
Proceedings on Privacy Enhancing Technologies ; 2019 (2):228–244

Paul Schmitt*, Anne Edmundson, Allison Mankin, and Nick Feamster

Oblivious DNS: Practical Privacy for DNS
Queries
Abstract: Virtually every Internet communication typi-
cally involves a Domain Name System (DNS) lookup for
the destination server that the client wants to commu-
nicate with. Operators of DNS recursive resolvers—the
machines that receive a client’s query for a domain name
and resolve it to a corresponding IP address—can learn
significant information about client activity. Past work,
for example, indicates that DNS queries reveal informa-
tion ranging from web browsing activity to the types
of devices that a user has in their home. Recognizing
the privacy vulnerabilities associated with DNS queries,
various third parties have created alternate DNS ser-
vices that obscure a user’s DNS queries from his or
her Internet service provider. Yet, these systems merely
transfer trust to a different third party. We argue that no
single party ought to be able to associate DNS queries
with a client IP address that issues those queries. To this
end, we present Oblivious DNS (ODNS), which intro-
duces an additional layer of obfuscation between clients
and their queries. To do so, ODNS uses its own au-
thoritative namespace; the authoritative servers for the
ODNS namespace act as recursive resolvers for the DNS
queries that they receive, but they never see the IP ad-
dresses for the clients that initiated these queries. We
present an initial deployment of ODNS; our experiments
show that ODNS introduces minimal performance over-
head, both for individual queries and for web page loads.
We design ODNS to be compatible with existing DNS
protocols and infrastructure, and we are actively work-
ing on an open standard with the IETF.

Keywords: privacy, DNS

DOI 10.2478/popets-2019-0028
Received 2018-08-31; revised 2018-12-15; accepted 2018-12-16.

*Corresponding Author: Paul Schmitt: Princeton Uni-
versity, E-mail: pschmitt@cs.princeton.edu
Anne Edmundson: Princeton University, E-mail: an-
nie.edmundson@gmail.com
Allison Mankin: Salesforce, E-mail: alli-
son.mankin@gmail.com
Nick Feamster: Princeton University, E-mail: feam-
ster@cs.princeton.edu

1 Introduction
Almost all communication on the Internet today starts
with a Domain Name System (DNS) lookup. Before
communicating with any Internet destination, a user
application typically first issues a Domain Name Sys-
tem (DNS) lookup, which takes a domain name (e.g.,
google.com) and returns an IP address for the server
that the client should contact. Today, the DNS requires
the user to place tremendous trust in DNS operators,
who can see all of the DNS queries that a user issues.
Whether the operator is an Internet service provider
(ISP) or a third party is less concerning than the fact
that some single operator can observe and retain this
sensitive information. This paper presents a system,
called ODNS, which attempts to solve this problem.

As DNS operates today, queries and responses are
viewable as plaintext at the recursive resolver, even if
the client is using an encrypted channel between it and
the recursive resolver. As a result, they can reveal signif-
icant information about the Internet destinations that
a user or device is communicating with. For example,
the domain names themselves reveal the websites that
a user visits. Additionally, in the case of smart-home In-
ternet of Things (IoT) devices, DNS queries may reveal
the types of devices in user homes. Previous work has
also demonstrated that DNS lookups can identify the
websites that a user is visiting even when they are us-
ing an anonymizing service such as Tor [19]. Recursive
DNS resolver operators can readily associate and track
client identities (i.e., IP addresses) along with informa-
tion about their DNS queries, creating a fundamental
point of privacy risk.

A user’s Internet Service Provider (ISP) often op-
erates the user’s default recursive DNS resolver, giving
the ISP potentially extraordinary access to DNS query
information. To mitigate this risk, several entities, in-
cluding Google, Cloudflare [41], and Quad9 [36] operate
“open” recursive DNS resolver services that anyone can
use as an alternative to their ISP’s DNS recursive re-
solver. Yet, when a user switches to such an alternate re-
solver, the privacy problem isn’t solved; rather, the user
must then trust the operator of the open recursive rather
than their ISP. Essentially, the user must decide whether



Oblivious DNS: Practical Privacy for DNS Queries 229

they trust their ISP or some other organization—some
of which are even in the business of collecting data about
users.

Other approaches have layered encryption on top
of DNS. For example, DNS-over-TLS [24], DNS-over-
DTLS [37], and DNS-over-HTTPS [23] send DNS
queries over an encrypted channel, which prevents an
eavesdropper between the client and the recursive re-
solver from learning the contents of a DNS lookup but
does not prevent the recursive resolver itself from linking
queries and IP addresses. DNSCurve uses elliptic curve
cryptography to encrypt DNS requests and responses;
it also authenticates all DNS responses and eliminates
any forged responses [6]. DNSCrypt encrypts and au-
thenticates DNS traffic between a client and a recursive
resolver [15]. Neither of these approaches prevent the
recursive resolver from observing DNS queries and re-
sponses.

This work takes a different tack: Instead of merely
shifting the trust anchor from an ISP to some other
third party, we seek to prevent a recursive DNS re-
solver from associating client identities with the queries
they make. To do so, we design, implement, and de-
ploy Oblivious DNS (ODNS), which (1) obfuscates the
queries that a recursive resolver sees from the clients
that issue DNS queries; and (2) obfuscates the client’s
IP address from upper levels of the DNS hierarchy
that ultimately resolve the query (i.e., the authorita-
tive servers). ODNS operates in the context of the exist-
ing DNS protocol, allowing the existing deployed infras-
tructure to remain unchanged. ODNS decouples client
identity from queries by leveraging the behavior of the
global DNS system itself. A client sends an encrypted
query to a recursive resolver, which then forwards the
query to a ODNS resolver (an authoritative DNS server
that can resolve ODNS queries). The recursive resolver
never sees the domains that the client queries, and the
ODNS resolver never sees the IP address of the client.

ODNS provides benefits for both the recursive re-
solver operators as well as users of the system. The rich
information available at the recursive resolver can make
operators the targets of data requests. ODNS reduces
the information that operators are able to know as they
cannot associate queried domains with client identity,
making them less-valuable targets. In essence, the op-
erators are oblivious to their client’s requests. Likewise,
users of ODNS benefit in that they are no longer re-
quired to trust that their recursive resolver has their
best interests at heart. Instead, users can be assured
that all DNS infrastructure beyond the stub is unable
to link their identity with their querying behavior.

Client Side Server Side

Client Browser

Stub Resolver

Recursive Resolver

Authoritative 
Name Servers

Operator can see user 
identity and queries

Fig. 1. In a typical DNS lookup, a recursive resolver sees DNS
queries and responses, as well as the client IP addresses that issue
the queries.

We design ODNS to be immediately deployable
alongside existing DNS infrastructure. We implement
this functionality in a prototype ODNS stub and ODNS
resolver in Go. ODNS’s privacy enhancements come at
a performance cost. Our trace-driven evaluation shows
that any individual uncached DNS lookup is slower due
to two factors: 1) our cryptographic operations add
roughly two milliseconds to the lookup time; and 2) the
round-trip time between the client and the ODNS re-
solver is added for each lookup. We mitigate the impact
of round-trip time latency by designing ODNS to use
anycast. Ultimately, our evaluation shows that the per-
formance overhead on web page load times is negligible.
Additionally, we reduce the traffic burden placed on ex-
isting recursive resolvers by implementing a cache at the
stub resolver.

2 Background
The domain name system is the hierarchical, decentral-
ized infrastructure responsible for translating between
domain names and the associated information that is
necessary for data connectivity [31, 32]. Clients, such
as Internet browsers, issue DNS queries to find the IP
address of a server that contains content the user re-
quests. Typically, for a given DNS request, there are up
to five DNS servers that can be involved in resolving in-
formation for a domain name with each server playing
a different role (Figure 1): 1) stub resolver or "client";
2) recursive resolver; 3) root nameserver; 4) top level
domain (TLD) nameserver; and 5) authoritative name-
server.

Stub resolvers are lightweight processes included
in operating systems that initiate DNS queries to the
larger infrastructure, typically toward a recursive re-
solver. The recursive resolver will inspect the query and



Oblivious DNS: Practical Privacy for DNS Queries 230

check whether there is a cached answer, if so, the re-
sponse is returned to the stub. If the answer is not
cached, the recursive will then act on the stub’s be-
half to find the answer. If the uncached query includes
a domain for which the recursive server does not already
know the address for the domain’s authoritative name-
server it will query the root and/or the TLD servers to
find the authoritative server IP address. The root server
will respond to a query with the appropriate TLD name-
server for that domain (e.g., the .com TLD server for
a foo.com query). The recursive server will query the
TLD server, which will in turn respond with the IP ad-
dress of the authoritative nameserver for the domain.
The recursive server will finally query the authoritative
nameserver, the final authority for translating a domain
name to an IP address. The portion of the DNS names-
pace that an authoritative server is responsible for is
known as a “zone”.

