

Finding a Needle in a Haystack: The Traffic Analysis Version 271

ple hash based techniques, which support yes/no results,

AHBM allows requests to be answered approximately,

that is, with a value between 0 and 100.

The main contributions of the paper are:

1. Dropping the splitting pre-processing step required

in existing machine learning traffic analysis ap-

proaches.

2. A generic traffic analysis approach that works for

website fingerprinting and for malware detection.

3. A malware traffic clustering algorithm using simi-

larity hashing.

2 Related Work

Several website fingerprinting attacks are reported in

the literature [1–7]. While older attacks are relatively

slow [3–5], more recent ones are significantly more scal-

able [6, 7]. Recently, Nasr et al. [8] addressed the scala-

bility issue using a different approach, namely, compres-

sion. Traffic features are compressed using linear projec-

tion algorithms and compressed sensing and then used

without decompression. Overall, the compressive traffic

analysis approach achieved a 13 times effective speed up

compared to Wang et al.’s k-NN based attack [5] and a 3

times effective speed up compared to Panchenko et al.’s

SVM attack [6], both with a negligible accuracy loss.

However, all these approaches achieve high accuracy re-

sults under the important assumption that a reliable

splitting procedure is used. Without such splitting pro-

cedure, all these approaches are hardly applicable in real

scenarios [9, 10]. To identify a website occurrence within

a long sequence of captured packets, there are currently

two main approaches: splitting the traffic and using

a sliding window. Wang and Goldberg [11] discussed

the splitting problem and proposed two ways of imple-

menting it: time-based splitting and classification-based

splitting. Time-based splitting is efficient provided that

the time-gap separating two website visits is large. If

the time-gap is small, classification-based splitting is

used which has an additional processing overhead. Ei-

ther ways, the website fingerprinting attack needs to go

through an initial splitting pre-processing step. More-

over, even with an accurate and efficient splitting pro-

cedure, each website model has to be matched with each

separated session. Our proposed AHBM approach out-

performs this process by completely dropping the need

for splitting the traffic.

To address the splitting problem, Feghhi and

Leith [12] adopt a sliding window approach with a 10

packets moving step. At each step, a sequence of n pack-

ets is extracted from the traffic and matched with the

website model where n is the size of samples used in the

training phase. However, even with a moving step of 10

packets, this approach is clearly not scalable in realistic

scenarios.

3 Approach Motivation

Finding similarities between data objects 1 is a typical

problem in digital forensics. A typical scenario consists

in looking for a similarity between a reference data ob-

ject (image or office document) and a target data object

under investigation (live memory dump, captured traffic

dump, etc.). Compared to existing network traffic anal-

ysis techniques, the ones used in digital forensics are

simpler but more scalable. It is important to note that

digital forensics techniques are based on string compar-

ison where each data object is considered as a string

of bytes. Hence measuring similarity is based on string

matching.

Hashing is a very common forensics tool for string

matching. Simple hashing, regardless of its granularity,

has two limitations. First, it allows to pinpoint occur-

rences of exact copies. Any alteration (even 1 bit) yields

a hash mismatch. This problem is also known as hash

fragility. Second, hashed blocks should be aligned the

same way in the reference and target data objects. Any

displacement in block boundaries yields a hash mis-

match.

To address the hash fragility problem, data finger-

printing [13] is typically used to find similar objects in-

stead of exact object copies. The idea is to select a set

of representative features for each object, then the sim-

ilarity is computed in terms of the level of correlation

between the features. Data fingerprinting is known to

be resilient to small alterations.

To address the block alignment problem, k-gram

and Winnowing [14] are used. That is, each data doc-

ument is divided into contiguous and overlapping sub-

strings of size k called k-grams. Each position of the

data document is a starting point of a different k-gram.

A hash is computed for each k-gram and a subset of

these hashes is selected as the document’s fingerprint.

Winnowing is an efficient algorithm for selecting k-gram

1 In this discussion, we refer to the first and second data object

as reference and target respectively.

Finding a Needle in a Haystack: The Traffic Analysis Version 272

hashes which consists in using a sliding window across

the data document and keeping only one representative

from each window position.

Using data fingerprinting and Winnowing raises

three important questions: (1) how features are selected

from a data object? (2) how features are stored effi-

ciently? and (3) how the correlation/similarity between

two sets of features is measured?

In the context of traffic analysis, we define a data

object as a sequence of packets corresponding to a spe-

cific network activity (e.g. website visit, malware com-

munication session, etc.). For each sequence, only the

following information is kept: packet lengths, packet or-

der, and packet directions. Since the approach is mainly

based on string matching, this “meta-data” information

is sufficient to characterize similarity. A data feature2

is a sub-sequence of packets in a data object. Figure 1

shows a snippet of a data object with the first three data

features.

Fig. 1. Data Object and Data Feature.

The proposed traffic analysis technique is based on

data fingerprinting and winnowing and is inspired by

Roussev’s approach of data fingerprinting with similar-

ity digests [15, 16]. Using this approach, the short an-

swers to the above questions are as follows. Given a data

object (e.g. samples of a website visit), the technique

aims at selecting features (Question 1) that are least

likely to occur in other data objects (e.g. samples of a

different website visits) by chance. The selected features

are then hashed and stored using Bloom filters (Ques-

tion 2) which allow significantly compact representation

and fast membership queries. Hence, each data object

will be represented by a Bloom filter. Measuring the

correlation/similarity of two data objects (Question 3)

consists in comparing their Bloom filter representations.

2 In the next sections we refer to data feature as block. Both

terms are used interchangeably

0 100 200 300 400 500 600 700 800 900 100
0

110
0

(Hnorm)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

 P
ro
ba

bi
lit
y

Fig. 2. Probability density function of normalized hash values

of features (size 3) for malware dataset. A short bar indicates

uncommon features, while a tall bar indicates common ones.

4 Hash-based Signature

Generation

The criteria we use for feature selection is the following:

choosing uncommon (statistically improbable) features

that happen to be part of the available samples.

In order to characterize statistically improbable fea-

tures, we compute the hash digest (SHA-1) of each fea-

ture. The resulting 160-bits digest is then normalized to

a value between 0 and 1023 by considering only the 10

rightmost bits of the digest:

Hnorm(F) = int(leftmost10bits(SHA1(F))) (1)

4.1 Feature Selection Criteria

Let B be the size (number of packets) of a data feature.

For example, in Figure 1, B is 6. A data object of length

L packets contains L−B + 1 features. The data finger-

printing approach consists in selecting only a subset of

these features to uniquely identify the data object. A

good feature candidate for selection should satisfy two

criteria:

– criteria 1: it should be statistically improbable

– criteria 2: it should be part of most of (or all) data

samples

For criteria 1, the statistical probability of a feature de-

pends on the likelihood of its normalized hash value.

To this end, we estimate the probability distribution of

all possible normalized hash values [0, 1023]. For each

Finding a Needle in a Haystack: The Traffic Analysis Version 273

feature in the data object, we compute its normalized

SHA-1 digest and use the value to identify its statistical

probability from the distribution. This is implemented

by a rank table of size 1024 mapping normalized hash

values to a precedence score (Sprec) which is a value be-

tween 0 and 1023 proportional to the probability value.

It is important to note that a different rank table is gen-

erated for each type of traffic. Figure 2 shows a graph-

ical representation of the rank table corresponding to

malware dataset.

For every feature, the precedence score indicates

how common the corresponding normalized hash value

is found in the empirical data. That is, if a feature has

a very common Hnorm value, it gets a high Sprec value.

Whereas features with uncommon Hnorm values will get

low Sprec values. Selecting the statistically-improbable

features consists in picking the features with the low-

est Sprec values. A straightforward approach consists in

ordering all the data features across the data object in

ascending order of their Sprec values and choosing the

top ones. The problem is that all selected features will

be originating from the same region/cluster of the data

object. Winnowing [14] technique uses a sliding window

to pick features with local minima. This guarantees that

features are selected from various locations in the data

object.

Let W be the window size. While the window is

sliding across the data, a feature with the lowest Sprec

is marked3 at every step. If the same feature is marked

a number of times (1 ≤ k ≤W), it can be considered as

a feature with a local Sprec minimum and consequently

selected as statistically improbable. This is achieved by

maintaining a popularity counter score Spop which keeps

track of how many times each feature has been marked

due to a minimum Sprec.

The actual feature selection is based on setting

a threshold value t (1 ≤ t ≤ W) such that any fea-

ture with a popularity score Spop ≥ t is selected as

statistically-improbable. In our case, we use a thresh-

old value t = 2.

Figure 3 shows how Spop values are updated while

a sliding window of size 9 is moving through a data

input sample. The upper row shows the Hnorm values.

After the sliding window reaches the end of the data

object, the final Spop values (step 12) are used to select

the statistically-improbable features. For instance, if the

threshold t = 2, three features will be selected (positions

3 If two features happen to have the same Sprec value in the

current window, only the leftmost one is marked.

4, 8 and 17) whereas for t = 4, only two features will be

selected (positions 8 and 17).

Once a feature is considered statistically improba-

ble (passed the winnowing process), it passes through

the second filter (criteria 2) which checks if the feature

occurs in the other samples of the same class. Keeping

only the features that occur in all other samples is too

restrictive and result in a small number of features. On

the other hand, allowing all features that occur in at

least half of the samples is too permissive and result in

a large number of features. Empirical analysis showed

that the best threshold value is to keep only features

that appear in at least 75% of the other samples.

