
Safety in Numbers: Anonymization Makes Keyservers
Trustworthy

Lachlan J. Gunn1

School of Electrical and
Electronic Engineering

The University of Adelaide

Andrew Allison
School of Electrical and
Electronic Engineering

The University of Adelaide
lachlan.gunn@adelaide.edu.au

Derek Abbott
School of Electrical and
Electronic Engineering

The University of Adelaide

1. INTRODUCTION
Suppose you want to call someone, but do not know their

phone number. How do you find it? The obvious way is to
look them up in a phone book, but the phone company might
have placed a different address under their name. If they
are particularly security conscious, then you might presume
that, when they received their phone book, they checked to
see whether their number is correctly listed. But what if it
were not modified in every phone book, but some contain
the real number and some contain a false one?

This type of equivocation is a major problem faced by end-
to-end secure communications systems, and the difficulty of
its solution is such that the only systems with mainstream
user acceptance, such as WhatsApp and SSH, tend to ignore
it altogether, depending on Trust-on-First-Use [1] behavior.

Multi-path probing [1] has been proposed by a number
of authors [2, 3, 4] as a means of detecting equivocation by
network adversaries, whether near the server or the client.
We demonstrate that it can be used effectively for anti-
equivocation, a more general class of failure than the man-
in-the-middle (MitM) adversary considered by [4]. This has
been considered informally by a number of authors [3, 5]; we
show that a system like DetecTor [3] can be made provably
secure, with some modifications to render clients indistin-
guishable.

Our approach has a number of advantages over other open-
group anti-equivocation techniques in the literature:

• No bootstrapping problem. By using an existing
anonymity system to audit quite general services, new
systems can obtain the benefits of distributed auditing
without an existing community to provide operator-
diverse monitoring systems.

• Scalability. Users do not need to communicate with
each other, except to signal that the service has mis-
behaved. As a result, the communication overhead is
only O(log ε) for a given security level ε.

• Computational efficiency. Because we do not use a
proof-of-work system, no computational power is wasted
on what is generally pointless busywork whose only
purpose is to make participation costly.

This is relevant to our first point: a new proof-of-
work system is not secure until it has enough miners
to out-compute any potential attacker. This creates a

1LJG was supported by an Australian Government Research
Training Program Scholarship.

chicken-and-egg problem, in that the system is not se-
cure until it is widely adopted, which will not happen
if it is insecure.

• No server-side cooperation needed. This approach
does not require any changes on the server-side; as a
result, it is quite practical for motivated users to audit
existing services without the need for effort or cooper-
ation from their operators.

The analysis discussed in this paper is given in full in [6].

2. VERIFICATION PROTOCOL
Suppose that Bob wishes to acquire a piece of information

from an untrusted anonymously-accessed service, and Alice
the auditor can detect whether a given response from the
server is valid. The protocol that we propose is as follows:

1. At a predetermined time, Alice and Bob both request
a copy of the message from the service.

2. The service responds to their requests with the mes-
sage provided.

3. Steps one and two are repeated M times.

4. If Bob does not receive M identical responses, he pub-
licly signals an error.

5. Alice checks that the messages that she has received
are identical and valid, and publicly signals an error if
not.

We show this in Figure 1. Clients who see evidence of equiv-
ocation know that the service is untrustworthy, and can
report its misbehavior. If the responses are signed, these
clients can prove to third parties that the server has equiv-
ocated, providing a substantial deterrent to misbehavior on
the part of the service.

Any anonymizing system can be used for this protocol, but
in general a synchronized system such as a mix-net will be
more effective, as these provide little-to-no room for timing
attacks. In practice, low-latency anonymization networks
such as Tor are far more available than mix-nets, and there-
fore measures such as randomization of request times are
worthwhile; in our implementation2, we do so by defining
windows at fixed time intervals relative to an epoch, then
making requests at a randomly-chosen time within that win-
dow. Regular inter-request intervals allow requests to be
easily linked according to their time of receipt.
2https://github.com/LachlanGunn/keywatch



CENTRAL

SERVICE

CLIENTS

ANONYMIZER

Response 1

2

3

4

5

Accepts Accepts ErrorErrorError

Figure 1: Interpretation of the results obtained from
the protocol. Clients that have not received consis-
tent responses from the server reject the response
from the server, which they know to be faulty.
Clients that have consistently received the same re-
sponse accept it as unequivocated. In this figure, the
server has equivocated, with the third and fourth
clients being unaware of the fact and the others de-
tecting the misbehavior of the service.