DNS Privacy Implications. DNS traffic can re-
veal personal information about users’ browsing behav-
ior as well as the types of devices in a network. The
vantage point provided at the recursive DNS resolver
gives the operator of the resolver visibility into the IP
addresses that query various domain names, which may
be ultimately linked to individual devices, sets of de-
vices, or user identity.

Additionally, recursive resolvers can pass informa-
tion about the user to the entities at higher levels in the
DNS hierarchy using the EDNS0 client subnet option.
EDNS0 client subnet is a non-standards track RFC [10],
which is widely-deployed, whereby recursive resolvers
include the client IP subnet as part of the DNS query
when querying authoritative nameservers. The intent
of EDNS0 client subnet is to allow for DNS and con-
tent providers to utilize the client information to create
more informed responses (i.e., route users to replicas of
content they are closest to). The EDNS0 client subnet
extension has privacy implications because it reveals a
portion of the IP address that issued the initial DNS
query to the authoritative server.

Why Not Tor? At first glance, it may appear that
DNS privacy can readily be achieved using the Tor [16]
network. Tor uses layered encryption and a three-hop
circuit to provide client anonymity. However, using Tor
for DNS privacy comes with several drawbacks.

First, and perhaps most importantly, Tor’s funda-
mental design introduces substantial network latency to
the end-to-end path. This significantly reduces the per-
formance for all traffic over the network. DNS underpins
almost all web traffic and increased DNS lookup latency
has an outsized impact of web performance [39]. Fig-

0 100 200 300 400 500
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Conventional DNS
Tor

500 1000 2000

0.8

1.0

Fig. 2. Tor DNS latency compared with conventional DNS.

ure 2 provides insight into the additional latency Tor
introduces for DNS traffic. We resolve the Alexa top
10,000 domains using both conventional DNS and using
the Tor network from a laptop connected to a univer-
sity network via gigabit Ethernet. As shown, Tor signif-
icantly increases the latency for DNS queries. The me-
dian resolution time for conventional DNS is 31.31 ms,
whereas the median time for DNS via Tor is 276.76 ms.

Next, Tor has long been a target for censorship [42].
There are many techniques by which censors can iden-
tify Tor nodes and traffic and block them from the In-
ternet. Tor is designed to be all-or-nothing, meaning the
client sends all traffic through the circuit. This has both
practical impact as censors may block all access to the
Internet as well as a performance impact as clients may
not require privacy for all of their traffic.

Finally, while the original client IP may be obfus-
cated using Tor, the exit node IP address can be as-
sociated with all DNS queries that it forwards. Such
system behavior leads to a chilling effect as the opera-
tors of exit nodes—often individual volunteers—may be
held liable for the content that ingresses and egresses
onto the Internet from their connection [11]. Addition-
ally, DNS in Tor is conducted by the exit node of the
circuit and is performed in a manner that depends on
how it is configured on that machine. As a result, the
operator of that machine (as well as the recursive re-
solver used by the exit node) can learn what content
is being requested. More recently, researchers have ana-
lyzed how DNS works in Tor and found that fingerprint-
ing attacks can be performed based on DNS data [19].
The Tor Project has also designed and implemented
onion services/domains (previously called hidden ser-
vices), which provide server anonymity; onion domain
lookup does not use DNS, but can only be accessed via
Tor and suffers from usability issues [3]. Recent work
has highlighted how onion domain name leakages are a
source of privacy leakage as well [40].



Oblivious DNS: Practical Privacy for DNS Queries 231

3 Threat Model and Goals
In this section, we describe our threat model, outline
the capabilities of the attacker, and introduce the design
goals and protections that ODNS provides.

Threat Model. Our threat model includes any sin-
gle non-colluding passive adversary who wishes to com-
promise the confidentiality of a client’s IP and requested
domain name. As an eavesdropper, the adversary has
the capability to monitor and collect traffic between the
following entities: the client resolver and the recursive
resolver, the recursive resolver and the ODNS resolver,
or the ODNS resolver and an authoritative server. Note
that ODNS addresses an adversary that eavesdrops on
one of these connections, but does not address a global
passive adversary who can eavesdrop on many or all of
these connections. The rest of this section describes the
potential threats associated with an adversary acting
as different components of the ODNS system, examples
of this adversary in practice, and threats that are not
considered in this work.

An adversary could impersonate a client of the sys-
tem, and attempt to perform chosen ciphertext attacks
by generating queries and inspecting the ciphertext as
well as the corresponding plaintext. ODNS prevents this
type of adversary from learning and associating client
IP addresses with their DNS queries. Our threat model
does not include an adversary acting as a client (or mul-
tiple colluding clients) who can send enough DNS re-
quests to impact the availability of the ODNS system.

An adversary who acts as a recursive resolver,
ODNS resolver, or authoritative server has the ability
to capture logs of DNS queries and respond to requests
for data (via subpoena or warrant). Despite these ca-
pabilities, ODNS prevents the association of client IP
addresses with their corresponding DNS queries. ODNS
does not attempt to prevent an adversary such as this
from modifying DNS queries or dropping DNS queries.

The adversary that we consider exists in practice:
First, the motivation for our system was the rising con-
cern over Internet Service Providers (ISPs) operating
recursive DNS resolvers and gaining access to user in-
formation, as well as recent proposals for DNS-over-
HTTPS (DoH), which propose to instead send all DNS
queries from a user’s browser directly to a CDN operator
(e.g., Cloudflare), which may only exacerbate privacy
problems by sending a user’s DNS queries to a different
party. Second, governments have used the global DNS
system to monitor and block content. Finally, a govern-
ment may also request logs from the DNS operator, the

government could also be colluding with a DNS opera-
tor; the DNS operator itself might even be an adversary.

This work does not attempt to prevent an adversary
from compromising the integrity or availability of DNS
requests. We do not consider an adversary who operates
both a recursive resolver and an authoritative server in
an attempt to collude.

Goals. To defend against the adversary described
above, we highlight the design goals for ODNS. Both the
recursive DNS resolver and the ODNS resolver have dif-
ferent risks, and therefore requires different protections.
Both must be protected by decoupling the client iden-
tity (i.e., the client IP address) from the client’s DNS
traffic. A strength of ODNS is that it protects the oper-
ator of the recursive resolver itself from the adversary,
rather than simply the client. Conversely, existing DNS
privacy mechanisms, such as DNS-over-TLS or DNS-
over-HTTPS, allow for linkability between client IP and
query traffic at the recursive resolver.

Ultimately, we aim to achieve similar goals to
privacy-focused DNS systems such as Quad9. However,
our goals are stricter as we wish to prevent any entity
in the global DNS infrastructure from associating client
identity and query traffic.

The primary goal of ODNS is to disallow the recur-
sive resolver to have access to both the client IP address
and the DNS query information. ODNS must decouple
these two pieces of information by hiding the client’s
DNS query traffic from the recursive resolver. If the re-
cursive resolver is unable to know the DNS queries that
a client has issued, the DNS operator is unable to pro-
vide an adversary with the requested data and it will be
able to remain oblivious to the requests and responses
it serves.

Conversely, the ODNS resolver fundamentally has
access to client queries. Therefore, we must prevent it
from having access to the client IP address.

4 Oblivious DNS (ODNS)
This section describes the design of ODNS. ODNS pre-
vents an adversary from linking a DNS query with the
client IP address that issued the query. We assume that
an adversary can (1) request data (using a subpoena or
warrant) from any number of DNS operators; or (2) ac-
cess data and logs (e.g., query logs) at any DNS server.



Oblivious DNS: Practical Privacy for DNS Queries 232

Fig. 3. Overview of interacting components in ODNS.

4.1 ODNS Overview

Figure 3 summarizes the ODNS design. ODNS operates
similarly to conventional DNS, but alters two compo-
nents: (1) each client runs a modified stub resolver; and
(2) an organization operating ODNS runs an authori-
tative name server (ODNS resolver) that also acts as a
recursive DNS resolver for the original DNS query.

Operators of recursive resolvers see both individual
client IP addresses and domains in queries. Operators of
ODNS resolvers may also be able to learn information
about the client if the recursive uses the EDNS0 client
subnet extension. As mentioned in Section 2, EDNS0
client subnet can reveal information about the client’s
subnet to authoritative DNS servers higher in the DNS
hierarchy (not only recursive DNS resolvers).

The recursive DNS resolver has access to the client
IP address, but it never sees the domains that it queries.
ODNS requires the client to use a custom local stub re-
solver, which hides the requested domain from the re-
cursive resolver. The ODNS stub resolver encrypts the
original DNS query and the key used for encryption be-
fore it appends a plaintext ODNS-specific domain (e.g.,
.odns) to the query, which causes the recursive resolver
to forward the encrypted domain name on to the appro-
priate authoritative server (an ODNS resolver). The re-
cursive DNS resolver receives the request from the client
stub, but cannot identify the genuine domain. It queries
the appropriate TLD nameserver and forwards the re-
quest to the ODNS resolver.

