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Abstract. Low latency anonymity systems face many challenges. One of
them is how to fairly allocate network resources among many unknown
users and applications. This paper presents a design for a end-to-end
inspired transport mechanism for onion routers. The design uses the same
solutions and implementations that had made the Internet scale. We
compare an implementation of the design with Tor’s (the third generation
onion router) ! and show initial benefits of the design.

1 Introduction

Onion routing is a mechanism to achieve low latency anonymous communication
for connection oriented applications[1]. Onion routing uses two kinds of nodes
to provide anonymity: “onion routers” (OR) and “clients”. To use the system a
client selects a path through a set of three or more OR’s and builds a circuit
through them, so that each OR node knows is predecessor and successor but no
other part of the path. Data is transmitted on the network via fixed sized cells,
which are unwrapped(wrapped) by a symmetric key at each node and relayed
downstream(upstream) from the client to the server (server to client).

There have been many OR designs in the literature, Tor[2] being the most
successfully deployed and used. The design issues presented by this paper aims
to overcome some of the problems in performance that impact daily use by
users and that allow some attacks. The design is build around the idea that the
OR infrastructure does not need to transport connection oriented reliable data
streams but that will transport connection oriented best effort message transfer
of TCP friendly streams is sufficient for most applications. The removal of the
stream requirement allows for designing routers that are closer to IP routers and
that require much less state. The transport design presented here builds upon
Tor and provides the following improvements:

Fair allocation of network resources. The use of true end-to-end conges-
tion and flow control allows the system to be self regulating in the availability of
network resources and use. We use the use exact mechanisms and implementa-
tions of TCP that have enabled the Internet to scale from a connections of a few
kilobits per second to multi-gigabit connections. This can prevent some attacks
such as the circuit clogging attack [3].

Router detection of misbehaving circuits. The simplification of the
network behavior to a best effort service allows routers to detect when circuits

! This naming scheme follows conversations with Paul Syverson.



are not TCP-friendly (respond to packet loss by lowering their throughput). This
allows routers to limit the effects of misbehaving circuits benefiting well behaved
circuits.

Client detection of misbehaving routers. The simplification of the net-
work behavior also allows clients to detect dynamically when routers do not
behave throughput wise as advertised. This is useful to prevent attackers that
behave differently than advertised avoiding this some class of low resource at-
tacks.

Separation of transport mechanism from client interface. We come
one step further than Tor and closer to the Freedom Network. This allows the
network to provide future functionality without changing the network nodes.
Further it allows for other potential uses such as VOIP, streaming video or
gaming.

All of these benefits are on the data transport mechanism. For other system
related problems such as router discovery and advertisement the design will
copy Tor’s design. This design is an improvement of Tor rather than a complete
redesign.

2 Previous Work

The design presented in this paper builds upon Tor, but uses the end-to-end
design principles from which the Internet was designed[4].

2.1 Anonymity Systems and Tor

The theory behind anonymous communications was initially developed in the
1980s. In general, there are two different approaches to achieve anonymity (both
originating from David Chaum): the use of mixes(mix networks)[5] and the use
of protocols based on the Dining Cryptographers Problem(DC-nets)[6]. Mix net-
works provide sender anonymity: the identity of the message sender is not link-
able to the message. DC networks achieve both sender and receiver anonymity;
however, both sender and receiver must belong to a “broadcast domain”.

Most low latency anonymity systems, where the delay in message is in the
order of a few seconds, are based in the mix network design. Onion routing
belongs to this category and here is where we concentrate our efforts. Low latency
systems assume a 'weak’ adversary model. This adversary model is a non-global
observer, which is in contrast of high latency systems such as Mix-minion|[7] and
Babel [8]. Aslo it is common to assume that attackers with common goals can
control a non significant portion of the router infrastructure.

Other approaches to low latency anonymity systems include systems such as
the Anonymizer[9] and Ghostsurf [10]. These systems depend on a trusted third
party not to disclose the mappings from input to outputs to the users’ adversary.
Recent developments such as the case of communication wiretapping[11,12] and
revealing of user keys[13, 14] demostrate the weaknesses of systems that depend
on a single third party.



