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National Ambulatory Medical Care Survey (NAMCS)

Percentage of office-based physicians with electronic medical 

records in U.S.A, 2001-2013

More medical data are digitized
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http://howinforme.blogspot.ch/2015/09/electronic-health-record-how-to-use.html
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More health data collected

http://time.com/collection-post/3615161/sharing-health-data/

http://blog.stridekick.com/ultimate-guide-fitness-tracker-hacks-get-most-from-fitbit/ http://www.consumerreports.org/cro/news/2015/06/what-you-need-to-know-about-sharing-your-medical-data/index.htm

http://www.designindaba.com/articles/creative-work/smart-thermometer-crowdsources-info-real-time-health-tracking



cancer death rates* among men, USA, 1930-2014

More medical data = better treatments ?
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cancer death rates* among men, USA, 1930-2014
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More medical data = better treatments ?

https://www.iconexperience.com/g_collection/icons/?icon=cigarette



cancer death rates* among men, USA, 1930-2014
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More medical data = better treatments ?

https://www.iconexperience.com/g_collection/icons/?icon=cigarette
https://www.zazzle.co.uk/vintage+refrigerator+advertisement+gifts



Sensitive-data sharing is difficult
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http://www.animaladvocacy.ie/tnr/how-to/for-trappers/paperwork/

http://blog.lpinnovations.com/

http://clubpenguin.wikia.com/wiki/Money_Bag

https://www.iconfinder.com/icons/311148/clock_time_icon

https://www.fda.gov/forpatients/clinicaltrials/informedconsent/default.htm
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Sensitive-data sharing is difficult

http://www.gmmill.net/proje-Grain-Storage-Silos



UnLynx

querier

data providers

records

UnLynx
SELECT AVG (cholesterol_rate)

FROM DP1,...,DP20

WHERE age in [40:50] AND ethnicity = caucasian

GROUP BY gender

Allow statistical queries on multiple independent databases while 
ensuring privacy and confidentiality for data providers.

query
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Existing data sharing solutions

Centralized Solutions Decentralized Solutions

Single point of failure

Limited number of data 
providers/computation 

entities in an adversarial 
model



Requirements

accountabilityconfidentiality

correctness

differential

privacy

unlinkability

decentralized

trust
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Building Blocks

Collective Authority
decentralized 

trust
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Building Blocks

Collective Authority

Additively-homomorphic 
ElGamal crypto scheme

confidentiality

decentralized 
trust
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Building Blocks

Collective Authority
decentralized 

trust

Additively-homomorphic 
ElGamal crypto scheme

confidentiality

Zero-Knowledge Proofs 
of Correctness

accountability correctness

decentralized 
trust

confidentiality
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https://simple.wikipedia.org/wiki/Zero-knowledge_proof



Building Blocks

Collective Authority
decentralized 

trust

Additively-homomorphic 
ElGamal crypto scheme

confidentiality

Zero-Knowledge Proofs 
of Correctness

accountability correctness

Verifiable Shuffle
unlinkability differential 

privacy

decentralized 
trust

confidentiality

accountability correctness
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https://simple.wikipedia.org/wiki/Zero-knowledge_proof



System Model

querier dp4

dp3

dp2dp1

s1

s2

s3

• Collective authority of m servers S
• n Data Providers DPs
• Clients Q querying the system
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dp = Data Provider

S = Server



Threat Model

querier dp4

dp3

dp2dp1

s1

s2

s3

• m-1 servers out of m are malicious 
(Anytrust Model)
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dp = Data Provider

S = Server



Threat Model

querier dp4

dp3

dp2dp1

s1

s2

s3

• m-1 servers out of m are malicious 
(Anytrust Model)

• Data Providers are honest-but-curious
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dp = Data Provider

S = Server



Threat Model

querier dp4

dp3

dp2dp1

s1

s2

s3

• m-1 servers out of m are malicious 
(Anytrust Model)

• Data Providers are honest-but-curious
• Queriers are malicious
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dp = Data Provider

S = Server



initialisation (step 0)

query (step 1) response (step 2)

distributed 

deterministic tag 

(step 4)

collective 

aggregation 

(step 5)

distributed 

results 

obfuscation

(step 6)

key

switch

(step 7)

verifiable 

shuffle

(step 3)

decryption using the querier’s private key

(step 8) 

undertaken by

querier data provider collective authority

Query processing Workflow
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Each server constructs his public-
private ElGamal Key pair.

initialisation (step 0)
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Workflow - Initialisation (Step 0)



++=Collective Key:

initialisation (step 0)

++=

Each server constructs his public-
private ElGamal Key pair.