When an ODNS resolver receives a DNS query, it
(1) decrypts the symmetric key used to encrypt the do-
main; and (2) decrypts the domain with the symmetric
key; and (3) acts as a conventional recursive resolver
for the decrypted domain.1 Once an answer is obtained,

1 For simplicity, we say that this authoritative server is for .odns
domains, but ODNS could run on any DNS domain, and any
organization that currently operates authoritative nameservers
could run their own ODNS resolvers for their domain(s).

Client Stub Recursive
Name 
Server

www.foo.com??
(1) Stub generates k, 
encrypts domain with 
k, encrypts k with 
authoritative's public 
key

{www.foo.com}k, kPK

(2) ODNS Resolver decrypts 
k with private key, 
decrypts domain with k

www.foo.com
1.2.3.4

(3) ODNS Resolver 
encrypts domain with k,
encrypts IP with k

{www.foo.com}k
{1.2.3.4}k

(4) Stub decrypts 
domain and IP address

 

{www.foo.com}k, kPK

{www.foo.com}k
{1.2.3.4}k

www.foo.com
1.2.3.4

ODNS
Resolver

www.foo.com??

Fig. 4. ODNS protocol.

the ODNS resolver encrypts the response using the ses-
sion key and places it in a resource record known as
an OPT [13] in the response. The ODNS resolver re-
turns the response to the original recursive DNS re-
solver, which in turn sends the response to the client.
As explained by the use of session keys, the recursive
resolver cannot learn the domains a client requests, de-
spite being able to learn who the client is.

4.2 Sending and Receiving ODNS Queries

Figure 4 shows the steps involved in answering a client’s
DNS request, which proceed as follows:
1. When a client issues a DNS request, the local stub

resolver generates a symmetric session key, encrypts
the domain name with the session key, encrypts the
session key with the ODNS resolver’s public key,
and appends the ODNS domain (e.g., .odns) to the
encrypted query. ({www.foo.com}k.odns.) The stub
also appends the session key encrypted under the
ODNS resolver’s public key ({k}P K)

2. The stub sends the query to the recursive resolver,
which then sends it to the authoritative nameserver
for the specified ODNS domain.

3. The ODNS resolver decrypts the session key, which
it then uses to decrypt the genuine domain in the
query.

4. The ODNS resolver forwards a recursive DNS re-
quest to the appropriate name server for the plain-
text domain, which then returns the answer to the
ODNS resolver.

5. The ODNS resolver returns an encrypted answer to
the client’s recursive resolver.

.odns
www.foo.com
.odns


Oblivious DNS: Practical Privacy for DNS Queries 233

Other (non-ODNS) authoritative DNS servers see in-
coming DNS requests, but these only see the IP address
of the ODNS resolver, which effectively proxies the DNS
request for the original client. The client’s original recur-
sive resolver can learn the client’s IP address, but can-
not learn the domain names in the client’s DNS queries.
An additional threat is similar to the issue of the Tor
edge-nodes: upstream DNS servers from the ODNS re-
solver can associate and aggregate the plaintext DNS
requests with the IP address of the ODNS resolver and
glean information from that. Mitigation is discussed in
Section 4.4.

4.3 Replication and Privacy-Preserving
Key Distribution

The ODNS resolver performs the role of both a typical
authoritative server and a recursive resolver. Thus, the
ODNS resolver may face higher traffic volume than a
traditional authoritative nameserver. Additionally, the
ODNS resolver is responsible for, and must expect,
queries for pseudorandom hostnames within its zone.
Thus, the ODNS resolver may be susceptible to DDoS
attacks as it must attempt to decrypt all queries that
it receives. We must thus design ODNS to handle the
possibly high query volumes.

Scalability and performance using anycast
replicas. In order to achieve scalability for the ODNS
resolver servers, we expect to replicate them across sev-
eral instances, both in geographically different locations
as well as within datacenters. All replicas are assigned
to both an anycast IP address as well as a unique uni-
cast IP address. Using anycast, all servers that share
the IP address are able to answer a query. The anycast
address is advertised to the TLD server as the name-
server (NS) records for the ODNS domain. When a re-
cursive resolver sends a DNS query to the ODNS re-
solver, the query will be routed by BGP to an server
that is nearby (according to wide-area routing). Ad-
ditionally, because the recursive resolver (an open re-
solver) often also uses anycast, both the recursive and
the ODNS resolver should be the best choices based on
the client’s network connectivity without revealing the
client’s location.

Key distribution. Use of anycast and multiple
authoritative replicas introduce a key distribution chal-
lenge. Recall that the ODNS stub server uses the pub-
lic key of the ODNS resolver to encrypt session keys
in ODNS queries. Based on best practices, we cannot
share public / private keypairs across all of the repli-

Client & Stub

special.odns ??

special.odns ??

Stub generates
request for
special.odns

Anycasted ODNS
Resolvers

Recursive
Resolver

Closest auth 
server 
responds with 
its name

Stub stores 
PKauth

and uses it to 
encrypt session
keys on
subsequent
queries

Self-certifying
PKodns PKauth

Self-certifying 
PKodns PKauth

Fig. 5. ODNS protocol for key distribution and selecting the opti-
mal ODNS resolver.

cated ODNS resolvers. Likewise, to preserve user pri-
vacy the key distribution must be done in a way such
that the ODNS resolver never learns the identity (i.e.,
IP address) of a client. This disqualifies out-of-band
key exchange as proposed in [20]. Instead, we leverage
the DNS infrastructure itself to distribute keys while
maintaining privacy. We define a “special” query (e.g.,
special.odns) that we use to select a specific ODNS
resolver as well as distribute the appropriate public key.

Figure 5 shows this process. The client’s stub re-
solver sends a special ODNS query to the recursive re-
solver, which will in turn use the anycast address to
locate the nearest ODNS resolver. The ODNS resolver
that receives the query responds with an OPT record
that includes a self-certifying name [2, 30], such that the
name of the server is derived from the public key itself
and is associated with an instance of the ODNS resolver
listening on the unique unicast IP address, and the
ODNS resolver’s public key. Subsequent ODNS queries
at the stub append the unique name of the ODNS re-
solver that responded to queries, which means that the
requests will all reach the same server and the client en-
crypts queries using the appropriate public key. Anycast
servers are impacted by BGP routing updates. How-
ever, prior work [8] showed that BGP updates caused
relatively low churn for clients connecting to globally-
replicated anycast hosts. Based on this, clients should
perform the key distribution process at regular inter-
vals (e.g., weekly) to update the ODNS resolver that is
responsible for resolving its queries.



Oblivious DNS: Practical Privacy for DNS Queries 234

100 200 300 400 500
ODNS QNAME Length (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Fr
ac

tio
n 

of
 Q

ue
rie

s

ECC, 16-byte AES, binary
ECC, 32-byte AES, binary
ECC, 16-byte AES, base64
ECC, 32-byte AES, base64
RSA 1024, 16-byte AES, binary
RSA 1024, 32-byte AES, binary)
RSA 1024, 16-byte AES, base64
RSA 1024, 32-byte AES, base64)
DNS QNAME Limit

Fig. 6. Encrypted QNAME lengths using different cryptographic
primitives.

4.4 Practical Challenges

To reduce barriers to deployment, ODNS must be fully-
compatible with the existing global DNS infrastructure,
as changes to the DNS system occur over long time
scales. Thus, we design ODNS to avoid any changes at
existing recursive resolvers, root nameservers, or TLD
nameservers. In this section, we illuminate several prac-
tical challenges the system must overcome.

QNAME length. We initially attempted to trans-
mit our encrypted domain queries in additional resource
records (RR) section of a DNS message (known as an
OPT). However, in practice we discovered that recur-
sive resolvers strip additional records. Therefore, we use
the QNAME field to transmit both the encrypted do-
main query as well as the asymmetrically encrypted ses-
sion key as the QNAME field is preserved while passing
through recursive resolvers. A DNS QNAME field con-
sists of 4 sets of 63 bytes, which limits both the key size
and encryption scheme used.

We investigate combinations of the required crypto-
graphic primitives (symmetric AES encryption for do-
mains, asymmetric encrypytion for symmetric keys) and
the resulting QNAME lengths to assess the suitability
of the QNAME field with regard to ODNS’s encryp-
tion scheme. We calculate total QNAME lengths for all
query records in an example query list used for test-
ing DNS server performance2. The list contains 6.8M
queries and we calculate the lengths using both binary
and base64 encoding. Figure 6 shows the results. We
see that both 1024-bit RSA and ECC using Curve25519
tend to result in query lengths that are well below the
252-byte limit. However with the use of base64 and

2 http://wwwns.akamai.com/queryfile-example-current.gz

RSA-based asymmetric encryption the likelihood of gen-
erating an invalid QNAME is increased. For this rea-
son, ODNS uses 16-byte AES session keys and encrypts
the session keys using the Elliptic Curve Integrated En-
cryption Scheme (ECIES) [25]. We anticipate that there
may be cryptographic primitives that will result in lower
overhead; however, AES and ECIES libraries are readily
available for our development platform. In our prototype
deployment, which uses base64 encoding, we discovered
that 0.6% of the queries in the list had lengths that
exceeded the QNAME length limit.