Over the years, many low latency have been designed: Tor(onion routing)
[1,2], Tarzan [15], Cebolla [16], Crowds [17], pipenet [18], The Freedom Net-
work [19], Morphmix [20,21], JAP [22], Hordes [23], Herbivore[24], P5[25], and
SAS [26]. All of these systems have their own strengths and weaknesses in the
anonymity guarantees, deployability and performance. A high level comparison
of these systems can be found on Table 1.
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Tor TCP Socks Streams |Core No |Yes Central.|Source |Yes
Tarzan UDP Net. API|Datagrm.|p2p* Yes |Yes Distrib. [Source®|Yes
Cebolla |UDP  |IP(?) Datagrm.|p2p(?) No |Yes Distrib. [Source |No
Crowds |TCP proxy Datagrm.|p2p No |Yes Central.|Rand. |Yes
Freedom |UDP N. Stack |Datagrm.|Core No [No Central.|Source |Yes
Morphmix|TCP proxy Streams |p2p No Yes Distrib. [Rand. |No
PipeNet |TCP(?) |? Strm(?) |Core Yes |7 ? ? No
JAP TCP proxy Streams |Core Yes |No Central.|Source |Yes
Hordes TCP® |? Datagrm.|p2p No Yes Central.|Rand. |No
Herbivore |[TCP V.Net |Datagrm.|Hierarch.?[Yes [Yes ? No ¢ |Yes
P5 UDP(?) |? Datagrm.|Hierarch. |Yes |Yes ? No No
SAS’ UDP(?) |? Datagrm.|Core No |Yes ? Source |No

“ By p2p we mean that each node connects directly to only a subset of all the nodes
¥ With “mimic” constraints.
¢ also uses multicast

¢ Forming a ring of cliques.
¢ Uses a point to point protocol
/ Has no implementation or complete specification so many of the details are not

defined.

Table 1. Comparison of Multihop low latency anonymity Systems

For our design, the UDP based systems are important to mention: Freedom,
Cebolla, P5 and the Tor UDP transport proposal by Liberatore[27]. Of particular
importance is Freedom, not only because it transmits encapsulated datagrams
(similar to the proposal described here) but also because it was for a while a
successful commercial privacy preserving network.




2.2 Network Performance and Fairness

Efficient use of communication resources is not new. The design of the TCP/IP
protocol had into its goals inspired by how to effectively use and share com-
munication networks. The design presented here uses the same TCP found in
deployed operating systems as the mechanism to ensure end-to-end congestion
avoidance and flow control. The goal is to use the evolution of the protocol (TCP
Tahoe, TCP Reno[28], TCP Vegas[29]) and of the extensions for high bandwidth
delay networks[30] that are already implemented.

Of particular importance to guarantee the fairness of the bandwidth in this
design is the work of Sally Floyd and Kevin Fall [31,32]. The algorithms de-
scribed in their work are the ones that will be used by the ORs to detect non-
TCP-friendly circuits. Non-TCP-friendly circuits are considered misbehaving in
this design as they can potentially try to use an unfair amount of bandwidth
in the network. Once a circuit has been detected as misbehaving the OR can
employ different mechanisms to limit its effects to the network. In the current
implementation routers only detect misbehaving circuits, but is is planned that
this will be assigned only a small percentile of the available bandwidth.

The design also mandates for mechanisms to help TCP optimally perform.
In particular all OR will implement Random Early Drop (RED). Random Early
drop, introduced by Floyd and Jacobson[33], as is a mechanism that helps con-
gestion avoidance by avoiding tail drop queues. The basic rationale of the design
is that by stochastical packet drops once a router queue has reached a certain
threshold signals TCP connections to start lowering the throughput before con-
gestion takes place. Finally it is desired that queue management should be done
by the OR and not by the Internet Service Provider (ISP). This is due to the
fact that in many home connections the ISP implements large queues, this tail
drop queues affect TCP so that it does not perform at is optimum point when
many TCP connections share a connection as is the case of our design.

3 The Transport Design

The design of the transport follows the following objective: ‘connection oriented
best effort transport of TCP friendly message flows’. However, introducing a best
effort network leads to question where should the side effects of such network
(packet loss, reordering) would be handled and by whom. We will address the
design objectives, philosophy, tradeoffs and implementation in this section.

