Preprocessing Based Verification
of Multiparty Protocols

with an Honest Majority

20.07.17

Peeter Laud

Alisa Pankova

Roman Jagomaégis

o~
")
2
N
A

@

Secure Multiparty Computation

(Ya¥p V)

\\ //

CHRIS

ALICE

2/10

Secure Multiparty Computation

Ya
ALICE (Ya.¥p Ye) BOB
\\\\\ijika (Xa,X b, X¢) ///il///
Xp = . Y, = 'yes'
- Ye = 'yes'
X —‘ CHRIS S

2/10

Secure Multiparty Computation

(vayb Ye)

)(a X b,)(///%
ﬂ Xc Ye Ya =y’

yb - lel

ALICE BOB

x. - EE.
Xp = ‘é@
« -E8 8 oo

CHRIS

2/10

Secure Multiparty Computation

(Ya¥p V)

\\ //

CHRIS

ALICE

2/10

Secure Multiparty Computation

r} 5
//

mAC
CHRIS

» Passive adversary: all parties follow the protocol.

2/10

Secure Multiparty Computation

)

CHRIS

» Passive adversary: all parties follow the protocol.

» Active adversary: corrupted parties may cheat.

2/10

Secure Multiparty Computation

)y

correctness

CHRIS

» Passive adversary: all parties follow the protocol.

» Active adversary: corrupted parties may cheat.

2/10

Secure Multiparty Computation

)

correctness
CHRIS privacy

» Passive adversary: all parties follow the protocol.

» Active adversary: corrupted parties may cheat.

2/10

Secure Multiparty Computation

XaXpXc mt

fﬁ% 3

Mca
mAC
correctness

CHRIS privacy

» Passive adversary: all parties follow the protocol.

» Active adversary: corrupted parties may cheat.

2/10

Secure Multiparty Computation

XaXpXc mt

fﬁ% 3

Mca
mAC
correctness

CHRIS privacy

» Passive adversary: all parties follow the protocol.
» Active adversary: corrupted parties may cheat.
» Covert adversary: will not cheat if it will be caught.

2/10

Verifiable MPC with Honest Majority

» Execution: run the passively secure protocol.

3/10

Verifiable MPC with Honest Majority

» Execution: run the passively secure protocol.
» Verification: each party proves that it followed the protocol.

L\ []
4
O 2
oA/ XcYo B ="Alice has cheated,

0 Bob and Chris are honest"

3/10

Verifiable MPC with Honest Majority

» Preprocessing: generate correlated randomness.
» Execution: run the passively secure protocol.
» Verification: each party proves that it followed the protocol.

B = "Alice has cheated,
Bob and Chris are honest"

3/10

Verifiable MPC with Honest Majority

» Preprocessing: generate correlated randomness.
» Execution: run the passively secure protocol.
» Verification: each party proves that it followed the protocol.

B = "Alice has cheated,
Bob and Chris are honest"

3/10

Execution Phase

» Run the initial passively secure protocol.
» Each message m is provided with a sender’s signature o,.

ALICE BOB

Execution Phase

» Run the initial passively secure protocol.

» Each message m is provided with a sender’s signature o,.
| have not
received

m, om
m, om

ALICE BOB

10

Execution Phase
» Run the initial passively secure protocol.

» Each message m is provided with a sender’s signature o,.

| do have | have not
sent received
m, O'm m, O'm

ALICE

10

Execution Phase

» Run the initial passively secure protocol.
» Each message m is provided with a sender’s signature o,.

| do have | have not
sent received
m, O'm m, O'm

ALICE

m,gx%%am

| confirm
that Bob
received
m,om

CHRIS

» If Alice refuses to send (m, o) Bob asks Chris to deliver it.
» If Alice or Bob is corrupt, (m, o) is already known to the
attacker anyway.

Verification phase

Each party (the prover P) proves its honesty
to the other parties (the verifiers V4 and) .

All relevant values of P are shared among V4 and 5:
» Message m: m+0or0+m
» Input x: X1+ Xo
» Correlated randomness r: rn+n
known by P, shared in the preprocessing phase.