4.2 Building Fingerprint Representations

Having selected a set of features to represent a data

object, the next step is to build a fingerprint represen-

tation out of the features. A simple approach consists

in computing the hash of each feature and concatenat-

ing the hashes to obtain a fingerprint representation of

the data input. This approach is inefficient in two as-

pects. It is space inefficient and it handles membership

queries (checking if an element is part of the set) inef-

ficiently. Note that this simple approach does not incur

any false positive rate for membership queries. A more

efficient approach for set representation is using Bloom

filters [17]. The approach trades space and membership

queries efficiency for a small false positive rate in mem-

bership queries.

A Bloom filter is an array of bits of a fixed size m

initially set to 0. Given a set of elements {s1, s2, . . . , sn},

inserting an element si in a bloom filter consists in com-

puting hash values of si according to k different hash

functions h1, h2, . . . hk. Each hash function maps the

universe of possible element values to an index in the

bloom filter (i.e. in the range 1 . . . m)4. For each of those

hash values, the Bloom filter entry is set to 1. Check-

ing the membership of an element sj goes through the

same process, that is, computing the k indices using the

k hash values. If all the bits on the k indices are equal to

1, the membership query returns true. Otherwise, it re-

turns false. As mentioned above, Bloom filter approach

for set representation trades efficiency for a small false

positive rate in membership queries. Indeed, in mem-

bership queries, if at least one entry of the computed k

4 The hash functions are independent and map the input to the

range 1 . . . m uniformly.

Finding a Needle in a Haystack: The Traffic Analysis Version 274

Fig. 3. Computing the popularity score (Spop) on a data sample of size 20 packets and using a sliding window of size 9.

indices is set to 0, we are sure that the element is not

in the set. However, if all the k entries are set to 1, we

are not 100% sure that the element is in the set. The

k entries might be set by chance (while inserting other

features). The good news is that, given the number of

elements already inserted in the Bloom filter, the false

positive rate can be easily estimated [17].

The procedure to insert a feature into a Bloom filter

is illustrated in Figure 4. First, the sequence of packets

(packet lengths and direction) composing the feature are

hashed using SHA-1 algorithm which generates 160 bits.

The hash is then split into five 32 bits sub-hashes. Each

sub-hash is considered as different hash value. Hence,

k value in this case is 5. The 11 least significant bits

of each 32 bits sub-hash is used as index in the Bloom

filter array of bits. The features are inserted in 256-byte

Bloom filters (m = 256 × 8 = 2048 = 211). The values

of k (number of sub-hashes), m (the size of the bloom

filter), and n (the maximum number of features to be

inserted in a bloom filter) are chosen such as to keep the

false positive rate f5 under an acceptable low threshold.

f can be estimated as follows [17]:

f = (1− e− kn

m)k (2)

The capacity of a single Bloom filter is fixed to a default

value of n = 128 features. Based on (2) and the chosen

values (k = 5, m = 2048, and n = 128), the expected

false positive probability is 0.00139. When the capacity

of a bloom filter is reached, a new Bloom filter is created,

and so on, until all features are represented.

The fingerprint representation of a data object is the

concatenation of all Bloom filters preceded by their total

number. The obtained representation is called similarity

5 The probability that all bits corresponding to a feature are

set to one while the feature is not in the bloom filter

digest (SD):

SD(dob) = s|bf1|bf2|bf3| . . . bfs (3)

where s is the number of Bloom filters and bf i is the ith

Bloom filter of data object dob.

4.3 Comparing Similarity Digests

Computing the similarity between two data objects con-

sists in comparing their Bloom filters. Hence, the core of

the similarity computation process is the comparison of

two Bloom filters which is based on a modified version

of Hamming distance. We call it Hamming Similarity.

Let bf1 and bf2 be two Bloom filters where bf1 is

chosen to be the one with less features and consider the

following variables:

– n1 and n2: the number of features in bf1 and bf2

respectively6.

– e1 and e2: the number of bits set to one in bf1 and

bf2 respectively.

– e12: the number of bits set to one in both bf1 and

bf2 (intersection).

The Hamming Similarity (HS) between two Bloom fil-

ters is defined as follows:

HS(bf1, bf2) =











−1, if n1 ≤ Nmin

0, if e12 ≤ tc

100
e12 − tc

Emax − tc

, otherwise

(4)

where,

6 Maintained as separated counters.

Finding a Needle in a Haystack: The Traffic Analysis Version 275

Fig. 4. Process of inserting a feature into a Bloom filter

– Nmin is the minimum number of features in a Bloom

filter that is needed to compute a meaningful HS

value7.

– tc is a threshold below which any bit matching is

assumed to be due to chance:

tc = α(Emax − Emin) + Emin (5)

– Emax is the maximum number of matching bits due

to chance:

Emax = min(kn1, kn2) (6)

– Emin is the minimum number of matching bits due

to chance:

Emin = m(1− pke1 − pke2 + pk(e1+e2)) (7)

– p = 1 − 1
m

is the probability that a specific bit is

still 0 after the setting of a single bit.

– α is a calibrating parameter that is set experimen-

tally.

The two first terms in (4) state that (1) if there is not

enough features stored in the first bloom filter, the re-

turned similarity is−1 and (2) if both bloom filters share

a small number of 1 bits, any similarity is considered to

be due to chance and the returned similarity is 0. The

third term estimates the similarity using common 1 bits

in both bloom filters while excluding some of those 1

bits due to chance. Three values are used to estimate

the “by-chance” factor: tc, Emax, and Emin. The only

variable set experimentally is α which serves as a cal-

ibrating parameter. α is set to 0.3 which consistently

yields a zero similarity between bloom filters of unre-

lated data objects.

We now have all the ingredients to compute

the similarity score (SC) between two data ob-

jects. Let dob1 and dob2 be two data objects. Let

7 We use the same experimentally derived value as Roussev [15]

which is 6 for a bloom filter of 128 features

bf1
1 , bf1

2 , bf1
3 , . . . , bf1

s be the set of Bloom filters from

dob1 and bf2
1 , bf2

2 , bf2
3 , . . . , bf2

t be the set of Bloom fil-

ters from dob2. Assuming that s ≤ t, the similarity score

(SC) between the two data objects is defined as follows:

SC(dob1, dob2) =
1

s

s
∑

i=1

max
j∈[1...t]

HS(bf1
i , bf2

j) (8)

The similarity score as defined in Equation (8) can

be used to find the similarity between two data objects

with comparable sizes (s ≈ t). However, it is particu-

larly efficient to compute the similarity between a small

data object (e.g. file) and a much larger data object (e.g.

hard drive), hence, s << t, that is, the number of Bloom

filters is much larger in dob2 than in dob1. The similarity

score computation consists in comparing each Bloom fil-

ter of dob1 with every Bloom filter in dob2 and keep the

highest value. The kept highest values are then averaged

to produce the similarity score. The maximum value of

the similarity score is the maximum Hamming Similar-

ity between two bloom filters (Equation (4)), that is,

100. That optimal value is obtained not only when all

features of dob1 happen to be in dob2, but when they

occur in the same bloom filter in dob2. In other words,

having all features of one bloom filter from dob1 occur in

dob2 but dispersed across several bloom filters does not

contribute to boost the similarity score. They should be

concentrated in a single bloom filter in dob2.

Hence, calculating the score as the average of the s

maximum similarities between the bloom filters of dob1

and all the bloom filters of dob2 has two crucial conse-

quences:

1. A large size of dob2 (i.e. t) does not dilute the simi-

larity score.

2. Having all features of dob1 occur in dob2 but dis-

persed across several bloom filter does not yield a

high similarity score.

To be considered similar, the similarity score between

two network traces should be larger than a certain

Finding a Needle in a Haystack: The Traffic Analysis Version 276

threshold tsc. Threshold selection for all AHBM use

cases is discussed in Section 9.

4.4 Finding a Needle in a Haystack

The threat model we are considering is a surveillance

entity through which a huge amount of traffic is flow-

ing (Internet Service Provider (ISP), censorship entity,

gateway or IDS of a large network, etc.) and which

is interested to pinpoint specific sessions in the traffic

(website visit, malware communication, etc.). In exist-

ing traffic analysis approaches, in particular, website fin-

gerprinting techniques [1–4, 6, 7] learning a website "fin-

gerprint" requires several sample visits. The set of sam-

ples have typically comparable sizes (number of pack-

ets). This allows to extract features such as the number

of incoming packets, the number of outgoing packets,

the number of received bytes, etc. which allow to build

a model/signature for that website. Consequently, for a

website model to be efficient in identifying website oc-

currence in unknown traffic, it should be matched, each

time, with an extracted sequence of packets having a

size similar to the samples used in the training phase.

Captured traffic, however, comes in the form of a long

sequence of packets corresponding to all sort of user ac-

tivity without clear separation. This issue was not con-

sidered in most of previous work on website fingerprint-

ing because k-fold cross-validation is typically used for

the experimental evaluation. k-fold cross-validation cal-

culates the accuracy in terms of already "split" samples.

The proposed AHBM approach is efficient to iden-

tify website occurrences in a network traffic capture of

arbitrary size and hence particularly relevant for the

considered threat model. As mentioned previously, this

is achieved by comparing bloom filters composing the

similarity digest of the website with bloom filters corre-

sponding to different regions of the network traffic cap-

ture. By taking the average of the maximum similarities

between each bloom filter of the website and all bloom

filters of the unknown traffic, the final similarity score

will not be diluted by the size of the unknown traffic

capture. To reach a high similarity score, features of

the website should not only be present in the unknown

traffic, but also concentrated in few bloom filters.

Figure 5 illustrates graphically the different phases

required to analyze network traffic for website and mal-

ware detection using the proposed AHBM approach.

