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Abstract. Recent work has focused on removing explicit network identifiers
(such as MAC addresses) from the wireless link layer to protect uggvscy.
However, despite comprehensive proposals to conceal all informaticoded in
the bits of the headers and payloads of network packets, we find thatghsfior-
ward attack on a physical layer property yields information that aids inrifd-p

ing of users. In this paper, a statistical technique is developed to assegiate
less packets with their respective transmitters solely using the signaltsisesfg
overheard packets. Through experiments conducted in a real inéfaear build-

ing environment, we demonstrate that packets with no explicit identifierbean
grouped together by their respective transmitters with high accuracyhékfe
show that this technique is sufficiently accurate to allow an adversary thucon

a variety of complex traffic analysis attacks. As an example, we denabastrat
one type of traffic analysis—a website fingerprinting attack—can be ssftdly
implemented after packets have been associated with their transmitteiy, Fina
we propose and evaluate techniques that can introduce noise into thereseas
ments of such physical layer phenomena to obfuscate the identifi@readl&om
them.

1 Introduction

The inherent broadcast nature of wireless communicatiapled with widespread
availability of commodity receivers and little regulationthe industrial, scientific, and
medical (ISM) radio bands poses a significant privacy cantmrusers of 802.11 tech-
nology. The threat is that third parties who eavesdrop onnconications may profile
users by their actions and track their movements. For ex@ngpen when message
confidentiality is provided by mechanisms such as WEP or WRAlitional 802.11
packets reveal every user’s identifying MAC address, wieicables any third party to
monitor or track other users in the network. Given an expMAC address identifier,
it is trivial to associate packets with their transmittireyite.

However, even without explicit network identifiers, it haseln demonstrated that
otherimplicitly identifyinginformation can be used to profile and possibly track usérs [1
For example, suppose that a user predictably visits a seebpages on a regular ba-
sis. Such browsing habits can be used to construct an iglegtiprofile for that user.



This type of identifying information is defined as anplicit identifier. In this paper,
we present a technique that constructs implicit identifiesieg information obtained
from the physical layer in combination with more traditibtraffic analysis methods.
We show that such identifiers can be constructed even whén aftdhe art privacy
protections are applied.

Motivation: An Identifier-Free Link Layer. To eliminate the transmission of implic-
itly and explicitly identifying information at the link lasr, recent work has focused
on providing identifier-free link layer protocols that ob@ate all transmitted bits to
increase privacy with respect to third party eavesdropf+d]. By concealing fields
such as addresses, these protocols greatly increase fibelgiffor unintended recipi-
ents to associate sequences of packets to their sourcestoratiens. Thus, to a large
extent, they defend against attacks such as location trgekid traffic analysis that re-
quire correlating sequences of packets. While previous Wwaskbeen limited in scope
to addressing the removal of identifiers from the link layee, demonstrate that there
exists a significant amount of identifying information prased within the properties
of the wireless physical layer.

Reconstructing Packet Sequences Using Physical Layer Infoation. Our goal is
to develop a method to classify packets by their transmitten information revealed
by the physical layer. When only a single device is active aadsmitting in a wire-
less network, it is trivial to associate the transmittedqets with that device. However,
when several devices are active, their transmissions camdeaved or mixed, thus
making it difficult to separate sequences by their sourcesrder to implicitly identify
devices using traffic analysis techniques, it is necesgaigdiate and group the se-
quences of packets transmitted by each device. We presgrierment, and evaluate a
statistical technique to associate packets with theireesge sources when multiple de-
vices are transmitting simultaneously. This method radigy on information provided
by the physical layer and, thus, it is effective even whenlicit@and explicit identifiers
are removed from the link layer. Our approach is based orrdetp the strength of
received signals from several locations and applying a®iimgy algorithm to classify
the packets by transmitting device. The method is practsate it utilizes commod-
ity hardware and requires no training or cooperation fromwlireless devices in the
network.

While our approach will determine which packets originatetha same source, it
won'’t identify sources by name. However, we demonstratedbapacket grouping is
accurate enough to enable complex traffic analysis attadkish use features such as
packet timings and sizes, that reveal more about who theisiseid what he is doing.
Examples of the types of information that can be inferredulh traffic analysis attacks
include videos watched [5], passwords typed [6], web pagmsed [7, 8], languages
and phrases spoken [9], and applications run [10]. While driese traffic analysis
methods can be applied, we show that the reconstructedtmeakeences that we derive
can be used to perform a practical website fingerprintiractivith a high enough level
of success for wireless users to be concerned.