To allow the ODNS prototype to operate in con-
junction with the deployed DNS infrastructure, we con-
figured the prototype ODNS stub resolver to fall back to
conventional DNS lookups whenever plaintext QNAME
fields that result in ciphertext QNAMEs that are larger
than the maximimum field size. To preserve privacy,
queries that result in invalid QNAME lengths will re-
ceive FORMERR errors in the deployed version of
ODNS.

EDNS0 client subnet. As discussed in Section 2,
the EDNS0 client subnet option allows upstream au-
thoritative nameservers to learn the IP subnet of clients
issuing queries. To achieve the intended privacy bene-
fits of ODNS, the client subnet option should not be
used. We intend to require in the ODNS specification
in development aimed at the IETF that ODNS stub
resolvers use EDNS0 Client Subnet with the value of
0, which requires the recursive to not attach ECS for
them. Assuming this were to fail (as even specification
requirements are not always adhered to), the risk is that
an adversary can spy the IP addresses in plaintext ECS
sent from the recursive to the ODNS resolver. This risk
could be mitigated if only recursives that will encrypt
the traffic to authoritatives, using DNS-over-TLS or one
of the other methods, were selected by the stub. Like-
wise, ODNS resolvers can readily observe whether ECS
has been attached to a query or if encrypted transport
between the recursive and the authoritative is in-use and
embed a client notification in the subsequent response.
We leave this functionality for future work.

To better understand real-world usage of the
EDNS0 client subnet option, we performed a short
experiment to discover publicly available recur-
sive resolvers that have the option enabled. We
operate authoritative nameservers for the domain
obliviousdns.com and collect pcaps of queries that
reach the servers. Queries are initiated by using dig
against a list of 16 popular publicly available recursive
resolvers. Overall, we find that only four of the sixteen
resolvers implement EDNS0 client subnet, as shown in

http://wwwns.akamai.com/queryfile-example-current.gz
obliviousdns.com


Oblivious DNS: Practical Privacy for DNS Queries 235

Open Recursive Resolver (IP) EDNS0 Client Subnet 0x20
Google (8.8.8.8) 3

Dyn (216.146.35.35) 3

Fourth Estate (45.77.165.194) 3

GreenTeamDNS (81.218.119.11) 3

Cloudflare (1.1.1.1) 3

Verisign (64.6.64.6) 3

Quad9 (9.9.9.9)
Level3 (209.244.0.3)
OpenDNS Home (208.67.222.222)
Norton ConnectSafe (199.85.126.10)
Comodo Secure DNS (8.26.56.26)
DNS.WATCH (84.200.69.80)
SafeDNS (195.46.39.39)
FreeDNS (37.235.1.174)
Hurricane Electric (74.82.42.42)
Ultra (156.154.71.1)

Table 1. Open recursive resolvers with EDNS0 client subnet and
0x20-bit encoding enabled.

Table 1. Several popular recursive resolvers do not cur-
rently implement EDNS0 client subnet (such as Cloud-
flare’s 1.1.1.1 or Quad9’s 9.9.9.9).

0x20-bit encoding. 0x20-bit encoding is a scheme
intended to thwart DNS poisoning attacks by altering
the QNAME field in queries to a mix of uppercase and
lowercase (e.g., www.foo.com to wWW.FoO.CoM) [12]. This
technique increases the difficulty of cache poisoning as
the attacker must guess the mixed-case QNAME. The
ODNS prototype encodes the encrypted domain and
session keys using base64, which results in a character
set including both upper and lowercase letters. There-
fore, for our purposes, the recursive resolver between
the ODNS stub and the ODNS resolver must not use
0x20-bit encoding, as it would render decryption impos-
sible. Table 1 shows the public recursive resolvers that
currently implement 0x20. Note that 0x20-bit encoding
does not pose a challenge for binary-encoded queries,
which are commonly supported in real-world infrastruc-
ture [20].

Caching. ODNS caches queries at the ODNS re-
solver. As the ODNS resolver is essentially an extra re-
cursive resolver in the system, the ODNS resolver sim-
ply acts as the shared cache, in lieu of the shared cache
that would ordinarily exist at the ISP recursive resolver.
This pushes caching further into the DNS hierarchy, de-
creasing the time to conduct a look up for the domain
from the perspective of the authoritative server. In ad-
dition to caching at the ODNS resolver, ODNS can also
cache DNS responses at the stub resolver; while this
may provide some caching benefits on a per-client ba-
sis, it does not provide cross-client caching benefits. It
is important to note that caching at the recursive re-
solver would not provide any performance enhancement

for the clients in this system. Each DNS query is en-
crypted with a new session key k, thus two DNS queries
for the same domain do not appear the same to these
resolvers ({www.foo.com}k1 6= {www.foo.com}k2); there-
fore, if the recursive resolver cached the response for
{www.foo.com}k1, it would never see a cache hit for that
entry because subsequent lookups for www.foo.com ap-
pear as a different URL.

We use two techniques to avoid causing the recur-
sive resolver to cache ODNS responses (thus potentially
ejecting conventional cached entries). First, our ODNS
resolver sets the TTL value of the response to zero. The
TTL value is meant to indicate the number of seconds a
DNS response should be considered valid. By setting the
TTL to zero, we essentially indicate that all ODNS re-
sponses should not be cached. Additionally, we send the
response in an OPT record, which should not be cached
by recursive resolvers. We further explore the implica-
tions on caching and traffic at the recursive resolver in
Section 5.3.

ODNS ingress / egress timing vulnerability.
An adversary with sufficient visibility might be able to
view both the encrypted ODNS queries and the subse-
quent plaintext queries originating from the ODNS re-
solver. Such a case could also arise if both the stub and
the ODNS resolver use the same recursive resolver for
lookups. ODNS can avoid these issues in three straight-
forward ways: (1) the ODNS resolver can inspect the
source of incoming queries and maintains rules to avoid
using the same service for the plaintext query; (2) ODNS
resolvers can simply repeat the same actions as the stub
by encrypting the encrypted query again (i.e., behavior
akin to Tor); and (3) send the queries from the ODNS
server using query name minimization [7] so that root
and popular TLD operators do not aggregate the his-
tory of the queries from each ODNS server, because this
is an additional correlation risk.

.odns top-level domain. In our examples we dis-
cuss the use of a top-level domain specifically for the
use of ODNS. In reality, TLDs are challenging and
costly to procure, requiring extensive time and effort.
Due to these barriers, we have implemented and evalu-
ated our prototype while using the registered domain
obliviousdns.com. This long DNS domain currently
consumes more of the already-limited QNAME field
with our appended domain name. Widespread adoption
of ODNS could lead us to acquire a new TLD in the fu-
ture or select a shorter ODNS-specific domain. As pre-
viously stated, organizations that own existing domains
can deploy ODNS using their own authoritative names-
pace.

www.foo.com
wWW.FoO.CoM
www.foo.com
www.foo.com
www.foo.com
www.foo.com
obliviousdns.com


Oblivious DNS: Practical Privacy for DNS Queries 236

4.5 Implementation

For experimentation and prototyping, we implement a
prototype of the ODNS stub and the ODNS resolver in
Go. We built this functionality as extensions to an exist-
ing Go DNS library [18]. This implementation choice al-
lowed us to rapidly prototype our design and to quickly
test various features. We anticipate a future implemen-
tation would be built open popular DNS resolvers such
as Knot or Unbound.

We use a hybrid encryption scheme and leverage
well-known cryptographic primitives in ODNS to bal-
ance privacy with storage requirements. For each ODNS
request, the stub generates a 16-byte AES symmet-
ric key. This key encrypts the plaintext request from
the user. The AES session key is then asymmetrically
encrypted using the ODNS resolver’s public key with
ECIES [25] using Curve25519 [5]. Elliptic-curve cryp-
tography allows ODNS to reap the performance bene-
fits of elliptic curves and take advantage of the smaller
key sizes needed to provide equivalent security as other
public-key implementations.

5 Evaluation
In this section, we study the performance of ODNS in
terms of both (1) the overhead on individual lookups;
(2) the impact of using ODNS when loading many pop-
ular websites; and (3) the implications of using ODNS
on existing infrastructure in terms of caching.

5.1 Microbenchmarks

In this section we explore the overhead introduced by
ODNS on individual lookups.

