
Proceedings on Privacy Enhancing Technologies ; 2019 (3):50–65

Johannes K Becker*, David Li, and David Starobinski

Tracking Anonymized Bluetooth Devices
Abstract: Bluetooth Low Energy (BLE) devices use
public (non-encrypted) advertising channels to an-
nounce their presence to other devices. To prevent track-
ing on these public channels, devices may use a peri-
odically changing, randomized address instead of their
permanent Media Access Control (MAC) address. In
this work we show that many state-of-the-art devices
which are implementing such anonymization measures
are vulnerable to passive tracking that extends well be-
yond their address randomization cycles. We show that
it is possible to extract identifying tokens from the pay-
load of advertising messages for tracking purposes. We
present an address-carryover algorithm which exploits
the asynchronous nature of payload and address changes
to achieve tracking beyond the address randomization of
a device. We furthermore identify an identity-exposing
attack via a device accessory that allows permanent,
non-continuous tracking, as well as an iOS side-channel
which allows insights into user activity. Finally, we pro-
vide countermeasures against the presented algorithm
and other privacy flaws in BLE advertising.

Keywords: Bluetooth, tracking, privacy, information
leakage, side-channels, correlation attacks, traffic anal-
ysis.

DOI 10.2478/popets-2019-0036
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

1 Introduction
Bluetooth technology has facilitated the ubiquity of
instant wireless connectivity, ranging from personal
connected accessories, to smart homes, and localized
and personalized, location-based shopping experiences.
Since it was first adopted in mobile phones in the year
2000 [11], it has undergone five major Core Specification
revisions with numerous amendments [10].

In early versions of the Bluetooth specification, the
permanent Bluetooth MAC addresses of devices were

*Corresponding Author: Johannes K Becker: Boston
University, E-mail: jkbecker@bu.edu
David Li: Boston University, E-mail: dlhi@bu.edu
David Starobinski: Boston University, E-mail: staro@bu.edu

regularly broadcasted in the clear, leading to major pri-
vacy concerns over the possibility of unwanted track-
ing [33]. This was addressed in the Bluetooth Core Spec-
ification 4.0 with the introduction of the Bluetooth Low
Energy (BLE) standard also known as Bluetooth Smart.
BLE allows device manufacturers to use temporary ran-
dom addresses in over-the-air communication instead of
their permanent address to prevent tracking [38]. How-
ever, these anonymization features are defined in a way
that leaves a certain degree of flexibility to manufactur-
ers. The optionality of such privacy protecting features
is of special relevance, as the BLE standard was de-
signed specifically to support low-energy devices such as
smart watches and other wearable devices, which are an
attractive target for adversarial tracking of their users.

BLE devices broadcast so-called advertisements on
unencrypted, public channels in order to signal their
presence to other devices. Ideally, this public broadcast
contains all the required information to perform a de-
vice function, while not leaking unnecessary private in-
formation about the device or its user. In some cases,
however, devices may broadcast data that exposes sen-
sitive details about themselves or even other devices.

In this work, we show how even state-of-the-art
devices such as Windows 10 computers and iPhones,
which do implement privacy protecting measures such
as address randomization may be vulnerable to contin-
uous tracking. We first examine various types of ad-
vertising messages and identify so-called identifying to-
kens, which are unique to a device and remain static for
long enough to be used as secondary identifiers besides
the address. We present an online algorithm called the
address-carryover algorithm, which exploits the fact
that identifying tokens and the random address do not
change in sync, to continuously track a device despite
implementing anonymization measures. To our knowl-
edge, this approach affects all Windows 10, iOS, and
macOS devices. The algorithm does not require mes-
sage decryption or breaking Bluetooth security in any
way, as it is based entirely on public, unencrypted ad-
vertising traffic.

The Bluetooth 5 Specification extends usable com-
munication range to whole buildings or hundreds of
meters in line-of-sight transmissions [9, 26]. While the
tracking attack proposed in this paper considers track-
ing by a single adversary in such an operating radius,

Tracking Anonymized Bluetooth Devices 51

previous work [22] suggests that local BLE tracking
methods may be significantly compounded by coordi-
nating them in a botnet of adversaries, resulting in po-
tentially global tracking capabilities.

The main contributions of this paper are as follows:

1. We describe a tracking vulnerability that affects
Windows 10, iOS, and macOS devices as long as
they are continuously observed by the adversary.

2. We develop a methodology that can be applied to
devices from various manufacturers, based on raw
BLE advertising log files.

3. We present an algorithm that allows tracking be-
yond the address randomization of a device, and
measure the resulting maximum tracking time
(MTT).

4. We identify other privacy vulnerabilities that exist
on certain device types, which expose device identi-
fiers permanently via a peripheral, and which leak
activity information on iOS devices.

