Expectation-Maximization Tensor Factorization for Practical Location Privacy Attacks

Takao Murakami (AIST*, Japan)

*AIST: National Institute of Advanced Industrial Science & Technology
Markov Chain Model-based Attacks

Attacker can de-anonymize traces (or infer locations) with high accuracy when the amount of training data is very large.

In reality, training data can be sparsely distributed over time...

Many users disclose a small number of locations not continuously but “sporadically” via SNS (e.g. one or two check-ins per day/week/month).

Transition Matrices

Training Trace

Mobility Trace

Pseudonym

Mobility Trace

De-anonymize

missing location
Outline

- Worst case scenario for attackers (= reality?)…
 - No elements are observed in P_2 & P_3. → Cannot de-anonymize u_2 & u_3.

Q. Is it possible to de-anonymize traces using such training data?

Our Contributions

- We show the answer is “yes”.
- We propose a training method that outperforms a random guess even when no elements are observed in more than 70% of cases.
Contents

Introduction
(Location Privacy, Related Work)

Our Proposal
(EMTF: Expectation-Maximization Tensor Factorization)

Experiments
Location Privacy

- **Location-based Services (LBS)**
 - Many people are using LBS (e.g. map, route finding, check-in).
 - “Spatial Big Data” can be provided to a third-party for analysis (e.g. popular places), or made public to provide traffic information.

- **Privacy Issues**
 - Mobility trace can contain sensitive locations (e.g. homes, hospitals).
 - **Anonymized trace may be de-anonymized.**

![Diagram showing Mobility Trace, LBS provider, Spatial Big Data, and De-anonymization process.](image)
Related Work

- Markov Chain Model for De-anonymization
 - Attacker = anyone who has anonymized traces (except for LBS provider).
 - Attacker obtains training locations that are made public (e.g. via SNS).
 - Attacker de-anonymizes traces using the trained transition matrices.

[Shokri+, S&P11] [Gambs+, JCSS14] [Mulder+, WPES08] etc.
Related Work

- **Sporadic Training Data** (training data are sparsely distributed over time)
 - Many users disclose a small number of locations “sporadically” (via SNS).
 - If we don’t estimate missing locations, we cannot train \(P_2 \) and \(P_3 \).
 - \(\rightarrow \) we cannot de-anonymize traces of \(u_2 \) and \(u_3 \) using these matrices.

We need to “somehow” estimate missing locations.
Related Work

- Gibbs Sampling Method [Shokri+, S&P11]
 - Alternates between estimating P_n and estimating missing locations of u_n independently of other users.

- Challenge
 - When there are few continuous locations in training traces...
 - (1) Cannot accurately estimate P_n.
 - (2) Cannot accurately estimate missing locations using P_n (→(1)).

We address this challenge by estimating P_n with the help of “other users” (instead of estimating P_n independently).
Contents

Introduction
(Location Privacy, Related Work)

Our Proposal
(EMTF: Expectation-Maximization Tensor Factorization)

Experiments
Overview of EMTF

We use the help of “similar users” (other users who have similar behavior):

(1) Training Transition Matrices:
We estimate unobserved elements (“?“) with the help of “similar users”.
We substitute average matrix over all users for completely unobserved matrices.

(2) Estimating Missing Locations:
We estimate missing locations (we can do this with the help of “similar users”).

Go back to (1) → Each matrix captures unique feature of each user’s behavior
since each trace is accurate & user-specific.
Details of EMTF

- **TF (Tensor Factorization)**
 - Used for item recommendation. Factorizes tensor into low-rank matrices.
 - Estimates unobserved element ("?") with the help of "similar users".

- **EM (Expectation-Maximization)**
 - Trains parameter Θ from observed data x while estimating missing data z.
 - Each EM cycle is guaranteed to increase the posterior probability $Pr(\Theta|x)$.

```
x = (x_2, x_3, x_1, x_4, x_3, x_5)
z = (x_3, x_4, x_2, x_4, x_1, x_4)
```

Can find the most probable Θ and z with the help of “similar users”.

Transition matrices (= 3rd order tensor)

```
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0.5 0 0
0 0 0 0 0
```

```
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
```

Estimating missing data z (E-step)
Training parameter Θ via TF (M-step)
EMTF Algorithm

E-step: Estimate a distribution of missing location vector z:

$$Q(z) := \Pr(z \mid x, \Theta)$$

M-step: Estimate parameter $\hat{\Theta}$ in TF given by

$$\hat{\Theta} = \arg\max_{\Theta \geq 0} \sum_z Q(z) \log \Pr(\Theta \mid x, z)$$

$$= \arg\min_{\Theta \geq 0} \sum_z Q(z)(\| A - \hat{A} \|_F^2 + \lambda \| \Theta \|_F^2)$$

Max of log-posterior = Min of regularized square error

Estimating locations (E-step)

Training via TF (M-step)

Time complexity is exponential in the number of missing locations.
Approximation of EMTF

- **Time Complexity of EMTF**
 - Number of possible missing locations z is exponential in its length.
 - E.g. #(regions) = 256, #(missing locations) = 8 \rightarrow possible z is $256^8 = 2^{64}$.

- **Training Trace**

 $z = (x_{224}, x_{204}, x_{140}, x_{156}, x_{186}, x_{192}, x_{224}, x_{256})$

- **Q(z) (distribution of z)**

- **Two Approximation Methods:**
 - **[Method I] Viterbi**: Approximates $Q(z)$ by the most probable value z^*.
 - **[Method II] FFBS**: Approximates $Q(z)$ by random samples z_1, \ldots, z_S.

- **Both methods reduce time complexity from exponential to linear.**
Contents

Introduction
(Location Privacy, Related Work)

Our Proposal
(EMTF: Expectation-Maximization Tensor Factorization)

Experiments
Gowalla Dataset

- We used traces in New York & Philadelphia (16 x 16 regions).
- **Training:** 250 users x 1 traces x 10 locations (time interval: more than 30min).
- **Testing:** 250 users x 9 traces x 10 locations.
- We randomly deleted each training location with probability 80%.
- → No elements in a matrix were observed in more than 70% of cases.

Experimental Set-up

(Here we explain only the most important part. Please see our paper for details)

Extremely Sporadic Training Data (Worst Case Scenario for Attackers)

Transition Matrix

![Diagram showing a training trace and a transition matrix with an ML symbol and a question mark indicating more than 70% of cases where elements were not observed.](Diagram)

(ML: Maximum Likelihood Estimation)
Experimental Results

- **De-anonymization Accuracy**
 - We performed the Bayesian de-anonymization attack, which selects, for each testing trace, K (<250) candidates whose probabilities are the highest.
 - ML & TF \(\approx\) random guess
 - since they did not estimate missing locations.
 - GS < random guess
 - since it did not accurately estimate missing locations.

- EMTP outperformed random guess in sporadic training data scenario.
Conclusion

- **Summary of Results**
 - Our training method (EMTF) significantly outperformed a random guess, even when no elements were observed in more than 70% of cases.

- **Future Work**
 - Evaluation of state-of-the-art obfuscation (e.g. geo-indistinguishability [Andres+, CCS13]) applied to sporadic training traces.
Thank you for listening.
Appendix: Similar Users in Gowalla Dataset

- **TF (Tensor Factorization)**
 - Can automatically find a set of users who have “similar behavior”.
 - Trains matrices so that each matrix is influenced by similar users.

- **Visualization of “similar users”** [Murakami+., TIFS16]
 - We visualized “similar users” in Gowalla based on the trained parameters.
 - E.g. always stay in Manhattan, go to the western part of Manhattan.