3.1 Objectives and Non-Objectives
Objectives

1. Use a SOCKS interface for applications. In order to maintain compatibility
with network applications we will use the same SOCKS interface that users
will be able to use their current applications without modification. This
is also to allow users familiar with Tor to use our system with minimum
configuration changes.



2. Separation of Service applications from onion routing infrastructure. It is
common to design anonymity systems where the service provided is inte-
grated into the code of the anonymity system. One of the core concepts of
the design is to separate the socks server from the or code so that: (i) the
number of lines of code is reduced, (#) users can decide to use other applica-
tions for service, (i) other services can be easily added to the system, and
(iv)performance problems can be easier to diagnose.

3. Minimization of State in for the intermediate nodes. One of the problems
associated with scalability is the constant need for more resources and the
need to keep state for callback information. The design will push the need
to check for transition changes to the client nodes. The onion router will not
have any callback functions. Also, elimination of network buffers is desired
allow better scalability of the network.

4. End-to-End Congestion control, flow control and integrity checking. The core
assumption of the Design is that by allowing end-to-end control of the com-
munication channel, the fairness of all the flows will be achieved. Further, we
want to make sure that a single packet drop does not affect all other circuits
in an OR connection. This lack of throughput independence allows several
low resource attacks[34, 35] to exist.

5. In core dection and mitigation of misbehaving flows. While Congestion con-
trol has been moved to the network edges (Client application and exit node),
it is necessary for the intermediate routers to validate the well behavior of
the circuits, in order to ensure fair allocation of resources..

Non-objectives There are several non-objectives of our design, in particular
we want to mention:

1. Steganography of the transport. The design will not care about the network
signatures of the OR design. It will be assumed that an eveasdropper will be
able to identify with certainty that a communication pattern and/or content
is of onion packets.

2. Discovery of Servers and server announcement. The design only cares about
transport. Important issues for a real system like discovery and server an-
nouncement are not addresses by the design.

3. Transition phase. The design does not address any of the transition problems
associated with integrating the design with other systems like tor.

4. File Descriptor Exhaustion. The design will not address the problem of File
descriptor exhaustion problem. While this is a problem acknowledged by
several anonymity systems, the design assumes that this problem is not worse
that it is with the Tor codebase.

5. No hidden services. There is no hidden service provision in the current design.
This could be added in the future as the design does not limit how the paths
are build in the anonymity network.



3.2 An overview of the Design

In general two types of communication network architectures exist: those that
simplify the end nodes,such as the telephone network; and those that simplify
the core nodes, such as the Internet. W

The end to end anonymity requirements only require that the information
passed through the network is encapsulated to the intermediate routers and that
the exit node cannot know who sent the originator of a request. Further we need
to do it keeping a socks interface for client applications. The solution this problem
is as follows and the core of our design is: move the socks proxy to the exit node
and make the entry node an interface to a virtual network. Quasi-TCP packets
are transported in a best effort non reliable network. The OR network only job is
to add or remove onion layers and to certify point to point packet streams. End
to end packet loss, reordering and replay detection, should be handled by the
end to end TCP session between the socks application and the socks server at
the exit node. By quasi-TCP packets we refer to a packet header that contains
all the TCP fields that cannot be reconstructed at each end based on the stream
identification. For example source and destination ports are not needed as they
are implicit by the stream id.

The network connections and transport layer of the design can be seen in
Figure 1. This figure shows how unreliable connections are made between the
Tor routers using UDP. TCP connections are established between applications
and the socks server at the exit node. The interface to the clients will be a virtual
network interface.
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Fig. 1. TCP connections



Advantages The simplification of the OR interface provides many benefits:

1. Significant reduction in OR requirements Intermediate Onion routers no
longer need to keep network buffers per connection. Only one file descriptor

is used.

2. True End to End congestion Control Congestion Control has been moved
to the Edges. This allows Tor not to bother with it and let TCP handle
congestion and flow control. This means less code for TOR while taking

maximum advantage of the host’s TCP /IP stacks.

