CoinShuflle: Practical Decentralized
Coin Mixing for Bitcoin*

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

MMCI, Saarland University
{tim.ruffing,pedro,aniket}@mmci.uni-saarland.de

Abstract. The decentralized currency network Bitcoin is emerging as a
potential new way of performing financial transactions across the globe.
Its use of pseudonyms towards protecting users’ privacy has been an
attractive feature to many of its adopters. Nevertheless, due to the
inherent public nature of the Bitcoin transaction ledger, users’ privacy is
severely restricted to linkable anonymity, and a few Bitcoin transaction
deanonymization attacks have been reported thus far.

In this paper we propose CoinShuffle, a completely decentralized Bitcoin
mixing protocol that allows users to utilize Bitcoin in a truly anonymous
manner. CoinShuffle is inspired by the accountable anonymous group
communication protocol Dissent and enjoys several advantages over its
predecessor Bitcoin mixing protocols. It does not require any (trusted,
accountable or untrusted) third party and it is perfectly compatible with
the current Bitcoin system. CoinShuffle introduces only a small com-
munication overhead for its users, while completely avoiding additional
anonymization fees and minimizing the computation and communication
overhead for the rest of the Bitcoin system.

1 Introduction

Bitcoin [3] is a fully decentralized digital crypto-currency network that does
not require any central bank or monetary authority. Over the last few years we
have observed an unprecedented and rather surprising growth of Bitcoin and
its competitor currency networks [4/5/6/7]. Despite a few major hiccups, their
market capitalizations are increasing tremendously [8]. Many now believe that
the concept of decentralized crypto-currencies is here to stay.

Nevertheless, these decentralized currency systems are far from perfect. Tradi-
tional payment systems rely on a trusted third party (such as a bank) to ensure
that money cannot be spent twice. Decentralized currencies such as Bitcoin
employ a global replicated append-only transaction log and proof-of-work (POW)
instead to rule out double-spending. This requires managing a public ledger such
that every transaction is considered to be verified only after it appears in the
ledger. However, given that the Bitcoin transactions of a user (in particular, of

* The full version of this paper is available on the project webpage [1], and we offer a
discussion thread about CoinShuffle on the Bitcoin forum [2].

2 Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

her pseudonyms, called Bitcoin addresses) are linkable, the public transaction
ledger constitutes a significant privacy concern: Bitcoin’s reliance on the use of
pseudonyms to provide anonymity is severely restricted.

Several recent studies analyzing the privacy implications of Bitcoin indicate
that Bitcoin’s built-in privacy guarantees are not satisfactory. Barber et al. [9]
observe that Bitcoin exposes its users to the possible linking of their Bitcoin
addresses, which subsequently leads to a weak form of anonymity. Meiklejohn
et al. [10] demonstrate how to employ a few basic heuristics to classify Bitcoin
addresses that are likely to belong to the same user; this is further refined by
Spagnuolo, Maggi, and Zanero [11]. Koshy, Koshy, and McDaniel [12] show that
it is also possible to identify ownership relationships between Bitcoin addresses
and TP addresses.

Recently, some efforts have been made towards overcoming the above attacks
and providing stronger privacy to the Bitcoin users by mizing multiple transactions
to make input and output addresses of transactions unlinkable to each other. In
this direction, some third-party Bitcoin mixing services [13[14/15] were first to
emerge, but they have been prone to thefts [10]. Mixcoin [16] allows to hold these
mixing services accountable in a reactive manner; however, the mixing services
still remain single points of failure and typically require additional mixing fees.
Zerocoin [17] and its successors [18/19/20] provide strong anonymity without any
third party, but lack compatibility with the current Bitcoin system.

Maxwell proposes CoinJoin [21] to perform mixing in a perfectly compatible
manner with Bitcoin, while ensuring that even a malicious mixing server cannot
steal coins. CoinJoin is actively used in practice [22] but suffers from a substantial
drawback: The mixing server still needs to be trusted to ensure anonymity,
because it learns which coins belong to which user. To tackle this problem,
Maxwell mentions the possibility to use secure multi-party computation (SMPC)
in CoinJoin to perform the mixing in an oblivious manner. Yang |23] proposes
a concrete scheme based on SMPC sorting. However, against a fully malicious
attacker, generic SMPC as well as state-of-art SMPC sorting [24]25] is not yet
practical for any reasonable number of parties required in mixing to ensure a
good level of anonymity. Furthermore, it is not clear how to ensure robustness
against DoS attacks in these approaches, because a single user can easily disrupt
the whole protocol while possibly remaining unidentified. Consequently, defining
a practical and secure mixing scheme is considered an open problem by the
Bitcoin community [26/27]28].