Websites samples

Collection

W1 W2 Wn

Malware samples

Collection

Similarity Digest

Generation

SD W1 SD W2 SD Wn
bf1

bf2

...

bf1

bf2

...

bf1

bf2

...

Malware Samples

Clustering

SD F1
bf1

bf2

...

SD F2
bf1

bf2

...

SDFk
bf1

bf2

...

L1 L2 Lk

AVClass Labelling

Similarity Digest

Generation

Target network trace

SD T
bf1

bf2

bf3

bf4

...

Website and Malware Detection

Using AHBM

W1

W2

W3

Wn

F1

F2

F3

Fk

M1 M2 Mv

F1 F2 Mk

Clusters Medoids
W1: Website 1

M1: Malware 1

SD W1 Similarity Digest

Website 1

:

F1: Malware Family 1

bf: Bloom Filter

L1: Malware Family 1

 Label

Legend

Phase 2: Similarity Digest Generation

Phase 1: Data Samples Collection

Phase 3: Runtime Detection

Fig. 5. The different phases of AHBM traffic analysis.

5 Evaluation Models

Most of existing traffic analysis techniques are evaluated

through typical cross-validation. The basic form is k-fold

cross-validation where the data is first partitioned into

k equally sized segments or folds. Subsequently, k itera-

tions (or folds) of training and validation are performed

using a different segment each time. Our experiment

consists in applying a 10-fold cross-validation on the col-

lected data. That is, in each fold 90% of the samples are

used for selecting the features and the remaining 10%

samples are used for testing. This process is repeated 10

times (folds) choosing in each fold different samples for

testing. It is important to note that class models (e.g.

website models in the case of website fingerprinting) are

checked with the test data samples, one by one and one

Finding a Needle in a Haystack: The Traffic Analysis Version 277

at a time. Therefore, in the remaining sections, we refer

to this validation model as one-to-one cross-validation.

One-to-one cross-validation is used in two scenar-

ios: closed-world and open-world. In closed-world sce-

nario, the testing data is composed only of monitored

instances8. Whereas in open-world scenario, testing

data is composed of monitored and non-monitored in-

stances9.

In addition to one-to-one (open and closed-world)

evaluation models we use a modified version of cross-

validation where the data is split the same way in each

fold (90% samples for training and 10% samples for test-

ing) but matching the class (e.g. website) models with

the test data samples is not performed one-by-one. In-

stead, all test data samples (of all classes) are concate-

nated to form a single long sequence of packets. Each

class model is then matched with the long test data se-

quence two times: one time with the test data samples

from all classes and a second time with the test data

samples from all classes, except the class model being

evaluated. This is needed to track all cases i.e. true and

false positives, true and false negatives. We refer to this

validation model as one-to-all cross-validation.

One-to-all cross-validation is used to assess the ef-

ficiency of our proposed approach to detect a small

network object (website visit, malware communication,

etc.) within large amount of traffic. One-to-all cross-

validation comes also in two flavors: closed-world (test

data composed only of monitored instances) and open-

world (test data composed of monitored as well as non-

monitored instances). The selection of training and test-

ing samples in both evaluation models is formally de-

fined in the Appendix.

6 Website Fingerprinting on VPN

Data

Typically, Virtual Private Networks (VPNs) are used

to extend a private network across public networks [18].

Packets are communicated through an encrypted tun-

nel (SSL, IPSec, SSH, etc.). Since an observer of a VPN

traffic can only see encrypted packets to and from the

VPN server, VPN is also used to hide user activity and

8 Monitored websites are websites that the attacker is interested

to identify.

9 Non-monitored websites are background websites which are

unknown to the adversary.

to bypass simple proxy filtering and censorship. There-

fore VPN is a typical target of website fingerprinting

attacks [1, 12].

VPN data is collected using an OpenVPN server on

Amazon Web Services (AWS). A client is running Win-

dows 7 virtual machine whose traffic is tunneled through

the OpenVPN server. Website visits are automated us-

ing a python script that fetches websites using chrome

browser. Three datasets are collected:

1. monitored websites: The top 550 Alexa websites, 40

instances each.

2. non-monitored websites: 10000 websites (top

[1000,11000] Alexa) 1 instance each.

3. overlapping websites: 1200 top alexa websites, 1 in-

stance each, but fetched 3 websites at a time.

The first dataset (monitored websites) is used for closed-

world scenario. The second dataset (non-monitored

websites) is used for the open-world scenario. The third

dataset (overlapping websites) is used to assess the im-

pact of visiting websites concurrently. The latter dataset

is collected as follows. Using three parallel execution

threads (th1, th2, and th3), th1 starts by requesting the

first page p1, after a delay of 2 seconds, th2 requests

p2, and then after another 2 seconds delay, th3 requests

p3
10. The pages will keep loading for the next 10 sec-

onds, after which the three pages are stopped altogether

and the first round is over. The second round will pro-

ceed similarly with the next 3 pages p4, p5, p6, and so

on until reaching 1200 pages. For all three datasets, the

script clears the browser cache, launches a tcpdump pro-

cess for packet capturing, and then fetches the URL. For

the first dataset, websites are fetched in a round-robin

fashion (A first sample of each website is collected, then

a second sample, etc.). The data has been collected dur-

ing October and November 2017.

The proposed AHBM approach to traffic analysis

depends on a set of parameters, in particular, the fea-

ture size B which represents the number of packets to

include in a feature and the window size which specifies

the number of features to consider at each step before

marking the feature with the lowest Sprec score. Choos-

ing a small feature size increases the granularity of the

data object representation while losing specificity and

yields a larger number of selected features. However,

choosing a large feature size decreases the granularity of

the data object and reduces the number of features. On

10 The delay of 2 seconds is added to simulate real scenar-

ios [19].

Finding a Needle in a Haystack: The Traffic Analysis Version 278

TPR FPR

1-to-1 (CW) 0.98 0.09

1-to-all (CW) 0.81 0.21

1-to-1 (OW) 0.97 0.18

1-to-all (OW) 0.81 0.03

1-to-all (OW Overlapping) 0.56 0.36

Table 1. TPR and FPR for different scenarios using VPN

datasets.

the other hand, a large window size means that a feature

will be marked among a large number of considered fea-

tures. This yields to fewer features marked with higher

popularity scores. A small window size yields to more

features marked but with lower popularity scores. The

combination that yields the best results for the VPN

dataset is a feature size of 2 and a window size of 4.

Although a feature size of 2 packets is relatively small,

but this corroborates previous results [20, 21] where the

optimal traffic analysis results were obtained by consid-

ering consecutive pairs of packet size values.

Table 1 shows the results of different scenarios us-

ing the three datasets. For one-to-one cross-validation,

the TPR is 97% in the open-world as well as the closed

world. Previous work on VPN traffic reported lower re-

sults: Herrman et al. [1] reported a 94% accuracy11 while

Fegghi et al. [12] reported between 90 and 95% TPR.

The FPR is less than 20% in both one-to-one scenarios.

For one-to-all scenarios, the TPR is smaller: 80% for

closed-world and open-world, and 56% for the overlap-

ping scenario. The FPR, however, is high: 20% for both

closed and open-world. This is due to some websites

whose threshold is relatively low. When such websites

are not part of the testing data, due to some inherent

similarity with mainstream website traffic, the similar-

ity score may cross the threshold barrier and leads to

false positives. The low TPR (56%) and high FPR (36%)

for the overlapping scenario are expected since several

distinguishing features will be missed because of the in-

termixing of packets originating from different websites.

Another way to view the results of one-to-all cross-

validation is the average similarity scores for both cases

(when the website is part of the test data and when it

is not). Figure 6 shows the distribution of the similarity

score values in both cases (red and green) using quar-

tiles. The dashed lines represent the range of the 10

observed values in the 10-folds while the closed boxes

indicate where 50% of the values are concentrated. The

11 Accuracy is computed as: (tp + tn)/(tp + fp + fn + tn).

following interesting facts can be observed from the fig-

ure:

1. The average similarity scores, when the website is

part of the test data (green) and when it is excluded

(red), are clearly far apart with the former larger

than the latter for all websites.

2. The standard deviation of the similarity scores when

the website is not part of the test data is interest-

ingly small. This justifies the selection of the thresh-

old tsc (Section 9) on the basis of this case (the

similarity score with arbitrary traffic capture not

including the website).

3. The standard deviation of the similarity scores when

the website is part of the test data is relatively large.

One explanation is that from one fold to another,

not all distinguishing features are selected for the

website model. Recall that features are selected pro-

vided they are part of at least 75% of the training

instances.

7 Website Fingerprinting on Tor

Traffic

Tor traffic is a common target for website fingerprinting

attacks as Tor is an overlay network that aims to pro-

vide privacy and anonymity to its users. Previous work

reported high accuracy website fingerprinting attacks on

Tor [3, 4, 6, 22]. However, several concerns have been

raised regarding the practicality of these attacks in re-

alistic scenarios [9–11], in particular how traffic can be

efficiently split to produce clearly separated chunks that

can be used for classifier training.

Five datasets are used:

– Cai dataset [3]: 100 websites, 40 samples each.

– Wang SVM dataset [4]: 100 websites, 40 samples

each.

– Wang kNN dataset [5]: 100 websites, 90 samples

each and 9000 samples for open world.

– Panchenko CUMUL dataset [6]: 1123 websites, 40

samples each, and 111884 samples for open world.

– Our dataset: 100 websites, 40 samples each.

