Preprocessing Based Verification of Multiparty Protocols with an Honest Majority

20.07.17

Peeter Laud Alisa Pankova Roman Jagomägis
Secure Multiparty Computation

\[(y_a, y_b, y_c) = f(x_a, x_b, x_c)\]
Secure Multiparty Computation

\((y_a, y_b, y_c) = f(x_a, x_b, x_c) \)

- ALICE: \(x_a \) and \(y_a = 'yes' \)
- BOB: \(x_b \) and \(y_b = 'yes' \)
- CHRIS: \(x_c \) and \(y_c = 'yes' \)
Secure Multiparty Computation

\[(y_a, y_b, y_c) = f(x_a, x_b, x_c)\]

- Passive adversary: all parties follow the protocol.
- Active adversary: corrupted parties may cheat.
- Covert adversary: will not cheat if it will be caught.

ALICE

\[x_a = \text{[files]} \quad y_a = 'y'\]

BOB

\[x_b = \text{[files]} \quad y_b = 'e'\]

CHRIS

\[x_c = \text{[files]} \quad y_c = 's'\]
Secure Multiparty Computation

\[(y_a, y_b, y_c) = f(x_a, x_b, x_c)\]
Secure Multiparty Computation

- Passive adversary: all parties follow the protocol.
Secure Multiparty Computation

- Passive adversary: all parties follow the protocol.
- Active adversary: corrupted parties may cheat.
Secure Multiparty Computation

- Passive adversary: all parties follow the protocol.
- Active adversary: corrupted parties may cheat.
Secure Multiparty Computation

- Passive adversary: all parties follow the protocol.
- Active adversary: corrupted parties may cheat.
Secure Multiparty Computation

- **Passive adversary**: all parties follow the protocol.
- **Active adversary**: corrupted parties may cheat.
Secure Multiparty Computation

- **Passive adversary:** all parties follow the protocol.
- **Active adversary:** corrupted parties may cheat.
- **Covert adversary:** will not cheat if it will be caught.
Verifiable MPC with Honest Majority

- **Execution**: run the passively secure protocol.
Verifiable MPC with Honest Majority

- **Execution**: run the passively secure protocol.
- **Verification**: each party proves that it followed the protocol.

B = "Alice has cheated, Bob and Chris are honest"
Verifiable MPC with Honest Majority

- **Preprocessing**: generate correlated randomness.
- **Execution**: run the passively secure protocol.
- **Verification**: each party proves that it followed the protocol.

\[B = "Alice \text{ has cheated, Bob and Chris are honest}" \]
Verifiable MPC with Honest Majority

- **Preprocessing:** generate correlated randomness.
- **Execution:** run the passively secure protocol.
- **Verification:** each party proves that it followed the protocol.

B = "Alice has cheated, Bob and Chris are honest"
Execution Phase

- Run the initial passively secure protocol.
- Each message m is provided with a sender’s signature σ_m.
Execution Phase

- Run the initial passively secure protocol.
- Each message m is provided with a sender’s signature σ_m.

![Diagram showing Alice sending a message m, σ_m to Bob, with Bob saying, “I have not received m, σ_m.”]
Execution Phase

- Run the initial passively secure protocol.
- Each message m is provided with a sender’s signature σ_m.

I do have sent m, σ_m

ALICE

m, σ_m

BOB

I have not received m, σ_m
Execution Phase

- Run the initial passively secure protocol.
- Each message m is provided with a sender’s signature σ_m.

- If Alice refuses to send (m, σ_m) Bob asks Chris to deliver it.
- If Alice or Bob is corrupt, (m, σ_m) is already known to the attacker anyway.
Verification phase

Each party (the prover \(P \)) proves its honesty to the other parties (the verifiers \(V_1 \) and \(V_2 \)).

All relevant values of \(P \) are shared among \(V_1 \) and \(V_2 \):

- **Message** \(m \): \(m + 0 \) or \(0 + m \)
- **Input** \(x \): \(x_1 + x_2 \)
- **Correlated randomness** \(r \): \(r_1 + r_2 \)

known by \(P \), shared in the preprocessing phase.

All shares are signed by the prover.
Verification phase (reproducing computation of P)

P takes precomputed correlated randomness (e.g. Beaver triples $\langle a, b, c \rangle$ s.t. $c = a \cdot b$).