All shares are signed by the prover.

Fal

ra,

Xa: Xa>
Mag 0
Mpa 0

0 Mca

0 Mca

ALICE BOB CHRIS

10

Verification phase (reproducing computation of P)

(x,y,z), z=x-y

ALICE

(x1,¥7,2) (X5,Y,,2,)
171

BOB CHRIS

Verification phase (reproducing computation of P)

» P takes precomputed correlated randomness
(e.g. Beaver triples (a, b,c) s.t. c = a- b).

(x,y,z), z=x-y

(a,b,c), c=a-b

ALICE
(x,.¥.2) (X2.92,2)

(al,bl,cl) (az.bg,cg)

BOB CHRIS

/10

Verification phase (reproducing computation of P)

» P takes precomputed correlated randomness
(e.g. Beaver triples (a, b,c) s.t. c = a- b).
» P sends hints to V4 and V5.

BOB CHRIS

Verification phase (reproducing computation of P)
» P takes precomputed correlated randomness
(e.g. Beaver triples (a, b,c) s.t. c = a- b).
» P sends hints to V4 and V5.
» V4 and V> use the hints to reproduce computation of P.

(x7,¥1,29) (X5,Y,,2,)
(a;,b;cy) (a5,b,,c))
v;=X'a;+y'b; V,=xa5+y'b,

+X'y'+C; BOB CHRIS +X'y'+Co

Verification phase (reproducing computation of P)
» P takes precomputed correlated randomness
(e.g. Beaver triples (a, b,c) s.t. c = a- b).
» P sends hints to V4 and V5.
» V4 and V> use the hints to reproduce computation of P.

» Vi and V5 verify the hints.

(xy.z), z=xy
(a,b,c), c=a-b

X'=(x-a) X' =(x-a)
y'=(y-b) y'=(y-b)
ALICE
(Xl’yllzl) (Xgnyz,zz)
(a;,b;cy) (a5,b,,c))

x <

A

o o< X
1 1] 1 1
X< X
| | [T
cooo

v,=x'a,+y'b,

v;=Xx'a;+y'b;
CHRIS +Xx'y'+co

+X'y'+c;

@
(=]
=+

Verification phase (reproducing computation of P)

>

vV vyYyywy

P takes precomputed correlated randomness

(e.g. Beaver triples (a, b,c) s.t. c = a- b).

P sends hints to V4 and V5.

Vi and V> use the hints to reproduce computation of P.
Vi and V5 verify the hints.

V; and V> check if they get committed messages of P.

(xXy,2), z=x-y
(a,b,c), c=a-b
X'=(X-a) X' '=(x-a)
y'=(y-b) y' = (y-b)
ALICE
o L
(Xl'ylrzl) X' - xI =0 (X5,Y5,25)
y'-y'=0
(a;,b;cy) y-b-y' =0 (a5,b,,c))
X-a-x'=0
v;=X'a;+y'b; v-z 2 0 V,=xa,+y'b,
+x'y'+c; BOB = - CHRIS +x'y'+c;

Verification phase (reproducing computation of P)

>

vV vyYyywy

P takes precomputed correlated randomness

(e.g. Beaver triples (a, b,c) s.t. c = a- b).

P sends hints to V4 and V5.

Vi and V> use the hints to reproduce computation of P.
Vi and V5 verify the hints.

V; and V> check if they get committed messages of P.

(xXy,2), z=x-y
(a,b,c), c=a-b
X'=(X-a) X' '=(x-a)
y'=(y-b) y' = (y-b)
ALICE
Do B
(Xl'ylrzl) X' - xI =0 (X5,Y5,25)
y'-y' =0
(a;,b;cy) y-b-y'=0 (a5,b,,c))
X-a-x'=0
v;=X'a;+y'b; etz 2 0 V,=xa,+y'b,
+x'y'+c; BOB = — — - CHRIS +x'y'+c;

Verification phase (checking if z = 0)
» V4 and V> exchange hy = H(zy) and h, = H(—2z,),
and check hy = ho.