Our Contribution. We present CoinShuffle, a completely decentralized protocol
to allow users to mix their coins with those of other interested users. CoinShuffle is
inspired by CoinJoin [21] to ensure verifiability and by the accountable anonymous
group communication protocol Dissent [29] to ensure anonymity and robustness
against active attacks. The key idea is similar to decryption mix networks, and
the protocol requires only standard primitives such as signatures and public-key
encryption. CoinShuffle is a practical solution for the Bitcoin mixing problem
and its distinguishing features are as follows:

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 3

No Third Party: CoinShuffle preserves Bitcoin’s decentralized trust ideology:
It is executed exclusively by the Bitcoin users interested in unlinkability for
their Bitcoin transactions, and it does not require any trusted, accountable
or untrusted third party. The unlinkability of transactions is protected as
long as at least any two participants in a run of the protocol are honest.

Compatibility: CoinShuffle is fully compatible with the existing Bitcoin net-
work. Unlike other decentralized solutions, it works immediately on top of
the Bitcoin network without requiring any change to the Bitcoin rules or
scripts.

No Mixing Fee: In absence of a third party that acts as a service provider,
CoinShuffle does not charge its users any additional mixing fees. It also
performs well in terms of Bitcoin transaction fees, because the participants
are only charged the fee for a single mixing transaction.

Small Overhead: Our performance analysis demonstrates that CoinShuffle
introduces only a small communication overhead for a participant (less than
a minute for an execution with 20 participants), while the computation
overhead remains close to negligible. Finally, CoinShuffle introduces only
minimal additional overhead for the rest of the Bitcoin network.

2 Background

In this section we present the basics of the Bitcoin protocol and explain Bitcoin
mixing, the most prevalent approach to strengthening users’ anonymity in Bitcoin.
We explain only the aspects of Bitcoin that are relevant for Bitcoin mixing and
refer the reader to the original Bitcoin paper [3] for further details.

2.1 Bitcoin

Bitcoin (symbol:) is a digital currency run by a decentralized network. The
Bitcoin network maintains a public ledger (called the blockchain) whose purpose
is to reach consensus on the set of transactions that have been validated so far
in the network. As long as the majority of computation power in the system is
honest, transactions accepted by the system cannot be changed or invalidated,
thus preventing double-spending of money.

User accounts in the Bitcoin system are identified using pseudonymous ad-
dresses. Technically, an address is the hash of a public key of a digital signature
scheme. To simplify presentation, we do not differentiate between the public key
and its hash in the remainder of the paper. Everybody can create an arbitrary
number of addresses by creating fresh key pairs.

Transactions. The owner of an address uses the corresponding private key to
spend coins stored at this address by creating transactions. In the simplest form,
a transaction transfers a certain amount of coins from one address (the input
address) to another address (the output address). While multiple sets of coins
may be stored at one address, we assume in the remainder of the paper that only

4 Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

one set of coins is stored at an address; these coins can only be spent together.
This simplification is purely for the sake of readability.

As depicted in Fig.[1] transactions can include multiple input addresses as well
as multiple output addresses. Three conditions must be fulfilled for a transaction
to be valid: First, the coins spent by the transaction must not have been already
spent by another transaction in the blockchain. Second, the sum of the input
coins must equal the sum of the output coins Third, the transaction must be
signed with the private keys corresponding to all input addresses.

Input Addresses | Output Addresses Fig. .1. A valid Bitcoin transaction vslith
multiple input addresses and multiple
A: B2 X: B3 output addresses. This transaction is
B B7 \Z(Ei signed using both the private key for
: input address A and the private key
SN for input address B; the corresponding
o v signatures are denoted by o4 and op,
g respectively.

2.2 Bitcoin Mixing

The most prevalent approach to improve anonymity for Bitcoin users is the idea
of hiding in a group by Bitcoin mizing: the users in the group exchange their
coins with each other to hide the relationship between the user and the coin from
an external observer. Assume that in a group of several users, every user owns
exactly one Bitcoin (I31). In the simplest form, mixing is done with the help of a
trusted third-party mixing server, the miz: every user sends a fresh address in
encrypted form to the mix and transfers her coin to the the mix. Then, the mix
decrypts and randomly shuffles the fresh addresses and sends I3 1 back to each of
them. While such public mixes are deployed in practice [30/13/14]15], they suffer
from two severe drawbacks: First, the mix might just steal the money and never
return it to the users. Second, the mix learns the permutation of the output
addresses. Thereby, user’s anonymity relies on the assumption that the mix does
not log or reveal the permutation.

2.3 Bitcoin Mixing With A Single Transaction

To solve the problem that the mix can steal the money, Maxwell proposes
CoinJoin [21]: Assume a group of users would like to mix their coins. In CoinJoin
this group jointly generates one single mizing transaction containing the users’
current addresses as inputs and the shuffled fresh addresses as outputs. Recall that
a transaction with several input addresses is only valid if it has been signed with

! In practice, a small transaction fee might be required. In that case, the sum of input
coins must exceed the sum of the output coins by the amount of the fee.

