, which, nevertheless,
only exists between legitimate users. As a result, the achieved traceability is still valuable for investigating activities
of group members before they become corrupt.

3 Design Space

As mentioned earlier, the GCD framework is essentially a compiler that outputs a multi-party secret handshake
scheme satisfying all desired propertied specified in Section 2. Its input includes:

— A group signature scheme (GSIG): a scheme that allows any group member to produce signatures on behalf of the
group in an anonymous and unlinkable manner; only a special entity (called a group manager) is able to revoke
anonymity and “open” a group signature thereby revealing the signer’s identity. (See Section 4.)

— A centralized group key distribution (broadcast encryption) scheme (CGKD): a key management scheme for large
one-to-many groups that handles key changes due to dynamic group membership and facilitates secure broadcast
encryption. (See Section 5.)

— A distributed group key agreement scheme (DGKA): a scheme that allows a group of peer entities to dynamically
(on-the-fly) agree on a common secret key to be used for subsequent secure communication within that group.
(See Section 6.)

We now discuss the choices made in designing GCD. As a first try, one might be tempted to construct a secret
handshake scheme directly upon a CGKD that enables secure multicast. It is easy to see that m > 2 members can
conduct efficient secret handshakes based on a group key k. However, this approach would have some significant
drawbacks:

(1) No indistinguishability-to-eavesdroppers. A passive malicious (or even honest-but-curious) group member can
detect, by simply eavesdropping, whenever other members are conducting a secret handshake.

(2) No traceability. A dishonest member who takes part in a handshake (or is otherwise malicious) can not be traced
and held accountable.



(3) No self-distinction. For handshakes of more than two parties, self-distinction is not attained since a rogue member
can play multiple roles in a handshake.

Alternatively, one could employ a GSIG scheme as a basis for a secret handshake scheme. This would avoid the above
drawback (2), however, drawback (1) remains. Also, resistance to detection attacks would be sacrificed, since (as noted
in [3]), group signatures are verifiable by anyone in possession of the group public key.

A natural next step is to combine a CGKD with a GSIG. This way, the GSIG group public key is kept secret among
all current group members (along with the CGKD group-wide secret key k), and — during the handshake — group
signatures would be encrypted under the group-wide key k. Although traceability would be re-gained, unfortunately,
drawbacks (1) and (3) would remain.

In order to avoid (1), we need the third component, an interactive distributed key agreement protocol. With it,
any member who wants to determine if other parties are members (or are conducting a secret handshake) is forced to
participate in a secret handshake protocol. As a result, the group signatures are encrypted with a key derived from
both: (a) the group-wide key and (b) the freshly established key. Moreover, we can thus ensure that, as long as a group
signature is presented by a corrupt member, the traceability feature enables the group authority to hold that member
accountable.

As pertains to drawback (3) above (no self-distinction), we defer the discussion to later in the paper. Suffice it to
say that group signature schemes do not provide self-distinction by design, since doing so undermines their version
of the unlinkability property. (Unlinkability in group signatures is different from that in group secret handshakes; see
Section 8.2.) To remedy the situation, we need some additional tools, as described in Section 8 below.

Since our approach involves combining a group signature scheme with a centralized group key distribution scheme,
it is natural to examine potentially redundant components. In particular, both GSIG and CGKD schemes include a
revocation mechanism. Furthermore, revocation in the former is quite expensive, usually based on dynamic accumu-
lators [12]. Thus, it might seem worthwhile to drop the revocation of component of GSIG altogether in favor of the
more efficient revocation in CGKD. This way, a revoked member would simply not receive the new group-wide key
in CGKD but would remain un-revoked as far as the underlying GSIG is concerned. To illustrate the problem with
this optimization, consider an attack whereby a malicious but unrevoked member reveals the CGKD group-wide key
to a revoked member. The latter can then take part in secret handshakes and successfully fool legitimate members.
Whereas, if both revocation components are in place, the attack fails since the revoked member’s group signature
(exchanged as part of the handshake) would not be accepted as valid.

4 Building Block I: Group Signature Schemes

Let U be the universe of user identities. In a group signature scheme, there is an authority called a group manager
(GM) responsible for admitting users and identifying the actual signer of a given group signature®. There is also a set
of users who can sign on behalf of the group. In addition, there is a set of entities called verifiers. All participants are
modeled as probabilistic polynomial-time algorithms.

A group signature scheme, denoted by GSIG, is specified in Figure 4.

Informally, we require a group signature scheme to be correct, i.e., any signature produced by an honest group
member using Sign is always accepted by Verify.

Following notable prior work [4, 7, 23], we say a group signature scheme is secure if it satisfies the following three
properties (see Appendix B for a formal definition): (1) full-traceability — any valid group signature can be traced
back to its actual signer, (2) full-anonymity — no adversary can identify the actual signer of a group signature, even
if the actual signer’s secret has been compromised, and (3) no-misattribution — no malicious group manager can
misattribute a group signature to an honest group member.

In order to achieve secret handshakes of self-distinction, we may also adopt group signature schemes achieving
a somewhat weaker privacy notion. Specifically, we can substitute the following weaker notion of anonymity for the
above full-anonymity: (2’) anonymity — no adversary can identify the actual signer of a group signature, as long
as the actual signer’s secret has not been compromised. As we will see, our specific handshake scheme achieving
self-distinction is based on the variant group signature scheme of [22], which fulfills the above anonymity rather
than full-anonymity.

5 Building Block II: Centralized Group Key Distribution Scheme

Let x be a security parameter, and ID be the set of possible group members (i.e., users, receivers, or principals) such
that [ID| is polynomially-bounded in k. There is a special entity called a Group Controller (i.e., key server, center,

5 Sometimes, the two functionalities are assigned to two separate entities.



Fig. 3. Definition: Group Signature Scheme

Setup: a probabilistic polynomial-time algorithm that, on input of a security parameter k, outputs the specification of
a cryptographic context including the group manager’s public key pkga and secret key skgaq. This procedure may
be denoted by (pkga, skgat) — Setup(1”).

Join: a protocol between GM and a user (conducted over a private and authenticated channel) that results in the
user becoming a group member U. Their common output includes the user’s unique membership public key pky,
and perhaps some updated information that indicates the current state of the system. The user’s output includes
a membership secret key sky. This procedure may be denoted by (pku, sku,certificatev;pku, certificatey) «—
Join[U < GM], where Join[U < GM] denotes an interactive protocol between U and GM, pku, sku, certificatey is
the output of U, and pky, certificatey is the output of GM. Besides, there may be some system state information
that is made public to all participants.

Revoke: an algorithm that, on input of a group member’s identity (and perhaps her public key pky ), outputs updated
information that indicates the current state of the system after revoking the membership of a given group member.

Update: a deterministic algorithm that may be triggered by any Join or Revoke operation. It is run by each group member
after obtaining system state information from the group manager.

Sign: a probabilistic algorithm that, on input of: key pkgam, (sku,pku) and a message M, outputs a group signature o
of M. This procedure may be denoted by o « Sign(pkgm, pku, sku, M).

Verify: an algorithm that, on input of: pkga, an alleged group signature o and a message M, outputs a binary value
TRUE/FALSE indicating whether ¢ is a valid group signature (under pkga() of M. This procedure may be denoted
by TRUE/FALSE « Verify(pkga, M, o).

Open: an algorithm executed by the group manager GM. It takes as input of a message M, a group signature o,
pkgam and skgaq. It first executes Verify on the first three inputs and, if the output of Verify is TRUE, outputs
some incontestable evidence (e.g., a membership public key pky and a proof) that allows anyone to identify the
actual signer. This procedure may be denoted, without loss of generality, by U <« Open(pkga, skgam, M, o) if
TRUE «— Verify(pkgat, M, o).

server, or sender), denoted by GC, such that GC ¢ ID. A centralized group key distribution scheme (CGKD) is defined
in Figure 4, which is adopted from [34].

Since a (stateful) group communication scheme is driven by “rekeying” events (because of joining or leaving
operations below), it is convenient to treat the events occur at “virtual time” ¢t = 0,1,2,..., because the group
controller is able to maintain such an execution history. At time ¢, let A®) denote the set of legitimate group members,
E®) = k(gtc) = kgl) = ... the group (or session) key, Kgc) the set of keys held by GC, Ki(f) the set of keys held by U € A®)
accg) the state indicating whether U € A®) has successfully received the rekeying message. Initially, V U € ID,t € N,
set accg) — FALSE. We assume that GC treat joining and leaving operation separately (e.g., first fulfilling the leaving
operation and then immediately the joining one), even if the requests are made simultaneously. This strategy has
indeed been adopted in the group communication literature.

To simplify the presentation, we assume that during system initialization (i.e., Setup described below) GC can
communicate with each legitimate member U through an authenticated private channel. In practice, this assumption
can be implemented with a two-party authenticated key-exchange protocol. Further, we assume that GC can establish
a common secret, if needed, with a joining user, and that after the system initialization GC can communicate with any
U € ID through an authenticated channel.