3. Performance can be Measured and Adapted by the end hosts Recently a tech-
nical paper by a set of researches at the University of Colorado demonstrated
that low resource attacks are possible against Tor[35]. This attack is possible
due to the fact that a Tor node selection strategy tries to balance bandwidth
among the nodes. The defense against this attack requires measuring the ef-
fective bandwidth over time of tor nodes. Estimating your bandwidth based
on your ‘regular’ user experience with Tor’s current architecture has a big
problem: a user cannot tell weather the bandwidth problems are due to net-
work congestion within the tor network or due to performance problems
between the exit node and the final connection destination. Tor performance
could still be measured directly with some accuracy, but having all nodes do
this kind of tests most likely would cause the network to saturate and thus
make the results not reliable. However, if there is only one TCP connection
between the application and the socks server at the other edge of the net-
work, a client can not only adapt to congestion in the network, but can also
estimate the networks true available bandwidth based on the congestion win-
dow behavior if their connection to the Internet has more bandwidth than

the bandwidth provided by the Tor network.

4. DoS resistance Related to scalability is the issue of DoS resistance. Since
most nodes in the Tor Network are limited to 1024 connections, a malicious
attacker can DoS the Tor network by taking over all the connections of
the servers with more bandwidth. An attacker just needs to establish the

connections and keep them alive.

5. Firewall Piercing The use of UDP and would allow to use techniques for
"Firewall’ piercing on NAT’s. Which would potentially increment the number

of available nodes.

6. Timing attack resistance One of the attacks on Tor’s anonymity [34] is pos-
sible due to the fact that Tor transforms network congestion into latency.
By transforming network congestion into packet drops such attacks become
more complex as the attacker needs to model the interaction not only of the
tor node but of the unknown end node. There are still side effects in the
network as the system shares resources, there will be more opportunities for

research into attacks that detect bandwidth changes.

3.3 Design Tradeoffs

Addressing the Challenges The Tor Designers have published a document
detailing some of the challenges for such networks[36]. In particular they address



the problem of why not transporting packets but streams These are some of their
concerns and why the designers believe the solution presented here is acceptable.

1.

IP packets reveal OS characteristics Only the exit node will be able to de-
termine the OS of the sender via its TCP fingerprint. The destination node
would not be able to determine this. However as clients are already trusting
the exit node for the contents of our traffic the extra risk can be considered
minimal. Additionally, even the exit node chooses to change some of the QoS
determined by OS, this would be possible to detect by the affected clients.

. Application level streams still need scrubbing Interoperability with applica-

tion specific proxies would not change. Only the destination host of privoxy
would need to be changed.

. Certain protocols sill leak information We would still be using the SOCKS

interface. There would be no more leaking that what currently Tor leaks.

. The crypto has not been validated The current cryptographic system has been

presented to several cryptographers, an none has seen mayor faults. This is
not sufficient, we require a real analysis of the cryptographic concepts used
here. Further in the current implementation, we have

. We'll still need to tune network parameters While TCP does most of the

network tunning for the design, other parts need tunning. In particular the
selection of the RED values is crucial to achieve good balance of new con-
nections vs old connection in slow links (less than 256 kbps). We also need
to address the link encryption flaws.

. Exit policies for arbitrary IP packets means building a secure IDS The system

will only expose valid TCP streams to external systems. For the exit socks

server we might need to ensure valid TCP data, or leave that checking the
OS.

. The Tor-internal name spaces would need to be redesigned This is the only

point where our architecture does not work. A potential solution is to have
a different entry port for hidden services and force the clients to choose the
appropriate server.

All solutions come with trade-offs, here is a list of the new problems intro-

duced by the architecture.

1.

Need ‘Root’ privileges at Fxit Nodes and Probably at entry nodes Most OR
implementations do not need system privileges to run an onion router. The
new design, would require administrative privileges on the exit node or some
permission modifications only available to the administrative user (The cur-
rent prof-of-concept code also needs administrative privileges on the entry
node, but this is a coding limitation not an architectural one).

Fascist Firewalls Currently Tor uses TCP and can be configured to listen on
ports 80 or 443. There two ports are the well known ports for web traffic and
web traffic under SSL, and are usually open on every network. By moving to
UDP clients behind firewalls that only allow connections to this ports would
be unable to use the Tor network.



3.4 Implementation Details

The transport design follows Tor’s philosophy. However, two big changes are
present: (i) two cell sizes are available and (4) there is no router initiated
notification of state changes to clients. The use of multiple cell sizes is required
to achieve a good throughput due to the presence small of acknowledgment data
traversing the network. The lack of router initiated notification of state change
was designed to reduce the amount of state kept by the routers. The effort of
state progress during construction of paths lies completely on the clients.