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 5

all keys belonging to those input addresses. Thus each user can verify whether
the generated mixing transaction sends the correct amount of money to her fresh
output address; if this is not true the user just refuses to sign the transaction
and the protocol aborts without transferring any coins.

Several implementations of CoinJoin are already actively being used [22]31],
at least one more implementation is under way [32], and the Bitcoin developers
consider adding CoinJoin to the official Bitcoin client [33]. Still, the problem that
the mix learns the relation between input and output addresses persists, and
no fully anonymous and efficient solution has been proposed to the best of our
knowledge.

3 Problem Definition

Here, we define the properties that a Bitcoin mixing protocol should satisfy, and
explain the threat model under which we would like to achieve these properties.

3.1 Design Goals
A Bitcoin mixing protocol must achieve the following security and privacy goals.

Unlinkability. After a successful Bitcoin mixing transaction, honest partici-
pants’ input and output addresses must be unlinkable.

Verifiability. An attacker must not be able to steal or destroy honest partici-
pants’ coins.

Robustness. The protocol should eventually succeed even in the presence of
malicious participants.

Besides ensuring security and privacy, a Bitcoin mixing protocol must additionally
overcome the following challenges:

Compatibility. The protocol must operate on top of the Bitcoin network, and
should not require any change to the existing system.

No Mixing Fees. The protocol should not introduce additional fees specifically
required for mixing. As every mixing transaction necessarily requires a Bitcoin
transaction fee, the protocol must ensure that this transaction fee remains as
low as possible.

Efficiency. Even users with very restricted computational capacities should be
able to run the mixing protocol. In addition, the users should not be required
to wait for a transaction to be confirmed by the Bitcoin network during a
run of the protocol, because this inherently takes several minutes

Small Impact on Bitcoin. The protocol should not put a large burden on
the efficiency of the Bitcoin network. In particular, the size of the executed
transactions should not be prohibitively large because all transactions have
to be stored in the blockchain and verified by all nodes in the network.

2 A confirmation takes 10 minutes on average. As mixing inherently requires at least
one transaction, it is acceptable to wait for a confirmation at the end of the protocol,
provided the protocol fails gracefully if the transaction is not accepted by the network.

6 Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

3.2 Non-Goals

Bitcoin users who wish to participate in a mixing protocol need a bootstrapping
mechanism to find each other, e.g., through a public bulletin board acting as
facilitator or through a peer-to-peer protocol specifically crafted for this purpose.
A malicious facilitator may try to undermine unlinkability by forcing an honest
participant to run the protocol only with malicious participants. Thus, in general,
the bootstrapping mechanism should resist attempts to exclude honest users from
the protocol. Since the Bitcoin network does not allow nodes to send arbitrary
messages, the participants must agree on a channel for further communication
during bootstrapping. Similar to other decentralized mixing protocols, we consider
bootstrapping to be orthogonal to our work and assume that it is available to all
Bitcoin users.

The main goal of a Bitcoin mixing protocol is the unlinkability between
input and output addresses in a mixing transaction. If after the mixing, a user
would like to spend the mixed coins associated with the output address while
maintaining her anonymity, she has to ensure that network metadata, e.g., her IP
address, does not reveal her identity or make the spending transaction linkable
to a run of the mixing protocol. This problem is not in the scope of the Bitcoin
mixing protocol and can be addressed, e.g., by connecting to the Bitcoin network
via an anonymous communication protocol such as Tor [34].

3.3 Threat Model

For unlinkability and verifiability, we assume an active network attacker. (Robust-
ness cannot be ensured in the presence of an active network attacker, because such
an attacker can always stop the communication between two honest participants.)

We do not require any trust assumption on a particular party: for verifiability,
we assume that an honest participant can be faced with an arbitrary number of
malicious participants. For unlinkability and robustness, we require that there
are at least two honest participants in the protocol. Otherwise the attacker
can trivially determine the mapping between input and output addresses and
meaningful mixing is not possible.

4 Solution Overview

Our main contribution is CoinShuffle, a Bitcoin mixing protocol that achieves
the aforementioned goals. In this section, we give an overview of our solution.

4.1 Main Idea

To ensure verifiability, our protocol follows the same paradigm as CoinJoin
(Section : A group of users jointly create a single mixing transaction and
each of them can individually ensure that she will not lose money by performing
the transaction. In case of a fraud attempt, the user will just refuse to sign the
transaction.