Cryptographic overhead. We first investigate
the overhead introduced by each of the cryptographic
operations that occur in an ODNS lookup. We bench-
mark the individual operations performed in the ODNS
protocol to attribute overhead to different parts of the
protocol. We run a DNS query list composed of the
Alexa Top 10,000 domains and record the duration of
each operation. The results of these microbenchmarks
are shown in Figure 7. We see that the symmetric oper-
ations using AES result in relatively little overhead at
both the stub and the ODNS resolver. The asymmetric
operations using ECIES are more costly and contribute
to the majority of the total overhead of ODNS. How-
ever, even the most costly operation, asymmetrically en-

Gen
er

at
e 

Ses
sio

n 
Key

 (A
ES)

Enc
ry

pt
 D

om
ain

 (A
ES)

Enc
ry

pt
 K

ey
 (E

CIE
S)

Dec
ry

pt
 A

ns
wer

 (A
ES)

Dec
ry

pt
 ke

y (
ECIE

S)

Dec
ry

pt
 d

om
ain

 (A
ES)

Enc
ry

pt
 A

ns
wer

 (A
ES)

Function

0

200

400

600

800

1000

T
im

e 
(

s)

Stub ODNS Resolver

Fig. 7. Overhead of different cryptographic operations performed
in the ODNS protocol.

0 5 10 15 20 25 30 35 40
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 R
eq

ue
st

s
Conventional DNS
ODNS

100 500 2000

0.5

1.0

Fig. 8. Additional latency running ODNS compared with conven-
tional DNS.

crypting the AES key using ECIES, takes less than 1 ms
due to the relatively high performance of elliptic-curve
cryptography. Overall, the sum of all cryptographic op-
erations, including at both the stub and the ODNS re-
solver, looks to take roughly 1 ms. Additionally, we an-
ticipate further improvements are attainable using op-
timized cryptographic libraries, whereas our prototype
uses standard libraries.

ODNS protocol overhead. We compare the to-
tal latency introduced by ODNS for each query to that
of conventional DNS by using the dig command to is-
sue DNS queries. To single out ODNS protocol overhead
that isn’t impacted by network latency between servers,
we install both the ODNS stub and resolver onto a sin-
gle machine. We query the Alexa Top 10,000 domains
with ODNS’s functionality both enabled and disabled to
compare lookup latency distributions. The results of this
are shown in Figure 8; we can see that the use of ODNS



Oblivious DNS: Practical Privacy for DNS Queries 237

Client Browser

ODNS Stub 
Resolver

Recursive Resolver

ODNS 
Resolver

NYC

Atlanta

19ms

4.5ms

ODNS
Resolver

Fig. 9. Deployment Setup.

results in longer query resolution times, but generally
follows the same trend as conventional DNS. Overall,
the median resolution time for conventional DNS is 6.03
ms, while the median time for ODNS resolutions is 7.53
ms. The overhead difference corroborates the crypto-
graphic overhead witnessed above. The additional la-
tency can be attributed to the stub and ODNS resolver
process functions.

Latency in the wide-area. To test ODNS per-
formance in the wide-area, we deploy our prototype on
real-world infrastructure. Figure 9 shows our deployed
evaluation setup. We test ODNS using a client in the
New York City metropolitan area, running the ODNS
stub resolver running on the same local machine, com-
municating with its default recursive resolver.

We evaluate ODNS’s query overhead to that of con-
ventional DNS by issuing DNS queries for the Alexa
Top 10,000 domains using both conventional recursive
resolvers (1.1.1.1, 9.9.9.9, and 8.8.8.8) and ODNS
with two ODNS resolvers—functionally equivalent—in
two different locations: Georgia and New York City. Re-
call that the client and stub resolver are also located in
the New York City area. To evaluate the effect of the
ODNS resolver’s geographic proximity to the client, we
measure the overhead using each of the ODNS resolvers.

In this experiment, we warm a cache at the ODNS
resolver using a sample domain query trace provided
for use with resperf, a popular DNS performance test-
ing tool. Figure 10 shows the results; we can see that
ODNS queries compare favorably to the popular open
resolvers, and in the case of 8.8.8.8 and 9.9.9.9, ODNS
tends to result in lower latencies when using the geo-
graphically close ODNS resolver in New York. It is also
evident from this experiment that the network round
trip time, roughly 4.5 ms for New York and 19 ms for
the Georgia server, between the stub and the ODNS
resolver is added for every query.

0 20 40 60 80 100
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 R
eq

ue
st

s

RTT to New York (4.5 ms)
RTT to Georgia (19 ms) 

Conventional DNS (1.1.1.1)
Conventional DNS (9.9.9.9)
Conventional DNS (8.8.8.8)
ODNS Georgia
ODNS New York

150 500 2000

0.5

1.0

Fig. 10. ODNS performance with servers located in Georgia and
New York.

Given these results, ODNS does not appear to intro-
duce significant overhead when resolving domains pro-
vided that the RTT between the client and the ODNS
resolver remains reasonable. As described in Section 4.3,
ODNS resolvers are replicated and use anycast IP ad-
dresses in order to provide scalability and achieve desir-
able latencies. To get a sense for the size of an anycast
deployment that would provide adequate performance,
Schmidt et al. [14] investigated the performance of real-
world anycast systems and determined that a system
deployed in only 12 locations around the world can re-
sult in relatively low latency for a global client base.
Though the target RTTs for DNS would likely call for a
larger anycast deployment, we anticipate that a widely-
deployed ODNS anycast network could achieve accept-
able lookup latencies for any user. We leave investiga-
tion into the necessary anycast deployment for future
research.

5.2 Macrobenchmarks

In this section, we explore aggregate ODNS overhead
while using web applications, which can often trigger
tens of DNS queries for a single website.

Web page load time. We measure how ODNS
would affect a typical Internet user’s browsing experi-
ence by evaluating the overhead of a full page load; a full
page load consists of not only conducting a DNS lookup
for the page, but also fetching the page, and conducting
any subsequent DNS lookups for embedded objects and



Oblivious DNS: Practical Privacy for DNS Queries 238

0

1

10

50

Pa
ge

 L
oa

d 
Ti

m
e 

(s
) DNS

t.c
o

bin
g.c

om

tw
itte

r.c
om

go
og

le.
com

wikip
ed

ia.
org

cha
se.

com

tw
itc

h.t
v

dip
ly.c

om

cra
igs

list
.or

g

ins
tag

ram
.co

m

ne
tfli

x.c
om

eb
ay

.co
m

fac
eb

oo
k.c

om

tum
blr

.co
m

link
ed

in.
com

yo
utu

be
.co

m

am
azo

n.c
om

im
gu

r.c
om

im
db

.co
m

esp
n.c

om

red
dit

.co
m

ya
ho

o.c
om

live
.co

m

ny
tim

es.
com

cnn
.co

m

0

200

400

600

800

TT
FB

 (m
s)

Conventional DNS
ODNS

Fig. 11. Page load times and time-to-first-byte for various web pages using ODNS and conventional DNS. The left bars in the figure
represent conventional DNS and the right bars represent the time it takes using ODNS.

resources in the page. We fetch a selection of popular
web pages from the Alexa top sites list in the United
States3 using an ODNS resolver in New York as well as
conventional DNS for comparison. We browse to each
site 30 times using the chrome webdriver and record
HAR files for each browsing session. We then calculate
the mean values for page load time and DNS time for
each site. The top graph of Figure 11 shows the results.
The left bars (unhatched) in the figure represent total
page load time using conventional DNS, and the right
bars (hatched) represent the time it takes using ODNS.
The portion of each bar that is shaded in black illus-
trates the portion of page load time that is attributable
to DNS lookups. We see that there is generally not a sig-
nificant difference in page load time between ODNS and
conventional DNS because DNS lookups contribute rela-
tively little time to the entire page load process. In some
cases, ODNS load times are actually shorter than load-
ing a page with conventional DNS4. Given these overall

3 https://www.alexa.com/topsites/countries/US
4 We investigated the performance for live.com to understand
how ODNS could drastically outperform conventional DNS. It
appears that pages themsolves were rather different when using
ODNS versus conventional DNS. We found that ODNS usage
resulted in loading 7 fewer javascript objects from a different
optimizely.com CDN. It appears that the ODNS runs were di-
rected to a cached bundle of javascript, whereas conventional
DNS runs were directed to individual javascript objects from a
different optimizely CDN location.

results, we believe that the end-user web experience will
not be greatly impacted using ODNS, presuming that
there exists a nearby ODNS resolver.