5. We provide recommendations and potential coun-
termeasures to the tracking vulnerabilities uncov-
ered in this work.

The rest of this paper is structured as follows: Sec-
tion 2 discusses prior related work. Section 3 presents
background information on the Bluetooth protocol nec-
essary to understand this work. In Section 4, we de-
scribe our adversarial model and the methodology used
in this work, followed by the experimental setup in Sec-
tion 5. We present our results in Section 6, followed by
recommendations for the avoidance of unwanted device
tracking in Section 7. We summarize our findings and
give an outlook on further research in Section 8.

2 Related Work
Privacy and security concerns over Bluetooth date back
to its very first release [23]. Anonymizing devices in pub-
lic channel communication only became available with
the introduction of BLE in Bluetooth 4.0 [6]. A lot of re-
search regarding the effectiveness of MAC address ran-
domization is focused on Wi-Fi, where the same privacy
concern of broadcasting permanent identifiers exists,
but vulnerabilities are often not easily transferable to
the Bluetooth case as they are based on different areas
specific to the Wi-Fi network stack. We will highlight
some important works relating to more general cases of

Bluetooth and Wi-Fi tracking concerns, as well as more
BLE-specific techniques and utilities.

In 2007, Spill and Bittau [33] presented several
techniques for eavesdropping on Bluetooth 2.0 com-
munication using a GNU Radio-based Bluetooth snif-
fer and USRP software-defined radio hardware. Their
work describes an approach for intercepting packets,
and reverse-engineering all the parameters required to
eavesdrop on Bluetooth communication [33]. However,
these findings only concern the Bluetooth Classic im-
plementation, which is of decreasing relevance in light
of BLE and Bluetooth 5.

In 2015, Jameel and Dungen presented an open-
source library for scanning Bluetooth Low Energy (LE)
and Active RFID advertising [24]. Their work sum-
marizes different available Beacon protocols, which are
proximity-based broadcast protocols [1, 18] and enable
all kinds of localized interactions with smartphones and
other Bluetooth devices via the BLE advertising chan-
nels. Furthermore, the authors published a library called
advlib [29], which processes raw BLE advertising mes-
sages and decodes them into an open, portable data
format. This library enables software developers to eas-
ily integrate BLE advertising-based functionality into
their software, without having to manually decode low-
level protocols. The library further powers the open-
source “collaborative repository” Sniffypedia [30], which
presents a large number of publicly known BLE adver-
tising identifiers in a searchable and accessible format.
This platform can help classify Bluetooth device classes
for reconnaissance purposes, but does not offer device
tracking capabilities.

Vanhoef et al. [34] present techniques to gain ac-
cess to permanent MAC addresses by exploiting probe
requests in Wi-Fi. They develop an algorithm which
relies on timing features and sequence numbers found
in Wi-Fi probe requests to identify devices regardless
of their MAC address. They further describe a variant
of the Karma Attack – exploiting the fact that many
devices will expose information to supposedly known
and trusted networks [13] by creating a catch-all access
point [14] – which creates large numbers of popular Wi-
Fi networks in order to invite devices to connect, often
presenting their permanent MAC address in a suppos-
edly trusted context.

Issoufaly and Tournoux [22] show that despite the
existence of privacy-preserving MAC address random-
ization in Bluetooth 4.0 LE, not all devices make use
of this functionality and are therefore vulnerable to
tracking. Furthermore, they showed how maliciously
distributing suitable tracking software to a number of

Tracking Anonymized Bluetooth Devices 52

mobile devices – a “BLE Botnet” – extends tracking
capabilities far beyond the local transmission range of
regular Bluetooth communication. Combining BLE pri-
vacy with the notion of a potentially global botnet mo-
tivates our work as it extends the privacy threat from
local presence detection to large-scale location tracking,
which would be realistic to implement for nation-state
actors. While Issoufaly and Tournoux focus on track-
ing devices that use static device addresses, our work
focuses on tracking devices that use dynamically ran-
domized addresses. These addresses change depending
on regeneration parameters set by their manufacturers.

Along the same line, Martin et al. [27] show that
MAC address randomization is often defeated by not be-
ing implemented properly or consistently, partly build-
ing upon previous approaches [34]. Furthermore, they
show flaws in the address randomization of Android
phones, which allow the deduction of device types via
address prefixes, as well as their global MAC address
via information found in broadcasted WPS attributes.
They also identify a control frame attack that exposes
the permanent Wi-Fi MAC address of a device with
100% success rate [27, p. 280]. Our approach differs in
that we do not retrieve information through reversal
of hashes or other reverse-engineering methods, and we
use entirely passive sniffing to generate insights which
allow device tracking. Our tracking method, based on
extracting identifying tokens in the payload of advertis-
ing messages, leverages specific Bluetooth features and
differs from this previous line of work.