We require for a CGKD scheme to be correct, meaning that after each rekey process, all the group members share
a common key with the group controller, and secure, meaning that no adversary learns any information about a
group key at time t1, even if there are corrupt users at time ¢, > ¢;. This is the strongest notion, called strong-security
in the active outsider attack model in [34] (somewhat surprisingly, existing popular group communication schemes do
not achieve this property, but many of them can be made secure in this sense without incurring any significant extra
complexity [34]). We defer formal definition and discussions to Appendix C.

6 Building Block III: Distributed Group Key Agreement

Let x be a security parameter. We assume a polynomial-size set IID of potential players. Any subset of IID may decide
at any point to invoke distributed group key agreement. A distributed group key agreement scheme, DGKA, is specified
in Figure 5; it follows the results in [5] and [21].

Informally speaking (see Appendix D for a formal definition), we require for a scheme to have correctness and
security. Correctness means that all participants must obtain the same new session secret (key), and security
means that a passive adversary — who does not compromise any principal during protocol execution — does not learn
any information about the new group session key.



Fig. 4. Definition: Centralized Group Key Distribution

Setup: The group controller GC generates a set of keys Ké%), and distributes them to the current group members (that
may be determined by the adversary), A© C ID, through the authenticated private channels. (If some users were
corrupted before this setup procedure, we may let the adversary select the keys held by the corrupt users.) Each
member U; € A© holds a set of keys denoted by K[(J(? C Kgg, and there is a key, k© that is common to all the

current members, namely JACNS Ké%) N K[(]O1> Nn...N K[(]O) o
| At

Join: This algorithm is executed by the group controller GC at certain time ¢ following a join request by a prospective
member. (We abstract away the out-of-band authentication and establishment of an individual key for each new
member). Tt takes as input: (1) a set of identities of current group members — A=Y (2) identities of newly admitted
group member, A’ C ID\ A=D (3) keys held by the group controller, Kgc_l), and (4) keys held by group members,
{K((Jti_l)}UiemH) _ {K[(Jti—l) U, € A(t—l)}_

It outputs updated system state information, including: (1) identities of new group members, AW ACD g A
(2) new keys for GC itself, Kgc), (3) new keys for new group members, {Kgi)}UieA(f)v which are somehow sent
to the legitimate users through the authenticated channels (depending on concrete schemes), (4) new group key

® ¢ kO A g® ®
KO e Kgin Ky oo n kg

Formally, denote it by (A®, Kgc)7 {K[(J?}UieAm) — Join(A¢—D A Kggl), {Kg;l)}UieA(tfl)).
Leave: This algorithm is executed by the group controller GC at time, say, ¢ due to leave or revocation operation(s). It
takes as input: (1) identities of previous group members, A®~V | (2) identities of leaving group members, A’ C A=Y,

(3) keys held by the controller, K(gtc_l), and (4) keys held by group members, {KUi}S’;Z(Fl).

It outputs updated system state information, including: (1) identities of new group members, A® — AC=D\ A’
(2) new keys for GC, Kétg, (3) new keys for new group members, {Kl(fti)}UieA(‘)7 which are somehow sent to the
legitimate users through the authenticated channels (depending on concrete schemes), (4) new group key k® ¢

®) A g (t)
KgeNKgln.nky

Formally, denote it by (A®, K32, {K{}y c ) < Leave(A™D A KGTY (KT, Caan).

Rekey: This algorithm is executed by the legitimate group members at some time ¢, namely all U; € A® where A®
is derived from a Join or Leave event. In other words, U; € AW runs this algorithm upon receiving the message
from GC over the authenticated channel. The algorithm takes as input the received message and U,’s secrets, and is
supposed to output the updated keys for the group member. If the execution of the algorithm is successful, U; sets:
(1) accgz «— TRUE, (2) K[(}?7 where k:gi) S Kl(,tl) is supposed to be the new group key.

If the rekeying event is incurred by a Join event, every U; € A® erases K [(]ti_l) and any temporary storage after

obtaining K ((J?. If the rekeying event is incurred by a Leave event, every U; € AW erases K g@_fl) and any temporary

storage after obtaining K l(J?’ and every honest leaving group member U; € A’ erases K, I(th_l) (although a corrupt one
does not have to follow this protocol).

7 GCD Secret Handshake Framework

The GCD framework has the following components:

GCD.CreateGroup: The group authority (G.A) plays the roles of both group manager in GSIG and group controller in
CGKD.
— GA executes GSIG.Setup. This initializes a group signature scheme.
— GA executes CGKD.Setup. This initializes a centralized group key distribution (broadcast encryption) scheme.
— GA generates a pair of public/private keys (pkr, skr) with respect to an IND-CCA2 secure public key cryp-
tosystem. This pair of keys enables G.A to identify handshake participants in any handshake transcript.
— Note that no real group-specific setup is required for initializing the distributed group key agreement component
— DGKA. We assume that there is a set of system-wide (not group-specific) cryptographic parameters for the
DGKA scheme, e.g., all groups use the same group key agreement protocol with the same global parameters.
(More on this below.)
GCD.AdmitMember: GA executes CGKD.Join and GSIG.Join.
CGKD.Join results in a new group key and GSIG.Join causes an update to GSIG state information. The updated
GSIG state information is encrypted under the new CGKD group key and distributed to all group members through
an authenticated anonymous channel, e.g., posted on a public bulletin board.
GCD.RemoveUser: GA executes CGKD.Leave and GSIG.Revoke, except: (1) the updated system state information
corresponding to GSIG is encrypted under CGKD’s new group session key, and distributed as part of CGKD’s



Fig. 5. Definition: Distributed Group Key Agreement

Environment: Since each principal can take part it many runs of the GroupKeyAgreement protocol (described below), we
denote an instance i of U € ID as IT};. Each instance IT}; is associated with variables accl;, sid;, pid}‘], sk;. Initially,
VY U €ID and i € N, acc}; « FALSE and sid};, pid;, ski; «+— UNDEFINED.

GroupKeyAgreement: a protocol that performs distributed unauthenticated (or “raw”) group agreement between any set
of m > 2 parties. After executing the protocol, each party outputs an indication of the protocol outcome (success
or failure), and some secret information, in case of success. In more detail, the protocol is executed by m instances:

H;}l, R H(ij:;’, where {Ui,...,Un} C ID. If the execution of H;j] is successful, it sets:

1. accy) + TRUE,
2. sid;}j as the session id of instance IT, IZJ]]-’ namely a protocol-specific function of all communication sent and received

by 11, 87 (e.g., we can simply set sidi]j]_ as the concatenation of all messages sent and received by I7, z}] in the course
of its execution),
3. pid;}'j as the session id of instance H[Zj’;, namely the identities of the principals in the group with whom HZ,Z

intends to establish a session key (including Uj; itself), and (4) sk;jj as the newly established session key.
Remark: We stress that this definition does not offer any authentication, i.e., it does not capture authenticated group
key agreement. For example, the above definition can be satisfied (instantiated) with a straight-forward extension
to any of the several group Diffie-Hellman protocols, such as BD or GDH [11,30]. Of course, we are aware that
unauthenticated key agreement protocols are susceptible to man-in-the-middle (MITM) attacks; this is addressed
later, through the use of our second building block — CGKD.

state information updating message, and (2) the update messages are distributed via an authenticated anonymous
channel.

GCD.Update: All non-revoked members execute GSIG.Update and CGKD.Rekey, except: (1) the updated system state
information is obtained from an authenticated anonymous channel, and (2) if CGKD.Rekey succeeds, the update
information corresponding to GSIG is decrypted using CGKD’s new group key.

GCD.Handshake: Suppose m (> 2) users want to determine if they belong to the same group. We denote their
group keys with respect to CGKD as: ky, ..., k., respectively. Note that, if they belong to the same group, then
k1=...=kn.

Phase |: Preparation: All m parties jointly execute DGKA.GroupKeyAgreement. We denote the resulting keys as:
T, ..., kX, respectively. If the execution is successful, then &k = ... = k7, and each party computes k; = k®k;.
Phase II: Preliminary Handshake: Each party publishes a tag MAC(k}, s, ) corresponding to a message authentica-
tion code MAC (e.g., HMAC-SHAL1), where s is a string unique to party i, e.g., the message(s) it sent in the
DGKA.GroupKeyAgreement execution.”
Phase Ill: Full Handshake: There are two cases:
CASE 1: If all message authentication tags are valid (i.e., they belong to the same group), each party
executes the following:
1. Encrypt k; to obtain ciphertext §; under the group authority’s tracing public key pkr; §; < ENC(pkr, k).
2. Generate a group signature o; on §; via GSIG.Sign.
3. Encrypt o; using a symmetric key encryption algorithm and key k] to obtain a ciphertext 6;; 6; «—
SENC(EL, ;).
5. Upon receiving (0;, d;), execute the following:
— Obtain the group signature by performing symmetric key decryption algorithm using k}; o; «—
SDEC(%,, 6;).
— Run GSIG.Verify to check if ; is a valid group signature. If all group signatures are deemed valid, the
party concludes that the corresponding parties all belong to the same group and stores the transcript
including {(6;, 6;) 1<i<m.
CASE 2: If at least one message authentication tag is invalid, each of party picks and publishes a pair
(0;,6;) randomly selected from the ciphertext spaces corresponding to the symmetric key and public key
cryptosystems, respectively.