Cells All cells have eight fields, from two in the Tor design. The header is 24
bytes header with the following fields: version(4 bits), length (4bits), circuit id (3
bytes), alignment (4 bytes), initialization vector (8 bytes), checksum (7 bytes),
command (4 bits) and command status (4 bits). The version number is 1, the
length is the size of the cell in 128 byte increments, The implemented symmetric
encryption algorithm is blowfish with a 128 bit key. The checksum is calculated
by calculating the shal checksum of the payload and then extracting the seven
most significant bytes of the checksum the circuit id is the current link circuit id.
Once a circuit is established, routers identify packets that the need to process by
checking the checksum. If the checksum matches they process the cell otherwise
the cell is forwarded to the related reverse circuit if one exists. The alignment
field is necessary to align the size of the opaque values (the checksum) with the
size of the cells. Figure 2 illustrates the header, where the gray fields are opaque
to all but the destination router in a circuit. When using encryption layers, the
initialization vector is kept the same.

Version Length Circuit ID

Reserved (Alignment)

Initialization Vector

Checksum

Command | C. Status

Fig. 2. Transport Headers

Stream cells, carry a stream header and a per protocol header. The stream
header has a 2 byte stream id, a 3 bit protocol and options field and a 13 bit
length field. For TCP streams, a quasi-TCP header is also appended, this quasi-
TCP header contains all the TCP fields that cannot be reconstructed from the
stream information(source and destination port) and the payload (checksum).



So that an almost perfect copy of the TCP packet can be reconstructed at the
end of the tunnel.

New streams are automatically build at the exit node when the exit node
detects that a stream does not exists. If the stream cannot be built, a reverse
ICMP message is returned to the circuit origin. Streams can be deleted explicitly
by the client nodes or via timeouts at the exit node. Currently timeouts are set
at 120 seconds of stream inactivity.

Stream ID Opt Length

TCP HL TCP Flags

TCP options (Optional)

Fig. 3. Transport Headers

Circuits Circuits are built in a ‘telescoping’ manner, just like Tor’s. However,
unlike Tor each step of the circuit building process can fail and is up to the
clients to verify that the circuit has been built. The same goes to requests to
extend a connection to another host. Another difference is that this design does
not ‘extends’ circuits in the same way as Tor does. The process of extending a
circuit is a two step process. First, a request to another host is issued (this builds
a path to the requested router). Second, a new circuit hand-shake is done from
the client node to the destination router.

Circuit destruction can be explicitly requested by the client or exit nodes or
can be automatically done via timeouts. Currently circuit creation by clients is
done by an independent thread that monitors circuit creation and state changes.
Available OR systems are found in a file that comes with the distribution.

Link Encryption For link encryption the authors decided to use a homegrown
datagram cryptography layer. The reason of why to do this instead of other
solutions like DTLS[37] was due to the desire to use a connectionless api, unfa-
miliarity with DTLS and to prevent some message alignment issues that exist
with DTLS[37]. A move to DTL is planned for the next release of the transport
design.

Other Details Since we have decoupled the SOCKS server application from
the OR infrastructure it is necessary to select a compatible SOCKS server for
clients to use. We use Antinat[38] as our socks server for our tests.



4 Measurements and Comparison with tor

This section compares the design with Tor’s. First we model some of the differ-
ences and scaling properties of the design and then me do some actual measure-
ments on the developed software.

4.1 Modeled differences

Memory Use One of the concerns for the development of the system are the
hidden memory requirements of having many connections with large Bandwidth
delay products. Since onion routing has a mesh topology we should understand
the memory requirements assuming a distribution of half nodes in Eurpoe and
half of the nodes in the United States. The optimal buffer size for a TCP con-
nection is given by:

Buf ferSize = Bandwidth x RTT

For Tor, the RTT (Round trip time) between nodes is of up to 300ms (And a
back of the envelope expected RTT of 140 ms) . This worst case value was found
by empirically doing ping’ between nodes in PlanetLab, in a connection between
Germany and Brazil. Graphing the maximum throughput vs the allocated buffer
size results in figure 4. From this figure we can notice that for ’high’ throughput
nodes (nodes with 10 to 100 Mpbs connectivity) the buffer size requirements
to be able to use all the available bandwidth is in the order of 512 KB for the
average RTT value of 140 ms. Scaling this value to the number of connections,
assuming scaling our network to 8000 hosts means we require 4GB of memory,
just network buffers, in the core high throughput nodes.
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Fig. 4. Maximum Throughput vs Buffers size for Tor’s RTT.