Experimental Validation. In order to demonstrate the efficacy of our method, we
evaluate our technique by conducting experiments in a nelar office building en-
vironment. A set of passive listening sensors are deployedsignal strength read-



ings are collected for wireless transmitters scatteresliginout the building. We apply
our packet clustering technique, which uses straight-dodnstatistical methods, and
the results show that packets are correctly correlatedeio ttansmitting devices with
71%—-85% accuracy, depending on the number of transmittéheinetwork. We eval-
uate how these reconstructed sequences of packets cand®yserform a website
fingerprinting traffic analysis attack, as in [7, 8]. Our éswulemonstrate that we can
fingerprint a website with 41%-55% accuracy using the recocted sequences of
packets. As more sophisticated clustering approachescsshbe, we consider these
results as an establishment of a lower bound on attainableaxy.

Obscuring Physical-Layer Information. Finally, we explore two unique methods to
mitigate the effectiveness of using the physical layer &oemite packets to transmit-
ters. Both of these methods introduce additional noise szfe the properties of the
physical layer. The first method is for the transmitter tad@mly vary the power level
at which it sends packets. The second is to use a directionahiaa and change the
antenna’s orientation while transmitting. Both of thesehtéques show promise; we
demonstrate that both the packet clustering accuracy affettanalysis accuracy are
degraded in the presence of devices that either vary tlagisinit power level or utilize
a directional antenna.

Outline. The remainder of this paper is organized as follows: In $aci, we discuss
our threat model and in Section 3, we provide a brief dedonpf wireless physical-
layer properties and present our method at a high leveliddedt describes the ex-
perimental validation with which we demonstrate the effectess of our technique.
Section 5 presents our approach to traffic analysis and thétseof the website fin-
gerprinting attacks on packets that have been clusteredirge device. Preliminary
solutions are evaluated in Section 6. Finally, avenues wiréuwork and concluding
remarks are provided in Section 7.

2 Threat Model

The primary goal of this attack is to passively and accuyatefrelate packets to their
transmitting device using only information revealed by Wieeless physical layer. We
assume that messages are sent using an identifier-freajiak eliminating an eaves-
dropper’s ability to associate messages to devices usiplic#xdentifiers such as a
MAC address or other implicit information leaked at the liajer. It is trivial to corre-
late packets when it is known that only a single device isvadi any particular time.
However, we assume a more common situation in which sevesates may trans-
mit at arbitrary times, possibly with interspersed trarssiuns. Analyses of wireless
traces have shown that there are often many simultaneoctshg aevices at tight time
scales [3].

Attack. Even when identifiers are removed from the link layer, it isgible to label
packets by their sources using only the implicit charasties of the physical layer. An
eavesdropper can use the sequence of packets associdtedoaiticular device to per-
form more complex traffic analysis attacks, even if the pteciee encrypted. The attack
is completely passive and users can be subjected to thikattthout their knowledge.



In addition, this technique requires only commodity hardmand no resource-intensive
training.

Having accurately grouped packets by their transmittingadg an adversary can
perform traffic analysis attacks. The effectiveness ofdtatacks is dependent on an
adversary’s ability to associate packets sent to theire@sge transmitting devices.
We assume that the adversary performs a traffic analysickatta packets observed
during a short time period, as wireless users are more liteelgave the network as
time progresses.

Adversary. The adversary places several commodity 802.11 wireles®seim chosen

positions around a target location (such as a building)o Alse attacker has the ability
to estimate how many devices are present in the area. Thibeachieved through
visual inspection, an automated machine vision method, refiable estimate of the
expected number of devices.

Victims. The victims use a standard 802.11 wireless device to conatmusing an

identifier-free link layer protocol, and transmit at a camtpower level. Also, the user
is using an application, such as a web browser, that is valiherto traffic analysis

attacks. Users remain stationary while they transmit, beitfiiee to move when their
transmitters are silent.