ALICE
h; ¢ H(z;) h,<H(-z,)
? h ?
h;=h; * h;=h;,
_
BOB CHRIS

Verification phase (checking if z = 0)
» Vi and V> exchange hy = H(zy) and h, = H(—2»),
and check hy = ho.
» If hy # ho, they send hy and h. to P.

/ %
ALICE

h1<_ H Zl)

h— —h o h;=h
N % h2 %1 |

Verification phase (checking if z = 0)
» Vi and V> exchange hy = H(zy) and h, = H(—2»),
and check hy = ho.
» If hy # ho, they send hy and h. to P.
» P has right to complain against one verifier (e.g V4).

h Bob Bob
h> is bad is bad 1
h,
/ ALICE \
h; < H(zy) h,<H(-z,)
2 h1 ?

- % T % -

BOB CHRIS

Verification phase (checking if z = 0)
» V4 and V> exchange hy = H(zy) and h, = H(—2z,),

and check hy = ho.
» If hy # ho, they send hy and h. to P.
» P has right to complain against one verifier (e.g V4).
» V4 opens its shares of P commitments with all signatures.

h; < H(z;)
| Yai| 2 h1 ?
Xas h;=h, ho =
MaB - 0
MpA FailMaR 0
XailMea Mca
Mca)

10

Verification phase (checking if z = 0)
» V4 and V> exchange hy = H(zy) and h, = H(—2z,),
and check hy = ho.
If hy # ho, they send hy and h. to P.
P has right to complain against one verifier (e.g Vj).
Vi opens its shares of P commitments with all signatures.

V> repeats the computation of V4, getting h;.

vV vVvyYyysy

h Bob Bob
h> is bad is bad 1
h
/ ALICE \

h, < H(z;)
fall 72 ? Fa,
~>.1h;=h — h,Zh

Xag| 1= N2 ho 1= Xaz
Map - 0
MpA FailMaR 0

0 XailMBa mCA

- = cA

10

Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Z).

LA
I
Qo
o O

ALICE

BOB CHRIS

/10

Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Zpn).
» It additively shares the randomness among V4 and V5.

c=a-b
c'=a"b
(al'bllcl) (az,bz,cz)

(agy (ab,bh,ch)
ALICE

BOB CHRIS

10

Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Z).

» It additively shares the randomness among V4 and V5.

» V4 and V5 run cut-and-choose and pairwise checks
to verify that correlation holds (e.g. that a- b = ¢).

c=a-b
c'=a"b
(al'bllcl) (az,bz,cz)

(agy (ab,bh,ch)
ALICE

cut-and-choose:
open and verify some triples

pairwise check -
(a-aYb+(b-b'Ya-c+c'=0

BOB CHRIS

10

Preprocessing Phase

» The prover P generates correlated randomness
(e.g. Beaver triples in a certain ring Z).

» It additively shares the randomness among V4 and V5.

» V4 and V5 run cut-and-choose and pairwise checks
to verify that correlation holds (e.g. that a- b = ¢).

c=a-b
c'=a"b
(al'bllcl) (az,bz,cz)

(agy (ab,bh,ch)
ALICE

cut-and-choose:
open and verify some triples

pairwise check 2
(@a-aYb+(b-b'Ya-c+c'=0

BOB CHRIS

10

Preprocessing Phase (other preprocessed tuples)

» We also have other types of preprocessed tuples:
» Trusted bits b € {0, 1} shared over Zom.
» Characteristic vector tuple (r, 5) (i.e br =0iff i #r).
» Rotation tuple (r, 3, b) s.t the vector b is & rotated by r.
» Permutation tuple (=, 4, b) s.t b = =(a).

» Their generation and verification is analogous.

distribution
r «|of tuples
/ X

ALICE

cut-and-choose

pairwise check
BOB CHRIS

Summary

» We proposed a generic method for achieving covert
security under honest majority assumption.

» Applying it to Sharemind SMC platform, we get efficient
actively secure protocols with identifiable abort.

» The overhead of the execution phase is insignificant.

» In practice, the bottleneck of active security is generation
of preprocessed tuples.

10/10