GCD.TraceUser: Given a transcript of a secret handshake instance: {(6;,d;) }1<i<m, the group authority G.A decrypts
all d;’s to obtain the corresponding session keys: ki, ..., k,,. In the worst case, the authority needs to try to search
the right session key and decrypt all ;’s to obtain the cleartext group signatures. Then, it executes GSIG.Open to
identify the handshake parties.

" If a broadcast channel is available, the tag is sent on it; else, it is sent point-to-point.



Remark: In order to enable modular construction, we specify the handshake protocol as a three-phase protocol. Thus,
the resulting framework is flexible, i.e., tailorable to application semantics. For example, if traceability is not required,
a handshake may only involve Phase | and Phase II.

The following theorem is proved in Appendix E.

Theorem 1. Assume that GSIG possesses the properties of correctness, full-traceability, full-anonymity, and
no-misattribution specified in Section 4. Assume also that DGKA and CGKD are secure with respect to their corre-
sponding definitions in Sections 5-6. Then, the GCD framework possesses the properties of correctness, resistance
to impersonation, resistance to detection, full-unlinkability, indistinguishability to eavesdroppers,
traceability, and no-misattribution specified in Section 2.

The following theorem is proved in Appendix F.

Theorem 2. Assume that GSIG possesses the properties of correctness, full-traceability, anonymity, and
no-misattribution specified in Section 4. Assume also that DGKA and CGKD are secure with respect to their corre-

sponding definitions in Sections 5-6. Then, the GCD framework possesses the properties of correctness, resistance

to impersonation, resistance to detection, unlinkability, indistinguishability to eavesdroppers, traceability,
and no-misattribution specified in Section 2.

Extension: A natural extension of the above framework can fulfill the aforementioned partially-successful secret
handshakes, namely that all such A C {1,...,m} that consists of |A| > 1 members of a same group can always
succeed in their handshakes without incurring any extra complexity. Each participant i can immediately tell the A
such that ¢ € A as i knows which message authentication tags are valid.

8 Two Concrete Instantiations

We now present two concrete secret handshake schemes. The first scheme employs “raw” (unauthenticated) contribu-
tory group key agreement, and the second scheme ensures that all handshake participants are distinct.

8.1 Example Scheme 1

This is a straight-forward instantiation of the GCD framework. We simply plug in unauthenticated group key agree-
ment (DGKA) derived from any of [11, 30, 21], CGKD based on [33, 26], and GSIG based on [1,12]. Theorem 1 immedi-
ately implies that this instantiation satisfies all properties specified in Section 2, excluding self-distinction.

Computational complexity for each party is the sum of the respective complexities incurred in each of the three
building blocks. Note that, in an m-party handshake, each party only needs to compute O(m) modular exponentiations
in total. Moreover, the communication complexity is O(m) per-user in number of messages.

8.2 Example Scheme 2

As mentioned above, the first instantiation does not offer self-distinction, i.e., some of the m parties in a handshake
protocol could in fact be “played” by the same party. We now discuss the basic idea for attaining the self-distinction
property. Naturally, neither group key agreement nor centralized key distribution (i.e., the CGKD and DGKA compo-
nents) can provide self-distinction. Thus, we turn to group signatures to obtain it. However, group signature schemes
do not natively offer self-distinction since it runs against one of their basic tenets, informally summarized as:

Given any two group signatures it should be impossible to determine with any certainty whether the same signer
(or two distinct signers) generated both signatures

Nonetheless, the need for self-distinction in group signatures (not in secret handshakes) has been recognized prior to this
paper. In particular, the work in [2] introduces the concept of subgroup signatures motivated by certain applications,
such as anonymous petitions. (In an anonymous petition, ¢ group members want to sign a document in a way that any
verifier can determine with certainty that all ¢ signers are distinct.) The example technique for constructing sub-group
signatures in [2] involves slight modifications to the underlying group signature scheme. This is very similar to what
we need to achieve self-distinction in the proposed framework.

Unfortunately, we cannot use the example in [2] since it is based on a group signature scheme [13] which is inefficient
and not provably secure. However, we can modify a more recent (as well as much more efficient and provably secure)
group signature scheme by Kiayas and Yung [22] (see Appendix H). In this scheme each group signature is accomplanied



by a pair: (Ts = ¢g°*, Ty = g*), where 3 is the signer’s secret, and « is the signer’s randomness for this specific signature.
This structure has a nice feature that 77 serves only as an “anonymity shield” in the sense that the signer does not
even need to prove the knowledge of a. Instead, it is crucial that Tg = T7ﬁ . Intuitively, this allows us to obtain
self-distinction if we let each handshake participant use the same 717, since they should all provide distinct T§’s.
This can be achieved by simply utilizing an idealized hash function [6] H : {0,1}* — R to the input of, for instance,
the concatenation of all messages sent by the handshake participants.® This ensures that, as long as there is at least
one honest participant, the resulting 7% is uniformly distributed over R, and the security proof in [22] remain sufficient
for our purposes.

We now present a scheme based on the modified version of [22]. We only illustrate the handshake protocol (in
Figure 6) since it is the only distinctive feature of this scheme.

Fig. 6. Example Scheme 2: Self-Distinction

GCD.Handshake: Assume m (> 2) users are taking part in the protocol. We denote their group keys with respect to

the CGKD by k1, ..., km, respectively. As before, if they belong to the same group, k1 = ... = km.
Phase I: Preparation: m parties jointly execute DGKA.GroupKeyAgreement. Let the resulting keys be denoted as:
kT, ..., k;,, respectively. (After a successful run kf = ... = k},.) Then, each party computes k; = k; @ k;
Phase IlI: Preliminary Handshake: Each party publishes a pair MAC(k}, s,4), where s is a string unique to 1.
Phase Ill: Full Handshake: We consider two cases:
Case 1: If all message authentication tags are valid (i.e., they belong to the same group), each party executes
as follows:

1. Encrypt k; under the public key pkr to obtain ciphertext &;.

2. Generate a variant group signature o; on d; on s via GSIG.Sign, which is the same as in [22] except
that 77 is chosen using an ideal hash function as discussed above, and the same T7 is common to all
handshake participants. (We stress that self-distinction is obtained from requiring all participants
to use the same 7% which forces them to compute distinct Ts values.)

3. Encrypt o; using a symmetric key encryption algorithm and key k; to obtain ciphertext 0; «
SENC(k;, o).

4. Publish (91,(51)

5. Upon receiving (6;,0;), execute as follows:

(a) Obtain o; «— SDEC(k;, ;)
(b) Run GSIG.Verify to check if each o; is a valid group signature (if all group signatures are valid, it
concludes that they all belong to the same group and records the transcript).
Case 2: If at least one message authentication tag is invalid, each party simulates the above execution
of the Pederson protocol and then picks a pair of (6;,d;) randomly selected from the ciphertext spaces
corresponding to the symmetric key and public key cryptosystems, respectively.

A proof sketch of the following theorem can be found in Appendix G.

Theorem 3. Assume that GSIG possesses the properties of correctness, full-traceability, anonymity, and
no-misattribution specified in Section 4. Assume also that DGKA and CGKD are secure with respect to their
corresponding definitions in Sections 5-6. Then, the above instantiation possesses the properties of correctness,
resistance to impersonation, resistance to detection, unlinkability, indistinguishability to eavesdroppers,
no-misattribution, traceability, and self-distinction specified in Section 2.

Computational complexity in number of modular exponentiations (per-user) remains O(m) and communication com-
plexity (also per-user) in number of messages also O(m), where m is the number of participants.

9 Discussion

There are several practical issues that need to be addressed. First, if there is only a single group that uses a secret
handshake scheme, an adversary can simply figure out that the handshake peers belong to that group. In fact, if a
secret handshake scheme is implemented as a TLS or IKE cipher suite, then the parties will exchange a cipher suite
designator that clearly shows that they wish to engage in a secret handshake. Second, in any secret handshake scheme,
utilizing one-time or reusable credentials alike, it is assumed that there is no easy way to identify the party who sent

8 While it would suffice for R to be QR(n), what is needed in [22] is in fact that g € QR(n) and « is chosen from an appropriate
interval, i.e., R C QR(n).

10



or received a certain message; otherwise, it is easy for an adversary to discover who is interacting with whom. This
assumption is also true in privacy-preserving authentication mechanisms [24, 8,16, 17,28,27]. Third, if an adversary
observes that handshake participants continue communicating after finishing the handshake protocol, it can deduce
that they belong to the same group. (This applies to any secret handshake scheme utilizing one-time or reusable
credentials.)