Our dataset has been collected by visiting the top 100

Alexa websites, 40 times each, using Tor Browser. The

websites are fetched in round-robin fashion and is au-

tomated using the Tor-selenium plugin [23]. Every visit

lasts for a maximum of 30 seconds and there is a 5 sec-

onds time gap between each successive visits. Packets

are stored in pcap files which are then parsed to keep

Finding a Needle in a Haystack: The Traffic Analysis Version 279

0 20 40 60 80 10
0

Websites

0

20

40

60

80

100

Si
m
ila

ri
ty
 S
co
re

website is included
website is excluded

Fig. 6. Distribution of the similarity scores for each website (1) when the website is part of the testing data and (2) when the website

is removed from the testing data.

only the direction, order, and size of packets (Figure 1).

The data was collected during January 2017.

Tor uses fixed size cells which reduces the feature

space in case the feature (block) size B is small. Recall

that the block size is the number of packets in a feature.

Unlike the VPN datasets where a pair of packets per

feature produced the best results, in Tor the best results

were obtained with a feature size of at least B = 12

packets with a window size W = 4.

Table 2 shows the result of 10-fold cross-validation

on different datasets with different scenarios. The TPR

ranges from 11% for CUMUL dataset to 71% obtained

with Cai dataset. The FPR is very high for all datasets.

The main reason is that the similarity score when the

website is part of the test data is relatively close to the

similarity score when the website is not part of the test-

ing data. This is confirmed in Figure 7 which shows the

quartile distribution of similarity scores on our dataset.

For each website, the quartile figure shows the distribu-

tion of similarity score when the website is not part of

the data (red) and when the website is part of the data

(green). The dashed lines represent the range of all val-

ues observed in the 10-folds while the closed boxes indi-

cate where 50% of the values are concentrated. For the

majority of websites, the similarity score between the

website similarity digest and the consolidated test data

is smaller when the website is not part of the test data.

However, there is a clear overlap between the green and

red boxes. This explains the high FPR in Table 2.

Overall, AHBM approach produces low accuracy re-

sults when applied on Tor traffic. We studied carefully

the similarity score computation for some dataset sam-

ples in order to identify the reasons behind the low ac-

curacy. It turned out that the main reason is the fixed

size cell used in Tor. Typically, such uniformity in packet

sizes can be compensated by considering longer features

(number of packets). However too long features makes

them too specific to particular samples and hence will

be filtered out by creteria 2 of AHBM feature selection

(Section 4.1). Hence, choosing a small feature size in-

creases the granularity of the data object representation

while loosing specificity which yields a larger number of

selected features (This leads to high FPR in Tor) while

choosing a longer feature size increases the specificity of

the selected features, reduces their numbers, and for Tor

it leads to a low TPR. This finding suggests that AHBM

approach will produce similarly low results when applied

on uniform-size packets traffic (e.g. BuFLO [24]).

Finding a Needle in a Haystack: The Traffic Analysis Version 280

0 20 40 60 80 10
0

Websites

0

5

10

15

20

Si
m
ila

ri
ty
 S
co
re

website is included
website is excluded

Fig. 7. Distribution of the similarity scores for each website (1) when the website is part of the testing data and (2) when the website

is removed from the testing data.

TPR FPR Feature size

Our dataset 1-to-1 (CW) 0.55 0.19 10 packets

Our dataset 1-to-all (CW) 0.46 0.20 10 packets

Cai 1-to-1 (CW) 0.71 0.22 12 packets

Cai 1-to-all (CW) 0.54 0.24 12 packets

Wang SVM 1-to-1 (CW) 0.52 0.46 13 packets

Wang SVM 1-to-all (CW) 0.36 0.19 13 packets

Wang KNN 1-to-1 (CW) 0.35 0.20 13 packets

Wang KNN 1-to-all (CW) 0.52 0.20 13 packets

Wang KNN 1-to-1 (OW) 0.26 0.04 13 packets

Panchenko CUMUL 1-to-1 (CW) 0.41 0.35 15 packets

Panchenko CUMUL 1-to-all (CW) 0.37 0.15 13 packets

Panchenko CUMUL 1-to-1 (OW) 0.11 0.92 15 packets

Table 2. TPR and FPR for different Tor datasets.

8 Malware Traffic Analysis

Detecting malware activity through traffic analysis is at-

tractive since it allows to cover a large number of hosts

without requiring any of these hosts to install any soft-

ware. Deep packet inspection (DPI) is the major ap-

proach for network malware detection which consists in

checking the packet payloads in search of specific bytes.

DPI assumes that malware communicate through plain-

text protocols (e.g. HTTP, IRC, etc.). As malware are

increasingly using encrypted protocols as well as secure

tunneling, recent network malware detection approaches

resorted to traffic analysis [25–27].

The list of malware binaries used in the data collec-

tion is retrieved from virusshare12 malware repository.

The list consists of 16000 malware binaries posted on the

repository on September 2016. To execute the binaries

and capture their traffic, we used a sandbox-based iso-

lation program, namely, sandboxie13 running on a Win-

dows XP SP3 32-bits virtual machine. As an initial fil-

tering step, we wrote a script to automatically check the

PE header of the binaries and filter out all non-windows,

non-32 bit, and corrupted header binaries. Then, each

valid binary is executed once through the sandbox while

capturing its network communication. Each execution

lasts 2 minutes. As expected, a significant portion of

valid malware did not yield network activity for various

reasons (malware using anti-VM, malware using anti-

sandbox, Command and Control (C2) server is down,

etc.).

Malware that exchanged less than 20 packets are

filtered out. Among the 16000 intial malware binary re-

trieved from virusshare, only 1050 passed the two filter-

ing steps. Among these 1050 binaries, we chose the first

1000 for the data collection.

Malware data collection consists in executing the

filtered 1000 binaries, 10 times each, in a round-robin

fashion through the sandbox on the same Windows XP

SP3 virtual machine. Each execution lasts 2 minutes.

12 www.virusshare.com

13 www.sandboxie.com

Finding a Needle in a Haystack: The Traffic Analysis Version 281

From the 1000 malware, we kept only the malware that

yield 10 valid samples. That is, if a malware has at least

one sample (out of 10) with less than 50 packets, it is

dropped. After this last filtering, we ended up with 512

malware binaries, with 10 valid samples each.

Applying cross-validation on the malware dataset

the same way as VPN and Tor datasets produced very

low accuracy results. The main problem is that consid-

ering each binary as a separate class is not appropriate

for malware traffic analysis because several binaries cor-

respond to the same malware due to obfuscation14. To

overcome this issue, malware binaries are clustered into

families sharing the same features. Malware clustering

is a commonly used technique to deal with the redun-

dancy of malware binaries [28, 29].

Typical malware clustering approaches rely either

on malware executable bytes [30, 31] malware system

call traces [32, 33], or non-encrypted network activ-

ity [28, 29, 34]. In the following, we propose a malware

clustering technique that relies on the same meta-data

information used for VPN and Tor website fingerprint-

ing, namely, ordered sequence of packet sizes. This ab-

straction of malware binaries and packet payload makes

the approach still applicable in case malware is using

obfuscation or secure protocols.

Clustering algorithms that require to specify, a-

priori, the number of malware clusters (e.g. K-means)

are not suitable because that information is not typi-

cally available in malware family clustering problems.

The most commonly used algorithm for malware clus-

tering is agglomerative hierarchical clustering [28, 29,

33–38]. Hierarchical clustering does not scale well in

presence of a large number of samples mainly because

it requires to compute a distance matrix which involves

computing the distance between every pair of sam-

ples [35, 36, 38]. In our case, computing the distance ma-

trix based on the similarity score (Equation (8)) is par-

ticularly costly because the similarity score is more com-

putationally intensive than other distance notions used

in previous work (string based distance [28, 38], nor-

malized compression distance (NCD) [34], Jaccard dis-

tance [29]). An alternative approach to address this scal-

ability issue is to proceed in multiple stages [28, 36, 38]

and hence avoid to apply hierarchical clustering on the

full set of samples at once. However, this has an impact

14 Malware obfuscation consists of a set of techniques to change

the shape of binaries in order to bypass antivirus detection. This

includes encryption, packing, polymorphism, metamorphism,

etc.

Fig. 8. Algorithm 1. Malware clustering using AHBM

INPUT: S = {All malware traffic samples mts}

INPUT: tsc: a similarity score threshold

OUTPUT: C: a set of malware clusters

1: C ← Initial clustering: each malware with its 10 sam-

ples as a cluster with a precomputed medoid

2: repeat

3:

4: //Merging

5: Ctemp = C

6: for each pair of clusters Ci and Cj in Ctemp do

7: if SC(mdoidi, mdoidj) ≥ tsc then

8: Merge Ci and Cj into a new cluster and

add it to C

9: Remove Ci and Cj frm Ctemp and frm C

10: end if

11: end for

12:

13: //Splitting

14: for each cluster Ck in C do

15: Split_recursively(Ck)

16: end for

17:

18: //Migrating outliers

19: for each cluster Ck still in Ctemp do

20: for each instance mts in Ck do

21: Find the closest cluster to mts in C

22: closestC ← arg max
i...|C|

SC(mts, mdoidi)

23: Migrate mts to closestC

24: end for

25: Remove Ck from Ctemp

26: end for

27:

28: until (no more splitting and no more merging) or

(maximum number of iterations reached)

29:

30: function Split_recursively(Ck)

31:

32: //Select a medoid (mdoidk) for Ck

33: mdoidk ← arg max
i=1...|Ck|

∑

j=1...|Ck|

SC(mtsk
i , mtsk

j)

34:

35: //Look for outliers in cluster Ck

36: outliersK ← {mtsk
i |SC(mtsk

i , mdoidk) < tsc}

37:

38: //Create a new cluster and split recursively

39: if |outliersk| > 3 then

40: Create a new cluster Cn and add it to C

41: Split_recursively(Cn)

42: end if

43: end function

Finding a Needle in a Haystack: The Traffic Analysis Version 282

on the effectiveness of the clustering. Perdisci et al. [36]

used BIRCH clustering [39] for an initial coarse-grained

stage and then used hierarchical clustering inside each

coarse-grained cluster. A single hierarchical clustering

stage on the full dataset, although significantly slower,

produces more accurate clustering.