3 Background
Bluetooth is a wireless communication protocol on the
2.4 GHz ISM band. Our focus lies on the Low En-
ergy specification, which was introduced in 2010 with
Bluetooth 4.0 [6]. Bluetooth LE (BLE) is optimized
for small, often battery-powered devices with relatively
strict energy restrictions, like connected wearables, wire-
less smart sensors, or computer accessories like digital
pencils. The Bluetooth 5 Specification adds various fea-
ture and performance improvements, notably a larger
communication range [9], which allows for up to 780 me-
ters of line-of-sight connectivity [26].

We focus on introducing the elements that are es-
sential for the experiments described in the following
Sections. We refer to Heydon [20, p. 7] for a general
high-level introduction to the Bluetooth 5 architecture
and the Bluetooth 5 Core Specification for details [8].

Scanning

StandbyAdvertising Initiating

Connection
Maste

rSlave

Fig. 1. The Link Layer State machine [20, p. 15].

3.1 Physical Layer and Link Layer

BLE operates on 40 physical channels spaced in 2 MHz
steps from 2402 MHz to 2480 MHz [8, p. 2535f.]. Three
of these channels are so-called advertising channels at
2402 MHz, 2426 MHz, and 2480 MHz – frequencies with
minimal interference with other 2.4 GHz band traffic
(notably Wi-Fi) [24]. These channels are used to broad-
cast advertising messages, which may be simple pe-
riodic, presence announcements, scanning requests to-
wards other devices, beacons containing location-based
metadata, and other public broadcast-type informa-
tion. The remaining channels are used primarily for
data transmissions between paired devices and employ a
pseudo-random channel hopping scheme, which is nego-
tiated between the two connected parties upon connec-
tion to avoid interference with other ISM band traffic.

On the link layer, Bluetooth defines different states,
shown in Figure 1. In the Advertising state, the link
layer creates Advertising Events which are broadcasted
on all advertising channels. These events contain differ-
ent types of Payload Data Units (PDU)1. In our work,
the following PDU types are relevant:

– the Connectable Directed Event using the
ADV_DIRECT_IND PDU, which invites a specifically
addressed device to initiate a connection.

– the Connectable and Scannable Undirected Event
using the ADV_IND PDU, which allows any device
to respond with scanning requests or connection re-
quests.

In the Scanning state, the link layer receives adver-
tising messages without responding (passive scanning)
or responds with scan requests to inquire about further

1 The full list of advertising event types and corresponding PDU
types can be found in [8, p. 2609, Table 4.1].

Tracking Anonymized Bluetooth Devices 53

a)

P
re
am

bl
e
(1

by
te
)

0

A
cc
es
s
A
dd

re
ss

(4
by

te
)

8

P
D
U

H
ea
de

r
(2

by
te
)

40

PDU Payload
(1-255 byte)

56

CRC
(3 byte)

bit address

b)
PDU Type

(4 bit)

0

R
F
U

(1
bi
t)

4

C
hS

el
(1

bi
t)

5

Tx
A
dd

(1
bi
t)

6

R
xA

dd
(1

bi
t)

7

Length
(8 bit)

8 bit address

Fig. 2. The BLE advertising packet format (Fig. 2.a)) and the
Advertising Channel PDU Header (Fig. 2.b)) [8, p. 2562, 2567].

device details (active scanning) [8, p. 2633]. In the Ini-
tiating state, the link layer listens for advertising mes-
sages, and sends Connect Requests to advertising de-
vices. If the requested device responds, the devices can
enter a Connection state [8, p. 2637].

In the Connection State, devices implementing the
so-called Central role can connect to up to 8 Periph-
eral role devices as their Master, while Peripheral de-
vices can connect to one Central role device as a Slave.
Smartphones or PCs are typical Central role devices
connecting to multiple wireless input devices, activity
trackers or other wireless sensors. However, devices may
implement both roles and may therefore send advertis-
ing messages (Peripheral role) while scanning for adver-
tising messages (Central role)2. In our work, we observe
devices which are in the Advertising state using an ob-
server device which is in the Passive Scanning state.

3.2 Advertising Packet Format

We next provide details on the structure and contents
of advertising packets, since those will be exploited to
track and distinguish between different devices. Adver-
tising packets follow a structure shown in Figure 2.a),
consisting of a preamble, an Access Address (AA)3, a
Payload Data Unit (PDU) and a CRC field. The ad-

2 I.e., a BLE device can be in more than one state shown in
Figure 1 at the same time.
3 The access address is always 0x8E89BED6 for advertising pay-
loads [8, p. 2563].