22

Workflow - Initialisation (Step 0)



Workflow - Initialisation (Step 0)

Data Providers use the Collective 
Key to encrypt their data

initialisation (step 0)

++=

++=Collective Key:

Each server constructs his public-
private ElGamal Key pair.
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Workflow - Query (Step 1)

initialisation (step 0)

query (step 1)
SELECT SUM (cholesterol_rate) , COUNT(*)

FROM DP1,...,DP20

WHERE age in [40:50] AND ethnicity = caucasian

GROUP BY gender

Q
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initialisation (step 0)

query (step 1)

Query broadcasted to Data 
Providers

Q

Q Q

Q

Q
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Workflow - Query (Step 1)

SELECT SUM (cholesterol_rate) , COUNT(*)

FROM DP1,...,DP20

WHERE age in [40:50] AND ethnicity = caucasian

GROUP BY gender



initialisation (step 0)

query (step 1) response (step 2)

[[group. attr.], [where. attr.],   [aggr. Attr.]]
[     [E (1)],   [E (40),E (1)], [E (23),E (0)]
…
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Workflow - Response (Step 2)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

Each server starts a verifiable 
shuffle protocol:

In this protocol each server 
sequentially:

• Shuffle the list of responses
• Rerandomize (re-encryption) all 

the ciphertexts

Using Neff Shuffle and the 
corresponding zero-knowledge proof 
[1]

[1] Andrew Neff. Verifiable mixing (shuffling) of ElGamal pairs (2004)
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Workflow - Verif. Shuffle (Step 3)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

Each server starts a distributed 
deterministic tagging protocol:

Query: 
WHERE age = EK(40) AND ethnicity = 
EK(2)

WHERE age = DT(40) AND ethnicity = 
DT(2)

Data:
[[EK(1)], [EK(40),EK(2)], [EK(23),EK(1)]

[[DT(1)], [DT(40),DT(2)], [EK(23),EK(1)]
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Workflow - DDT (Step 4)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

Each server starts a distributed 
deterministic tagging protocol:

All operations are done with zero-
knowledge proofs from Camenisch et al.

[1] Jan Camenish and Markus Stadler. Proof systems for general statements about discrete logarithms. (1997)
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In this protocol each server 
sequentially:

• partially decrypt the 
ciphertexts

• Blinds the message by 
multiplying the ciphertexts with 
a random ephemeral secret 
key

deterministic tag depending on the 
value of the encrypted message

Workflow - DDT (Step 4)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

collective 

aggregation 

(step 5)

Servers collectively aggregate the 
responses by group.

Proofs consist in publishing the 
ciphertexts and the result
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Workflow - Collective Aggr. (Step 5)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

collective 

aggregation 

(step 5)

DRO

(step 6)

Distributed Results Obfuscation:
Setup:
Servers agree on (ϵ,𝛿)-differential 
privacy parameters and produce:

[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,...] = 
list of noise values satisfying (ϵ,𝛿)-
differential privacy.
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Workflow - DRO (Step 6)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

collective 

aggregation 

(step 5)

DRO

(step 6)

Distributed Results Obfuscation:
Runtime:
• A server starts a collective shuffling

of the list of noise values 
• adds the first noise value in the list 

to the query result.

Oblivious noise addition (shuffling 
encrypts and shuffles the list of 
noise values).
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Workflow - DRO (Step 6)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

collective 

aggregation 

(step 5)

DRO

(step 6)

key

switch

(step 7)

In the key switch protocol each 
server:
• partially decrypt
• encrypt with a new key all the 

ciphertexts.

Encryption is switched from 
the Collective Key to the querier’s 
public key.

All operations are done with zero-
knowledge proofs from Camenish 
et al.
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Workflow - Key Switch (Step 7)

[1] Jan Camenish and Markus Stadler. Proof systems for general statements about discrete logarithms. (1997)



initialisation (step 0)

query (step 1) response (step 2)

Verif. 

Shuffle

(step 3)

DDT

(step 4)

collective 

aggregation 

(step 5)

DRO

(step 6)

key

switch

(step 7)

decryption using the querier’s private key

(step 8) 

Querier decrypts the result with his 
secret key
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Workflow - Decryption (Step 8)



Servers configuration
• Memory: 256GB RAM 
• Processor: Intel Xeon E5-2680 v3 (Haswell) 
• Cores: 24 (with 48 threads) 
• Frequency: 2.5GHz 
• Bandwidth capacity: 1Gbps

Network and Crypto
• Realistic virtual network emulation tool with 10ms delays btw. servers
• DeDiS’ Onet library
• DeDiS’ implementation of Ed25519 Elliptic Curve (128-bit security)

Default parameters
• 3 servers
• 15,000 responses in total (equally distributed in servers)
• 1 GROUP BY attribute with 10 possible values , 1 WHERE and 10 aggregating 

attributes
• 1000 noise values

Performance Evaluation
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Servers collaboration
se
rv
er
s
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DDT = Distrib. Deterministic Tagging
DRO = Distrib. Results Obfuscation



Runtime vs. nbr. of responses

37



Performance/Security Tradeoffs

only cholesterol_rate is 

encrypted

everything is encrypted
SELECT SUM (cholesterol_rate) , COUNT(*)

FROM DP1,...,DP20

WHERE age in [40:50] AND ethnicity = caucasian

GROUP BY gender

3 servers
400K responses with

1 GROUP BY attribute
2 WHERE attributes
2 aggregating attributes
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Conclusion
A Decentralized System for Privacy-Conscious Data Sharing

• SQL statistical queries based on Boolean conditions
• Strongest-link security
• Data confidentiality
• Distributed differential privacy
• Distributed deterministic tagging of probabilistic ciphertexts
• Collective encryption key switching

• Runtime linear with the amount of data to process

github.com/lca1/unlynx david.froelicher@epfl.ch