The above issues can be mitigated by various means. First, it is reasonable to assume that there are many groups, as
long as it is not illegal to conduct secret handshakes. Second, there may be settings where the identity (for the purpose
of authentication) of a party is not directly derivable from the address that must appear in the clear in protocol
messages. A common example is the case of mobile devices wishing to prevent an attacker from correlating their
(changing) locations with the device’s logical identity [24]. Furthermore, some form of anonymous communication could
make it hard to decide exactly who is engaging in a secret handshake. Third, protection against traffic analysis (e.g.,
an adversary simply observing continued communication after a handshake) can be achieved by utilizing mechanisms
such as steganographic techniques, or anonymous communication channels.

In summary, if all assumptions are satisfied, then our secret handshake schemes (as well as [3,24, 8]) can provide
provable privacy-preserving authentication, whereby two (or in our case, more) participants authenticate each other’s
membership simultaneously. Otherwise, all schemes attain heuristic or best-effort anonymity.

10 Related Work

The first secret handshake scheme [3] is based on the protocol of Sakai et al. [29], which targets the key exchange prob-
lem. Indeed, a secret handshake can be appropriately turned into an authenticated key exchange, but an authenticated
key exchange does not necessarily imply a secret handshake, e.g., the two-party Diffie-Hellman key agreement scheme
[18] does not lend itself to solving the secret handshake problem; see [3]. The scheme in [3] is based on bilinear maps
in the setting of elliptic curves and its security is based on the associated assumptions. This scheme uses one-time
pseudonyms to achieve unlinkability and does not offer the No-misattribution property.

A more recent follow-on result is due to Castelluccia, et al. [14]. This work constructs several handshake schemes
in more standard cryptographic settings (avoiding bilinear maps) and provides some extensions for satisfying No-
misattribution. However, it still relies on one-time pseudonyms to satisfy unlinkability. Another recent result by [35]
requires each player to be aware of the information of other groups and offers weaker anonymity (referred to as
k-anonymity).

11 Conclusions and Future Work

To summarize, we present GCD- a flexible secret handshake framework. GCD is a compiler that can transform a
group signature scheme, a centralized group key distribution scheme, and a distributed group key agreement scheme
into a secure secret handshake scheme. As illustrated by three concrete examples, GCD lends itself to actual practical
instantiations and offers several interesting new features. GCD avoids the use of one-time pseudonyms and, unlike
prior techniques, supports handshakes among an arbitrary number of parties. Furthermore, GCD can be instantiated
to support the important new property of self-distinction important in handshakes of more than two participants.

We believe that the work described in this paper is a first step towards achieving practical anonymous interactive
multi-party authentication protocols. Much remains to be done. First, the GCD framework needs to be implemented
and experimented with. Second, we have made no attempt to optimize the efficiency of the framework. Further
investigation is clearly called for. Third, efficient constructions are needed for those settings where the GCD framework
does not apply (because, e.g., the lack of a centralized group key distribution scheme).

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant group signature
scheme. In Proc. CRYPTO 2000, pages 255-270. Springer, 2000. Lecture Notes in Computer Science No. 1880.

2. G. Ateniese and G. Tsudik. Some Open Issues and New Directions in Group Signatures. Financial Cryptography’99,
February 1999. Lecture Notes in Computer Science No. 1880.

3. D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Secret handshakes from pairing-based key
agreements. In 2/th IEEE Symposium on Security and Privacy, Oakland, CA, May 2003.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions, simplified requirements,
and a construction based on general assumptions. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 614—629. Springer, 2003.

11



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

34.

35.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In Proc.
EUROCRYPT 2000, pages 139-155. Springer, 2000. Lecture Notes in Computer Science No. 1807.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In First ACM
Conference on Computer and Communications Security, pages 62—73, Fairfax, 1993. ACM.

M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups. Cryptology ePrint Archive,
Report 2004/077, 2004. http://eprint.iacr.org/.

C. Boyd, W. Mao, and K. Paterson. Deniable authenticated key establishment for internet protocols.

R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hidden credentials. In Proceedings of the 11th
ACM conference on Computer and communications security (CCS’04), pages 146-157. ACM Press, 2004.

E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman key exchange under standard assumptions.
In L. R. Knudsen, editor, Proc. of Eurocrypt 02, volume 2332 of LNCS, page 321336, Amsterdam, NL, AprilMay 2002.
TACR, Springer-Verlag.

M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. In A. D. Santis, editor, Proc.
EUROCRYPT 94, pages 275-286. Springer, 1994. Lecture Notes in Computer Science No. 950.

J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous credentials.
In M. Yung, editor, Proc. CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 61-76. Springer-Verlag,
2002.

J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B.S. Kaliski Jr., editor, Proc. CRYPTO
1997, volume 1294 of Lecture Notes in Computer Science, pages 410-424. Springer-Verlag, 1997.

C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious encryption. In Advances in Cryptology -
ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages 293-307. Springer, 2004.

D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24:84-88,
Feb. 1981.

D. Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sherman, and D. Chaum, editors, Proc. CRYPTO
82, pages 199-203, New York, 1983. Plenum Press.

D. Chaum and E. V. Heyst. Group signatures. In D. W. Davies, editor, Advances in Cryptology — Eurocrypt 91, pages
257-265, Berlin, 1991. Springer-Verlag. Lecture Notes in Computer Science No. 547.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, 1T-22:644-654, Nov. 1976.

J. Douceur. The sybil attack. In Proceedings of the First International Workshop on Peer-to-Peer Systems (IPTPS’01),
pages 251-260, London, UK, 2002. Springer-Verlag.

M. Fischer, N. Lynch, and M. Patterson. Impossibility of distributed consensus with one faulty process. Journal of the
ACM, 32(2):374-382, 1985.

J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In D. Boneh, editor, Proc. CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 110-125. Springer-Verlag, 2002.

A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and J. Camenisch, editors, Advances in Cryptology
- EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 571-589. Springer, 2004.

A. Kiayias and M. Yung. Group signatures: Provable security, efficient constructions and anonymity from trapdoor-holders.
Cryptology ePrint Archive, Report 2004/076, 2004. http://eprint.iacr.org/.

H. Krawczyk. Sigma: The ’sign-and-mac’ approach to authenticated diffie-hellman and its use in the ike-protocols. In
D. Boneh, editor, Proc. CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 400-425. Springer-
Verlag, 2002.

N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceedings of 22nd ACM Symposium on Principles
of Distributed Computing (PODC), pages 182-189. ACM, 2003.

D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In J. Kilian, editor, Proc.
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 41-62. Springer-Verlag, 2001.

M. Naor. Deniable ring authentication. In M. Yung, editor, Proc. CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 481-498. Springer-Verlag, 2002.

R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Advances in Cryptology—ASIACRYPT ’2001, pages 552-565.
R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In Proceedings of the Symposium on Cryptography
and Information Security (SCIS), 2002.

M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups. IEEE Trans. on Parallel and Distributed
Systems, 11(8):769-780, 2000.

Y. Sun and K. Liu. Securing dynamic membership information in multicast communications. In IEEE Infocom’0/, pages
297297

D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architectures. Internet Draft, Sept. 1998.
C. Wong, M. Gouda, and S. Lam. Secure group communication using key graphs. IEEE/ACM Transactions on Networking
(Preliminary version in SIGCOMM’98), 8, 2000.

S. Xu. On the security of group communication schemes based on symmetric key cryptosystems. In Proceedings of the
Third ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN’05), pages 77-77 ACM, 2005.

S. Xu and M. Yung. k-anonymous secret handshakes with reusable credentials. In Proceedings of the 11th ACM conference
on Computer and communications security (CCS’04), pages 158-167. ACM Press, 2004.

12



A Security Properties of Secret Handshake Schemes

Consider a probabilistic polynomial-time adversary A that is allowed access to the following oracles:

— Occ(+): activate a new GA to create a group via SHS.CreateGroup. The identity, G.A, may be given by A as input. We
assume that a GA is not under A’s control before the group is established. However, GA may be corrupted immediately
after its establishment, i.e., before any users are admitted into the group.

— Oam(:,-): input includes the identity of a GA and, optionally, the identity U of a user under A’s control. In case of
Oam(GA,U), GA may admit the corrupt user U by executing SHS.AdmitMember; in case of Oanm(GA), GA executes
SHS.AdmitMember to admit an honest user and assign it a unique pseudonym U, if needed.

— Oru(+,-): input includes the identity of a GA and a pseudonym U. The oracle activates SHS.RemoveUser to place U onto
the corresponding CRL. The system state information is appropriately updated.

— Oupdate(): whenever Oan (-, -) or Oru(+,-) is called, this oracle is also called so that the corresponding non-revoked group
members can update their system state information.

— Ous(,...,-): activate SHS.Handshake between members U, . .., Uy, where none or some (but not all) are under A’s control.
The honest members execute according to the protocol.

— Oru(+): on input of a successful handshake transcript, G.A identifies the participating members.