AdvA
(6 bytes)

0

TargetA
(6 bytes)

48 bit address

Fig. 3. The PDU Payload format for the ADV_DIRECT_IND PDU
Type contains an Advertising Address (AdvA) and a Target Ad-
dress (TargetA). [8, p. 2570.].

a)
AdvA
(6 byte)

0

AdvData
(0-31 byte)

48 bit address

b)
AD Structure 1

(≥ 3 byte)

0

AD Structure 2
(≥ 3 byte)

32

. . .
AD Structure n

(≥ 3 byte)

bit address

c)
Le

ng
th

(1
by

te
)

0

A
D

T
yp

e
(n

by
te
)

8

AD Data
(Length− n byte)

16 bit address

Fig. 4. PDU Payload format for ADV_IND and ADV_NONCONN_IND
PDU Types (Fig. 4.a)), the AdvData format (Fig. 4.b)), and the
AD Structure format (Fig. 4.c)) [8, p. 2086, 2569ff.] [4].

vertising channel PDU itself consists of a header and
a payload depending on the PDU Type defined in the
header [8, p. 2567] (see Figure 2.b)).

The PDU Payload of a directed advertising event
contains an Advertising Address (AdvA) and a Target
Address (TargetA), as shown in Figure 3. Only devices
with the matching Target Address can initiate a con-
nection by sending a Connect Request.

Indirected advertising allows any device receiving
the PDU to respond with a Scan Request (requesting
information about available features) or a Connect Re-
quest. The PDU Payload for this type of advertising is
formatted as shown in Figure 4, containing an Advertis-
ing Address (AdvA) and Advertising Data (AdvData),
which may contain one or more AD Structures (see Fig-
ures 4.b). Finally, AD Types define the content of the
AD Data contained in each AD Structure (Figure 4.c).

An overview of some AD Types that we will use
later in this paper is shown in Table 1, we refer to [4]
for the full list.

Most AD Types define simple numbers or strings.
TheManufacturer Specific Data type is worth highlight-
ing, as it gives device manufacturers the flexibility to

Tracking Anonymized Bluetooth Devices 54

Length
(1 byte)

0

0xFF
(1 byte)

8
Manufacturer

ID
(2 byte)

16

Manufacturer Data
(Length− 3 byte)

32 bit address

Fig. 5. The Manufacturer Specific Data AD Structure format
[3, 7].

AD Type Name Description
0x01 Flags BLE capability flags
0x06 List of 128-bit Service

Class UUIDs
globally unique identifier
for a certain device service

0x09 Complete Local Name Device “friendly name”
0x16 Service Data Service UUID as per [5]
0xFF Manufacturer Specific

Data
custom data structure con-
tainer (see Figure 5)

Table 1. An overview of some relevant AD Types [4] [8, Vol. 3,
Part C, Sections 8.1, 11.1, and 18] [7, Part A, Section 1].

define further data structures within the AD Data field.
Figure 5 shows a Manufacturer Specific Data AD Struc-
ture. This AD Type allows manufacturers to develop
their own advertising-based protocols that live within
this data4, which may contain data that our proposed
algorithm exploits.

3.3 Advertising Addresses

The Bluetooth architecture generally refers to devices
that transmit advertising packets as advertisers. Devices
listening to advertising packets are referred to as scan-
ners if they listen without intention of connecting, and
as initiators if they intend to make Connect Requests
in response to suitable advertising events [8, p. 170].

The Advertising Address shown in Figures 3 and 4 is
the 48-bit MAC address of the advertiser transmitting
the advertising packet. This address may be a public
or random address depending on the TxAdd flag in the
PDU Header (see Fig. 2).

A public address (TxAdd = 0) is the standard IEEE-
assigned 48-bit MAC address obtained from the IEEE
Registration Authority, in which the 24 least significant
bits are manufacturer-assigned, while the 24 most signif-
icant bits represent the IEEE-assigned company ID [21].
These addresses are permanently attached to the de-

4 Widely adopted manufacturer-specific data protocols are the
Apple iBeacon protocol [1] or other open protocols like Google’s
Eddystone [18] and Radius Networks’ AltBeacon [28].

vice hardware, making them a vulnerability to long term
tracking if used in public communication.

Random addresses (TxAdd = 1) may be static, in
which case they are randomly generated whenever the
device reboots or remain with the device permanently,
which makes them vulnerable to long-term tracking.
Random private addresses prevent address-based track-
ing by regenerating periodically, essentially anonymiz-
ing the device identity [38]. Such random private ad-
dresses may either be an unresolvable address made of
a random number, or they may be resolvable to a per-
manent address by trusted devices holding an Identity
Resolving Key (IRK). This can be used to send directed
advertising to a specific device without broadcasting its
permanent address in the clear and is further discussed
in Section 7 containing our Recommendations. Resolv-
able and unresolvable random addresses can be distin-
guished by their two most significant bits being set to
0b01 and 0b00, respectively [8, p. 2558].

