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Example load profile
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AGGREGATION SCHEMES

Is a prominent solution

Instead of reporting individual households
Report many together
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AGGREGATION EXAMPLE




What is the minimum # of households necessary ?

This report suggests that selecting an aggregation level of
2 offers network companies greater visibility ... while still
providing customers with a comparatively similar level of
visibility risk to an aggregation level of 4
— Energy Networks Association (2015 report)

Let's test this!

%7 TECHNISCHE

g?@’/é UNIVERSITAT
Y@y~ DARMSTADT




We base our metric on the notion of
indistinguishability

J. M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart metering,” in 2010 |IEEE International Conference on
Communications Workshops, pp. 1-5, May 2010.
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PRIVACY GAME

Inputs: Egen,m,l

Adversary Challenger

€0,€1 < Egen
2:é31 v o :ém <_$Egen

compute aggregate €4:
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g < fdec(€a,€0,€1) >output (g =)
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METHODOLOGY

e Measure advantage over random guessing
e Rely onsimple heuristics

m Peak comparison
® Mean square error
m Pearson correlation
= Combined method based on
Peak comparison and the Pearson correlation

e Real world data

m Largest available datasets
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WE EXAMINE THE FOLLOWING CASES:

e Canwedistinguish daily load profiles in the
aggregate?

e Canwedistinguish devices in the aggregate?

e Parameters affecting our game?
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Are small aggregations privacy preserving? (1/3)
One dataset - Daily load profiles

Combined - - - Pearson
Peaks

e No privacy in small
aggregations

e Significant advantage in
larger aggregations
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Dataport dataset with 15 minutes resolution.




Are small aggregations privacy preserving? (2/3)
Multiple datasets - Daily load profiles
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Different datasets:
Geographical origin
# of households

# of load profiles per
household

Types of energy
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Multiple datasets-30 minutes resolution.
A7 Davesman Combined method.
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Are small aggregations privacy preserving? (3/3)
Privacy limit - Daily load profiles

e Heavily depends on the
dataset

e |arger aggregations
introduce a lot of noise

e Moreresearch regarding
utility vs privacy
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Are single appliances detectable in the aggregate?

—— Electric Furnace
Dish Washer

Fridge . .

Modified privacy game

with/without device
Energy hungry appliances
easier to detect

More devices in the paper
Correlation of device
characteristics and
detectability
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Dataport dataset with 15 minutes resolution.
Combined method.




Parameters affecting the privacy game
Temporal resolution

e | essfreq.reports more
private

e No privacy in small agg.sizes

e More parameters in the

paper
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Dataport dataset using the combined method.
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INA NUTSHELL..

e Small aggregations cannot guarantee privacy
® |ndividual profiles
m Single devices

e An upper limit seems to exist but...
m dataset dependent
m privacy vs (meaningful) utility

e Temporal resolution is an important factor
Two (or just a few) is definitely not enough!
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Thank you!
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