— Ocorrupt(+,*): takes as input the identity of G.A and, optionally, a pseudonym in /U{L, T }. In case of Ocorrupt(GA, U € U),
the oracle returns U’s current internal state information (including all secrets) to A; in case of Ocorrupt(GA, L), the oracle
returns GA’s current internal state information for admitting members to A; in case of Ocorrupt(G.A, T), the oracle returns
GA’s current internal state information for tracing members to .A. Once GA or U is corrupt, it executes according to A’s
wishes until the corruption is detected by some outside mechanism (e.g., intrusion detection systems). When the corruption
of user U is detected, it is excluded from the group via SHS.RemoveUser; when the corruption of GA is detected, the
corresponding group is simply excluded from the system.

We now specify the desired security properties for a secret handshake scheme. We note that they form a superset of security
properties found in prior work [3, 35, 14].

Correctness: Suppose a set of participants, A = {Ux,...,Un}, are conducting the secret handshake protocol. If all the U;’s
belong to the same group, then Handshake(A) always returns “1”; otherwise, it always returns “0”.

Resistance to impersonation: no adversary A ¢ G who does not corrupt any members of G has only a negligible probability
in convincing an honest user U € G that A € G. The remains to be true even if A plays the roles of multiple participants.
Formally, consider the following game or experiment.

Experiment RIAsus, 4(17):
(g.A7 A = {Ui/}z‘e]l,b) - AOCG(‘)70A1M<'1‘),ORU(‘v‘)vOUpdate()7OHS('5‘)aOTU(‘)aOCoTrupt(‘v‘)(1"”")
Return “1” if the following holds and “0” otherwise:
(1) there is no Ocorrupt(G.A) query
(2) if there is an Oan(GA, X € U) query, then there is also an Ory(GA, X) query
(3) if there is an Ocorrupt(GA, X € U) query, then there is also an Ory(GA, X) query
(4) Vi € It either U; belongs to the group managed by GA or U = A
(5) Vi € It there is no Oru(GA,U;) query
(6) 3 i € I there is no Ocorrupt(U;) query
(M 14=m—-1and A={A}u A ={U,...,Up—1, A, Ubt1,...,Un}
(8) SHS.Handshake(A) returns “1”

Let AdvRIAsks, 4(1%) = Pr[RIAsns, 4(1%) returns “1”], which is the probability that the experiment RlAsus, 4(1%) returns “17,
where the probability is taken over the coins used for selecting the cryptographic parameters, the coins used by the oracles,
and the coins used by the adversary. A secret handshake scheme SHS is “resistant to impersonation attacks” if for V.A,
AdvRIAsHs, 4(17) is negligible in .

Resistance to detection: no adversary A ¢ G can tell it is interacting with an honest user U € G or a simulator. The remains
to be true even if A plays the roles of multiple participants. Formally, consider the following game or experiment.

Experiment RDAshs, 4(17):
bit €r {0,1}
(gA7 A = {Uil}ieﬂyB _ {bh » .,bg},stateinfo) — AOCG(‘)aOAM('7')7ORU(‘a')aoUpda,tcanHS('v')vOTU(')7OCorrupt('7')(1”)
where |A'| =m — ¢ >0 and A’ C G for G managed by GA
set A=A"U {.A} = {Ul, ey Ublfl,.A7 Ub1+1, ey szfl,A, Ubg+17 ceey Um}
if bit == 0 execute SHS.Handshake(U1,...,Us,—1, A, U, 41, ..., Upy—1, A, Up,41, ..., Um)
else execute SHS.Handshake(SIMy, ... ,SIMy, —1, A, SIMy, 41,...,SIMp,—1,A,SIMy, 11, ...,SIMy,)
where the SIM;’s are simulators
bit’ «— AOCG(‘)voAM('v')vORU(‘7‘)’OUpdateOvOHS('v')vOTU(')vOCorrupt(‘v‘)(Stateinfo)

Return “1” if the following hold and “0” otherwise

13



(1) there is no Ocorrupt(G.A) query

(2) if there is an Oan(GA, X € U) query, then there is also an Ory(GA, X) query
(3) if there is an Ocorrupt(GA, X € U) query, then there is also an Ory(GA, X) query
(4) V i € I: there is no Oru(GA, U;) query

(5) bit == bit’

Let AdvRDAsHs, 4(k) = | Pr[RDAshs, 4 (k) returns “1” |bit = 1]—Pr[RDAshs, 4 (k) returns “17|bit = 0|. A scheme SHS is “resistant
to detection” if for V.4, AdvRDAsHs(A) is negligible in .

Full-unlinkability: no adversary A is able to associate two handshakes involving a same honest user U € G, even if A € G
and A participated in both executions and U has indeed been corrupt. Of course, the adversary is assumed not to reside on
any corrupt machine. The remains to be true even if A plays the roles of multiple participants. Formally, consider the following
experiment.

Experiment Unlinksps, 4 (17):

bit €r {0,1}
(Ao = {U1, ..., Ung }, stateinfop) — ACCE():0an (1,015 () OR0 (). OCorrupe () (17)
(A ={Ui,..., UT’n1 }, stateinfo;) « AOCG(‘)aOAM('7')7OHS('1'>aORU('7')7OCorrupt('ﬂ')(Stateinfoo)

if bit == 0 then execute
Handshake({Ul, ey Ui717 U»;, UZ‘+1, Umo}) and
Handshake({U1,...,U;_1,U;,Ujy1,...,Upn, })
else execute
Handshake({Ul, ey Ui717 SlM7 Ui+17 Umo}) and
Handshake({U7,...,U;_1,SIM, U}, y,..., UL, })
Return “1” if the following hold and “0” otherwise:
(1) bit’ « ACcc():0an ().0ns().OrU (+):OC0orrupe () (stateinfoo, stateinfor )
(2) VU € Ag: there is no Oru(GA,U) query
where GA is the group authority of the group to which U belongs
(3) YU’ € Aq: there is no Opy(GA',U’) query
where GA’ is the group authority of the group to which U’ belongs

() Ui = U]
(5) there is no Oan(GA,U;) query
(6) bit == bit’

Let AdvUnlinksns, 4(1%) = | Pr[Unlinksns, 4 (1%) returns “17|bit = 1] — Pr[Unlinksps,4(1%) returns “17|bit = 0]|, where the proba-
bility is taken over all tossed coins. A scheme SHS is “fully-unlinkable” if for V.4, AdvUnlinksus, 4(17) is negligible in &.

Unlinkability: no adversary A is able to associate two handshakes involving a same honest user U € G, even if A € G and
A participated in both executions. Of course, there should be at least two uncorrupt machines; otherwise, the adversary could
trivially deduce that the two executions involve the same honest member. The remains to be true even if A plays the roles of
multiple participants. Formally, consider the following experiment.

Experiment Unlinksns, 4 (17%):

bit €r {0,1}
(Ao = {Un,...,Upm,},stateinfoy) — AOCG(‘):OAM('v')7OHS(':‘)’ORU('ﬁ')’OCorrupt('a')(1"‘9)
(Ar = {Ui,...,U},, },stateinfo;) « AC06():Oan(-).0ms().Oru (). Ocorrupt () (stateinfoo )

if bit == 0 then execute
Handshake({Ux,...,U;—1, Ui, Uit1,Unm, }) and
Handshake({U1,...,U;_1, U}, Uj41,. .., Un, })
else execute
Handshake({U1,...,U;—1,SIM, U 41, Unm, }) and
Handshake({U7,...,U;_1,SIM, U} 1,..., Ul )
Return “1” if the following hold and “0” otherwise:
(1) bit’ — AOCG(')vOAZ\l('a')vOHS('v')vORU('v')vOCorrupt('v')(stateinf007Stateinfol)
(2) YU € Aop: there is no Oru(GA,U) query
where GA is the group authority of the group to which U belongs
(3) VU’ € Aq: there is no Ory(GA',U’) query
where GA’ is the group authority of the group to which U’ belongs
4) U; = U;
) there is no Oanm(GA, U;) query
) there is no OCorrupt (gA7 Ul) query
) 3V # U;: V belongs to the group managed by GA and there is neither Ocorrupt(GA, V) nor Oan(GA, V) query
) bit == bit’

(
(5
(6
(7
(8

14



Let AdvUnlinksns, 4(1%) = | Pr[Unlinksns, 4 (1%) returns “1”|bit = 1] — Pr[Unlinksns,4(17) returns “17|bit = 0]|, where the proba-
bility is taken over all tossed coins. A scheme SHS is “unlinkable” if for V.A, AdvUnlinksnhs, 4(1%) is negligible in .

Indistinguishability to eavesdroppers: no adversary A who does not participate in a handshake protocol can tell a suc-
cessful handshake between {Ui,...,Un} from an unsuccessful one, even if A € G. Formally, consider the following experiment.

