No evidence of communication:
Off-The-Record Protocol version 4

Ola Bini
Centro de Autonomia Digital
ola@autonomia.digital

1. INTRODUCTION

Cryptography is commonly used to secure private
communications over the Internet. One way is to try to protect
casual personal conversations, in a way that mimics the idea of a
“casual” real-world conversation. However, in practice this does
not work, since communications are only protected by long-lived
encryption and signature keys, which are subject to compromise.
In order to tackle this problem, the Off-The-Record protocol
(OTR) was created [1], as a way to achieve two core properties:
perfect forward secrecy and deniability (sometimes also referred
to as repudiation). It is a protocol that uses encryption to hide the
contents of a conversation and to protect against future
compromises while also providing deniability, so that
communications remain personal and do not provide proof of
authorship.

OTRv4 [2] is the 4" version of this cryptographic protocol. It
provides end-to-end encryption —information is sent over a
network in such a way that only the recipient and sender can read
it. It also provides offline deniability —transcripts provide no
evidence even when long-term key material is compromised —
and online deniability —no outsider can obtain evidence even
when interactively colluding with an insider. Additionally, it
provides participation deniability —transcripts provide no
evidence that a specific party was part of the conversation. These
properties come as a consequence of the Deniable Authenticated
Key Exchanges (DAKEs) used in the protocol [3]. As the 4"
version of OTR can handle both online and offline conversations,
these latter properties depend on the type of conversation used.
Online conversations provide both online and offline deniability
for both participants in a conversation; while offline conversations
provide offline deniability for both participants in a conversation,
but only online deniability for the initiator of a conversation. Even
with these limitations, the 4" version of the OTR protocol
provides stronger deniability than all current secure messaging
protocols in use, such as OTRv3 and Signal.

Since OTRv4 is designed to be used in the current messaging
communication environment, it supports an out-of-order network
model and provides different modes in which it can be
implemented. The goal of the OTRv4 design is to create a version
of the OTR protocol that does not only provide what OTR was
created with; but to provide properties that apply to the current
communication environment, to use up-to-date cryptographic
primitives, and to define a protocol that can be used in the real
world.

2. DESIGN OVERVIEW

One of the core properties of the current secure messaging
protocols is deniability. This property can be defined as a way by
which participants in a conversation can plausibility deny having
participated in a conversation with each other, or the contents of

Sofia Celi
Centro de Autonomia Digital
sofia@autonomia.digital

it, as no cryptographic evidence of it can exist. However, the
current secure messaging tools only allow for limited deniability,
where the privacy and security of the participants engaging in a
conversation can be compromised. With this in mind, we designed
OTRv4 as an alternative to these messaging tools by providing
strong deniability. The fundamental way by which we provide this
is by using two DAKEs (one for online messaging and one for
offline messaging): DAKEZ and XZDH, as defined by Unger et al

[3].

While designing OTRv4, we also wanted to provide stronger
confidentiality, which means that only the participants of a
conversation are able to read the messages exchanged on it.
Contrary to what other tools like Pretty Good Privacy (GPG) do,
we use short-lived encryption/decryption keys, in the same way as
the Double Ratchet Algorithm does [4]. This gives us backwards
secrecy, forward secrecy and post-compromise security, as the
compromise of both long-lived and short-lived key material does
not compromise the confidentiality of neither past nor future
messages. As each message will be encrypted and decrypted with
one key only, message authentication and integrity verification
can happen on a per message basis. This means that Message
Authentication Codes (MAC) —a function computed over a
message that takes a secret MAC key generated from the per-
message encryption/decryption key— is only generated by the
person with the ability to compute the correct keys. However, a
MAC cannot provide non-repudation, as a participant is able to
deny at a later time the authorship of the message signed —since
both parties to the conversation have access to the MAC key. This
means that either party could have generated this MAC, but the
participant in a conversation is always assured that it came from
the other party.

As we see, then, the purpose of OTRv4 is to provide an up-to-date
protocol that provides no convincing cryptographic evidence that
a conversation took place. Anyone could have modified or sent a
message in this conversation. This idea also makes it possible for
anyone watching a conversation that uses OTR to be able to forge
it, or its contents. To achieve this property -known as forgeability-
we use XSalsa20 [5]. Since this is a malleable encryption scheme,
it makes it possible to alter messages.