P sends hints to V_1 and V_2.

V_1 and V_2 use the hints to reproduce computation of P.

V_1 and V_2 verify the hints.

V_1 and V_2 check if they get committed messages of P.

$(x, y, z), \quad z = x \cdot y$

(x_1, y_1, z_1)

(x_2, y_2, z_2)
Verification phase (reproducing computation of P)

- P takes precomputed correlated randomness (e.g. Beaver triples (a, b, c) s.t. $c = a \cdot b$).

P sends hints to V_1 and V_2.

V_1 and V_2 use the hints to reproduce computation of P.

V_1 and V_2 verify the hints.

V_1 and V_2 check if they get committed messages of P.
Verification phase (reproducing computation of P)

- P takes precomputed correlated randomness (e.g. Beaver triples (a, b, c) s.t. $c = a \cdot b$).
- P sends hints to V_1 and V_2.

\[
\begin{align*}
 \mathbf{x}' &= (x - a) \\
 \mathbf{y}' &= (y - b)
\end{align*}
\]

\[
\begin{align*}
 (x, y, z), & \quad z = x \cdot y \\
 (a, b, c), & \quad c = a \cdot b
\end{align*}
\]
Verification phase (reproducing computation of P)

- P takes precomputed correlated randomness (e.g. Beaver triples (a, b, c) s.t. $c = a \cdot b$).
- P sends hints to V_1 and V_2.
- V_1 and V_2 use the hints to reproduce computation of P.

$\begin{align*}
 x' &= (x - a) \\
 y' &= (y - b)
\end{align*}$

$\begin{align*}
 (x_1, y_1, z_1) \\
 (a_1, b_1, c_1)
\end{align*}$

$\begin{align*}
 v_1 &= x'a_1 + y'b_1 + x'y' + c_1
\end{align*}$

$\begin{align*}
 (x_2, y_2, z_2) \\
 (a_2, b_2, c_2)
\end{align*}$

$\begin{align*}
 v_2 &= x'a_2 + y'b_2 + x'y' + c_2
\end{align*}$
Verification phase (reproducing computation of P)

- P takes precomputed correlated randomness (e.g. Beaver triples (a, b, c) s.t. $c = a \cdot b$).
- P sends hints to V_1 and V_2.
- V_1 and V_2 use the hints to reproduce computation of P.
- V_1 and V_2 verify the hints.

\[
\begin{align*}
(x, y, z), & \quad z = x \cdot y \\
(a, b, c), & \quad c = a \cdot b
\end{align*}
\]
Verification phase (reproducing computation of P)

- P takes precomputed correlated randomness (e.g. Beaver triples (a, b, c) s.t. $c = a \cdot b$).
- P sends hints to V_1 and V_2.
- V_1 and V_2 use the hints to reproduce computation of P.
- V_1 and V_2 verify the hints.
- V_1 and V_2 check if they get committed messages of P.

\[
\begin{align*}
(x, y, z), & \quad z = x \cdot y \\
(a, b, c), & \quad c = a \cdot b
\end{align*}
\]

\[
\begin{align*}
x' &= (x - a) \\
y' &= (y - b)
\end{align*}
\]

\[
\begin{align*}
(x_1, y_1, z_1) & \quad (x_2, y_2, z_2) \\
(a_1, b_1, c_1) & \quad (a_2, b_2, c_2)
\end{align*}
\]

\[
\begin{align*}
v_1 = x' a_1 + y' b_1 + x'y' + c_1 & \quad v_2 = x' a_2 + y' b_2 + x'y' + c_2 \\
& \quad v - z = 0
\end{align*}
\]
Verification phase (reproducing computation of P)

- P takes precomputed correlated randomness (e.g. Beaver triples (a, b, c) s.t. $c = a \cdot b$).
- P sends hints to V_1 and V_2.
- V_1 and V_2 use the hints to reproduce computation of P.
- V_1 and V_2 verify the hints.
- V_1 and V_2 check if they get committed messages of P.