Web page time-to-first-byte. CDNs distribute
content to many locations to achieve low latency for
users as they connect to nearby copies of requested con-
tent. A concern when using ODNS is that, for a given
lookup, the location of the ODNS resolver will appear
to be the location of a user, thus localization tech-
niques may result in users connecting to CDN servers
that are suboptimal. We investigate the time-to-first-
byte (TTFB) values for every object on each site from
our traces. This value illustrates the difference in terms
of distance to content when using ODNS versus con-
ventional DNS. The bottom graph in Figure 11 shows
the TTFB distributions for each site, with conventional
DNS on the left and ODNS on the right. These results
help explain the page load times we witness for several
sites. For example, reddit.com and nytimes.com both
achieve lower TTFBs using ODNS, indicating that they
were directed to content servers that are closer than
those resolved with conventional DNS. Accordingly, the
ODNS page load times for those sites were faster when
using ODNS. Likewise, when ODNS results in higher
TTFBs such as with instagram.com, we see longer page
load times. This insight motivates widespread deploy-
ment of ODNS resolvers and the use of anycast. Such
techniques should allow for both low latencies to the re-

https://www.alexa.com/topsites/countries/US


Oblivious DNS: Practical Privacy for DNS Queries 239

0 10 20 30 40 50 60 70 80 90 100
Percent ODNS Users

0

1

2

3

4

5

6

7

8
Q

ue
rie

s 
(m

ill
io

ns
)

ODNS Cache Hits
Recursive Cache Hits
Recursive Cache Misses

Fig. 12. Cache hit rates at the ODNS resolver as a function of
the fraction of Internet users who use ODNS.

solvers as well as maintaining content localization ben-
efits that CDNs can provide.

5.3 Impact on Existing Recursive
DNS Infrastructure

A critical performance aspect of conventional DNS is
caching—specifically caching DNS responses at the re-
cursive resolver. As discussed, ODNS usage results in
the inability to cache usable responses at the recursive
resolver as each query using a different symmetric key
will be unique. Caching plays a critical role in the overall
performance of DNS; therefore, we simulate the poten-
tial DNS traffic implications at a recursive resolver with
varying levels of ODNS usage.

Cache misses. For the first experiment, we seek
to understand the potential increase in cache misses at
the recursive resolver, which will result in increased traf-
fic to nameservers located above the recursive resolver
in the DNS hierarchy. Intuitively, if ODNS results in
a significant DNS traffic increase at the recursive re-
solver, widespread usage may be discouraged by recur-
sive resolver operators. We simulate a caching recursive
resolver as well as a user population using real-world
traces collected in October 2017 from a fiber-to-the-
home network in Cleveland, Ohio [1]. The trace con-
sists of roughly 8 million type A DNS queries from
anonymized clients over the course of one month. All
clients are assigned to a single simulated recursive re-
solver. For each test run we randomly assign a fixed
percent of the user population to be ODNS users. The
ISP, as well as all ODNS stubs, include caches that have
no size limits. Non-ODNS stubs do not have a cache.

The results of the simulation are shown in Figure 12.
Note that we do not show ODNS cache misses as they
result in recursive hits or misses. We see that ODNS
usage causes a relatively modest increase of cache misses
at the recursive. However, we see that, as the percent
of ODNS users increases, the overall DNS traffic load
on the recursive resolver decreases. For instance, with
a network consisting of 20% ODNS clients, the overall
number of queries that reach the recursive resolver is
reduced by 16.3%. This is due to the presence of a cache
at the stub resolvers. These results are consistent with
Jung et al.’s observation [27] that caching can provide
significant benefits for even a single user. Overall, our
simulation shows that ODNS reduces the traffic burden
on the recursive infrastructure5

Unwanted ODNS cache entries. We next ex-
plore the potential burden on recursive resolver caches
caused by ODNS entries. As each ODNS query is
unique, a cache entry based on the encrypted query
should never be hit. To combat caching of our responses,
we set their TTL value to zero at the ODNS resolver.
However, recursive resolvers commonly ignore TTL val-
ues and cache responses for a longer amount of time [35].
The result of this behavior is that ODNS responses
could potentially cause valid entries to be ejected from
a limited-size cache.

In this simulation we use the same traces as the
previous section and again vary the percent of ODNS
users. We also track “bad” ejections, which are charac-
terized by when an ODNS entry causes a non-ODNS
entry to be ejected from a size-limited, least-recently
used (LRU) cache. Figure 13 plots the percent of bad
ejections for various cache sizes using the simulation.
Overall, we observe that the percent of bad ejections
tends to remain rather low; for instance, caches with
100,000 entries or more never experience more than
roughly 2.6% unwanted ejections. The percent of bad
ejections decreases as usage of ODNS increases because,
at higher usage levels, ODNS entries are causing other
ODNS entries to be ejected. We also note that, assum-
ing the chosen cache replacement policy is either LRU
or least-frequently used, the bad ejections likely repre-
sent ejections of entries in the tail of the valid distri-
bution and not of the most popular or common entries.

5 Note that some stub clients (e.g., Microsoft Windows) im-
plement caching today, while many do not. We anticipate that
ODNS stub caches would not impact recursive traffic positively
or negatively for such clients, while it would reduce traffic for
clients that currently do not implement a cache.



Oblivious DNS: Practical Privacy for DNS Queries 240

0 10 20 30 40 50 60 70 80 90 100
Percent ODNS Users

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ba

d 
Ca

ch
e 

Ej
ec

tio
ns

 (p
ct

) Cache Size
1000
10,000
100,000
1M

Fig. 13. Percent of non-ODNS records ejected from DNS server
cache by ODNS records as a function of the fraction of Internet
users who use ODNS.

These results lead to the conclusion that ODNS should
not greatly impact the performance of recursive resolver
caches.

5.4 Operating the ODNS Resolver as a
Recursive or a Forwarder

ODNS allows for caching at both the stub resolver and
at the ODNS resolver. To evaluate the effect of caching
at the ODNS resolver on performance, we measure the
overhead of ODNS where the resolver caches and acts
as a second recursive resolver, and compare it to the
overhead of ODNS simply forwarding queries to third
party upstream recursive resolvers and their associated
caches. We warm the cache using a DNS query trace
generated for usage with resperf. Figure 14 shows the
results for the ODNS resolver in New York. We see that
the resolver acting as a stub with Cloudflare’s 1.1.1.1
service as its recursive resolver achieves the best re-
sults as they appear to have cache hits for roughly
80% of requests and the additional latency to query
1.1.1.1 does not impact the overall performance. Inter-
estingly, we find that ODNS acting as a recursive with
a warmed cache outperforms both Quad9 and Google
overall. These results lead us to conclude that the ODNS
resolver can perform well as either a recursive resolver
itself, or as a forwarder relying on third-party recursive
resolvers, provided open resolvers perform well in the
location that the ODNS resolver resides. In cases where
disk storage is costly, the ODNS resolver can use a high-
performance third-party resolver such as Cloudflare and
gain the benefits of caching without incurring a large la-
tency penalty. If the choice is made to use a third-party
service, care must be taken to ensure that the same

0 20 40 60 80 100
Resolution time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 R
eq

ue
st

s

ODNS New York Client (1.1.1.1)
ODNS New York Client (9.9.9.9)
ODNS New York Client (8.8.8.8)
ODNS New York Recursive

150 500 2000

0.5

1.0

Fig. 14. Effects of caching at the ODNS resolver vs. forwarding
all queries to a third-party open resolver.

third-party service is not used by both the ODNS stub
and the ODNS resolver, as such behavior could allow
the third-party service to correlate timing between en-
crypted queries and subsequent plaintext queries from
the ODNS resolver.

6 Related Work
In this section, we describe related work on DNS privacy.
We discuss various infrastructure for protecting user pri-
vacy in DNS, ranging from alternate open resolvers to
virtual private networks. In general, these systems in-
volve simply changing the trusted third party who re-
solves DNS on behalf of the client, rather than decou-
pling the DNS query from the IP address that issued
the query.

Alternate DNS resolvers. Quad9 provides both
security and privacy features for DNS. Quad9 uses IBM
X-Force threat intelligence data at the recursive resolver
to prevent a client from accessing a malicious site [36].
Although this recursive resolver does not store or dis-
tribute the DNS data passing through, it still allows
a DNS operator to observe this data. Once such infor-
mation is retained, of course, it may become vulner-
able to other threats to user privacy, including data
requests from law enforcement. Cloudflare recently re-
leased 1.1.1.1, which is a privacy-focused consumer
DNS recursive resolver; it supports both DNS-over-TLS
and DNS-over-HTTPS, and also offers the feature of
query name minimization [41]. While 1.1.1.1 only logs
data for 24 hours at the recursive resolver (for debug



Oblivious DNS: Practical Privacy for DNS Queries 241

purposes), it is still susceptible to a malicious DNS op-
erator (or other adversary) saving that information be-
fore it is purged. Furthermore, even though a DNS op-
erator who aims to protect user privacy may purge this
information periodically, a user has no guarantee that
information that an operator learns might be retained,
for operational or other purposes.