3 Packet Source Classification

Background and Intuition. Our packet association technique uses information leaked
solely at the physical layer. When a commodity 802.11 wietssd receives a packet,
it records the signal strength of the received packet asedvest signal strength indica-
tion (RSSI) value. In a simplified signal propagation modeigeless signals fade with
distance as they propagate over physical space. Thus, tBevBiBes roughly correlate
with the distance between the transmitter and receives M@ans that the same trans-
mission will be received at different RSSI levels dependingthe distance between
the transmitter and receiver. Using these RSSI values, we $hat it is possible to
passively identify the device that transmitted a particakt of packets.

However, several factors affect a packet’s RSSI value ihwead environments,
which makes accurately associating packets to their tratisgndevices using physi-
cal layer information a very challenging task. From the pecsive of the receiver, the
RSSI values of different packets from the same transmiftenwary over time due to
unobservable factors such as multipathing, interfererara bther devices, and unpre-
dictable fading [11]. A robust packet association methathoa assume a static envi-
ronment. Hence, our technique uses statistical methodsistec packets to their true
transmitting device. In practice, we find it necessary taobmultiple RSSI readings
from several spatially disparate sensors for accurateitilzetion. This is due both to
inherent ambiguity when using one sensor (transmissiam fwo different locations
might result in similar RSSI values when the transmissianpagate over roughly the
same distance) as well as to the high level of unpredictabiporal variability in RSSI
readings. Figure 1(a), for instance, shows the RSSI vae@sded from multiple pack-
ets sent over time from five distinct transmitting devicelspge corresponding physical
locations are given in Figure 1(b). While the values are sinidr each device, there is
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Fig. 1—A visualization of the RSSI values from five transmitters at different locatidhe. packets are color coded by
physical location.

some unpredictable fluctuation due to the inherent noiskarphysical environment.
When transmitters are close to one another, it is helpful pyagtatistical techniques
and multiple RSSI readings to overcome this noise.

Packet Association Technique.As the first step in the method to associate packets to
their respective transmitters using physical layer infation, we assume that an adver-
sary can deploy passive sensors to record the RSSI values of every paclevedc

For each received packpt the RSSI values are combined into a feature vector of the
form (RSSh, RSSh, ...,RSS}). Since the RSSI values are inherently noisy, we use the
k-means clustering algorithm to group packets by their retbetransmitting devices.

In order to perform source classificatidameans requires the RSSI feature vectors and
the number of devicek), which we assume is known (or closely estimated) by the at-
tacker. Whilek-means is computationally inexpensive, it is probabdigti nature and,
therefore, is not guaranteed to provide a globally optineétson. For this reason, it

is common to executk-means repeatedly to arrive at a stable clustering resuteM
details ork-means clustering can be found in [12].

4 Experimental Validation

To demonstrate the efficacy of our physical layer clusteteahnique, we present a
series of experiments conducted with 802.11 devices in laimdaor office building
environment. In this section, we describe the methodolaggdito collect real RSSI
values. To understand how the packet clustering technigu®nms in practice, we
present a set of metrics with which to evaluate its abilita¢ourately associate packets
to wireless devices. We characterize the clustering tegcle's performance with re-
spect to how the number of devices effects clustering acgutiae influence of device
proximity (or the physical distance between devices) osteling accuracy, and how
the number of listening sensors effects clustering acgurac



4.1 Clustering Evaluation Metrics

It is necessary to define the metrics that will be used to etalthe correctness of the
packet clustering technique. In general, it is assumedethett packet transmitted from
devicei is initially labeled inclass i k-means (or any clustering algorithm) attempts to
provide a mapping between the initial class labels and atrarity choserclusterlabel

j. Itis trivial to determine when the clustering algorithnshiaturned a perfect clustering
solution; this occurs when every initial class labisl mapped uniquely tprecisely one
cluster labej. However, evaluating the accuracy of clustering resultemiie class to
cluster label mapping is not perfect is, indeed, a challegptask.

In order to describe the accuracy of the clustering solutiah adequately captures
the variety of clustering errors that occur, we apply FaMeasuremetric from infor-
mation retrieval [13]. Suppose thétis the set of class labelk is the set of cluster
labels, andy; is the number of data points from clasthat are placed in clustgrThe
F-Measure is defined in terms pfecisionandrecall, which are defined as follows.

Definition 1 Recall is the fraction of data points from initial class i there in cluster
j- Recall is calculated as [, k) = % for each classjce C and cluster ke K.

