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» Passive adversary: all parties follow the protocol.
» Active adversary: corrupted parties may cheat.
» Covert adversary: will not cheat if it will be caught.
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Execution Phase

» Run the initial passively secure protocol.
» Each message m is provided with a sender’s signature o,.
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» If Alice refuses to send (m, o) Bob asks Chris to deliver it.
» If Alice or Bob is corrupt, (m, o) is already known to the
attacker anyway.



Verification phase

Each party (the prover P) proves its honesty
to the other parties (the verifiers V4 and ) .

All relevant values of P are shared among V4 and 5:
» Message m: m+0or0+m
» Input x: X1+ Xo
» Correlated randomness r: rn+n
known by P, shared in the preprocessing phase.

All shares are signed by the prover.
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Verification phase (reproducing computation of P)
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» P takes precomputed correlated randomness
(e.g. Beaver triples (a, b,c) s.t. c = a- b).
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Verification phase (reproducing computation of P)
» P takes precomputed correlated randomness
(e.g. Beaver triples (a, b,c) s.t. c = a- b).
» P sends hints to V4 and V5.
» V4 and V> use the hints to reproduce computation of P.
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Verification phase (reproducing computation of P)
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P takes precomputed correlated randomness

(e.g. Beaver triples (a, b,c) s.t. c = a- b).

P sends hints to V4 and V5.

Vi and V> use the hints to reproduce computation of P.
Vi and V5 verify the hints.

V; and V> check if they get committed messages of P.
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Verification phase (checking if z = 0)
» V4 and V> exchange hy = H(zy) and h, = H(—2z,),
and check hy = ho.

ALICE
h; ¢ H(z;) h,<H(-z,)
? h ?
h;=h; * h;=h;,
_
BOB CHRIS



Verification phase (checking if z = 0)
» Vi and V> exchange hy = H(zy) and h, = H(—2»),
and check hy = ho.
» If hy # ho, they send hy and h. to P.
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Verification phase (checking if z = 0)
» Vi and V> exchange hy = H(zy) and h, = H(—2»),
and check hy = ho.
» If hy # ho, they send hy and h. to P.
» P has right to complain against one verifier (e.g V4).
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» V4 and V> exchange hy = H(zy) and h, = H(—2z,),

and check hy = ho.
» If hy # ho, they send hy and h. to P.
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Verification phase (checking if z = 0)
» V4 and V> exchange hy = H(zy) and h, = H(—2z,),
and check hy = ho.
If hy # ho, they send hy and h. to P.
P has right to complain against one verifier (e.g Vj).
Vi opens its shares of P commitments with all signatures.

V> repeats the computation of V4, getting h;.
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Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Z ).
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Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Zpn).
» It additively shares the randomness among V4 and V5.
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Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Z ).

» It additively shares the randomness among V4 and V5.

» V4 and V5 run cut-and-choose and pairwise checks
to verify that correlation holds (e.g. that a- b = ¢).
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Preprocessing Phase (other preprocessed tuples)

» We also have other types of preprocessed tuples:
» Trusted bits b € {0, 1} shared over Zom.
» Characteristic vector tuple (r, 5) (i.e br =0iff i #r).
» Rotation tuple (r, 3, b) s.t the vector b is & rotated by r.
» Permutation tuple (=, 4, b) s.t b = =(a).

» Their generation and verification is analogous.

distribution
r «|of tuples
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ALICE

cut-and-choose

pairwise check
BOB CHRIS




Summary

» We proposed a generic method for achieving covert
security under honest majority assumption.

» Applying it to Sharemind SMC platform, we get efficient
actively secure protocols with identifiable abort.

» The overhead of the execution phase is insignificant.

» In practice, the bottleneck of active security is generation
of preprocessed tuples.
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