3. PRACTICAL SIGNIFICANCE
Our primary motivation for developing this protocol stems

from the difficulty of remotely acquiring pgp key finger-
prints. This normally requires manual verification of identi-
fication and email addresses, unless a trusted intermediary
can be found; this type of key management is too hard for
most users, and thus pgp is generally not used.

A user might theoretically verify that the public key-servers
do not return inappropriate results when they search for
their own name or email address, but a compromised server
might equivocate. In order to use gossip protocols or moni-
tor servers, the data to be authenticated must be small and
common. This is normally achieved via Merkle tree struc-
tures, such as in coniks, but such wholesale replacement
of the current keyserver architecture is not realistic in the
short-term.

The approach that we describe here allows organic growth—
users do not need to change the way that they publish their
keys, but need only run a daemon that will perform back-
ground verification of their keyring. This dramatically re-
duces the barrier to entry, making adoption far more plausi-
ble in the short-term than cryptographically-protected sys-
tems such as coniks.

Our own implementation works in a similar way to this;
the protocol is used via Tor to access the pgp keyserver net-
work, with user-specified search terms. The response to each
request is taken to be the first valid match, and a warning
is emitted if this changes between requests.

4. RESULTS
We lack the space here to present a derivation of our re-

sults; however we summarize them in Table 1. Probabilities
are with respect to a perfect anonymizer; our security reduc-
tion incorporates an imperfect anonymizer, and all probabil-
ity bounds over M rounds are multiplied by (1+ε)M , where
ε is the probability of deanonymizing all users in one round.

Diverse
Requests

Common
Request

Number of users assumed 2 N � 2

Items validated per user L L

Number of requests per user ML M + L

Probability of undetected failure 2−M

(N − 1)

/NM

Legacy system support Yes No

Table 1: Costs and security of the proposed protocol
for arbitrary services and Merkle tree-like systems,
with N clients and M request-response rounds.

When all clients make the same request and expect the
same response—for example, if the data is in a Merkle-tree
as with coniks [7]—then they can assume that other clients
are also making indistinguishable requests, resulting in a
stronger security bound. In either case, the probability of
non-detection falls exponentially with time.

5. CONCLUSION
We have shown how an anonymizing service such as Tor

can be used to perform multi-path probing, and so create
a web service that permits clients to detect equivocation.
Failed attempts to provide different messages to different
parties can be proven by the detecting party with the aid
of digital signatures. Such a protocol has the potential to
provide remote verification of public keys, rendering end-to-
end public-key cryptography possible without the need for
trust in certificate authorities or for potentially insecure ap-
proaches such as trust-on-first-use. We have bounded the
probability that an equivocating service can succeed in de-
ceiving its users, and have reduced its security to that of the
underlying anonymizer.

6. REFERENCES
[1] D. Wendlandt, D. Andersen, and A. Perrig,

“Perspectives: Improving SSH-style host authentication
with multi-path probing,” in Proceedings of the
USENIX Annual Technical Conference, 2008.

[2] M. Alicherry and A. D. Keromytis, “Doublecheck:
Multi-path verification against man-in-the-middle
attacks,” in IEEE Symposium on Computers and
Communications, Sousse, Tunisia, 2009, pp. 557–563.

[3] K. Engert. (2013) DetecTor.io. Accessed 2017-02-20.
[Online]. Available: http://detector.io/

[4] Y. Gilad and A. Herzberg, “Plug-and-play IP security,”
J. Crampton, S. Jajodia, and K. Mayes, Eds., Berlin,
Heidelberg, 2013, pp. 255–272.

[5] The Tor Project, “Users of Tor,”
https://www.torproject.org/about/
torusers.html.en, 2015, accessed 2015-12-31.

[6] L. J. Gunn, A. Allison, and D. Abbott, “Safety in
numbers: Anonymization makes centralized systems
trustworthy,” 2017, ArXiV:1602.03316v2.

[7] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten,
and M. J. Freedman, “CONIKS: Bringing key
transparency to end users,” in Proceedings of the 24th
USENIX Security Symposium, Washington, D.C., 2015,
pp. 383–398.