Definition 2 Precision is the fraction of data points within cluster j tteme members
of class i. Precision is calculated ag @, k;) % for each classice C and cluster

:W,
k € K.

Recall and precision can be combined into the F-Measureshngriovides an adequate
measure of clustering accuracy. The F-Measure is a weidtgadonic mean of recall
and precision in which both are weighted equally; it is defibelow in Equation 1.

2R(ci, k)P(ci, k)
R(ci, k) + P(ci, k)
A single F-Measure value can be derived for a particulartetirgg result by performing

the class to cluster mappings, and scaling by the fractiadheofotal data pointhl that
are in that class, as illustrated in Equation 2.

(1)

F(c. k) =

FCK) = 3 5 k) @)

We use F-Measure as our primary metric for expressing eiagtaccuracy in the fol-
lowing evaluation of our physical layer packet clusteriaghnique.

4.2 Experimental Setup

In order to understand how our physical layer packet clusietechnique works in
practice, we deployed five 802.11 wireless devices to acéasoss in a 75, x 50m
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Fig. 2—wireless devices are placed at 58 distinct physical locations in an office tguildin

indoor office building. Each sensor, a commodity Linux depkimachine, passively
listens for packets on a fixed 802.11 channel. This allowss#resors to record RSSI
values from all audible packets on that particular chanfelcollect RSSI measure-
ments, we moved around with a laptop computer and transihptiekets at a constant
power level of 16 dBm at 58 distinct physical locations tigbaout the office space.
The layout of the office space, marked with the positions efghassive sensors and the
locations where the laptop transmitted packets, is pravidé-igure 2.

Since we only used a single wireless device to transmit gaekenultiple locations,
in order to construct scenarios with multiple devices, walkimed packets transmitted
at multiple locations. For example, combining packets ffmerandomly chosen trans-
mitter locations into a single network trace effectivelpnesents a scenario in which
five distinct devices are present. Finally, in order to eatduthe clustering technique,
we assume that each device transmits precisely 100 packets.

Setup for Evaluating Variable Number of Devices and Sensors To evaluate how
the number of devices effects the clustering algorithm&ieacy, we vary the network
size from 5, 10, 15, 20, and 25 devices. In order to ensurettieat is no bias in the
selection of the device’s locations that may influence théopmance of the clustering
algorithm, we generate 100 randomly chosen device locatimfigurations for each
network sizé. Next, we perform clustering on these device location caméitions.
Recall that sincé&-means is not guaranteed to provide a globally optimal soiuit is
necessary to perform the clustering several times to aatigestable clustering solution;
we observed that the algorithm stabilized after approxéfgat00 runs, therefore we
performk-means clustering 100 times on each device location cofafiigur. First, we
keep the number of sensors fixed at five to measure the effeargihg the number of
devices. Next, to evaluate the number sensors on clustacitigracy, we also vary the
number of sensors from one to five.

3 Although we collected RSSI measurements at 58 distinct positions, we thbit the num-
ber of devices to 25 in any experiment to allow for variety in the randomigeh locations of
the devices included in the experiments.
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Setup for Evaluating Device Proximity. To examine the effect of device proximity
on clustering accuracy, we conducted experiments in winiemetwork size is fixed at
two devices. Device location configurations are constadibie choosing each unique
pair of device locations from the 58 total points. We use [eeln distance between
the two devices as a proximity metric.

4.3 Packet Clustering Results

We next present the results of our physical layer packetaling technique in terms
of its ability to accurately associate packets with thegpective transmitting device.
In particular, we examine three factors that we believe teigrificant with respect to
clustering accuracy: (1) the number of devices in the oladiEnv space, (2) the number
of sensors in the observation space, and (3) the devicermpityxias defined by the
physical Euclidean distance between devices.

Effect of Number of Devices on Accuracy.The average clustering accuracy across the
different number of devices is provided in Figure 3 (with 96&ffidence intervals). In
general, the accuracies decrease as the number of devicease; thus, it can be con-
cluded that the clustering algorithm performs better on alemnumber of devices and
produces additional clustering errors as more devicesnénaduced. However, the 20
and 25 device experiments produced similar clusteringractes, so there is evidence
that the clustering accuracy may, in fact, level off as thenber of devices reaches a
critical threshold. In Section 5 we show that the clustegnguracy is marginally worse
when the number of packets transmitted by each device isomstant for all devices.
Effect of Number of Sensors on Accuracy.As shown in Figure 4, the clustering ac-
curacy is surprisingly high when just one sensor is useddohealevice configuration.
However, as more sensors are added, the accuracy for edajucation increases grad-
ually, with diminishing returns, as the number of sensoasihes three or higher. This
indicates that the resources required—in terms of numbeemd@'s to deploy—are
very minimal, making the packet clustering technique vegcpcal for a low resource
adversary.
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tance between devices increases. 19. 6—Example of combining RSSI and website datasets.