4 Methodology

4.1 Adversarial Model

This paper aims to uncover potential security and pri-
vacy flaws in BLE devices, as they appear “in the wild”.
We consider a local adversary5 in the scanning link
layer state (see Section 3.1). As such, it is a passive,
external adversary which reads continuously, but never
adds, removes, or modifies ongoing BLE adversary traf-
fic. Specifically, the adversary never sends scan requests
or connect requests, and remains entirely passive dur-
ing the attack, i.e., there is no bi-directional interaction
with the target device. We assume that the adversary
is capable of monitoring the ongoing advertising traffic
in order to be aware of changes in advertising messages
as they occur over time.

We do not make any assumptions about the victim
devices, other than Bluetooth being turned on. Note
that devices may implement the Peripheral and Central
roles at the same time, and thus remain in advertis-
ing state for the Peripheral role despite ongoing connec-
tions as a Master device. Thus, the ability of tracking
smartphones or computers via passive tracking mainly
depends on whether they implement the Peripheral role.

5 Emphasized terms in this Section in line with the definitions
of privacy metrics given in [37, Section 4].

Tracking Anonymized Bluetooth Devices 55

The adversary only needs to observe Bluetooth ad-
vertising messages (which are sent in plain text), i.e.,
the adversary does not require the capability to read en-
crypted data transmissions or follow channel hopping.
The adversary implements a sniffing device (in our case,
a Software-Defined Radio (SDR)) which listens to one
of the Bluetooth advertising channels (i.e., channels 37,
38, or 396). The packets are then broken down into their
elements as defined in the Bluetooth specification (see
also Figure 2) and further analyzed for any observable
data which could be used to compromise user privacy.

As advertising messages are sent in the clear and are
not authenticated, proving authenticity and integrity of
an advertising message is not easy in most cases. As
such, the methodology used in this paper considers be-
nign communication by devices which are oblivious to
potential privacy issues in their advertising patterns,
i.e., they neither forge the contents of their messages
nor change the traffic patterns for their messages in or-
der to obfuscate their identity.

This work assumes that an adversary will at some
point make a connection between an arbitrary identifier
in an advertising event and its real-world associated de-
vice, and will then continuously observe ongoing BLE
advertising traffic in order to track it without the user’s
consent for the longest time period possible. Adversary
success is defined as the adversary being able to hold on
to a device identity beyond its address randomization
using local, passive, continuous observation.

In this paper, we use the terms user and device syn-
onymously. We assume that devices are being tracked
with the intent of tracking their users, and the ability
to track a device implies the ability to track its user.
We therefore do not consider devices that are shared
between multiple users and would require such a logical
distinction.

4.2 Privacy Metrics

The applied metrics focus on the adversary’s ability to
track a device over time due to some observable signa-
ture. Specifically, let the anonymity set size ASu rep-
resent the set of users that an adversary cannot distin-

6 It is assumed that any of the available advertising channels
can be considered equivalent as advertising events are usually
broadcast to all three channels in a round-robin fashion.

guish from a targeted user u [37, p. 57:9] [32, p. 5], i.e.:

|ASu| = number of users indistinguishable
from user u. (1)

The primary metric of interest in this paper is the
Maximum Tracking Time (MTT), which is defined as
the cumulative time that a user u can be uniquely iden-
tified [37, p. 57:30] [32, p. 5], that is:

MTTu = time during which |ASu| = 1
for a user u. (2)

We show that several types of devices have un-
bounded MTT .

4.3 Device Tracking Algorithm

We propose a two-phase algorithm which allows track-
ing of devices beyond their address randomization. The
algorithm consists of an offline pre-processing phase and
an online tracking phase.

4.3.1 Phase 1: Pre-Processing

The pre-processing phase uses recorded log files con-
taining decoded BLE advertising packets (see Figure 2)
and their PDU Payloads in raw format. All collected log
files are processed offline in order to identify potential
identifying tokens occurring in advertising messages. An
identifying token can be any sequence of bits contained
in an advertising message which allows distinguishing
one device from another – be it by design (such as the
advertising address) or by a side effect. As a general
rule, an identifying token for a given device should re-
main fixed over a certain period of time, while being
unique to one device (i.e., its values should not collide
with values produced by other devices within range over
time).

The set of useful identifying tokens for a class of de-
vices depends on its operating system and other device-
specific hardware or software features, as all of these
factors determine the structure and content of advertis-
ing messages.

In this sense, a universal MAC address [21, p. 22f.]
is a perfect identifying token as it is guaranteed to be
unique to a device, and is permanently linked to a de-
vice. In a local context, these requirements can be re-
laxed as long as the distinction between the devices in
range is still possible with high confidence.