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 7

Unlinkability and robustness, however, are the most challenging problems: To
create a mixing transaction while assuring that input addresses are not linkable
to fresh output addresses, the participants shuffle their output addresses in an
oblivious manner, similar to a decryption mix network [35]. This shuffling is in-
spired from the accountable anonymous group messaging protocol Dissent [29]36].
Mainly due to the special nature of the problem that we would like to solve, we
are able to simplify and optimize ideas from Dissent significantly. We refer to the
full version [1, App. A] for a high-level comparison with Dissent.

The shuffling provides robustness in the sense that attacks that aim to disrupt
the protocol can be detected by honest users and at least one misbehaving
participant can be identified and excluded The other participants can then run
the protocol again without the misbehaving participant.

4.2 Protocol Overview

The main part of the CoinShuffle protocol can roughly be split into three phases
as depicted in Fig. [2| If the protocol does not run successfully, an additional
blame phase will be reached. In the following we give an overview of every phase.
A detailed description of the protocol can be found in the full version [1].

Assume that every participant holds the same amount of coins at some Bitcoin
address. This address will be one of the input addresses in the mixing transaction,
and every protocol message is signed with the sender’s private signing key that
belongs to this address.

Announcement. Every participant generates a fresh ephemeral encryption-
decryption key pair, and broadcasts the resulting public encryption key.

Shuffling. Every participant creates a fresh Bitcoin address, designated to be
her output address in the mixing transaction. Then the participants shuffle the
freshly generated output addresses in an oblivious manner, similar to a decryption
mix network [35].

In more detail, every participant (say participant 4 in a predefined shuffling
order) uses the encryption keys of every participant j > i to create a layered
encryption of her output address. Then, the participants perform a sequential
shuffling, starting with participant 1: Each participant i expects to receive i — 1
ciphertexts from participant ¢ — 1. Upon reception, every participant strips one
layer of encryption from the ciphertexts, adds her own ciphertext and randomly
shuffles the resulting set. The participant sends the shuffled set of ciphertexts
to the next participant ¢ + 1. If everybody acts according to the protocol, the
decryption performed by the last participant results in a shuffled list of output
addresses. The last participant broadcasts this list.

3 This property is called accountability in Dissent. We use a different term to avoid
confusion with the concept of accountable Bitcoin mixing services in Mixcoin [16].

8 Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

Announcement | Shuffling
Input Output Charlie Bob Alice
A Addresses | Addresses &= =
Alice 4>B A $1 B' Bl < B' 4:><
Bob —— [B g1 CLB1 :><f A -
Charlie #b C: B1 A B1 — C'
Transaction Verification (normal case) Transaction Verification (in case of attack) |
Input Output Input Output
Addresses | Addresses Addresses | Addresses
A: Bl B B1 A: Bl B B1
B: B1 C:B1 B: B1 D:B1Z
C: B1 A B1 C: B1 A B1
Alice Oa » o, Alice n > o,
Bob % o, Bob % » o,
. o .
Charlie %c o, v Charlie (no signature for C) x

Fig. 2. Overview of CoinShuffle: First, the participants announce their input addresses.
Second, they perform a shuffling of fresh output addresses. (Colored boxes represent
ciphertexts encrypted with the respective encryption key.) Third, the participants
check if their output address is contained in the final list of output addresses. In this
case (left-hand side), the transaction is signed by the participants and submitted to
the Bitcoin network. If, on the contrary, an output address is missing (e.g., C' has
been replaced by D', right-hand side), the transaction does not become valid and the
participants enter the blame phase to find out which participant deviated from the
protocol specification.

Transaction Verification. Each participant can individually verify if her out-
put address is indeed in the list. If this is true, every participant deterministically
creates a (not yet signed) mixing transaction that spends coins from all input
addresses and sends them to the shuffled list of output addresses. Every participant
signs the transaction with her Bitcoin signing key and broadcasts the signature.

Upon receiving signatures from all other participants, every participant is
able to create a fully-signed version of the mixing transaction. This transaction
is valid and can be submitted to the Bitcoin network.

Blame. In every step of the previous phases, every participant ensures that no
other participant deviates from the protocol. In such a case, an honest participant
would report the deviation and the protocol enters the blame phase, which is then
performed to identify the misbehaving participant. The misbehaving participant
can then be excluded from a subsequent run of the protocol. There are three cases
in which participants enter the blame phase. First, the blame phase is entered if
some participant does not have enough bitcoins at her input address to perform
the mixing transaction, or if she just spends the money at the input address

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 9

before the mixing protocol is completed. In both situations, the Bitcoin network
provides evidence for the misbehavior. Second, the blame phase is entered if the
shuffling has not been performed correctly. In that case, the participants can
broadcast their ephemeral decryption keys, along with the messages they have
received. This information allows every participant to replay the computations
of the rest of participants and expose the misbehaving one. Third, participants
could equivocate in the broadcasts of the protocol, e.g., by sending different
public keys to different participants in the announcement phase. All participants
exchange messages before creating the mixing transaction to ensure that nobody
has equivocated. If the equivocation check fails, the blame phase is entered. Since
all protocol messages are signed, the equivocating participant can be identified;
two signed messages that are different but belong to the same sender and the
same broadcast step provide evidence of the misbehavior.