Experiment INDeavspys, 4(17):
bit €r {0,1}
(GA, A ={Ui,...,Un},statelnfo) — AOCG(')7OAJVI(':')aOHS('v')voRU('a')aoCorrupt('v')(1"1)
if bit == 0 then execute SHS.Handshake(Uy,...,Un)
else execute SHS.Handshake(SIM, . .., SIM) where SIM is a simulator
bit’ «— AOCG(‘)voAJ\l('v')vOHS(‘v‘)vORU('v')vOCorrupt(‘v‘)(stateinfo)
Return “1” if the following hold and “0” otherwise:
(1) bit == bit’
(2) YU € A, there is no Ory(GA,U) query
(3) there is no Ocorrupt(GA, T) query
(4) if there is an Oan(GA, X) query, then X ¢ A query

Let AdvINDeavsns, 4 = | Pr[INDeavsus, 4(17) returns “1”] — 1/2|, where the probability is taken over all flipped coins. A scheme
SHS is “indistinguishable to eavesdroppers” if for V.A, AdvINDeavsus(.A) is negligible in .

Traceability: G.A can trace all users involved in a given handshake session, as long as one of them is honest. Formally, consider
the following experiment.

Experiment TraceUsersys, 4(1%):

(GA, A = {Ui,...,Up}, statelnfo) — AOCG(')vOAAI<'v‘>vORU('v')vOUpdate()vOHS('v')vOTU(‘)vOCoTrupt(‘!‘)(1”)
where A C G for G managed by GA

execute Handshake(Uy, . ..,Uy) to obtain a transcript 7

Return “1” if the following hold and “0” otherwise
(1) there is 10 Ocorrupt (GA, T) query
(2) there exists U € A such that AOcorrupt(GA,U) or AOam(GA,U)
(3) A’ « TraceUser(1)
(4) A"\NA#£D

Let AdvTraceUsersys, 4 = | Pr[TraceUsersys, 4 (17) returns “1”|, where the probability is taken over the choice of the cryptographic
context, and the coins used in the experiment. A scheme SHS achieves “traceability” if for V.A, AdvTraceUsersus, 4 is negligible
in K.

No-misattribution: no participant, no coalition of malicious parties (including any number of group members and the GA) is
able to frame an honest member as being involved in a secret database. Formally, consider the following experiment.

Experiment Misattributionsps, 4(17):

(GA, A= {Us,...,Upn}) — AOCG(‘)voAIVI('v')vORU<‘v‘):OUpdateOvoHS('a')voTU(')vOCorrupt('v'>(1“)
where A C G for G managed by GA

execute Handshake(Uy, . ..,Uy) to obtain a transcript 7

Return “1” if the following hold and “0” otherwise
(1) A" « TraceUser(1)
2)UeA \A
(3) there is no Ocorrupt(U) or Oan(GA,U) query

Let AdvMisattributionsnys, 4 = | Pr[Misattributionsus, 4 (1) returns “17|, where the probability is taken over the choice of the cryp-
tographic context, and the coins used in the experiment. A scheme SHS achieves “No-misattribution” if for V.4, Misattributionsps, 4
is negligible in &.

Self-distinction: if more than 2 parties are involved in a handshake, each participant is ensured that all other participants
are different. Formally, consider the following experiment.

Experiment SelfDistsps, 4 (17):

(Q.A, A= {Ul, .,Um}) - AOCG<‘>aoAM(‘7‘)vORU(‘a‘)vOUpdateanHS(‘v‘)vOTU(')vOCorrupt('v'>(1“)
where A C G for G managed by GA

execute Handshake(U, . ..,Uy) to obtain a transcript 7

A« TraceUser(7)

Return “1” if the following holds and “0” otherwise
(1) there is no OCormpt (gAy T) query
(2) AU € A s.t. there is no Ocorrupt (GA, U) query
(3) 141 < |4

15



Let AdvSelfDistsps, 4(1%) = | Pr[SelfDistsus, 4 (1) returns “1”|, where the probability is taken over the choice of the cryptographic
context, and the coins used in the experiment. A scheme SHS achieves “self-distinction” if for V.A, AdvSelfDistsnys, 4 (1) is
negligible in k.

B Security Properties of Group Signature Schemes

In this paper, we follow the definitions presented in [4,7,23,22] which include the following properties: full-traceability,
full-anonymity, anonymity, and no-misattribution. In order to meaningfully specify the security properties, we first consider
the oracles an adversary is allowed to have access to.

— Ogetup(1™): activate GM to execute GSIG.Setup on security parameter 1.

— OJoin(U): result in a user U becoming a member of the group.

— ORevoke(U): result in the membership of U being revoked.

— Oupdate(): result in the non-revoked members updating their system state information.

— Ogign(M): activate a group member U to sign a message M by executing the Sign algorithm.

— Oopen(0): activate the group manager GM to execute the Open algorithm on signature o.

— Ocorrupt(U): return U’s private information.

— Ocorrupt(GM, L): return GM’s private information used to admit group members (i.e., the secrets used to issue membership
certificates).

— Ocorrupt(GM, T): return GM’s private information used to Open group signatures (i.e., the secrets used to revoke anonymity).

Remark. First, a user or (part of) a group manager may be corrupted before becoming part of a group signature scheme. This
is captured by allowing an adversary to immediately corrupt an entity after its initialization such as being admitted as a group
member. Second, we differentiate the case that an adversary corrupts a group manager’s capability for admitting members from
the case that an adversary corrupts a group manager’s capability for opening group signatures. This reflects the good practice
that one server is responsible for admitting members, and another is responsible for opening group signatures.

Full-traceability: any group signature can be traced back to its actual signer. Formally, consider the following game or
experiment.

Experiment FullTracecsig, 4 (1)
(Pkga, skga) — Setup(1™)
(M, U) - AoJoin(')vOSign('V)vOOpen(')vOCorrupt(')vOCoTTupt<ngT)()
Return “1” if
(1) Verify(M, o) returns TRUE
(2) A= {U" €D | 3 Octorrup (U")}
(3) U « Open(pkga, skgam, M, o)
4Uu¢gA

A group signature scheme fulfills full-traceability if V.A, Pr[FullTracegsig, 4 (1) returns “1”] is negligible in &.
Full-anonymity: no adversary can identify the actual signer of a group signature, even if the actual signer’s secret has been

compromised. Formally, consider the following game or experiment.

Experiment FullAnongsig,.4(1%)
(pkgM, Sk‘gM) — Setup(l“)

ber{0,1}
(Up € ID, U, € ID, M, stateinfo) «— AoJom('),OSign(‘v%oopen(‘),Ocmv-upt(‘)7Ocow-mpt(gM7i)(1'4)
Return “1” if

(1) o < Sign(pkga, pku,, sku,, M)
2) ' (_AOJOML(')vosign<'1'>VOOpen(')7©Co7‘rupt(')vOCoTTupt<ngJ-)(Stateinfo)7

(2)
(3) there is no Oopen (o) query
v =0

A group signature scheme fulfills full-anonymity if |Pr [FullAnongsig,4(1%) returns “1”] — 1/2| is negligible in «.

Anonymity: no adversary can identify the actual signer of a group signature, as long as the actual signer’s secret has not been

compromised. Formally, consider the following game or experiment.

Experiment Anongsig, 4(1%)
(Pkgm; skga) + Setup(1”)

ber {0, 1}
(Uo € ID, U, € ID, M, stateinfo) - AOJoin<‘>1OSign('v')vOOpen<‘>7OCOT7‘upt(')7OCorrupt(gM7J-)(1’{)
Return “1” if

16



(1) o < Sign(pkgam, pku,, sku, , M)
(2) b — AOJoin(')vOSign('V)vo();nen(')voCo'rTu]Jt(')vOCorrupt<ngJ-)(Stateinfo)7
(3) there is no Oopen (o) query
(4) there is 10 Ocorrupt(Uo) or Ocorrupt(U1) query
(B)v =0
A group signature scheme fulfills anonymity if |Pr [Anongsig,.4(1%) returns “1”] — 1/2| is negligible in .

No-misattribution: a compromised group manager cannot misattribute a group signature to an honest group member. Formally,
consider the following game or experiment.

Experiment NoMisAttriGgG,A(l“)
(Pkgm; skga) + Setup(1”)
(M,U €D, o) «— Aolloin(')1OSign('a')aoOpen(')10007'7'upt(')aOCo'r'rupt(gM,l)ﬁoCoT"r'upt(gM,T)(1)€)
Return “1” if
(1) o is returned by Osign (U, M)
(2) there is 10 Ocorrupt(U) query
(3) U «— Open(pkgm, skgam, M, o)

A group signature scheme fulfills no-misattribution if Pr[NoMisAttrigsic,.4(1") returns “17] is negligible in x.

C Security Properties of Centralized Key Distribution Schemes

We consider an adversary that has complete control over all the communications in the network. To simplify the definition, we
assume that the group controller is never compromised.

We adopt the notion of security in the so-called active outside attack model introduced in [34], because it provides the
desired security assurance. In this adversarial model, an adversary’s interaction with principals in the network is modeled by
allowing it to have access to (some of) the following oracles:

— Osenal(U,t, M, action): Send a message M to U’ € {GC} UID at time ¢ > 0, and output its reply, where action €
{Setup, Join, Leave, Rekey} meaning that U’ will execute according to the corresponding protocol, and M specifies the
needed information for executing the protocol. Of course, the query of type Setup is only made at time ¢ = 0.

