Anonymization and Reidentification for Personal Transaction Data

Hiroshi Nakagawa (The University of Tokyo / Riken AIP)

Privacy Concern

• In EU, GDPR focuses on this privacy protection issue legally, technically aiming at IT businesses.

- In Japan, 2016
- The private data protection acts (revised)
 - The new concept of "anonymized private data."

- Anonymized private data can be treated as if they are not personal data any more,
- they are even transferred to the third party without data subject's consent.
- The way to transform personal data into anonymized private data
 - clearly defined at least in technical sense.
- We have to estimate how easily an anonymized personal data is re-identified, in order to give the technical evaluation to legal authorities who make the definition of anonymized private data.

PWSCUP 2015,2016

- For this purpose, we organized PWSCUP last October.
- The competition of PWSCUP was: for given transaction data (400 people transaction of purchasing for one year period),
- 1) 15 teams submitted anonymized transaction data by their own methods.
- 2) Each team tried to re-identify other teams' anonymized transaction date.

Winner The highest score of utility + # of non-re-identified person.

The situation we want to work out by anonymization

The situation we want to work out by anonymization

PWSCUP: Expert of anonym. tech. does this way !

Record of Purchase DB used at PWSCUP

Ι	M				/	T			
i	Cust.ID	gender	Birth date	nation		Cust.ID	Date of buying	ltem	#
1	1200	m	1957/7/7	UK		1201	2014/7/2	cake	3
2	1201	m	1965/1/20	Japan		1200	2014/7/25	tea	10
3	1202	f	1968/12/2	Spain		1202	2014/8/10	milk	1
Р	M' anonymize T'							anonym	ize
-	T A T					-			
p(i)	Pseud	gender	Birth date	nation	1	Pseud	Date of buying	Item	#
p(i) p(1) = 3	Pseud C	gender f	Birth date 1964/1/1	nation UK		Pseud b	Date of buying 2014/7/2	Item cake	#
p(i) p(1) = 3 p(2) = 1	Pseud C a	gender f m	Birth date 1964/1/1 1964/1/1	nation UK UK		Pseud b a	Date of buying 2014/7/2 2014/7/25	Item cake tea	# 12 10
p(i) p(1) = 3 p(2) = 1 p(3) = 2	Pseud C a b	gender f m m	Birth date 1964/1/1 1964/1/1 1964/1/1	nation UK UK Japan		Pseud b a c	Date of buying 2014/7/2 2014/7/25 2014/8/10	Item cake tea apple	# 12 10 5
p(i) p(1) = 3 p(2) = 1 p(3) = 2	Pseud C a b	gender f m m	Birth date 1964/1/1 1964/1/1 1964/1/1	nation UK UK Japan		Pseud b a C C	Date of buying 2014/7/2 2014/7/25 2014/8/10 2014/8/10	Item cake tea apple POST	# 12 10 5 1

=permutation of row # of table data

Attackers with Maximum Knowledge Model and PWSCUP task

- Attacker, who does re-identification, knows M and T.
- Then, try to figure out the permutation {p(i), i=1,n} from anonymized M'and T',

which is re-identification

 Re-identification rate is the ratio of being properly re-identified.

Utility Measures (in Kikuchi)

- How similar M',T' (anonymized data) with M,T(original data)
- *cmae*: Cluster based similarity
 - Customers are clustered by nationality and gender.
- subset: The maximum value of difference between average of total purchase of X and that of X', for consecutive 30 days

Utility measure: RFM(M, M', T, T')

- Customers M / M' are clustered by Recency (last purchasing date), Frequency(frequency of purchasing) and Monetary (amount of money paid) of T / T'.
- Then RFM(M, M', T, T') is the normalized RMS between these two clusters is .

Utility measure : ut-jaccard → important!

- S(T, i): a set of items purchased by customer c_i , described in T.
- S(T', i) : a set of items purchased by customer c_i , described in T'.

Imposed condition on utility measures and anonymization schema

• $subset \leq 50000$

and ut-jaccard $\leq 0.7 \cdot (\# of records in T)$

• The condition on ut-jaccard is severe, because we could not do big change of data value or shuffling records order.

Imposed condition on utility measures and anonymization schema

- → 1. Anonymizers try to work out anonymization method which satisfies the condition on ut-jaccard as tightly as possible.
 - 2. Attackers try to work out re-identification method considering the above mentioned anonymization method.
 - The anonymizers try to develop anonymization methods that overcome the above mentioned reidentification methods.

First of all, how to design effective reidentification method?

- Each team submits anonymized data which preserve purchased item set of each customer to high extent.
- Customers' purchased item sets are very diverse.
- Then it is hard to make re-identification difficult while maintaining the condition of ut-jaccard.
- Considering this, we proposed the re-identification method: *re-itemset* shown in the next slide.