4.3 Practical Considerations

Transaction Fees. In practice, the Bitcoin network charges a small fee for
mixing transaction to prevent DoS attacks that flood the network with a
high number of transactions [37]. Transaction fees can easily be dealt with in
CoinShuffle. Before creating the transaction, the N participants calculate the
required fee u and reduce the size of each output by /N (assuming the fee should
be split equally among the participants). This ensures that the transaction will
be accepted by the Bitcoin network. If a participants tries to cheat by deviating
from this policy, e.g., to pay a lower fee, the mixing transaction will not become
valid as only the correct transaction will be signed by the honest participants.

Change Addresses. A user that would like to spend exactly B z typically does
not hold an input address with exactly this balance, but rather an address with
a higher balance B (z + y). In order to perform the payment, the user will create
a transaction with one input I3 (x + %) and two outputs: I3z go to the address of
the payee and By go to a change address belonging to the original user.

The use of change addresses is supported in CoinShuffle: Participants can
announce additional change addresses in announcement phase, if they do not have
an address holding exactly the mixing amount 3 2. In transaction verification
phase, every participant adds all the change addresses as outputs of the mixing
transaction before it is signed. CoinShuffle still preserves the unlinkability between
the input addresses and the (regular) output addresses of the honest participants.

Communication and Liveness. In practice, broadcasts can be implemented
by sending all messages to a randomly chosen leader that relays the messages to
all participants. Furthermore, instead of active misbehaving, participants might

4 At the time of writing, a fee of 130.0001 (= $0.06) per 1000 bytes of transaction size
is mandatory for transactions of at least 1000 bytes. Due to their nature, mixing
transactions contain several addresses and are typically larger than 1000 bytes. A
mixing transaction with 25 participants has an approximate size of 5000 bytes.

10 Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

passively disrupt a protocol round by simply going offline at any time, either
maliciously or due to a network failure or asymmetric connectivity. This problem
is not particular to CoinShuffle and can be handled using the same techniques
as in Dissent [29], which in turn borrows ideas from PeerReview [38]. We only
present the idea and refer the reader to the original papers for details. When the
protocol states that a participant 4 must receive a properly signed message from
participant j, but participant j does not send such a message within a predefined
timeout period, 7 suspects j. In this case, i asks another participant k (or several
participants) to request the desired message from j and relay it to ¢. If k does not
receive the message either, also k suspects 7 and can in turn ask other members.
In case nobody receives the message from 7, i.e., everybody suspects j eventually,
the participants can start a new run of the protocol without j.

5 System Discussion

In this section, we discuss why CoinShuflle achieves all desired system-level design
goals as described in Section We refer the reader to the full version [1] for a
security analysis of the protocol.

Compatibility. CoinShuffle does not require any change to the Bitcoin protocol
or to the transaction format, because a successful run of CoinShuffle results in
a transaction that is valid according to the current rules of Bitcoin. Thus the
protocol is immediately deployable.

No Mixing Fees. Systems in which a trusted third party performs the mixing
typically charge users two fees: a transaction fee as defined in Bitcoin and a
mixing fee required by the mixing server [13[14/15]. In CoinShuffle, however, no
mixing fee is required. Users who jointly execute CoinShuffle are only charged
the transaction fee as defined in the currently deployed Bitcoin protocol.

Efficiency. Aside from digital signatures that are already deployed in Bitcoin,
CoinShuffle requires only standard public-key encryption and a hash function. This
makes it possible to run the protocol even on computationally restricted hardware.
Our performance evaluation (Section @ shows the feasibility of CoinShuffle in
practice.

Small Impact on Bitcoin. Upon successful protocol execution, CoinShuffle
participants jointly create only a single Bitcoin transaction that is stored in
the blockchain and has to be verified by all nodes in the network. Thus, the
execution of CoinShuffle introduces only a minimal overhead in terms of storage
and computation for the Bitcoin system.

6 Performance Evaluation

We have developed a proof-of-concept implementation [1] of CoinShuffle leverag-
ing an existing implementation of the Dissent protocol. In particular, we have

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 11

implemented the announcement, shuffling and transaction verification phase,
which suffice to measure the performance of a single successful run without
disruption attempts.

The implementation is written in Python and uses OpenSSL to sign and
encrypt messages. As required by the Bitcoin network, signatures have been
implemented using ECDSA on the 256-bit curve secp256k1 [39]. We use the
Elliptic Curve Integrated Encryption Scheme (ECIES) [39] on the same curve
together with 256-bit AES in CBC mode for encryption. The communication
among the participants has been implemented using TCP. When a message is
broadcast, it is first sent to the first participant in the shuffling order, who in
turn sends a copy to every participant.