— OReveal (U, t): Output group key held by U € AW at time ¢, namely k.

— OCorrupt (U, t): Output the keys held by U € A® at time ¢, namely K;Jt).

— Orest(U, t): This oracle may be queried only once, at any time during the adversary’s execution. A random bit b is generated:
if b = 1 the adversary is given kg) where U € A(t>, and if b = 0 the adversary is given a random key of length |k§]t) |

Definition 4. (security) Intuitively, it means that an adversary learns no information about a group key if, with respect
to the rekeying event of interest there is no corrupt legitimate member (this implicitly implies that all the previously corrupt
members have been revoked). Formally, consider the following event Succ:

(1) The adversary queries the Orest(U,t) oracle with accg) = TRUE, and correctly guesses the bit b used by the Orest(U,t)
oracle in answering this query.

(2) There is 10 Ogeveal(V, t) query for any V € AW (Otherwise, the group key is trivially compromised.)

(3) If there was any Ocorrupt(V,t1) query where t1 < ¢, then there must have been an Ogend(GC, t2,V, Leave) query where
t1 < ta < t. This captures that the corrupt members must have been revoked before the rekeying message at time ¢.

(4) There is 10 Ocorrupt (V, t3) query for t3 =t and V € A®). (This does not rule out that there could be some Oc oprupt (V; t3)
query for t3 > t.)

The advantage of the adversary A in attacking the group communication scheme is defined as Adv.a(k) = |2 - Pr[Succ] — 1],
where Pr[Succ] is the probability that the event Succ occurs, and the probability is taken over the coins used by GC and by A.
We say a scheme is secure if for all probabilistic polynomial-time adversary A it holds that Adv.4 (k) is negligible in .

Instantiations: We note that the authenticated private channels can be implemented using standard cryptographic techniques —
this has been achieved in many specific schemes such as [33] — except for the following: an adversary observing the communication
channels may still be able to identify the membership of the non-compromised members. This can be resolved by letting the
group controller publish information over a broadcast channel, or post it on a bulletin board to which all the group members
can have anonymous access (e.g., via the standard MIX channels [15]). We stress that any centralized group key distribution
scheme satisfying the above functionality and security requirements, such as [33,32] with the enhancement presented in [34],
can be integrated into our secret handshake framework.

There is one other issue that needs to be addressed: we may need to ensure that the system update information published
by the group controller does not allow a passive adversary to discover the group identity, or even group dynamics. Although
this may not be a real concern for many secret handshake applications (since a compromised group member has to know the
identity of the group controller) we note that enhancement techniques suggested in [31] can be utilized to conceal the group
dynamics of many popular centralized key distribution schemes, including [33, 32].

We notice that the above discussions also apply to the stateless group communication schemes (e.g., [26]); we refer to [34]
for details.

17



D Security Properties of Distributed Group Key Agreement Schemes

We allow an adversary to have complete control over all the communications in the network. An adversary’s interaction with
the principals in the network (more specifically, with the various instances) is modeled by allowing it to have access to the
following oracles:

— Ogend(U, i, M): Send message M to instance IT};, and outputs the reply generated by this instance. Moreover, we even

allow the adversary to prompt the unused instances IT}; to initiate the protocol with partners Us,...,U, by calling
Osend(U, i, (U, ..., Un)).
— Ogzecute (Ui, . .., Un): Execute the protocol between unused instances of players Ui, ..., U, € ID and outputs the transcript

of the execution. The number of participants and their identities are chosen by the adversary.

— ORevear(U,7): Output session key ski;, where U € ID.

— Ocorrupt(U): Output the long-term secret LLKy of principal U € ID.

— Orest(U,1): This query is only allowed once, at any time during the adversary’s execution. A random bit b is generated; if
b =1 the adversary is given sk};, and if b = 0 the adversary is given a random session key.

Correctness. We require that for all U, U’, 4, j such that:
sidi; = sidli]/7 pidl('] = pid{]/andaccb = acch, = TRUE
to be the case that: ski; = sk{,, # null.

Security. Intuitively, an adversary that does not compromise any principals during the execution does not learn any information
about the new group session key. Formally, consider the following event Succ:

(1) The adversary queries Ores:(U,7) on instance IT}; for which accl; = TRUE and correctly guesses the bit b used by the oracle
in answering this query.

(2) For any IIf, such that pid}, = pid’,, and sid}; = sid},, there is 10 Ogrevear (U, 1) or Orevear(U’,i') query.

(3) No query Ocorrupt(U’) (with U’ € pid};) was asked before a query of the form Ogena(U’,4’,*). Note that, while (3) is not
necessary in general, it is required in some specific schemes.

The advantage of the adversary A attacking the scheme DGKA is defined as: Advpgka, a(1™) = |2 - Pr[Succ] — 1|, where Pr[Succ]
is the probability that the event Succ occurs. We say a distributed key agreement scheme DGKA is secure if, for any probabilistic
polynomial-time adversary A, Advpgka,a(17) is negligible in .

Instantiations: Any distributed group key agreement scheme satisfying the above requirements can be integrated into our
framework. Popular schemes include [11,30] and [10]. In particular, the scheme by Burmester and Desmedt [11] and its later
variant [21] are particularly efficient — each participant needs to compute a constant number of modular exponentiations.

E Proof Sketch for Theorem 1

Proof. (SKETCH) Correctness. When all m parties belong to the same group, the handshake always succeeds; otherwise, the
handshake succeeds only with a negligible probability (see resistance to impersonation below).

Resistance to impersonation. We observe that

Pr[RIAsks, 4 (1) returns “1”] = Pr[A provides a valid MAC tag A A provides a valid group signature]
< Pr[A provides a valid MAC tag]
< Pr[A knows the MAC key] +
Pr[A provides a valid MAC tag|.A doesn’t know the MAC key].

Suppose A breaks the resistance to impersonation property. This means that Pr[SHS.Handshake(A) returns “17] is non-
negligible, and thus that either Pr[A knows the MAC key] or Pr[A provides a valid MAC tag|.A doesn’t know the MAC key] is
non-negligible.

If Pr[A knows the MAC key] is non-negligible, then we can construct a polynomial-time algorithm B to break the CGKD
scheme. Algorithm B operates as follows: It establish a simulated SHS environment as in the real-life system, except that the
challenge CGKD environment is associated with a group G that is chosen uniformly at random, and B maintains the DGKA and
GSIG with respect to G by itself. The simulated SHS environment operates exactly the same as in the real life system, except
the following: Whenever A makes a query to the SHS environment with respect to group G, if the query cannot be answered by
B based on its information regarding the DGKA and GSIG with respect to GG, B makes the same queries to the challenge CGKD
environment. Clearly, the simulated SHS environment is perfectly the same as in a real-life system. Since A has a non-negligible
probability in learning a MAC key corresponding to group G, so is BB because B also participates in DGKA.GroupKeyAgreement.
The fact that A does not corrupt any member when the MAC key is valid implies that B does not corrupt any member. Assuming

18



the existence of polynomially many groups, we conclude that B breaks the challenge CGKD environment with non-negligible
probability.

If Pr[A provides a valid MAC tag|.A doesn’t know the MAC key] is non-negligible, then we can construct a polynomial-time
algorithm B to break the MAC scheme. Algorithm B operates as follows: It establish a simulated SHS environment as in the
real-life system, except that the challenge MAC scheme and an oracle scheme CGKD are associated with a group G that is
chosen uniformly at random, and B maintains the DGKA and GSIG with respect to G by itself. The simulated SHS environment
operates exactly the same as in the real life system, except the following: Whenever A makes a query to the SHS environment
with respect to group G, if the query cannot be answered by B based on its information regarding the DGKA and GSIG with
respect to GG, B makes the same queries to the challenge MAC scheme or the oracle CGKD environment. Clearly, the simulated
SHS environment is perfectly the same as in a real-life system. Since A has a non-negligible probability in forging, perhaps after
seeing valid tags via B by having oracle access to the MAC scheme, a MAC tag corresponding to a key that is unknown to A
(and thus unknown to B), the forgery is also a successful attack by B. Conditioned on the fact that there are polynomial many
groups and there are polynomial many instances of SHS.Handshake, we conclude that B breaks the challenge MAC scheme with
a non-negligible probability.

Resistance to detection. We notice that we already proved that Pr[RDAsus, 4(17) returns “1”|bit = 0] is negligible. Therefore,
if AdvRDAGsHs, 4 is non-negligible, then Pr[RDAsns, 4 (1) returns “1”|bit = 1] is non-negligible. If this probability is non-negligible,
then we can construct a simulator B to break the MAC scheme.® Algorithm B operates as follows: It establish a simulated SHS
environment as in the real-life system. Note that B has access to a challenge MAC environment. The simulated SHS environment
operates exactly the same as in the real life system, except the following: When A incurs the RDAsps, 4, BB chooses a party U’ € A’
uniformly at random and provides its MAC tag via oracle query to the challenge MAC environment; for any other U € A"\ {U’},
B also feeds with MAC tags via oracle query to the challenge MAC environment. If A outputs a valid MAC tag with respect to
the MAC tag of U’, then this is also a successful forgery of B against the challenge MAC scheme; otherwise, B fails. Conditioned
on the fact that |A’| is polynomially bounded, B breaks the challenge MAC scheme with a non-negligible probability.