Effect of Device Proximity on Accuracy. Since there is a correlation between RSSI
values and physical locality, it is the case that packetsstratted by wireless devices
that are close to one another will be received with similaBR&lues at the listening
sensors. There is, in fact, a relationship between proyimitd clustering accuracy
(as depicted in Figure 5). In the case where the two devieeslasest, the clustering
technique has an average accuracy of approximately 93%g thieiaverage approaches
perfect accuracy when the two devices are at least 2Bgtart. This demonstrates that
there is a relationship between device proximity to onelagrodnd clustering accuracy.

5 Application: Website Fingerprinting

Having evaluated the packet clustering technique in igolatwve now explore how

this technique can be used to perform complex traffic armlgiacks. In particular,

we demonstrate that the ability to associate packets watin ttansmitting devices with

relatively high accuracy provides sufficient informatiorperform a sophisticated web-
site fingerprinting traffic analysis attack in which the smuof an encrypted HTTP

session is discovered using only packet size informati@n/f/hile we could have cho-

sen to demonstrate the utility of our packet clustering éplne with a variety of other

classes of traffic analysis attacks, website fingerpringraysufficiently complex prob-

lem which can be practically implemented by an attacker.

In this section, we first present the traffic analysis methagio Next, using our real
RSSI data in combination with encrypted HTTP traces, we destnate the efficacy of
a website fingerprinting attack using packets that have besociated to their respec-
tive transmitters using our packet clustering method. Hselts of this traffic analysis
attack are presented in terms of website identification raoyuRecall that our packet
clustering technique assumes that the number of devicasisrka priori; we finally
explore the extent to which the number of devices can be fspe&émprecisely, and
show the website fingerprinting accuracy that results is¢hzases.



5.1 Traffic Analysis Methodology

In order to apply our real RSSI data to the problem of websitgéfiprinting, it is
necessary to combine the RSSI data with an encrypted HTTd3etat iberatore and
Levine [7] provide a dataset consisting of several instammé@ncrypted connections to
many distinct websites over the course of several monthpeffmrm a simplified web-
site fingerprinting attack in combination with our packetstering, we extract multiple
traces of 25 different websites from this dataset. In gdnterperform a website finger-
printing attack it is necessary to partition the websitedrdata into two disjoint sets, a
training set, and a validation (or testing) set, and comdite task of website identifi-
cation as a classification problem: given an unlabeled iebsstance, it is necessary
to identify the website using the training set. We constaustwebsite training set by
collecting precisely 20 instances of each of the 25 web#ii@swve wish to identify.

Next, the validation set is constructed. Since the encdypf€TP dataset was col-
lected in a wired setting, it is necessary to affix wirelesgsidal layer RSSI values to
the encrypted HTTP packets. This is accomplished by appgraii RSSI feature vec-
tor onto each website packet as follows. Suppose that th& sensists of 25 websites
and thatw; € W consists of a set df packets, with their respective packet sizg$
Next, suppose that the set of physical locatibnsonsists of the 58 positions where
RSSI values were collected(ly) consists of all RSSI feature vectors that are recorded
when the transmitter is at locatidp < L. The following procedure is used to combine
the RSSI dataset with the encrypted HTTP dataset.

1. A websitew; € W is chosen at random anyg is removed fromN\.
2. A physical locatiork € L is chosen at random amgis removed froni.
3. For each packet € w;, an RSSI feature vectoy(ly) is appended ontp;.

This process is repeated for each of the wireless devicesr Kfe procedure is exe-
cuted, each packet consists of the tuple= (r;(lx), 5), and thus each website packet in
our validation set has been marked with a feature vector &IR8&lues from our real
RSSI data. This process is illustrated in Figure 6. It is nosgible (1) to execute our
physical layer packet clustering technique to associath galividual packet with its
respective transmitter, and next (2) to launch a websitefjrinting attack to identify
the website that is contained within the encrypted packetsthe website classification
phase, we apply the hae Bayes classifier provided M¢ka [14], as in [7].