Tracking Anonymized Bluetooth Devices 56

Identifying tokens may be found either by look-
ing at the raw PDU Payload and isolating a byte se-
quence which fulfills the requirements laid out above,
or by breaking down the PDU Payload according to the
Bluetooth protocol specification and identifying suitable
metadata elements.

In order to avoid collisions between identifying to-
kens, it is important that the bit length n of the identi-
fying token be large enough. Formally, suppose an ad-
versary aims to track a Bluetooth device over a certain
period, say a week, in an area containing at most m

other Bluetooth devices with the same types of identify-
ing tokens (devices with different identifying tokens are
trivial to distinguish). Furthermore, suppose that each
device changes its identifying token at a rate no faster
than once every 15 minutes (based on our experimental
data, 15 minutes appears to be an upper bound on the
frequency of changes of identifying tokens). This means
that the targeted device will generate at most k = 672
tokens in a week.

Assume that each identifying token is generated
uniformly at random (a reasonable assumption based
on our experimental data). The probability that an-
other Bluetooth device produces tokens that do not con-
flict with one of these k tokens is at least (1 − k/2n)k.
Hence, the probability that all the other m devices pro-
duce different tokens than the targeted device is at
least (1 − k/2n)mk ≥ 1 − mk2/2n, where the latter
inequality is obtained by applying Bernoulli’s inequal-
ity [17]. Therefore, by choosing 1 −mk2/2n ≥ 1 − p or
n ≥ dlog2(mk2/p)e, we can ensure a collision probabil-
ity smaller than p. As an example, for m = 1000 devices
and p = 10−3, we obtain n ≥ 39 bits. Consequently,
identifying tokens that have a length of at least 40 bits
(i.e., 5 bytes), satisfy this inequality.

Note that performing pre-processing is only re-
quired once per device class. Once a suitable set of iden-
tifying tokens has been found for a class of devices, it
can be applied to track any individual device in this
class.

4.3.2 Phase 2: Tracking

The address-carryover algorithm (Algorithm 1) is
an online algorithm that continuously observes changes
in the address as well as any other relevant identifying
tokens found in the pre-processing phase.

The algorithm listens to incoming advertising mes-
sages mi as they are broadcast on one of the BLE adver-
tising channels with the goal of tracking a target device

D beyond the point where it randomizes its advertising
address.

If the incoming message contains the right identify-
ing tokens for the class of devices that D belongs to, the
tokens are extracted (line 4). Then, if the incoming ad-
vertising address is identical to the existing advertising
address (addr), we still know the device identity and
we update the stored values of the identifying tokens
if any changes are detected (line 7). Otherwise, if the
advertising address has changed, a match is attempted
using any of the available identifying tokens as a pseudo-
identity – in case of a successful match, the address of
device D can be updated with the incoming address and
address-carryover was successful (line 11). In either of
these cases, the timeout counter is reset to indicate that
the device D is being tracked successfully. If neither ad-
dress nor identifying token matches succeed for a certain
period of time Tmax, it is assumed that device tracking
has failed and the algorithm terminates.

The algorithm requires an amount of memory and
computation that are linear in the size of the set of
identifying tokens. Since there is only a handful of iden-
tifying tokens, the algorithm can be run in real-time
without limitation.

5 Experimental Setup
The experimental setup used in this work consists of
monitoring one of the BLE advertising channels for a
certain amount of time and analyzing the content of
advertising events that are broadcast by devices within
typical Bluetooth proximity.

We use a modified version of Xianjun Jiao’s SDR-
based BLE sniffer [25] for all experiments. The col-
lected log files contain advertising messages according
to Figure 2, with all metadata decoded and the PDU
payload in raw hexadecimal ASCII characters. In the
pre-processing phase, we decode them according to the
structure shown in Figures 2, 4, and 5, where applica-
ble. The system used for all experiments is based on a
Ubuntu Xenial-based PC and the HackRF One SDR.

We chose to use an SDR-based Bluetooth sniffer
over a sniffer based on the regular Bluetooth stack to
remain independent of variations in Bluetooth imple-
mentations on different hardware and OSes, to be able
to observe raw data which is typically discarded by the
low-level network stack, and in order to facilitate future
consideration of physical layer metrics in our research.

Tracking Anonymized Bluetooth Devices 57

Algorithm 1: Address-carryover algorithm
Input : stream of advertising messages m1, m2, . . .