We tested our implementation in Emulab [40], a testbed for distributed
systems, in which network parameters such as topology or bandwidth of links
can be easily configured. In this setting, we have run several experiments under
controlled network conditions. We consider two scenarios: a local network and a
global network. In the former, we connected all the participants to a LAN with
100 Mbit/s bandwidth without delays. In the latter, we split the participants in
two LANSs of 100 Mbit/s bandwidth each. Both LANs were connected through a
router with a bandwidth of 20 Mbit/s and a delay of 50 ms. In the global network
scenario we considered the worst case for the shuffling phase: participants with
an odd index in the shuffling ordering were placed in one LAN while participants
with an even index were placed in the second LAN. Thus every message in the
shuffling phase had to traverse the whole network.

local network —— x 1 Average

160 global network -~ N Max and min +-x-
140 o
5
5120 -
2 2
$100 S 41
D Q
e e
> 80 > 31
E E
F 60 o =
p 2 X
40 - o *
o X
20 L iy f
0 = . , , . 0 , , y
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of participants Number of participants
Fig. 3. Overall execution time Fig. 4. Average processing time per node

We have run the protocol with different numbers of participants, ranging from
5 to 50. Figure [3|shows the overall time needed to create a Bitcoin transaction in a
run without misbehaving participants. In the local network setting, 50 participants
need approximately 40 seconds to run CoinShuffle, while in the global network,
slightly less than 3 minutes are necessary to complete the protocol.

Figure [4] shows the overhead of the computation carried out by every par-
ticipant on average. As expected, the average processing time increases linearly
with the number of participants, because every participant must shuffle a vector

12 Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

of ciphertexts containing one ciphertext more than the previous participant.
Furthermore, the computation overhead constitutes only a small fraction of the
overall time. In the case of 50 participants, the average computation time is
slightly larger than 3 seconds, which constitutes approximately 2% of the overall
time in the local network scenario and less than 1% in the global network setting.

In summary, the experimental results demonstrate the feasibility of the
CoinShuffle protocol even in scenarios where the number of participants is large.

7 Related Work

Zerocoin [17], an extension to Bitcoin, was among the first proposals to provide
unlinkability between individual Bitcoin transactions without introducing a
trusted party. It employs a cryptographic accumulator of minted zerocoins and a
zero-knowledge proof of inclusion of a certain zerocoin within the accumulator.
Zerocoin introduces a significant computation and communication overhead: the
size of the proof that has to be stored in the blockchain for each transaction is
prohibitively large (i.e., approximately 25 KB) and far exceeds the size of the
Bitcoin transaction itself.

Recently, there have been some proposals to reduce the Zerocoin proof size.
Garman et al. [19] propose a set of extensions to Zerocoin that reduces the
proof size by modeling the cost of forging a coin and picking cryptographic
parameters to make such forgery uneconomical. Both Pinocchio Coin [18] and
Zerocash |20] are promising improvements of Zerocoin that significantly reduce
the proof size (to less than 1 KB) and the computational costs. Nevertheless, this
line of research is severely restricted in terms of adaptability. Zerocoin and all
of the above extensions require substantial modifications to the Bitcoin system.
Thus, Zerocoin and its variants cannot be directly deployed in Bitcoin. Instead,
they would need an incremental deployment that requires acceptance by the
majority of the Bitcoin nodes (measured in computational resources). So far, it
looks unlikely for the Bitcoin network to employ the Zerocoin strategy [41].

In contrast, while requiring more communication, CoinShuffle is immedi-
ately adaptable and works on top of the existing Bitcoin network without any
modifications.

The Mixcoin [16] protocol facilitates anonymous Bitcoin payments without
making any modifications to the Bitcoin protocol. Here, Bitcoin users send their
coins to a central accountable mixing server which in turn replies with a guarantee
of returning the funds to the user. Afterwards, the mix sends the coins back
to the user ensuring unlinkability between the user input and output addresses.
Although the mixing server can be held accountable for any wrongdoing, the
system still has several drawbacks. First, the use of a central mix introduces a
single point of failure, where the mix becomes a suitable target for DoS attacks
from competing mixing servers as well as governmental agencies. Second, the
provided accountability is reactive in nature, and the mix can still steal users’
coins before going out of business. Third, a payment in Mixcoin requires two
Bitcoin transactions and additionally the mixing server’s fee. Finally, unlinkability

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 13

is only guaranteed against external observers, because the mixing server learns
which address belongs to which user. In comparison to Mixcoin, CoinShuffle
relies on the interaction between the users in the mixing to achieve unlinkability
against malicious servers, verifiability, robustness, and cost effectiveness.
Maxwell [42] sketches a modification to the CoinJoin protocol using blind
signatures to avoid the problem of a centralized mix learning the relation between
input and output addresses. This protocol employs the anonymous communica-
tion network Tor [34] as a building block to provide unlinkability. In contrast,
CoinShuffle provides full resistance against traffic correlation attacks by using a
decentralized high-latency mix network run only by the participants.