5.2 Traffic Analysis Results

We now present experimental results of our physical laygsteting technique applied
to the task of performing a website fingerprinting trafficlges attack. As in the exper-
iments presented in Section 4, we construct different saenhy varying the number
of wireless devices from 5, 10, 15, 20, to 25. However, irgtefincluding an equal

number of generic packets, we make the assumption that degiye downloads a sin-
gle randomly selected webpage and include allp; € w; packets with affixed RSSI
vectors from a randomly selected positiQre L using the process described above.

4 Each packet's size is a multiple of the encryption algorithm’s block size, wisi@ bytes,
since 3DES encryption is used.
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We first explore the performance of the clustering algorithmthe website data.
A key distinguishing feature of the website data is that eaebsite has a different
and arbitrary number of packets. For some websites, thee¢rdansmits several hun-
dred packets, while for others, the device transmits lems tbn packets. The clustering
performance for our different device configurations is shaw Figure 8. Clustering
devices that transmit a non-uniform number of packets do¢sppear to be a sig-
nificant factor in clustering accuracy; the clustering aacy for the website data is
only marginally lower (72%-82% accuracy) than for the equatket data (given in
Figure 3).

Given the clustering algorithm’s ability to accuratelystier encrypted website data,
we next perform a website fingerprinting attack on the packeat are clustered by
wireless device. Using the e Bayes classifier, the attack is able to correctly idgntif
the encrypted web page between 40%-55% of the time. Thigawcis significantly
greater than random chance, in which an adversary simplssggehe website. In this
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antenna transmitting at the same location rotated 0, 90,di8®&d when a single device varies its transmit power.
and 270 degrees.

case, the expected accuracy is 1/25 = 4%. For compariscackigts are perfectly clus-
tered, the website fingerprinting attack achieves 92% acguffor each device config-
uration). The accuracy of the website identification isrsgity linked to the accuracy of
the clustering result; for example, in the 5 device netwbdth the clustering and web-
site identification accuracies are the highest, and eagecége accuracy degrades as
the number of devices increases. The website fingerpriatingracies for each number
of devices are provided in Figure 7.

Traffic Analysis When k is Not Known Precisely. We finally explore the likely sce-
nario in which the adversary cannot obtain the precise nurabdevices K) in the
wireless network. To explore the feasibility of performitmgffic analysis in this case,
we conduct experiments with 10, 15, and 20 devices wherk ¥hkie is not correct. In
particular, for a 10 device network, we vakyfrom 5 to 15, for a 15 device network,
varies from 10 to 20, and for a 20 device netwdtkaries from 15 to 25. The website
fingerprinting accuracies for each networkkagaries are given in Figure 9Even in
the cases when the adversatysstimate is off by as much as 5 (either higher or lower
than the true value), the website fingerprinting accuracyaseses by at most 17%.

6 Solution: Obfuscating Physical Layer Information

We demonstrated a unique method to correlate packets vathttansmitting devices
using only information that is provided by the physical lay&ven the ease and relative
accuracy with which this method can be applied to performemsmphisticated traffic
analysis tasks, we explore techniques to mitigate the atafunformation present at
the physical layer that an adversary can use to associdtetgarith wireless transmit-
ters. This serves as a basis to protect users’ privacy fremtifging information that
is leaked by the physical layer. In particular, the soluiéecus upon manipulating the
physical layer properties that influence the RSSI valugsattearecorded by (1) varying
the transmission power at which packets are sent, and (B)igrg directionality (with

a directional antenna) to focus the signal in specific dioest

5 We do not provide clustering accuracies for the experiments wherémprecise, since the
F-Measure is ill-defined in this situation.
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devices that transmit at variable power levels, constant tidasees with directional antennas, normal devices, and all de-
mit power devices, and all devices in a network with 15 teteés in a network with 15 total devices (95% confidence in-

devices. (95% confidence intervals are very small so theyeavals are very small so they are omitted).

omitted).