Variable : addr is an advertising address for device D

Variable : A is a list of identifying tokens [a1, a2, ...] for device D

Variable : Tmax is the maximum time tracking will be attempted
Variable : timeout is a time counter
Initialize: addr to the current random address of the target device D, A to the currently broadcast

values of A for device D. Set timeout to zero and begin counting.
1 while timeout < Tmax do
2 receive message mi;
3 if message mi contains at least one identifying token then
4 extract incoming addr all contained identifying tokens from message mi;
5 if incoming addr = existing addr then
6 if any incoming token values differ from existing token values in A then
7 update A to reflect new values of tokens;
8 reset timeout ; // D is known (address unchanged)
9 else unknown address:

10 if the value of any identifying token in mi matches the corresponding value in A then
11 addr := incoming address;
12 update A to reflect new values of tokens;
13 reset timeout; // D is known (address carried over)

Result: Successfully tracked device D, new address is <addr>.
14 end

/* timeout exceeds T_max: D is lost */

However, advanced knowledge of SDR is not required
for this paper.

Once we ensure that Bluetooth is enabled, the de-
vice is allowed to go to lock screen or be casually used,
i.e., we do not require the Bluetooth settings to remain
open during the attack. The sniffer passively listens to
Bluetooth advertisements and does not actively engage
in communication. We perform four weeks worth of 1-
2 hour long daily recordings and additional 15 longer
recordings ranging from 5 hours to multiple days.

We consider two types of advertising messages:

OS Advertising, i.e., regular BLE advertising activ-
ity for each considered OS (Section 5.1).

Accessory Activation, i.e., traffic originating from
typical BLE-based accessories (Section 5.2).

Note that the sniffer also records advertising mes-
sages of other (non-tracked) devices in proximity, which
are ignored.

5.1 OS Advertising

This scenario describes BLE advertising events which
are periodically transmitted by an operating system
when a device is in a Bluetooth-enabled state, with-
out being triggered by a particular user action. In this
scenario, the observer passively listens to a Bluetooth-
enabled device while it is active for a certain amount of
time. During our daily recordings over the period of four
weeks, we identify whether advertising messages contain
long-term static components.

We examine the following types of devices – all of
which are owned and operated by the authors:

Windows 10 devices. We passively record advertis-
ing events, while the Bluetooth in Windows 10 is en-
abled. We measure data generated by one Microsoft
Surface Pro 5, two laptops and one desktop PC from
other OEMs, all running an up-to-date Windows 10.

macOS and iOS devices. We passively record ad-
vertising events, while Bluetooth in macOS / iOS
is enabled. Additionally, the Airdrop sharing fea-
ture is launched on the respective devices, and the
resulting advertising events are recorded. We mea-
sure data generated by various up-to-date iPhones

Tracking Anonymized Bluetooth Devices 58

(iPhone 5s, iPhone 8, iPhone X, running iOS 11),
two iPads (iPad, iPad Pro running iOS 12), and
two Macs (iMac A1419 and Macbook Pro A1502
running macOS 10.13).

Android devices. We passively record advertising
events, while Bluetooth in Android is enabled. We
measure data generated by two different Android
devices (Samsung Galaxy S5, Google Nexus 4).

Smartwatches. We connect each smartwatch to its
respective app on a smartphone and then deacti-
vate Bluetooth on the smartphone. This triggers
the smartwatch to advertise its presence. We sample
data from two Fitbit Charge 2 smartwatches inter-
mittently over the course of multiple months. Ad-
ditionally, one of the smartwatches is subjected to
both a restart and a factory reset to find out if these
actions affect its behavior.

5.2 Accessory Activation

This scenario describes advertising events triggered by
the use of BLE-based accessories. Our work considers
two types of touch-sensitive BLE-enabled pencils.

Microsoft Surface Pen. The Microsoft Surface Pro
tablet can be used with a Microsoft Surface Pen.
This digital pen is connected to the device via BLE
in order to transmit pressure sensitivity data and
furthermore transmit signals from its two buttons.
Our experiment consists of disconnecting and re-
connecting the pen in order to clarify whether the
Surface Pro, or the pen use a static address or oth-
erwise leaks privacy-relevant information. Further-
more, we examine the effect of button actuation for
the same goal.

iPad Pro Pen. The iPad Pro can be used with the
Apple Pencil pen. This pen is connected to the iPad
via BLE in order to transmit pressure sensitivity
data. Our experiment consists of disconnecting and
reconnecting the pen in order to find out whether
the iPad Pro, or the pen leak any privacy-relevant
information.

OS Prevalent Type Prevalent Content
Windows 10 ADV_NONCONN_IND Company Identifier 0x0006
macOS, iOS ADV_IND Company Identifier 0x004c
Android SCAN_REQ Target Address
Fitbit ADV_IND Fitbit Service Class UUID

Surface Pen ADV_DIRECT_IND Target Address

Table 2. Typical advertising features per operating system.

6 Results

6.1 Pre-Processing

In the pre-processing phase, we seek to identify suitable
identifying tokens which may be used to track devices
beyond their address randomization.

Operating system vendors implement widely differ-
ing strategies when it comes to implementing Bluetooth
advertisements, driven by overall system architecture
and ecosystem considerations. Therefore, different op-
erating systems behave in different ways in order to an-
nounce their presence to nearby devices, and the OS
origin is typically easily distinguishable by some high-
level features in the broadcasted advertising messages.