3. LIMITATIONS

OTRv4 is a protocol that aims to be usable in the current secure
messaging environment. To achieve this, it only uses available
cryptographic primitives, which means that it uses primitives that
have been implemented. As it aims to be an efficient and effective
protocol, instead of using Diffie-Hellman key exchange, it uses



Elliptic Curve Diffie-Hellman key exchange, as the latter achieves
the same security level as the first while using a shorter key
length.

Additionally, OTRv4 does not take advantage of any quantum
resistant algorithm, as their current implementations are not ready
enough to be widely used. The design does include, however,
what we call “weak quantum resistance”: by periodically mixing
in a 3072-bit Diffie-Hellman exchange in the double ratchet, we
can guard for the possibility of quantum computers being able to
break ECDH keys significantly faster than DH keys (because of
the bit-size differences).

4. IMPLEMENTATION

Although there exist many cryptographic primitives, protocols and
ideas, very few have been implemented. The idea of the OTR
protocol and the new version of it is to give users a deniable and
secure communication that can be used in the real world. The only
way this can be proven is by showing how the protocol actually
achieves what it claims. Implementing a proof-of-concept of it
has several benefits; but it is not enough. The current secure
messaging environment calls for proposals that can be used in real
communication as soon as possible, as the privacy and security of
users all over the world has already been compromised. For these
reasons, we are developing a production ready implementation of
OTRv4 in C [7], by using production-ready cryptographic
primitives and libraries.

In our current work, we take into account some security measures.
As we use elliptic curve cryptography, we check that the
generated keys are not the identity-element, as this will make our
implementation vulnerable to small sub-group [8] or invalid-curve
attacks [9]. We use the Ed448-Goldilocks elliptic curve [11].
Furthermore, cryptographic operations use constant time
operations [10], and we check for this by using the tool ctgrind
[12]. We also check for initialized memory, memory leaks and
double freeing with the programming tool valgrind [13]. We
check race conditions in multi-threads with helgrind [14] and drd
[15].

We are implementing the generic C library as a plugin for IM
desktop clients, so that it can be used in real chat conversations.

5. CONCLUSION

As society becomes more and more dependent on electronic
communication, protocols and tools that preserve privacy and
provide security for its users are desperately needed. This new

version of OTR, version 4, aims to provide those properties, as it
achieves both confidentiality of the messages exchanged in a
conversation, and deniability of both the transcripts and
participation.

We are implementing the new version of the protocol as a library
and plugin for IM desktop clients, as a production-ready tool and
as a reference for implementations of the protocol in other
programming languages.

6. REFERENCES

[1] Borisov, N., Goldberg, 1., and Brewer, E. 2004. Off-the-
Record Communication, or, Why Not to Use PGP. Workshop
on Privacy in the Electronic Society.

[2] OTRv4 specification.
https://github.com/otrv4/otrv4/blob/master/otrv4.md

[3] Goldberg, I. and Unger, N. 2016. Improved Strongly
Deniable Authenticated Key Exchanges For Secure
Messaging. Technical Report. University of Waterloo.

[4] Marlinspike, M. and Perrin, T. 2016. The Double Ratchet
Algorithm.
https://signal.org/docs/specifications/doubleratchet/

[5] Bernstein, D. 2008. Extending the Salsa20 nonce. The
University of Illinois at Chicago.

[6] Diffie, W. and Hellman, M. 1976. New directions in
cryptography. Communications of the ACM.

[7] Libotr-ng. https://github.com/otrv4/libotr-ng

[8] Antipa, A., Brown, D., Menezes, A., Struik, R., and
Vanstone, S. Validation of Elliptic Curve Public Keys.
Public Key Crytography.

[9] Hoon, C. and Joon, P. A Key Recovery Attack on Discrete
Log-based Schemes Using a Prime Order Sub-group.
Advances in Cryptology-CRYPTO “97.

[10] Pornin, T. Why Constant-Time Crypto?
https://www.bearssl.org/constanttime.html

[11] Hamburg, M. 2015. Ed448-Goldilocks, a new elliptic curve.
NIST ECC workshop.

12] Ctgrind. https.//github.com/agl/ctgrind
13
14
15] DRD. http://valgrind.org/docs/manual/drd-manual.html

Valgrind. http://valgrind.org/

[12]
[13]
[14] Helgrind. http://valgrind.org/docs/manual/hg-manual.html
[15]



	1. INTRODUCTION
	2. DESIGN OVERVIEW
	3. LIMITATIONS
	4. IMPLEMENTATION
	5. CONCLUSION
	6. REFERENCES