To cluster malware samples into families, we have

chosen to propose a variant of hierarchical clustering

(Algorithm 1) for two reasons. First, it does not require

to compute a distance matrix on all samples. Each clus-

ter is characterized by representative sample called a

medoid. The distances (based on the similarity score)

are computed only between the samples of a cluster

and the corresponding medoid. Second, agglomerative

hierarchical clustering starts by defining one cluster per

sample and then proceeds by only merging clusters to-

gether. This produces poor clustering in our case be-

cause once a sample is merged into a cluster it can-

not migrate to another one if the medoid changes. Our

dataset is particularly sensitive to this issue because ev-

ery malware binary is used to generate several (10) sam-

ples. The proposed algorithm combines both agglom-

erative (merging steps) and devisive (splitting steps)

ideas15 to address this issue [40].

Algorithm 1 takes as input a set of malware traffic

samples S and a similarity score threshold tsc and re-

turns as output a set of malware clusters corresponding

to different malware families along with their medoids.

The set S contains several samples of each malware bi-

nary in the dataset (10 samples each in our dataset).

The threshold tsc is the similarity score value beyond

which two instances are considered part of the same

family. The clustering goes through three stages: merg-

ing (lines 5-11), splitting (lines 14-16) and migrating

outliers (lines 19-26).

The set S is first split into an initial set of clusters

C by putting each malware with its 10 samples into a

separate cluster. The algorithm starts then looping on

three types of transformations: merging, splitting, and

migrating outliers. Splitting a cluster (Lines 30-43) con-

sists in keeping in that cluster only the samples that are

close to each others and the remaining samples move to

a new cluster. This is achieved by choosing a represen-

tative sample from the cluster called medoid. A medoid

(mdoidk) for cluster Ck is a sample that has a maximum

average similarity score with all remaining samples of

15 There are two types of hierarchical clustering: devisive which

proceeds by splitting steps only and agglomerative which pro-

ceeds by merging steps only.

the cluster (Line 33). Having the medoid as reference,

all samples whose similarity score with the medoid is

less than the threshold tsc are considered outliers. If the

number of the outliers is significant (more than 3), a

new cluster Cn is created with the outlier samples and

added to the set of clusters C. A small number of out-

liers (3 or less) is tolerated to stay in the same cluster.

The splitting step is recursive, that is, the newly created

cluster Cn is in turn split. The merging step (Lines 5-9)

consists in grouping together clusters who have similar

medoids (a similarity score of more than tsc). Unlike the

splitting step, the merging step is not recursive: a clus-

ter is merged a maximum of one time in an iteration.

Clusters left out in the merging step (they are more than

tsc away from any other cluster) are considered outliers.

The last step consists in migrating every sample of the

outlier clusters to the closest cluster in C. The cluster

is then removed. The algorithm loops over these steps

until the set of clusters is stabilized (no splitting nor

merging is performed in the loop iteration).

Accuracy. To evaluate the accuracy of Algo-

rithm 1, we use a reference clustering as ground truth.

Most of reference clusterings used in the literature are

built using AV (Antivirus) labels [28, 31, 34, 41]. While

existing work rely on the labels of few AV engines (e.g.

5 AV engines in [34], 3 AV engines in [28]), the refer-

ence clustering used in our evaluation is based on AV-

Class [42], a tool for malware labeling that leverages la-

bels from all 99 AV engines used in VirusTotal. AVClass

resolves known inconsistencies resulting from the use of

labels coming from different AV engines (e.g. lack of

standard naming convention, the use of generic tokens,

etc.).

Given a malware reference clustering, the most com-

monly used accuracy measures are precision and re-

call [31, 37, 42–44] defined as follows. Let n be the total

number of malware samples (|mts| in Algorithm 1). Let

C = {C1, . . . , Ck} be the set of k clusters returned by

Algorithm 1 and R = {R1, . . . , Rt} be the set of t refer-

ence clusters.

Prec =
1

n

k
∑

i=1

max
u=1,...,t

(|Ci ∩Ru|)

Rec =
1

n

t
∑

i=1

max
u=1,...,k

(|Cu ∩Ri|)

Precision and recall for Algorithm 1 are 82% and

55% respectively. However, while analyzing manually

the results of the clustering algorithm, we noted that

some malware fall entirely (all 10 samples) into a wrong

Finding a Needle in a Haystack: The Traffic Analysis Version 283

family (according to AVClass). By checking the AV la-

bels of those malware, it turned out that AVClass as-

signed them to the wrong family. This corroborates the

reported AVClass accuracy (F1 measure) of 93.9% [42].

Not considering those samples improved the precision

and recall to 93% and 60% respectively. The accuracy

results are summarized in Table 3.

Precision Recall

Using AVClass as is 82% 55%

Considering AVClass error rate 93% 60%

Table 3. Accuracy measures of Algorithm 1.

Termination. Typical agglomerative hierarchical

clustering proceeds by merging clusters until one single

cluster is left (containing all samples). A common ap-

proach is to terminate agglomerative hierarchical clus-

tering when an a-priori specified number of clusters is

reached. Devisive hierarchical clustering does the oppo-

site (i.e. keeps splitting until there are as many clus-

ters as samples) [40]. Algorithm 1, unlike agglomerative

and devisive hierarchical clustering, alternates between

splitting and merging steps and hence does not have a

natural termination guarantee. Therefore we added a

second termination condition (similar to k−means im-

plementations) which forces the algorithm to stop if a

number of iterations threshold is reached. It is impor-

tant to mention that in all experiments we performed

using different tsc values, the first termination condition

(i.e. no more splitting and no more merging) has always

been satisfied.

Efficiency. Executing our implementation of Algo-

rithm 1 on the malware dataset (5120 samples) took 9.19

minutes on a laptop setup (Ubuntu 12.04, Intel Core i7-

6700HQ CPU 8 cores 2.60GHz with 16GB RAM). Run-

ning the python sklearn implementation of agglomera-

tive hierarchical clustering [45] on the same dataset, us-

ing AHBM similarity score to compute the distance ma-

trix, and using the same setup took between 35 and 36

minutes depending on the type of linkage (complete, av-

erage, or single) and at which number of clusters thresh-

old to terminate (we tried values between 5 and 30). As

expected, most of the runtime (34.89 minutes) is spent

on the distance matrix computation. The best parame-

ters combination (complete linkage and 24 samples) for

agglomerative hierarchical clustering achieved a preci-

sion of 70% and a recall of 49.3%.

Finding a needle in a haystack capability. To

assess the capability of the proposed AHBM approach

to identify malicious traffic in a large network traffic

sequence, we carried out the following experiment. We

used 5-fold cross-validation to split the collected mal-

ware samples into different training (8 samples from

each binary) and testing (the 2 remaining samples)

sets. For each fold, the training samples are clustered

into malware families using the malware clustering al-

gorithm. Then, we check the similarity between each

malware cluster and the following three large traffic se-

quences: all testing samples from our dataset concate-

nated into a single traffic sequence, and two clean net-

work traffic sequences (without malware infections) [46]

with 4GB and 16GB data sizes respectively. This is

achieved by computing the similarity score between each

cluster’s medoid and the three traffic sequences. Fig-

ure 9 shows the average similarity score for each fold and

for each traffic sequence. The average similarity scores

are very high for the first traffic sequence while rela-

tively low for the two clean traffic sequences. This is

expected since the first traffic sequence contains testing

samples of each malware family while the two other traf-

fic sequences, although very large, do not contain any

malware traffic. The other interesting fact which is con-

firmed in the figure is that the similarity score does not

get diluted by the size of the traffic sequence (4GB and

16GB) and the similarity score stays relatively low as

long as the sequence does not contain malware activity

traffic.

When detecting malware infections using family

(cluster) medoids, there are three sources of error: 1)

the AHBM clustering error, 2) the AVClass error, and

3) the malware family detection error when deployed.

The first source of error means that the clustering pro-

cess (Algorithm 1) either splits a malware family into

several clusters or groups different families in the same

cluster. The second source of error means that AVClass

mislabels a malware binary. As a consequence, the label

of the family (represented by its medoid) may be wrong.

These two sources of errors are “labelling” errors. So

a detected malware infection is wrongly labelled. Most

users of malware detection systems can live with that

type of error because what is important is the infec-

tion detection in the first place. Now if the correct la-

bel is needed with high accuracy, security professionals

can further investigate the origin (e.g. IP address) of

the infection and get more details allowing to correct

the label of the infection. For the third source of error:

AHBM fails to detect an infection or indicates a wrong

malware family. This is the regular traffic analysis de-

tection error.

Finding a Needle in a Haystack: The Traffic Analysis Version 284

To assess the malware infection detection error from

the more specific malware labelling error, the following

two experiments are carried out using the same 5-fold

cross-validation as above (Figure 9). For the first ex-

periment, for each fold, we compute the similarity score

between each malware family medoid and two versions

of testing data: a 5GB clean network trace and the same

5GB clean network trace with the testing samples. The

results of this experiment are shown in the two first

columns of Table 4. For the second experiment, for each

fold, we compute the similarity score between each mal-

ware family medoid 1) with the infected trace (clean

trace + malware testing samples) and if at least one

of the scores is above the threshold, the trace is de-

clared infected and 2) with the clean trace and if all the

scores are below the average, the trace is declared clean.