8 Conclusion

The linkable pseudonymity provided by the Bitcoin system leads to significant
privacy concerns for its users. A few solutions that aim at mixing transactions
of a group of users have been proposed in the last two years to address this
concern; however, none of them has been found to be satisfy all requirements of
a practical and compatible solution. In this paper, we have presented the Bitcoin
mixing protocol CoinShuffle, which is secure, robust, and perfectly compatible
with the existing Bitcoin system. Adhering to the Bitcoin ideology, CoinShuffle is
completely decentralized, and it neither requires any third party nor introduces
any additional anonymization fees for the users.

We implemented CoinShuffle and tested it in a local as well as in a global
network scenario in the Emulab environment. Our experiments demonstrate
that CoinShuffle introduces only a small (suitable for Bitcoin) computation and
communication overhead to a participant, even when the number of CoinShuffle
participants is large (a~ 50). Moreover, CoinShuffle leads to only a minimal
overhead for the Bitcoin blockchain and the rest of the Bitcoin users.

Finally, although we have focused on the crypto-currency Bitcoin in the paper,
we stress that our protocol is compatible with all competing currencies derived
from Bitcoin, e.g., Litecoin [4], Mastercoin [6], and others.

Acknowledgments. We thank Bryan Ford for his insightful comments on an
earlier draft and Henry Corrigan-Gibbs for helping us with running the proof-of-
concept implementation on Emulab. We further thank the anonymous reviewers
for their helpful comments. This work was supported by the German Universities
Excellence Initiative.

References

1. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized
coin mixing for Bitcoin. Full version of this paper and prototype implementation.
http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle

http://crypsys.mmci.uni-saarland.de/projects/CoinShuffle

14

SIS IICNESIINS

10.

11.

12.

13.
14.
15.
16.

17.

18.

19.

20.

21.

22.
23.

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate

Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized
coin mixing for Bitcoin. Post on Bitcoin Forum. https://bitcointalk.org/index,
php?topic=567625 (2014)

. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical report.

https://bitcoin.org/bitcoin.pdf (2008)

. Litecoin. https://litecoin.org

Ripple. https://ripple.com
Mastercoin. http://www.mastercoin.org

. Dodgecoin. http://dogecoin.com
. BitInfoCharts (accessed on 2014-03-28). http://bitinfocharts.com/comparison/

transactions-marketcap-btc-1ltc.html

. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make Bitcoin a

better currency. In: Proc. of the 15th Conference on Financial Cryptography and
Data Security. FC’12, Springer (2012) 399-414

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with
no names. In: Proc. of the 2013 Conference on Internet Measurement Conference.
IMC’13, ACM (2013) 127-140

Spagnuolo, M., Maggi, F., Zanero, S.: Bitlodine: Extracting intelligence from the
Bitcoin network. In: Proc. of the 17th Conference on Financial Cryptography and
Data Security. FC'14 (2014)

Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using P2P
network traffic. In: Proc. of the 17th Conference on Financial Cryptography and
Data Security. FC’14 (2014)

Bitcoin Fog. http://www.bitcoinfog.com

BitLaundry. http://app.bitlaundry.com

BitLaunder. https://bitlaunder.com

Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin:
Anonymity for Bitcoin with accountable mixes. In: Proc. of the 17th International
Conference on Financial Cryptography and Data Security. FC’14, Springer (2014)
Miers, 1., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from Bitcoin. In: Proc. of the 34th Symposium on Security and Privacy.
S&P’13, IEEE (2013) 397411

Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio Coin: Building
Zerocoin from a succinct pairing-based proof system. In: Proc. of the 1st ACM
Workshop on Language Support for Privacy-enhancing Technologies. PETShop’13,
ACM (2013) 27-30

Garman, C., Green, M., Miers, I., Rubin, A.D.: Rational Zero: Economic security
for Zerocoin with everlasting anonymity. In: 1st Workshop on Bitcoin Research.
(2014)

Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from Bitcoin. In: Proc. of the
35th Symposium on Security and Privacy. S&P’14, IEEE (2014)

Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Post on Bitcoin Forum.
https://bitcointalk.org/index.php?topic=279249 (August 2013)