Bandwidth Efficiency The change of transporting data streams to trans-
port datagrams can potentially result in a significant increase in the number
of messages and bytes transported on the network. We compare the bandwidth
requirements of the system with Tor, illustrating the need of multiple cell sizes
in our design.

It is estimated that by using 1024 data cells the transport ineficiencies would
of the order of 8.9% worse than using Tor if there is one ack per message (we
assume that tor TLS data is perfectly packed). If there is one 128 byte for every
two 1024 data cells, the inefficiency comared to tor is only of 1.3%. Using 512
size cells the inefficiences are of 30% and 16% in the same cases.

4.2 Measurements

We compared a network of onion routers running Tor and our design.
The two of the systems were located in a high-bandwidth network connection
in a mayor US university and one of the routers was located in a commercial

DSL line in London, UK.

Fair Bandwidth Allocation By fair bandwidth allocation, we mean that if n
high throughput nodes are using the system, the bandwidth allocation will for
each node will be close to the B/n where is the total bandwidth available to the
node. To test this allocation we developed a multi-threaded client that tries to
download an CD-ROM image of a high bandwidth host. Each thread downloads
up to 20MB of data or downloads as much as it can for 30 seconds. We tested our
design and a similar set of nodes running tor version 0.2.0.9 alpha. The results
are summarized in table 2.

l [Fast Network [DSL
Tor Fair up to 3 streams|Fair up to 3 streams
UDP-OR/|Fair Fair

Table 2. Bandwidth allocation fairness

The results are the results of running from 1 to 8 simultaneous downloads. For
Tor, the problem is located in the Socks code, not in the network code as similar
tests using multiple clients over the same network show again fairness.

Latency We also measured the latency for application data. To do so we de-
veloped a multi-threaded FTP client and measured the round trip time between
commands and server responses. For latency we tested the latency when the
system had no load and when the system was operating at maximum load. The
results are summarized in table 3. Load was placed into the system by issuing
one or four simultaneous before the latency tests were made.



[Fast Network|DSL |

No Load 97 ms 341 ms
Maximum Load (1 thread) [123 ms 5454 ms
Maximum Load (8 threads)|653 ms 6730 ms

Table 3. Effect on latency of load

The results are a little encouraging, for high speed networks. However, when
using the high latency low throughput network, we find abysmal delays. Some
improvements were achieved by changing some of the parameters of the RED
queue at the OR but we wanted to show the worst scenarios seen.

5 Future Work and Conclusions

We have introduced a new design for data transport in onion routing systems.
An implementation of the design has given mixed results: while the fairness of
network allocation has improved, latency when the system is under load has not
changed significantly. Further research is required to determine where in the the
system things can be improved.

There are two design variations the the authors will like to test in future
systems. The first is the use of multi-path routes and the second is the use of
priorities on the routed messages. The use of multi-path routes promises solu-
tions on robustness of the network, improvements on bandwidth allocation and
potentially increase the anonymity set of long lived connections. By allowing
on-demand path changes long lived connections will no longer have the same
‘netflow signature’ at entry and exit points. This can potentially eliminate the
Internet exchange attack introduced by Murdoch and Zieliriski [39], as no one-
to-one mapping will exists for the entry and exit flows. We also believe that
better bandwidth assignment can be done with the use of multiple paths as the
clients have a more fine grained way to distribute the network resources.

Regarding the publicly available implementation, there are many issues that
the authors would like to address. In particular we would like to: add identity
checking to the circuit creation cells, use DTLS instead of our homegrown link
level encryption, test the efficacy of the router level congestion control mech-
anisms, use an internal TCP stack for clients, and create a transition plan for
integration with Tor.

Finally this designs leaves open many questions regarding the anonymity of
the users. Does the use of two cell sizes affect significantly the anonymity of
users? if so how much? Do bandwidth side-effects can be as problematic for
anonymity than latency side effects?
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