The results of this experiment are shown in the last two

columns of Table 4. For malware family identification,

considering the AVClass error in the clustering proce-

dure, when the trace is infected with a specific malware,

the approach can identify its presence 95% of the time.

However, it mislabels other infections with this specific

malware family on average 24% of the time. For malware

infection detection, in all experiments carried out, the

infection is always detected (at least one malware family

has above-threshold similarity with the infected trace).

In 18% of the time, however, a clean trace is declared as

infected because one or more similarity scores between a

malware family and the clean trace are above-threshold.

Malware Family Malware Infection

Identification Detection

TPR FPR TPR FPR

AVClass as is 0.91 0.26 1.00 0.18

Considering AVClass err 0.95 0.24 1.00 0.18

Table 4. Malware infection detection vs malware family identifca-

tion accuracy.

9 Threshold Selection

The similarity score as defined in Equation (8) returns

a value between 0 and 100 indicating the degree of sim-

ilarity between two network traces. The similarity score

value is not enough to declare two network traces as

orginating from the same network event (same website

or malware). There is a need for a reference threshold,

0 < tsc < 100 beyond which two network traces are con-

 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
0

20

40

60

80

100

S
im

ila
ri
ty
 S
co
re

Malware is included
Malware is excluded(dataset1-4GB)
Malware is excluded(dataset2-16GB)

Fig. 9. Average similarity score between each malware cluster

medoid and the three traffic sequences, displayed in quartiles. The

segments represent the range of all similarity score values. The

closed bars represent where 50% of the values are concentrated.

The dots represent the average values.

sidered similar. According to Roussev and Quates [47],

a similarity score of more than 21 indicates a strong

similarity between objects. However, this should not be

considered as an absolute guarantee because traces of

various network events (different website visits, different

malware communication, etc.) may have variable inher-

ent similarity with general mainstream network traffic.

That is, the returned score might be due to similarities

which are not of interest and consequently the thresh-

old should be adapted accordingly. For example, if a

network event has inherently a large (small) number

of common features with mainstream traffic, the corre-

sponding threshold should be proportionally high (low).

When generating the similarity digest (bloom fil-

ters) of a specific network event for which a set of sam-

ples is available, an appropriate threshold tsc can also

be selected empirically as follows. A benchmark traffic

trace is collected without involving the website in hand.

The benchmark is split into n (typically 10) chunks.

A similarity score is calculated between the similarity

digest and each of the chunks. The highest similarity

score is selected as threshold. This procedure is used

to select specific website thresholds for all VPN and

Tor experiments (Sections 6 and 7). Figure 10 shows

the ROC curve for three scenarios, namely, one-to-

one closed-world, one-to-all closed-world, and one-to-all

open-world on overlapping data. Each plot is obtained

by computing the TPR and FPR for a different thresh-

old value from 0 to 100. So if a higher TPR is more

Finding a Needle in a Haystack: The Traffic Analysis Version 285

important than lower FPR, the threshold should be se-

lected towards the right of the plots (higher values). If

lower FPR is preferred, the threshold should be chosen

from the left side of the plots (small value).

For malware clustering (Algorithm 1), however, a

fixed threshold tsc is used since the clustering procedure

manipulates network traces from different malware bi-

naries/families at the same time. The threshold value is

selected empirically by examining the precision and re-

call for decreasing values of tsc and selecting the value

that produces the desired trade-off between precision

and recall. Table 3 results are obtained by considering a

threshold value of 21 as recommended by Roussev and

Quates [47]. For smaller threshold values, Algorithm 1

tends to return fewer clusters grouping together traces

from different families (AVClass). For larger threshold

values, Algorithm 1 tends to split traces from the same

family (AVClass) into more than one cluster. This em-

pirical selection of tsc is based on a representative set of

5120 malware samples using typical malware communi-

cation protocols (telnet, ssh, IRC, P2P, etc.). In pres-

ence of newer malware families using different commu-

nication protocols and tactics, the fixed threshold value

of 21 may not generalize well. For the generalizability

of the proposed clustering algorithm and to maintain a

good trade-off between precision and recall, it is recom-

mended to update the fixed threshold value regularly by

considering a representative set of recent and commonly

seen malware binaries16. To further improve the detec-

tion accuracy of a specific malware family, it is possible

to use the corresponding cluster output by Algorithm 1

and generate a more customized threshold value as de-

scribed above for website fingerprinting.

Updating the threshold is also needed for website

fingerprinting. However, it is highly likely that regu-

lar updating will be required for the malware use case

since malware authors are actively trying to evade de-

tection and there are few obstacles to changing their

binaries, whereas website fingerprints are more likely to

not require regular updates since websites authors are

not actively trying to evade detection (indeed finger-

print evasion is not their primary goal) and there are

more practical restrictions on website network traffic be-

ing morphed (through padding which adds overhead or

server side mechanisms which requires cooperation from

website developers).

16 This can be automated by regularly acquiring newer mal-

ware samples from online malware databases (e.g. VirusTo-

tal [48]).

0.0 0.2 0.4 0.6 0.8 1.0
FPR(t)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R(
t)

1-to-1 closed world
1-to-all closed world
1-to-all overlapping

Fig. 10. ROC (Receiver Operating Characteristic) curve for the

threshold tsc using different VPN dataset scenarios.

10 Scalability

10.1 Complexity Analysis

The computational cost of learning a class model de-

pends on variables n, the number of packets in one in-

stance and m the number of instances per class. Let nf

be the total number of features per instance. Since the

size of a feature is B packets, nf = n − B + 1. Let

Ch be the cost of a single hash computation. A hash

value needs to be computed for every feature which re-

quires a total cost of Ch × nf . The hash computation

cost can be further optimized by using a “rolling” hash

function that allows the hash of the i + 1th feature to

be computed efficiently based on the hash of the ith

feature [14]. Then, the precedence score Sprec for each

feature is determined by consulting the ranktable. The

ranktable access is in O(1) because the normalized hash

value (Equation (1)) is the actual ranktable index. The

cost of finding the local minimum Sprec in every win-

dow is W (the window size), resulting in a total cost of

W × nf . When a feature is selected according to crite-

ria 1 (statistical improbability), it is added in another

hashtable data structure that maintains a counter of

how many instances (among the m instances) the fea-

ture appears. This is useful to quickly identify the se-

lected features (criteria 1) that are present in at least

75% of the m instances (criteria 2). The remaining m

instances are processed the same way. Finally, only the

features from the hashtable that have a counter larger

than m × 0.75 are inserted in the class bloom filters.

Let sf be the number of selected features. Inserting each

Finding a Needle in a Haystack: The Traffic Analysis Version 286

feature in the bloom filter typically requires the com-

putation of k hash functions. However, in the current

implementation, only one hash function used (SHA-1)

and its digest is split into k = 5 sub-hashes. Inserting a

feature consists in setting the k indexed bits to 1. The

detailed cost of generating a similarity digest of a class

is:

m nf (Ch + 1 + W) + sf (Ch + k) ≈ O(n m)

(9)

Typically, the number of features selected for a website

class is between 100 and 250, therefore, most of website

similarity digests are composed of one or two bloom

filters with a maximum capacity of 128 features.

Having a large network traffic sequence, the testing

phase consists in computing the similarity score between

the similarity digests of a class and the large traffic

sequence. Generating a similarity digest of large traf-

fic sequence is linear in the number of packets (O(n)).

The similarity score computation (Equation (8) con-

sists mainly of bloom filter comparisons (Equation (4)).

Bloom filters are compared by applying a logical AND

bit-wise. Let |bf | be the number of bits in bloom filter

bf . The cost of computing the Hamming similarity be-

tween two bloom filters (of the same size) is 2 × |bf |.

Let s be the number of bloom filters in the class sim-

ilarity digest and t the number of bloom filters in the

large traffic sequence similarity digest (typically s ≪ t).

Computing the similarity score requires the computa-

tion of the Hamming similarity between every bloom

filter of the class similarity digest and all bloom filters

of the large sequence similarity digest and taking the

maximum. Hence, the computation cost is:

s t (2 |bf |) ≈ O(s t) (10)

10.2 Time Efficiency

Based on the complexity analysis of the previous sec-

tion, the proposed AHBM approach does not involve

heavy computations. In addition, it introduces the pos-

sibility to analyze large chunks of network traffic with-

out splitting it into small sequences which improves fur-

ther the time efficiency of the attack. To benchmark

AHBM approach with existing traffic analysis attacks,

Table 5 shows the runtime (in minutes) of AHBM, CU-

MUL [6], and k-fingerprinting [7] approaches on differ-

ent datasets. The reported runtime corresponds to 10-

websites Runtime (min)

Evaluation Mon Unmon AHBM(Train) CUMUL

1-to-1 (CW) 100 0 3.25 (1.58) 12.05

1-to-1 (OW) 100 5000 22.5 (1.58) 67.38

1-to-1 (CW) 300 0 10.86 (4.19) 140.73

1-to-1 (OW) 300 5000 38.14 (4.19) 184.01

1-to-1 (CW) 1125 0 85.41 (16.73) 3677.4

1-to-1 (OW) 1125 111824 1928.05(16.73) -

1-to-all 1125 0 17.74 (16.73) -

1-to-all 1125 111824 81.28 (16.73) -

Evaluation Mon Unmon AHBM(Train) k-fing

1-to-1 (CW) 55 0 1.59 (0.21) 0.73

1-to-all 55 0 0.51 (0.21) -

1-to-1 (OW) 55 100207 284.49 (0.21) 146.75

1-to-all 55 100207 3.97 (0.21) -

VPN Dataset Mon Unmon AHBM (Train)