Privacy-preserving DNS. EncDNS is function-
ally similar to ODNS [20]; however, EncDNS is differ-
ent in several ways. First, EncDNS doesn’t address the
critical problem of key distribution. ODNS incorporates
a key distribution mechanism directly in the system
rather than using an out-of-band protocol like DANE
(as suggested in [20]), which isn’t widely deployed. Sec-
ond, in this regard and others, ODNS is immediately de-
ployable and makes no assumptions about the (future)
deployment of protocols. Third, our performance eval-
uations (1) reflect a deployment on today’s Internet in-
frastructure and (2) include holistic, end-to-end perfor-
mance (e.g., page load times). In contrast to ODNS and
EncDNS, most proposed DNS privacy mechanisms are
protecting against an adversary, but not a DNS opera-
tor. Castillo-Perez and Garcia-Alfaro evaluate privacy-
preserving DNS mechanisms, but show that they need
additional measures to enhance their security [9]. Simi-
larly, Query Name Minimization is a proposal that lim-
its what name servers see in DNS queries, but a recursive
resolver’s operator still learns the domain requested and
the corresponding client who requested the domain [7].
Researchers have also pointed out how aspects of cur-
rent (operational) DNS, such as prefetching, have pri-
vacy implications [28, 38]. Federrath et al. introduced
a DNS anonymity service that employs broadcasting
popular hostnames and low-latency mixes for request-
ing less popular domains; unlike ODNS, this proposed
DNS anonymity service is a clean-slate architecture and
requires fundamental changes to the DNS infrastruc-
ture [17].

DNS security. Protocols to secure DNS include
DNS-over-TLS [24], DNSSEC [4], and T-DNS [43].
DNS-over-TLS protects the privacy of the domain be-
ing requested in transit, but does not prevent a recursive
resolver’s operator from learning both the client who is-
sued the request and the content of the request. Some
work has analyzed DNSSEC in more detail; Osterweil et
al. develop SecSpider to monitor and detect errors in the
DNSSEC deployment [34]. While there have been many
attacks on DNS, the adoption of DNS security protocols
is very limited; Herzberg and Shulman highlight some
of the issues with retrofitting security into DNS [21].
Researchers have also combined DNSSEC features with

BIND DNS software to implement a system that prior-
itizes the integrity and availability of DNS [26]. Recent
research has also seen the introduction of new frame-
works for monitoring DNS in the hopes of detecting at-
tacks [22, 29].

Virtual private networks. Systems to protect
user privacy include Virtual Private Networks (VPNs).
Unfortunately, many VPN providers send unencrypted
DNS queries to the client’s ISP, and all VPN providers
would be able to associte DNS queries and responses
with an individual client IP address. VPNGate uses dif-
ferent VPNs to contol where a client appears to be lo-
cated [33], but even this approach does not prevent op-
erators of DNS recursive resolvers from learning the do-
mains being requested. The VPN operators themselves
also still have complete information about the domains
and the IP addresses that are querying them.

7 Discussion
Limitations. ODNS prevents an adversary as de-
scribed in Section 3, but is limited in its capability of
preventing other types of attacks. For example, an ad-
versary will be able to associate client IP addresses and
their DNS queries if the adversary colludes between the
recursive resolver and the ODNS resolver (or if the same
adversary requests data from the recursive resolver and
the ODNS resolver). Additionally, if the recursive re-
solver supplies EDNS0 information to the ODNS re-
solver, then the ODNS resolver will be able to asso-
ciate client IP addresses and their corresponding DNS
queries. Lastly, ODNS assumes a passive adversary, but
real-world adversaries may also perform active attacks
to compromise the integrity or availability of the system.
In the future, stronger adversaries will pose threats to
ODNS, including collusion between the resolver and the
ODNS resolver, as well as active attacks, although it’s
worth noting that in both of these cases, the attacks
can be easily detected and in some cases the user can
take steps to avoid them, even within the context of the
current design.

Integration with other security protocols.
Various DNS standards and enhancements have im-
proved the security and privacy of DNS, includ-
ing DNSSEC, DNS-over-TLS (DoT), and DNS-over-
HTTPS (DoH). ODNS is compatible with all of these
enhancements, and it provides complementary privacy
guarantees. DNSSEC guarantees the integrity of records
but does not provide privacy for DNS queries or clients;



Oblivious DNS: Practical Privacy for DNS Queries 242

and DoT and DoH secure the transport between the
client and the resolver, but do not hide the identity of
the client or its query from the resolver. ODNS addition-
ally protects the privacy of a client’s DNS queries from
the resolver that it chooses to use, and can also bene-
fit from the guarantees that DoT, DoH, and DNSSEC
provide.

Striping queries across multiple recursives.
The client stub resolver typically forwards DNS queries
on to the client’s recursive resolver, but ODNS supports
forwarding the DNS queries on to any resolvers. ODNS
can stripe DNS queries across the many available open
resolvers, which helps increase the privacy of the client
because the recursive resolver does not see all (obfus-
cated) DNS queries from the client. If striping is enabled,
then each open resolver only sees some portion of each
client’s obfuscated queries.

Policy-based traffic routing. There may be sce-
narios where ODNS users would prefer to control the
geographic location where their ODNS resolver resides
rather than for the selection to be based on anycast rout-
ing. For instance, a user may wish to avoid a resolver
in a country that they suspect may eavesdrop on their
traffic. ODNS can be easily extended to support such
policy-based routing. To accomplish this, the ODNS re-
solvers can include location codes in their names (e.g.,
us.odns or uk.odns). Users could configure their stubs
to select ODNS resolvers located in specific locations.
However, such usage would come at a performance cost
as the specified resolver may not result in the lowest la-
tency. This scenario is akin to using a VPN to ingress
and egress onto the Internet from a trusted location. We
leave the implementation of this functionality for future
work.

Session key re-use. In our current design, the
ODNS stub generates unique session keys for each DNS
query. This design impacts client performance in two
ways. First, as discussed in Section 5.1, the crypto-
graphic operations result in additional latency for each
query totaling up to roughly 1 ms at the stub. Addi-
tionally, the use of unique session keys for each query
renders caching, even for identical queries from a single
user, at the recursive resolver impossible. To ease these
challenges, session keys could be re-used for some pe-
riod of time by the stub. In cases where keys are reused,
the potential for cache hits at the recursive resolver ex-
ists for multiple identical queries by clients with the
same combination of symmetric key and public key of
the ODNS resolver. However, excessive key re-use may
leave the keys vulnerable to attack. Thus, cost / bene-
fit analysis pertaining to key reuse must be done prior

to implementing the feature. We leave this for future
exploration.

Denial of service attacks. ODNS’s resolvers can-
not check the incoming IP address of queries, which
could facilitate Denial of Service attacks. To defend
against DoS attacks, the client’s stub resolver can ap-
pend bytes that indicate the DNS query is sent from
an ODNS-participating client stub resolver. The ODNS
resolver can then check for these bytes and verify that
it was sent via ODNS prior to decryption. This func-
tionality is left to future work.

8 Conclusion
DNS queries can reveal personal information such as
browsing patterns as well as types of devices and al-
low DNS resolvers to associate such information with
client IP addresses. Users are required to place trust
in their recursive DNS resolver. Privacy-focused, third
party DNS resolvers simply shift the trust without al-
leviating the fundamental information exposure. In this
work, we present ODNS, a system that decouples client
IP address from DNS queries, removing the need for
trust altogether as no DNS infrastructure outside of
the user network is able to obtain both pieces of infor-
mation. ODNS is designed to be fully-compatible with
existing DNS infrastructure and requires only minimal
changes. Our evaluation of ODNS reveals that latency
overhead is minimal, performance for user web traffic
is acceptable, and minimal impact on recursive resolver
traffic.

We are seeking to move forward with this work
to deploy in-the-wild. In the near term, we have pre-
sented an Internet-Draft on ODNS at the IRTF and
IETF to be considered for adoption into the DNS Pri-
vacy (DPRIVE) working group and are implementing
its functionality into commercial DNS server code bases.
Long-term, we are exploring widespread deployment of
ODNS resolvers with the cooperation of an operator of
an existing global anycast network.

9 Acknowledgements
We thank our shepherd, Daniel Zappala, and the anony-
mous reviewers for the feedback and comments. This
research was supported in part by the Center for Infor-
mation Technology Policy at Princeton University and
by NSF award CNS-1535796.



Oblivious DNS: Practical Privacy for DNS Queries 243

References
[1] Allman, M. Case Connection Zone DNS Transactions,

2011–2017. http://www.icir.org/mallman/data.html.
[2] Andersen, D. G., Balakrishnan, H., Feamster, N.,

Koponen, T., Moon, D., and Shenker, S. Accountable
internet protocol (AIP). SIGCOMM Comput. Commun. Rev.
38, 4 (Aug. 2008), 339–350.

[3] Appelbaum, J., and Muffett, A. The ".onion" special-
use domain name. RFC 7686, October 2015.

[4] Arends, R., Austein, R., Larson, M., Massey, D.,
and Rose, S. DNS security introduction and requirements.
RFC 4033, March 2005. http://www.rfc-editor.org/rfc/
rfc4033.txt.