$(x, y, z), \quad z = x \cdot y$

$(a, b, c), \quad c = a \cdot b$

$$
\begin{align*}
 x' &= (x - a) \\
 y' &= (y - b)
\end{align*}
$$

(x_1, y_1, z_1)

(a_1, b_1, c_1)

$v_1 = x'a_1 + y'b_1 + x'y' + c_1$

$x' - x' = 0$

$y' - y' = 0$

$y - b - y' = 0$

$x - a - x' = 0$

(x_2, y_2, z_2)

(a_2, b_2, c_2)

$v_2 = x'a_2 + y'b_2 + x'y' + c_2$

$v - z = 0$
Verification phase (checking if $z = 0$)

- V_1 and V_2 exchange $h_1 = H(z_1)$ and $h_2 = H(-z_2)$, and check $h_1 = h_2$.
Verification phase (checking if $z = 0$)

- V_1 and V_2 exchange $h_1 = H(z_1)$ and $h_2 = H(-z_2)$, and check $h_1 = h_2$.
- If $h_1 \neq h_2$, they send h_1 and h_2 to P.
Verification phase (checking if $z = 0$)

- V_1 and V_2 exchange $h_1 = H(z_1)$ and $h_2 = H(-z_2)$, and check $h_1 = h_2$.
- If $h_1 \neq h_2$, they send h_1 and h_2 to P.
- P has right to complain against one verifier (e.g. V_1).
Verification phase (checking if $z = 0$)

- V_1 and V_2 exchange $h_1 = H(z_1)$ and $h_2 = H(-z_2)$, and check $h_1 = h_2$.
- If $h_1 \neq h_2$, they send h_1 and h_2 to P.
- P has right to complain against one verifier (e.g. V_1).
- V_1 opens its shares of P commitments with all signatures.
Verification phase (checking if $z = 0$)

- V_1 and V_2 exchange $h_1 = H(z_1)$ and $h_2 = H(-z_2)$, and check $h_1 = h_2$.
- If $h_1 \neq h_2$, they send h_1 and h_2 to P.
- P has right to complain against one verifier (e.g. V_1).
- V_1 opens its shares of P commitments with all signatures.
- V_2 repeats the computation of V_1, getting h_1.

![Diagram showing the process of verification phase]
Preprocessing Phase

- The prover P generates correlated randomness (e.g., Beaver triples in a certain ring \mathbb{Z}_m).
Preprocessing Phase

- The prover P generates correlated randomness (e.g. Beaver triples in a certain ring \mathbb{Z}_m).
- It additively shares the randomness among V_1 and V_2.
Preprocessing Phase

- The prover P generates correlated randomness (e.g., Beaver triples in a certain ring \mathbb{Z}_m).
- It additively shares the randomness among V_1 and V_2.
- V_1 and V_2 run cut-and-choose and pairwise checks to verify that correlation holds (e.g., that $a \cdot b = c$).
Preprocessing Phase

- The prover P generates correlated randomness (e.g. Beaver triples in a certain ring \mathbb{Z}_m).
- It additively shares the randomness among V_1 and V_2.
- V_1 and V_2 run cut-and-choose and pairwise checks to verify that correlation holds (e.g. that $a \cdot b = c$).

\[c = a \cdot b \]
\[c' = a' \cdot b' \]

\[(a_1, b_1, c_1) \]
\[(a_1', b_1', c_1') \]
\[\ldots \]

\[(a_2, b_2, c_2) \]
\[(a_2', b_2', c_2') \]
\[\ldots \]

cut-and-choose: open and verify some triples

pairwise check
\[(a - a')b + (b - b')a' - c + c' = 0 \]
Preprocessing Phase (other preprocessed tuples)

- We also have other types of preprocessed tuples:
 - Trusted bits $b \in \{0, 1\}$ shared over \mathbb{Z}_{2m}.
 - Characteristic vector tuple (r, \vec{b}) (i.e. $b_r = 0$ iff $i \neq r$).
 - Rotation tuple (r, \vec{a}, \vec{b}) s.t the vector \vec{b} is \vec{a} rotated by r.
 - Permutation tuple (π, \vec{a}, \vec{b}) s.t $\vec{b} = \pi(\vec{a})$.

- Their generation and verification is analogous.
Summary

- We proposed a generic method for achieving covert security under honest majority assumption.
- Applying it to Sharemind SMC platform, we get efficient actively secure protocols with identifiable abort.
- The overhead of the execution phase is insignificant.
- In practice, the bottleneck of active security is generation of preprocessed tuples.