Qkos Services Ltd: Shared Coin. https://sharedcoin.com

Yang, E.Z.: Secure multiparty bitcoin anonymization. Technical report. http://
blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/ (July
2013)

https://bitcointalk.org/index.php?topic=567625
https://bitcointalk.org/index.php?topic=567625
https://bitcoin.org/bitcoin.pdf
https://litecoin.org
https://ripple.com
http://www.mastercoin.org
http://dogecoin.com
http://bitinfocharts.com/comparison/transactions-marketcap-btc-ltc.html
http://bitinfocharts.com/comparison/transactions-marketcap-btc-ltc.html
http://www.bitcoinfog.com
http://app.bitlaundry.com
https://bitlaunder.com
https://bitcointalk.org/index.php?topic=279249
https://sharedcoin.com
http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/
http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin 15

Jonsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
ePrint Cryptology Archive 2011/122. https://eprint.iacr.org/2011/122.pdf
(2011)

Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient
multi-party sorting protocols from comparison sort algorithms. In: Proc. of the
15th International Conference on Information Security and Cryptology. ICISC’12,
Springer (2013) 202216

Rosenfeld, M.: Using mixing transactions to improve anonymity. Post on Bitcoin
Forum. https://bitcointalk.org/index.php?topic=54266 (December 2011)
Murphant (pseudonym). Post on Bitcoin Forum. https://bitcointalk.org/index.
php?topic=279249.msg3057216#msg3057216 (August 2013)

Maxwell, G. Post on Bitcoin Forum. https://bitcointalk.org/index.php?
topic=279249.msg3013970#msg3013970 (September 2013)

Corrigan-Gibbs, H., Ford, B.: Dissent: Accountable anonymous group messaging. In:
Proc. of the 17th Conference on Computer and Communications Security. CCS’10,
ACM (2010) 340-350

Méser, M., Béhme, R., Breuker, D.: An inquiry into money laundering tools in the
Bitcoin ecosystem. In: Proc. of the APWG eCrime Research Summit. ECRIME’13,
IEEE (2013)

Dulffield, E., Hagan, K.: Darkcoin: Peer-to-peer crypto currency with anonymous
blockchain transactions and an improved proof-of-work system. Technical report
(March 2014)

Buterin, V., Malahov, J., Wilson, C., Hintjens, P., Taaki, A., et al.: Dark Wallet.
https://darkwallet.unsystem.net

van der Laan, W.J.: Implement coinjoin in wallet. GitHub Issue #3226 of official
Bitcoin repository. https://github.com/bitcoin/bitcoin/issues/3226
Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proc. of the 13th USENIX Security Symposium. USENIX Security’04,
USENIX (2004) 21-37

Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2) (1981) 84-90

Syta, E., Johnson, A., Corrigan-Gibbs, H., Weng, S.C., Wolinsky, D., Ford, B.:
Security analysis of accountable anonymous group communication in Dissent. http:
//dedis.cs.yale.edu/dissent/papers/analysis.pdf

Transaction fees. Bitcoin Wiki (revision as of 2014-03-28). https://en.bitcoin.
it/w/index.php?title=Transaction_fees&oldid=45501

Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability for
distributed systems. In: Proc. of 21st Symposium on Operating Systems Principles.
SOSP’07, ACM (2007) 175-188

Certicom Research: Sec 1: Elliptic curve cryptography. http://www.secg.org/
download/aid-780/secl-v2.pdf

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: OSDI'02, USENIX (December 2002) 255-270

Thread on Bitcoin Forum. https://bitcointalk.org/index.php?topic=175156.0
Maxwell, G. Post on Bitcoin Forum. https://bitcointalk.org/index.php?
topic=279249.msg2984051#msg2984051 (2013)

https://eprint.iacr.org/2011/122.pdf
https://bitcointalk.org/index.php?topic=54266
https://bitcointalk.org/index.php?topic=279249.msg3057216#msg3057216
https://bitcointalk.org/index.php?topic=279249.msg3057216#msg3057216
https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970
https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970
https://darkwallet.unsystem.net
https://github.com/bitcoin/bitcoin/issues/3226
http://dedis.cs.yale.edu/dissent/papers/analysis.pdf
http://dedis.cs.yale.edu/dissent/papers/analysis.pdf
https://en.bitcoin.it/w/index.php?title=Transaction_fees&oldid=45501
https://en.bitcoin.it/w/index.php?title=Transaction_fees&oldid=45501
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://bitcointalk.org/index.php?topic=175156.0
https://bitcointalk.org/index.php?topic=279249.msg2984051#msg2984051
https://bitcointalk.org/index.php?topic=279249.msg2984051#msg2984051

	CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin
	Introduction
	Background
	Bitcoin
	Bitcoin Mixing
	Bitcoin Mixing With A Single Transaction

	Problem Definition
	Design Goals
	Non-Goals
	Threat Model

	Solution Overview
	Main Idea
	Protocol Overview
	Practical Considerations

	System Discussion
	Performance Evaluation
	Related Work
	Conclusion