[5] Bernstein, D. J. Curve25519: New Diffie-Hellman speed
records. In Public Key Cryptography - PKC 2006 (Berlin,
Heidelberg, 2006).

[6] Bernstein, D. J. DNSCurve: Usable security for DNS.
https://dnscurve.org, 2009.

[7] Bortzmeyer, S. DNS query name minimisation to improve
privacy. RFC 7816, March 2016.

[8] Calder, M., Flavel, A., Katz-Bassett, E., Mahajan,
R., and Padhye, J. Analyzing the performance of an any-
cast cdn. In Proceedings of the 2015 Internet Measurement
Conference (Tokyo, Japan, 2015), IMC ’15.

[9] Castillo-Perez, S., and Garcia-Alfaro, J. Evaluation
of two privacy-preserving protocols for the DNS. In Infor-
mation Technology: New Generations, 2009. ITNG’09. Sixth
International Conference on (2009).

[10] Contavalli, C., van der Gaast, W., Lawrence, D.,
and Kumari, W. Client subnet in DNS queries. RFC 7871,
May 2016.

[11] Cox, J. The people who risk jail to maintain the Tor net-
work. https://motherboard.vice.com/en_us/article/5394ax/
the-operators, Apr 2015.

[12] Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T.,
and Lee, W. Increased DNS forgery resistance through
0x20-bit encoding: Security via leet queries. In Proceedings
of the 15th ACM Conference on Computer and Commu-
nications Security (Alexandria, Virginia, USA, 2008), CCS
’08.

[13] Damas, J., Graff, M., and Vixie, P. Extension mecha-
nisms for dns (edns(0)). STD 75, April 2013.

[14] de Oliveira Schmidt, R., Heidemann, J., and Kuipers,
J. H. Anycast latency: How many sites are enough? In
Passive and Active Measurement (Sydney, Australia, 2017).

[15] Denis, F., and Fu, Y. DNSCrypt. https://dnscrypt.info/,
2015.

[16] Dingledine, R., Mathewson, N., and Syverson, P.
Tor: The second-generation onion router. Tech. rep., Naval
Research Lab Washington DC, 2004.

[17] Federrath, H., Fuchs, K.-P., Herrmann, D., and
Piosecny, C. Privacy-preserving DNS: analysis of broad-
cast, range queries and mix-based protection methods. In
European Symposium on Research in Computer Security
(2011).

[18] Gieben, M. DNS library in go. https://github.com/miekg/
dns, 2018.

[19] Greschbach, B., Pulls, T., Roberts, L. M., Win-

ter, P., and Feamster, N. The effect of DNS on tor’s
anonymity. CoRR abs/1609.08187 (2016).

[20] Herrmann, D., Fuchs, K.-P., Lindemann, J., and Fed-
errath, H. EncDNS: A lightweight privacy-preserving name
resolution service. In European Symposium on Research in
Computer Security (Wroclaw, Poland, 2014).

[21] Herzberg, A., and Shulman, H. Retrofitting security
into network protocols: The case of DNSSEC. IEEE Internet
Computing 18, 1 (Jan 2014), 66–71.

[22] Hesselman, C., Moura, G. C., de Oliveira Schmidt,
R., and Toet, C. Increasing DNS security and stability
through a control plane for top-level domain operators. IEEE
Communications Magazine 55, 1 (2017), 197–203.

[23] Hoffman, P., and McManus, P. DNS queries over
HTTPS (DOH). Internet-draft, May 2018. http:
//www.ietf.org/internet-drafts/draft-ietf-doh-dns-over-
https-08.txt.

[24] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels,
D., and Hoffman, P. Specification for DNS over transport
layer security (TLS). RFC 7858, May 2016.

[25] IEEE standard specifications for public-key cryptography -
amendment 1: additional techniques. IEEE Std 1363a-2004
(Amendment to IEEE Std 1363-2000) (Sept 2004).

[26] Jalalzai, M., Shahid, W., and Iqbal, M. DNS secu-
rity challenges and best practices to deploy secure DNS with
digital signatures. In Applied Sciences and Technology (IB-
CAST), 2015 12th International Bhurban Conference on
(2015).

[27] Jung, J., Sit, E., Balakrishnan, H., and Morris,
R. DNS performance and the effectiveness of caching.
IEEE/ACM Transactions on Networking 10, 5 (Oct 2002),
589–603.

[28] Krishnan, S., and Monrose, F. DNS prefetching and its
privacy implications: when good things go bad. In Proceed-
ings of the 3rd USENIX conference on Large-scale exploits
and emergent threats: botnets, spyware, worms, and more
(2010), USENIX Association, pp. 10–10.

[29] Marchal, S., François, J., Wagner, C., State, R.,
Dulaunoy, A., Engel, T., and Festor, O. DNSSM: A
large scale passive DNS security monitoring framework. In
2012 IEEE Network Operations and Management Sympo-
sium (April 2012), pp. 988–993.

[30] Mazières, D., Kaminsky, M., Kaashoek, M. F., and
Witchel, E. Separating key management from file system
security. In Proceedings of the Seventeenth ACM Sympo-
sium on Operating Systems Principles (Charleston, South
Carolina, USA, 1999), SOSP ’99.

[31] Mockapetris, P. Domain names - concepts and facilities.
STD 13, November 1987. http://www.rfc-editor.org/rfc/
rfc1034.txt.

[32] Mockapetris, P. Domain names - implementation and
specification. STD 13, November 1987. http://www.rfc-
editor.org/rfc/rfc1035.txt.

[33] Nobori, D., and Shinjo, Y. VPN gate: A volunteer-
organized public VPN relay system with blocking resistance
for bypassing government censorship firewalls. In Proceed-
ings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14) (Seattle, WA, 2014),
pp. 229–241.

[34] Osterweil, E., Massey, D., and Zhang, L. Deploying

http://www.icir.org/mallman/data.html
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
https://dnscurve.org
https://motherboard.vice.com/en_us/article/5394ax/the-operators
https://motherboard.vice.com/en_us/article/5394ax/the-operators
https://dnscrypt.info/
https://github.com/miekg/dns
https://github.com/miekg/dns
http://www.ietf.org/internet-drafts/draft-ietf-doh-dns-over-https-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-doh-dns-over-https-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-doh-dns-over-https-08.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt


Oblivious DNS: Practical Privacy for DNS Queries 244

and monitoring DNS security (DNSSEC). In Computer
Security Applications Conference, 2009. ACSAC’09. Annual
(2009), pp. 429–438.

[35] Pang, J., Akella, A., Shaikh, A., Krishnamurthy,
B., and Seshan, S. On the responsiveness of dns-based
network control. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement (Taormina, Sicily,
Italy, 2004), IMC ’04.

[36] Quad9. https://quad9.net/, 2017.
[37] Reddy, T., Wing, D., and Patil, P. DNS over datagram

transport layer security (DTLS). RFC 8094, February 2017.
[38] Shulman, H. Pretty bad privacy: Pitfalls of DNS encryp-

tion. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society (2014), ACM, pp. 191–200.

[39] Sundaresan, S., Feamster, N., Teixeira, R., and
Magharei, N. Measuring and mitigating web performance
bottlenecks in broadband access networks. In Proceedings of
the 2013 Conference on Internet Measurement Conference
(Barcelona, Spain, 2013), IMC ’13.

[40] Thomas, M., and Mohaisen, A. Measuring the leakage
of onion at the root: A measurement of tor’s. onion pseudo-
TLD in the global domain name system. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society
(2014), ACM, pp. 173–180.

[41] What is 1.1.1.1? https://www.cloudflare.com/learning/dns/
what-is-1.1.1.1/, 2018.

[42] Winter, P., and Lindskog, S. How the great firewall
of China is blocking Tor. In Presented as part of the 2nd
USENIX Workshop on Free and Open Communications on
the Internet (Bellevue, WA, 2012), USENIX.

[43] Zhu, L., Hu, Z., Heidemann, J., Wessels, D., Mankin,
A., and Somaiya, N. Connection-oriented DNS to improve
privacy and security. In Security and Privacy (SP), 2015
IEEE Symposium on (2015), IEEE, pp. 171–186.

https://quad9.net/
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/

	Oblivious DNS: Practical Privacy for DNS Queries
	1 Introduction
	2 Background
	3 Threat Model and Goals
	4 Oblivious DNS (ODNS)
	4.1 ODNS Overview
	4.2 Sending and Receiving ODNS Queries
	4.3 Replication and Privacy-Preserving Key Distribution
	4.4 Practical Challenges
	4.5 Implementation

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Macrobenchmarks
	5.3 Impact on Existing Recursive DNS Infrastructure
	5.4 Operating the ODNS Resolver as a Recursive or a Forwarder

	6 Related Work
	7 Discussion
	8 Conclusion
	9 Acknowledgements