Intuition. To provide an intuition behind these techniques, first atgrsan RSSI plot
for a single wireless device with a directional antennardgd in four different di-
rections provided in Figure 11. The packets sent in eacheofdbr directions appear
to form their own distinct clusters—this phenomenon, as wiedeimonstrate, has an
adverse effect on clustering accuracy, and, thereforeicesdan adversary’s ability to
perform traffic analysis attacks on the correlated packést, the additional variance
that is introduced in the signal space as a result of a sirghsmitter varying its power
levels from 10—-20 dBm, as depicted in Figure 12, results iluster that encompasses
a significantly large portion of the signal space. As a resu#t show that clustering
accuracy degrades, which reduces its usefulness for parfgitraffic analysis.

6.1 Transmit Power Fluctuation

To understand the extent to which variable transmissionepdewvels can be used to
protect devices from leaking identifying information aétphysical layer, we conduct
experiments in which devices may wish to mitigate the eiffeciess of our attack by
sending each packet at a randomly chosen transmit powdrbetigeen 10-20 dBm.
All other devices in the network transmit their packets akadil6 dBm. Experiments
are conducted with 15 total devices in which 1, 3, 6, 9, and éx@ces transmit their
packets at a randomly chosen power level. The impact of gadknique on cluster-
ing accuracy is shown in Figure 10. As the number of devicel variable transmit
power levels increases, the clustering algorithm’s acgudecreases as a result of the
additional variance in the received signal strengths thattroduced.

This reduction in clustering accuracy has a negative impadhe accuracy of the
website fingerprinting traffic analysis attack. As depidte&igure 13, the traffic anal-
ysis accuracy remains relatively high for the devices treatdmit at a constant power
level in comparison to the case in which all devices transinit variable power level.
However, for those devices that vary their transmit poweelke the website finger-
printing accuracy is reduced to approximately 30%. This aiestrates the effective-



ness of varying transmit power levels on mitigating traffiabysis for those devices
that actively transmit packets at variable power levels fhffic analysis accuracy for
normal devices is marginally reduced, and thus, if a devesrds protection, then it
should actively fluctuate its transmit power levels.

6.2 Directional Antennas

We next explore how directional antennas can be used to oh#tentifying informa-
tion leaked by the physical layer. To understand how dioeetiity effects an adver-
sary’s ability to correlate packets with their transmategxperiments are conducted
with 15 total devices in which the number of directional sanitters varies from 1,
3, 6, 9, to 12. Clustering accuracy, provided in Figure 1@rel@ses as the number of
directional transmitters in the network increases. In galnehe clustering accuracy
decreases in a similar fashion as in our experiments witlvaiiable transmit power
levels, but the experiments with 9 and 12 directional ardeinansmitters have lower
clustering accuracies than their counterparts in the mnérower fluctuation experi-
ments.

The degradation of clustering accuracy helps to mitiga#itranalysis. As shown
in Figure 14, the website fingerprinting attack yields anuaacy of 30% for the direc-
tional antenna transmitters. However, the non-directitnamsmitting devices show a
similar vulnerability to traffic analysis as in the experim&of Section 5.

6.3 Discussion

Note that transmitting at a variable power level providegralar degree of protection
from traffic analysis as the directional antenna techniquee-taus either technique
provides a viable solution. Providing variable transmitvpo capabilities is straight-
forward, by modifying an existing commodity 802.11 drivereffectively randomize
the card’s transmit power levels. In addition, low-costedtional antennas, such as
sectored or MIMO antennas, are becoming widely availabtavéver, it is likely that
both of these techniques may reduce network performanareldre, it is necessary
to understand the trade-offs between privacy and perfocmaren considering these
solutions.

7 Future Directions and Conclusions

In this paper, we experimentally demonstrate that even vexgticit identifiers are
removed from wireless packets at the link layer, a signifieemount of identifying in-
formation remains preserved within the wireless physegt. As future work, we plan
to address several open issues with regard to the methosksnped. First, the packet
clustering technique assumes that the adversary canylesgéate the correct num-
ber of devices in the network—we plan to investigate methodietive the number of
devices automatically, perhaps from the properties of thesigal signals themselves.
In addition, whilek-means clustering provides relatively high accuracy, itas opti-
mal. We plan to explore additional clustering algorithmattimay be better suited to



our problem. As a final avenue of future work, we will study fi@ential benefits of
combining timing information with the information contaith at the physical layer to
improve our technique’s ability to accurately correlatek®s with their transmitting
devices.
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