Outline of anti "re-itemset"

- 1. Make a *ci* centered cluster which consists customers $cj(j \neq i)$ whose S(T; j) is similar to S(T; i). \rightarrow Precisely described later
- 2. Modify *cj*'s items in order to make all customers within *ci* centered cluster have the same item set ,
 - > all customers in *ci* centered are regarded as *ci*.
 - ➤ → At most one customer is re-identified within one cluster, say ci.
 - ➤ Then, we want to minimize the number of clusters under the condition of utility measures such as "ut-jaccard≤0.7"

Expected re-identification rate and the results of PWSCUP competition

- Our anonymization algorithm satisfies
 "ut-jaccard≤0.7 (# of records in T) as well as other utility conditions.
- In PWSCUP, 400 customers are divided into 89 clusters with utjaccard =0.699
- We expect that re-itemset algorithm does not re-identify more than 90 customer if more than one customers within one cluster are reidentified as we planned.
- Great!! At most 89 customers are re-identified on PWSCUP re-identification phase.

Randomize not to be re-identified within the cluster Keep utility measures as invariant as possible

Summary of PWSCUP

- Many teams seem to employ *re-itemset* tuned to ut-jaccard as reidentification method.
- At PWSCUP re-identification phase, at most 89 customer (22.5% of 400 customers) of our team's anonymized data got re-identified as we expected.
- As explained, 89 is the upper bound of *re-itemset* tuned to ut-jaccard.
- Note that the value of this 22.5% depends on
 - employed utility measures
 - nature of target data base.
- Thus, 22,5% is to be regarded as a reference value of this PWSCUP contest. → We do not have a one fits all approach!

Prospects

- We have to design anonymization method considering the following three conditions:
- Maintenance and management of ID of data subjects and pseudonym (psuedo ID)
- Anonymization which prevents re-identification such as proposed at PWSCUP
- > Quality and quantity an attacker has.
 - A long transaction data is dangerous because some of action described in it might be observed and used by the attacker.

Appendix

The details of

- 1. Re-identification algorithm
- 2. Randomization sketch

How to develop anonymization method given the lower bound of re-identification rate

- 1. while{re-identification rate > Theshold}
- 2. create a new anonymization method:A
- 3. Apply A to personal DB:D and get the result:A(D)
- 4. if {A(D) satisfys the predetermined utility condition:C }
- 5. work out a new re-identification method R against A(D)
- 6. calculate re-identification rate by applying R to A(D)
- 7. end if
- 8. end while
- 9. return anonymization method:A

Utility measure : cmae

- Clustering customer by gender and nationality
 - Notation
 - {C}: The whole cluster . *s*: Subset of C. *p: permutation*
 - T|s : customer data of T which is in s of T
 - -tj:j-th record of T

Average cost of item in cluster $s: \mu_{up}(T|s) = \sum_{tj \in T|s} unit cost of tj \cdot \# of t_j$

 $\sum_{t \in T \mid s} \# of t_j$

Average absolute error for the whole cluster C: *cmae*(M, M', T, T') = $\sum_{s \in C} \frac{|\mu_{up}(T|s)| - |\mu_{up}(T'|s)|}{|C|}$

Utility measure : subset

- X' is a set of 10 selected customers from M'.
- X is a counter part of X' in M.
- The following subset means the maximum value of difference between average of total purchase of X and that of X', for consecutive 30 days: $subset((M,T), (M'T'), p) = max_{X',D}(|\mu_{tp}(X',D,T')| |\mu_{tp}(X,D,T)|)$

Randomizing customer's item set in clustering of anonymization

- In order that less than 90 customers within one cluster are re-identified, we may highly randomize customer's item set in one cluster or clustering itself.
- But, too much randomization degrades utilities.

We need the method including both of randomization of clustering and item set and maintaining utilities.

Effective re-identification method: *re-itemset*

- 1. $n' \leftarrow |M'|$
- 2. for $\{i = 1 \ to \ n'\}$
- 3. $q(i) \leftarrow argmin_j d(S(T,j), S(T',i))$
- 4. end for
- 5. return $Q = (q(1), \cdots, q(n'))$

The majority of teams employs this *re-itemset*, which is actually the most powerful re-identification method meaning it re-identifies the highest number of reidentified customers.

Clustering method of anonymization

- Step 1 Randomize some customer's purchasing data in a cluster.
- Step 2 Adjust other customer's purchasing data to maintain utilities.
- Step 3 Re-build T' based on adjusted purchasing data.

- - The purpose of "Randomly" means making hard to identify the corresponding original data.
 - The Purpose of "horizontally" is the following:
 - If one () or is shifted in the right direction, another () is shifted in the opposite direction in order to total purchasing cost of RFM measure be invariant within a cluster.

- To prevent big degradation of the utility measure of average absolute error : *cmae*,
 - a center of gravity of each cluster should be kept as possible .
 - a center of gravity of each cluster means average purchasing cost.
- Under this condition, customers are randomly moved.
- However, each customers can move only once at Step2.
- Suppose *U* is a cluster whose non moved customer is smallest.
- Non moved customers in U are moved to adjust (= keep) the average value of utilities of the cluster.