Full-unlinkability. Suppose an adversary can link two handshake sessions involving a same honest party. Without loss of
generality, we assume that both sessions involve the same malicious party. There are two cases:

— CASE 1: Both sessions are successful handshakes. First, recall that no information in the transcript, except 6;, contains
any information specific to the identity of the honest party. If the adversary can assert that the same party is involved in
the two instances, then we claim that full-anonymity of GSIG is violated. This is so because the adversary’s decision can
only be based upon the two group signatures produced by the same party. Specifically, we can construct a polynomial-time
algorithm B, which simulates the SHS environment as in the real life, except that B only has oracle access to a challenge
group signature scheme GSIG. Whenever A makes a query to the SHS environment, if the query cannot be answered by B
based on its information regarding the CGKD and DGKA, B makes the same queries to the challenge GSIG scheme. Clearly,
the simulated SHS environment is perfectly the same as in a real-life system. Finally, when A outputs the two handshake
sessions involving the same person, B decrypt the corresponding €’s and output the pair of group signatures.

— CASE 2: At least one of them is an unsuccessful handshake. This is impossible since, in Phase Il of the unsuccessful session,
the honest party’s output is wholely based on random simulations (i.e., independent of the honest party’s secrets).

Indistinguishability to eavesdroppers. The only difference in the adversary’s view is whether {(6;,d;)}1<i<m are “real” or
random, where §; is the symmetric encryption of group signature o; under the key k} = kI @ k; and 0; is the encryption of k}
under GA’s public key pkr. (Note that this is indeed the so-called hybrid encryption). We observe that

Pr[INDeavshs, 4 (1) returns “1”]
= Pr[A knows k; V A can distinguish encryption of group signature]
< Pr[A knows k;] 4+ Pr[A can distinguish encryption of group signature]

We claim that Pr[A knows kj] is negligible; otherwise, such an adversary can immediately break the above proved resistance
to detection. If Pr[AdvINDeavsys 4(1") returns “1”] is negligible, so is Pr[A can distinguish encryption of group signature],
which is the probability that A can tell the encryption of a valid group signature (A knows the group public key in the worst
case) from the encryption of a random string, even if A does not have any information about skr or k;. This immediately
reduce to the security of the hybrid encryption scheme, namely that we can construct another polynomial-time algorithm to
break either a challenge public key cryptosystem (with respect to T') or a challenge symmetric key cryptosystem (with respect
to kj).

Traceability. As long as the transcript includes the encryption of a valid session key k" under the GA’s public key pkr, GA can
always recover k’. As a result, given any pair (6;,d;), GA is also able to recover the encrypted group signature, and therefore the
identify of the actual signer. If there is a valid group signature that cannot be opened, then full-traceability with respect
to GSIG is broken.

 We notice that here it is reinforced why we need the newly introduced strong security property of [34]; otherwise, an adversary
could obtain the past group key and thus tell whether a handshake it participated involves some legitimate members.

19



Specifically, we construct an algorithm B that simulates the SHS environment by having oracle access to a challenge group
signature scheme GSIG. The execution of SHS is exactly the same as in a real-life system, except that whenever A presents a
query against the GSIG, the query is forwarded by B to the challenge GSIG environment. Clearly, AdvTraceUsersys, 4 is non-
negligible means that A can provide a group signature in the TraceUsersys 4 experiment such that the signer is an innocent
legitimate member. This is B’s successful attack against the challenge GSIG environment.

No-misattribution. If an adversary can frame an honest member (link to a handshake instance) we claim that no-misattribution
of group signature scheme is violated. Specifically, we construct an algorithm B which simulates a SHS environment by having
oracle access to a challenge GSIG scheme. The simulated SHS environment executes exactly as in a real system, except that
an oracle query provided by A (which cannot be directly answered by B) is answered after B forwards the same query to the
challenge GSIG environment. In particular, the group manager in the challenge GSIG environment can be corrupted. Clearly, if
AdvMisattributionsus, 4 is non-negligible, then B violates no-misattribution of the challenge GSIG environment with the same
probability.

F Proof Sketch for Theorem 2

Proof. (SKETCH) The proof is the same as in the proof of Theorem 1, except for the proof of property unlinkability. So we
only focus on it.

Unlinkability. This property needs to be proved from scratch because the underlying group signature scheme only possesses
anonymity rather than full-anonymity. Suppose an adversary can link two handshake sessions involving a same honest party.
Without loss of generality, we assume that both sessions involve the same malicious party. There are two cases:

— CASE 1: Both sessions are successful handshakes. First, recall that no information in the transcript, except 6;, contains
any information specific to the identity of the honest party. If the adversary can assert that the same party is involved
in the two instances, then we claim that anonymity of GSIG is violated. This is so because the adversary’s decision can
only be based upon the two group signatures produced by the same party. Specifically, we can construct a polynomial-time
algorithm B, which simulates the SHS environment as in the real life, except that B only has oracle access to a challenge
group signature scheme GSIG. Whenever A makes a query to the SHS environment, if the query cannot be answered by B
based on its information regarding the CGKD and DGKA, B makes the same queries to the challenge GSIG scheme. Clearly,
the simulated SHS environment is perfectly the same as in a real-life system. Finally, when A outputs the two handshake
sessions involving the same person, B decrypt the corresponding €’s and output the pair of group signatures.

— CASE 2: At least one of them is an unsuccessful handshake. This is impossible since, in Phase Il of the unsuccessful session,
the honest party’s output is wholely based on random simulations (i.e., independent of the honest party’s secrets).

G  Proof Sketch for Theorem 3

Proof. (SKETCH) The proof is the same as in the proof of Theorem 2, except that we further achieve self-distinction. So
we only focus on it.

Self-distinction. We observe that 7% is the base common to all the participating parties and Tg = T7m/, where 7’ is a
member’s secret. Suppose AdvSelfDistsys, 4 is non-negligible, then A must be able to provide two group signatures with different
z'’s. Without loss of generality, suppose A knows (A4, e, x,z’) such that A° = aoa®b® . Denote by X the event that A holds
(A,e,x,2') and (A, e, xa,xy) such that A° = apa®b® = (A4)° = apa®™Ab*A. Note that

Pr[SelfDistsns, 4 (1) returns “1”]
= Pr[SelfDistsns, 4 (1) returns “1”|X] - Pr[X] + Pr[SelfDistsps, 4 (1) returns “1”|-X] - Pr[-X]
< Pr[X] + Pr[SelfDistsps, a(17) returns “1”|-X]

Since Pr[SelfDistsys, 4 (1) returns “1”] is non-negligible, so is Pr[X] or Pr[SelfDistsns, 4 (17) returns “1”7|-X]. We claim that the
full-traceability of the GSIG scheme is broken.

Specifically, we construct an algorithm B, which simulates a SHS environment by having oracle access to a challenge GSIG
scheme. The simulated SHS environment execute exactly the same as in a real-life system, except that an oracle query provided
by A, which cannot be directly answered by B, is answered after B forwards the same query to the challenge GSIG environment.
Note that the group manager in the challenge GSIG environment is never corrupted. Therefore, if A can provide two group
signatures with A¢ = apa®b* = (A4)¢ = apa®™ b‘"”:‘i, B breaks the full-traceability of the challenge GSIG environment.

H Overview of the Kiayias/Yung Group Signature Scheme

For completeness, we now briefly overview the signature scheme of [22], which is an extension of the [1] group signature scheme.
We summarize the parameters as:

20



Two primes p’, ¢’ with p = 2p’ + 1, ¢ = 2¢’ + 1 also primes. The modulus is set to n = pgq.

The group manager selects a, ag, b, g, h €r QR(n).

— The group manager secret key is set to p,q,0 €Er Zy/y .

— The system public key is n, a, ao, b, y, g, h, where y = ¢ mod n.

— A member’s private key is (4,e,z,x’) such that A® = aoazbz, mod n, where e is an appropriate prime number, z is
an appropriate random number known also to the member, and z’ is an appropriate random number known only to the
member.

In order to sign a message, a group member computes:
r T eyr zk k = k' 4
Th=Ay", Th=g,T3=gh, Ta=g", Ts =9 ,Ts=g" ", Tr=g

where r, k, k" are randomly selected from an appropriate interval. The signature is derived from the following proof of knowledge
of appropriate z,z’,e,r, h':

Ty=g", Ts=g°h', Ts = g", TS =Ty, T¥ =Ts, aoa®b" y" = Tf.

Notice that (71,7>) allows the group manager to open a group signature because of A, (T4, T5) allows one who knows x to
trace the member’s signatures, and (7, 7%7) allows one to claim its signatures.

21