1-to-1 (CW) 548 0 15.78 (7.44)

1-to-all (CW) 548 0 9.32 (7.44)

1-to-1 (OW) 548 9645 73.47 (7.44)

1-to-all (OW) 548 9645 22.87 (7.44)

Table 5. Runtime (in minutes) of AHBM with respect to CU-

MUL [6] and k-fingerprinting [7] using Wang and Goldberg [5]

dataset (rows 1 and 2), Panchenko et al. [6] dataset (rows 3 to

8), and Hayes et al. [7] dataset (rows 9 to 12). The last four rows

report the runtime of AHBM on VPN dataset (Section 6). The

values between parentheses indicate the training time. The test-

ing time is the difference with the total runtime.

fold cross-validation17 involving both training and test-

ing. The part of the runtime spent on training is speci-

fied between parentheses. All executions were performed

on the same setup (Ubuntu 12.04, Intel Core i7-6700HQ

CPU 8 cores 2.60GHz with 16GB RAM). Compared to

CUMUL, AHBM is an order of magnitude faster in the

closed as well as the open world scenarios. Compared to

k-fingerprinting, AHBM is slighly slower in the 1-to-1

scenario because a different evaluation model (i.e. out-

of-bag [7]) is used, but faster in the 1-to-all scenario.

The last 4 rows of Table 5 indicate the runtime for the

VPN dataset.

10.3 Real-time Scenario

Using the “one-to-all” mode, AHBM approach can be

used in real-time scenario, that is, detecting the occur-

rence of certain artifacts (website or malware) in real-

time network traffic. Consider an entity through which

17 The only exception is K-fingerprinting approach (rows 9 and

11) which is evaluated using out-of-bag score which does not

require k-fold cross-validation [7].

Finding a Needle in a Haystack: The Traffic Analysis Version 287

Target Bloom Filters Checking Time Checking Time

Trace Size Generation Time (One by One) (Bulk)

5 GB 2.48s 57.57s 0.56s

11 GB 4.63s 77.83s 1.04s

16 GB 6.73s 86.50s 1.57s

Table 6. Runtime (in seconds) of all steps required to check if a

target traffic trace (5, 11, and 16GB) contains each one of 550

monitored websites. The checking can be done one website at a

time (Column 3) or in bulk (Column 4).

#Inst 4 8 12 16 20 24 28 32

#Feat 248 198 183 177 172 169 167 165

Table 7. Number of selected features.

a large amount of traffic is flowing (several GB/s) and

trying to identify specific websites (for which the trained

models (i.e. similarity digests) are available) in real-

time. The entity can choose a checking frequency (e.g.

every 5 seconds). Using AHBM, the following needs to

be done every interval. First, a similarity digest (bloom

filters) is generated for the recorded traffic since the

last check (Sections 4 and 4.1). Second, similarity scores

are computed between each trained website similarity

digest and the target traffic. This second step can be

performed in two different modes: either one website

similarity digest at a time (one by one) or by concate-

nating all similarity digests of the trained websites to-

gether and do the checking in a single pass [49]. The

bulk mode uses several threads to compute the Ham-

ming similarities (Equation 4) between the websites and

the target traffic bloom filters in parallel. Notice that

both modes (one by one and bulk) can be further opti-

mized by computing the similarity score of each website

in parallel. Table 6 shows the runtime (in seconds) of

each step for different size traffic traces and using the

same setup (Ubuntu 12.04, Intel Core i7-6700HQ CPU

8 cores 2.60GHz with 16GB RAM). The total running

time, considering the bulk mode delay (Columns 2 and

4), is within the real-time requirements. These figures

can be further improved in presence of appropriate hard-

ware and software that are typically available in surveil-

lance entities.

10.4 Effect of the Number of Training
Instances

Using fewer number of instances in the training of clas-

sifiers is a desired feature. Figure 11 shows the per-

1 2 3 4 8 12 16 20 24 28 32 36
Number of training instances per web page

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu
ra
cy
 M
ea
su
re
s

FPR(t)

TPR(t)

Fig. 11. TPR and FPR for one-to-one closed-world scenario on

VPN dataset using different number of training instances.

formance of AHBM approach when the number of in-

stances is small. The values correspond to VPN dataset

in the one-to-one closed-world scenario. Training the

classifiers using less than 90% (36) of the instances in-

volves selecting a subset of the instances (e.g. 4 out of

36, 8 out of 36, etc.) which may lead to biased results.

To remove the bias, we used cross-validation in the se-

lection of the subset of instances. Figure 11 shows the

average values obtained by choosing each time a differ-

ent subset of instances.

As expected, more training instances produce bet-

ter TPR and FPR values. Interestingly, the TPR is still

very high (94%) even when only two instances are used

to generate the similarity digest. The slight change in

the TPR and FPR values as the number of training in-

stances increases can be explained by the average num-

ber of selected features (Table 7): as the number of train-

ing instances increases, fewer and better quality features

are selected.

11 Conclusion

To the best of our knowledge, this is the first attack that

addresses the "finding a needle in a haystack" problem

in encrypted and anonymized network traffic. The at-

tack drops several assumptions made by previous work

which makes it easy to apply in realistic scenarios. In

particular, it needs few samples for training, it does not

require splitting the traffic, and the models (similarity

digest) can be efficiently generated and updated.

Finding a Needle in a Haystack: The Traffic Analysis Version 288

Since the proposed approach is based on string sim-

ilarity of packet size sequences, any manipulation of

such sequences (padding, morphing, decoy, a malware

that keeps changing its network communication tactics,

etc.) will have an impact on the attack accuracy. Most

of traffic analysis attacks suffer from this traffic shape

fragility problem, but the proposed approach is more

sensitive than the rest. The low accuracy results on Tor

dataset confirms this finding.

As future work, the proposed AHBM approach can

be used in a two stage attack where the first stage con-

sists in identifying the region of a large traffic sequence

exhibiting high similarity with a given model and the

second stage consists in using existing heavy and high

accuracy approaches to compute a more precise match-

ing score.

Acknowledgement

We would like to thank the anonymous reviewers and

in particular our shepherd Tariq Elahi for their very

helpful comments and feedback. This work is supported

by the Deanship of Scientific Research at King Fahd

University of Petroleum and Minerals (KFUPM) under

Research Grant FT131021.

References

[1] D. Herrmann, R. Wendolsky, and H. Federrath, “Website

fingerprinting: attacking popular privacy enhancing tech-

nologies with the multinomial naive-bayes classifier,” in Pro-

ceedings of the 2009 ACM workshop on Cloud computing

security, ser. CCSW ’09. New York, NY, USA: ACM, 2009,

pp. 31–42.

[2] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Web-

site fingerprinting in onion routing based anonymization

networks,” in Proceedings of the 10th annual ACM work-

shop on Privacy in the electronic society, ser. WPES ’11.

New York, NY, USA: ACM, 2011, pp. 103–114.

[3] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touch-

ing from a distance: website fingerprinting attacks and de-

fenses,” in Proceedings of the 2012 ACM conference on

Computer and communications security, ser. CCS ’12. New

York, NY, USA: ACM, 2012, pp. 605–616.

[4] T. Wang and I. Goldberg, “Improved website fingerprinting

on tor,” in 12th ACM Workshop on Privacy in the Electronic

Society, ser. WPES’13. ACM, 2013.

[5] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-

berg, “Effective attacks and provable defenses for website

fingerprinting.” in USENIX Security, 2014, pp. 143–157.

[6] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pen-

nekamp, K. Wehrle, and T. Engel, “Website fingerprinting

at internet scale,” in Network & Distributed System Security

Symposium (NDSS). IEEE Computer Society, 2016.

[7] J. Hayes and G. Danezis, “k-fingerprinting: A robust scal-

able website fingerprinting technique.” in USENIX Security

Symposium, 2016, pp. 1187–1203.

[8] M. Nasr, A. Houmansadr, and A. Mazumdar, “Compressive

traffic analysis: A new paradigm for scalable traffic analy-

sis,” in Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS ’17.

ACM, 2017, pp. 2053–2069.

[9] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt,

“A critical evaluation of website fingerprinting attacks,”

in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2014, pp.

263–274.

[10] M. Perry, “A critique of website traffic fingerprinting at-

tacks,” "https://blog.torproject.org/blog/critique-website-

traffic-fingerprinting-attacks", The Tor Blog, 2013.

[11] T. Wang and I. Goldberg, “On realistically attacking tor

with website fingerprinting,” Proceedings on Privacy En-

hancing Technologies, vol. 2016, no. 4, pp. 21–36, 2016.

[12] S. Feghhi and D. J. Leith, “A web traffic analysis attack us-

ing only timing information,” IEEE Transactions on Informa-

tion Forensics and Security, vol. 11, no. 8, pp. 1747–1759,

Aug 2016.

[13] M. O. Rabin et al., Fingerprinting by random polynomials.

Center for Research in Computing Techn., Aiken Computa-

tion Laboratory, Univ., 1981.

[14] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing:

local algorithms for document fingerprinting,” in Proceed-

ings of the 2003 ACM SIGMOD international conference on

Management of data. ACM, 2003, pp. 76–85.

[15] V. Roussev, “Data fingerprinting with similarity digests,”

in Advances in digital forensics vi. Springer, 2010, pp.

207–226.

[16] ——, “Building a better similarity trap with statistically

improbable features,” in System Sciences, 2009. HICSS’09.

42nd Hawaii International Conference on. IEEE, 2009, pp.

1–10.

[17] A. Broder and M. Mitzenmacher, “Network applications of

bloom filters: A survey,” Internet mathematics, vol. 1, no. 4,

pp. 485–509, 2004.

[18] R. Stanton, “Securing vpns: Comparing ssl and ipsec,” Com-

puter Fraud & Security, vol. 2005, no. 9, pp. 17–19, 2005.

[19] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott, “What

tcp/ip protocol headers can tell us about the web,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 29,

no. 1. ACM, 2001, pp. 245–256.

[20] Y. Shi and S. Biswas, “Detecting tunneled video streams

using traffic analysis,” in Communication Systems and Net-

works (COMSNETS), 2015 7th International Conference on.

IEEE, 2015, pp. 1–8.

[21] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson,

“Language identification of encrypted voip traffic: Alejandra

y roberto or alice and bob?” in USENIX Security, vol. 3, no.

3.6, 2007, p. 3.

[22] J. Hayes and G. Danezis, “Website fingerprinting at scale,”

University College of London (UCL), number: Technical

Finding a Needle in a Haystack: The Traffic Analysis Version 289

report, 2015.

[23] Tor-Browser-Selenium. [Online]. Available: https://github.

com/webfp/tor-browser-selenium

[24] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton,

“Peek-a-boo, i still see you: Why efficient traffic analysis

countermeasures fail,” in Security and Privacy (SP), 2012

IEEE Symposium on. IEEE, 2012, pp. 332–346.

[25] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer, “Using

machine learning techniques to identify botnet traffic,” in

In 2nd IEEE LCN Workshop on Network Security, 2006, pp.

967–974.

[26] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder:

Finding bots in network traffic without deep packet inspec-

tion,” in Proceedings of the 8th international conference on

Emerging networking experiments and technologies. ACM,

2012, pp. 349–360.

[27] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer:

Clustering analysis of network traffic for protocol-and

structure-independent botnet detection.” in USENIX Security

Symposium, vol. 5, no. 2, 2008, pp. 139–154.

[28] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering

of http-based malware and signature generation using

malicious network traces.” in NSDI, 2010, pp. 391–404.

[29] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: feature

hashing malware for scalable triage and semantic analysis,” in

Proceedings of the 18th ACM conference on Computer and

communications security. ACM, 2011, pp. 309–320.

[30] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “Mutantx-s:

Scalable malware clustering based on static features.” in

USENIX Annual Technical Conference, 2013, pp. 187–198.

[31] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and

E. Kirda, “Scalable, behavior-based malware clustering.” in

NDSS, vol. 9, 2009, pp. 8–11.

[32] M. Z. Rafique and J. Caballero, “Firma: Malware clustering

and network signature generation with mixed network

behaviors,” in International Workshop on Recent Advances

in Intrusion Detection. Springer, 2013, pp. 144–163.

[33] I. Gurrutxaga, O. Arbelaitz, J. M. Perez, J. Muguerza, J. I.

Martin, and I. Perona, “Evaluation of malware clustering

based on its dynamic behaviour,” in Proceedings of the 7th

Australasian Data Mining Conference-Volume 87. Australian

Computer Society, Inc., 2008, pp. 163–170.

[34] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,

and J. Nazario, “Automated classification and analysis of

internet malware,” in International Workshop on Recent

Advances in Intrusion Detection. Springer, 2007, pp. 178–

197.

[35] L. Rokach and O. Maimon, “"clustering methods",” in "Data

mining and knowledge discovery handbook". Springer US,

2005, pp. 321–352.

[36] R. Perdisci, D. Ariu, and G. Giacinto, “Scalable fine-grained

behavioral clustering of http-based malware,” Computer

Networks, vol. 57, no. 2, pp. 487–500, 2013.

[37] Y. Li, S. C. Sundaramurthy, A. G. Bardas, X. Ou, D. Caragea,

X. Hu, and J. Jang, “Experimental study of fuzzy hashing

in malware clustering analysis,” in 8th workshop on cyber

security experimentation and test (cset 15), vol. 5, no. 1.

USENIX Association Washington, DC, 2015, p. 52.

[38] N. Kheir, “Behavioral classification and detection of malware

through http user agent anomalies,” Journal of Information

Security and Applications, vol. 18, no. 1, pp. 2–13, 2013.

[39] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient

data clustering method for very large databases,” in ACM

Sigmod Record, vol. 25, no. 2. ACM, 1996, pp. 103–114.

[40] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an

introduction to cluster analysis. John Wiley & Sons, 2009,

vol. 344.

[41] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov,

“Learning and classification of malware behavior,” in Inter-

national Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2008, pp. 108–125.

[42] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero,

“Avclass: A tool for massive malware labeling,” in Inter-

national Symposium on Research in Attacks, Intrusions, and

Defenses. Springer, 2016, pp. 230–253.

[43] A. Nappa, M. Z. Rafique, and J. Caballero, “The malicia

dataset: identification and analysis of drive-by download

operations,” International Journal of Information Security,

vol. 14, no. 1, pp. 15–33, 2015.

[44] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic

analysis of malware behavior using machine learning,” Journal

of Computer Security, vol. 19, no. 4, pp. 639–668, 2011.

[45] “Agglomerative hierarchical clustering.” [Online]. Available:

https://scikit-learn.org/stable/modules/generated/sklearn.

cluster.AgglomerativeClustering.html

[46] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,

“Toward developing a systematic approach to generate

benchmark datasets for intrusion detection,” computers &

security, vol. 31, no. 3, pp. 357–374, 2012.

[47] V. Roussev and C. Quates, “sdhash result interpretation,”

"http://roussev.net/sdhash/tutorial/03-quick.html#result-

interpretation", 2013.

[48] “Virustotal,” "http://www.virustotal.com".

[49] V. Roussev, “Managing terabyte-scale investigations with sim-

ilarity digests.” in IFIP Int. Conf. Digital Forensics. Springer,

2012, pp. 19–34.

Finding a Needle in a Haystack: The Traffic Analysis Version 290

12 Appendix

12.1 Training and Testing Samples for
One-to-one Evaluation Model

Let Mon be the set of monitored websites. For each

fold of the 10-fold cross validation, let train(W) be

the set of training samples of website W composed of

90% of all samples and let test(W) be the set of test-

ing samples of website W composed of the remaining

10% of samples. Let Mon¬W = Mon −W (the set of

monitored websites excluding W). Let NonMon be the

set of Non-monitored websites samples. Then, ∀W ∈

Mon, ∀SW ∈ test(W), ∀U ∈ Mon¬W , ∀S¬W ∈

test(U) ∪NonMon:

Condition Case

SC(SDW , SW) ≥ tsc True Positive

SC(SDW , SW) < tsc False Negative

SC(SDW , S
¬W ≥ tsc False Positive

SC(SDW , S
¬W < tsc True Negative

Where

– SDW is the similarity digest for website W gener-

ated using train(W).

– S¬W is a testing sample of a different website.

– tsc is the similarity threshold as defined in Section 9.

12.2 Training and Testing Samples for
One-to-all Evaluation Model

Let Mon = {W1, W2, . . .}. Given a T = {t1, t2 . . .}

a set of sample traces, let seq(T) = t1 | t2 | . . .

be the sequence trace obtained by concate-

nating t1, t2, . . . together. Let Seq(Mon) =

seq(test(W1)) | seq(test(W2)) | . . . obtained by con-

catenating all test samples of all websites in Mon.

Let AS = Seq(Mon) | seq(NonMon) and AS¬W =

Seq(Mon−W) | seq(NonMon). ∀W ∈Mon:

Condition Case

SC(SDW , AS) ≥ tsc True Positive

SC(SDW , AS) < tsc False Negative

SC(SDW , AS
¬W) ≥ tsc False Positive

SC(SDW , AS
¬W) < tsc True Negative

Where

– SDW is the similarity digest for website W gener-

ated using train(W).

TP FN FP TN

1-to-1 (CW) 2145 46 104532 1094491

1-to-all (CW) 444 104 115 433

1-to-all (OW) 4460 1020 190 5290

1-to-1 (OW) 2136 55 1735 7910

1-to-all (OW Overlap) 306 241 198 349

Table 8. Underlying TP, FN, FP, and TN values for Table 1.

– AS all testing samples of all websites (monitored

and non-monitored) concatenated together in a sin-

gle sequence.

– AS¬W all testing samples of all websites (monitored

and non-monitored) concatenated together in a sin-

gle sequence except the testing samples of website

W .

– tsc is the similarity threshold as defined in Section 9.

	Finding a Needle in a Haystack: The Traffic Analysis Version
	1 Introduction
	2 Related Work
	3 Approach Motivation
	4 Hash-based Signature Generation
	4.1 Feature Selection Criteria
	4.2 Building Fingerprint Representations
	4.3 Comparing Similarity Digests
	4.4 Finding a Needle in a Haystack

	5 Evaluation Models
	6 Website Fingerprinting on VPN Data
	7 Website Fingerprinting on Tor Traffic
	8 Malware Traffic Analysis
	9 Threshold Selection
	10 Scalability
	10.1 Complexity Analysis
	10.2 Time Efficiency
	10.3 Real-time Scenario
	10.4 Effect of the Number of Training Instances

	11 Conclusion
	12 Appendix
	12.1 Training and Testing Samples for One-to-one Evaluation Model
	12.2 Training and Testing Samples for One-to-all Evaluation Model