Identifying the major OS vendors and device types
is fairly straightforward, as Apple and Microsoft de-
vices advertise using manufacturer-specific data, which
is always prepended by an officially assigned Com-
pany ID [3]. In other cases where this approach is not
used, the vendor can typically be found out by in-
specting other specific characteristics like Service Class
UUIDs [7, pp. 10, 12f., 18] or Service UUIDs [5].

The advertising message features shown in Table 2
allow for such a high-level classification of messages
based on the considered devices.

6.1.1 Windows 10 devices

Windows 10 devices typically advertise a PDU Payload
with only a single AD Structure of type Manufacturer
Specific Data, as shown in Figure 6.

After recording for an extended period of time, we
find the advertising address to regenerate approximately
every 960 seconds, i.e., giving an adversary an average
tracking time of approximately 16 minutes based on the
address until the device is lost. This shows that Win-
dows 10 implements random private addresses (see Sec-
tion 3.3).

The Manufacturer Specific Data contained in the
payload starts with the Company Identifier for Mi-

Tracking Anonymized Bluetooth Devices 59

AdvA: <48bit random address>
AdvData: 1 AD Structure:

0xFF → Manufacturer Specific Data:
Company Identifier: 0x0006 → “Microsoft”
Data: <27 bytes of data>

Fig. 6. A a typical Windows 10 advertisement PDU Payload,
containing a single "Manufacturer Specific Data" AD Structure
(see Figure 5).

crosoft [3] 0x0006 and 27 bytes of proprietary data (see
Figure 6), comprised of four fixed bytes followed by 23
variable bytes7. The first fixed bytes do not differ be-
tween computers, i.e., they are not suitable to be used as
identifying tokens. The 23 variable bytes, however, ap-
pear uniformly random and, in fact, seem to be unique
per device.

Furthermore, the payload is observed to remain
static for approximately one hour. We observed no
differences in advertising behavior between the ob-
served devices that would indicate manufacturer-
specific, rather than OS-specific behavior. We therefore
retain the following identifying token for Windows 10
devices:

AW in10 = [Manufacturer Specific Data[-23:]]. (3)

6.1.2 Apple (macOS and iOS) Computers and
Smartphones

MacOS and iOS devices regularly advertise their pres-
ence as well. The advertising rates in macOS and iOS
are much higher than in Windows 10, at up to two ad-
vertising events per second. Address lifetimes are highly
variable, ranging from seconds up to around two hours
in rare edge cases, with an average of around 20 minutes.

The typical message format contains, similar to
the Windows 10 payload, a manufacturer-specific data
field. However, Apple devices can be further distin-
guished by advertising an additional flags data struc-
ture which Windows 10 does not use (see Figure 7). The
manufacturer-specific data may contain one or more of
Apple-specific data types, which are used for specific
functionality in iOS and macOS which is facilitated by
BLE. Table 3 shows an overview of the encountered data

7 Example payload:
01092002︸ ︷︷ ︸
fixed bytes

d70d650aac181b8397b8588f3a62de55810d23db56f176︸ ︷︷ ︸
variable bytes

.

AdvA: <48bit random address>
AdvData: 2 AD Structures:

0x01 → Flags: 0x1a
0xFF → Manufacturer Specific Data:

Company Identifier: 0x004c → “Apple”
Data: (nearby or handoff or both)

nearby (0x10) <5 bytes of data>
handoff (0x0c) <14 bytes of data>

Fig. 7. A a typical Apple device advertisement PDU Payload,
containing a single "Manufacturer Specific Data" AD Structure
(see Figure 5).

Description iBeacon AirDrop Airpods Airplay Handoff Nearby
Source

Type 0x02 0x05 0x07 0x0a 0x0c 0x10
Occurrence 4,762 4,649 2,151 13,846 79,001 87,598

Table 3. Occurrences of the most common data types observed in
iOS/macOS advertising messages.

types. Of the data types observed, the nearby and hand-
off types are by far the most frequent.

The handoff data structure consists of 14 bytes of
data, in which the first bytes seems to be always zero
and the remaining bytes may take arbitrary values. This
data structure changes its value based on multiple fac-
tors, some of which we identify in Section 6.3.2. None
of the observed values showed collisions between devices
and the data has a sufficient length, making this a good
candidate for an identifying token.

The nearby data structure consists of 5 bytes of
data. Within these 5 bytes, the first two bytes do not
seem to be fully random, reducing our useful length be-
low the threshold set in Section 4.3.1, i.e., the number of
bits is smaller than what we would want to avoid iden-
tity collisions. In practice, we have not observed values
colliding, and have successfully been using nearby data
in our experiments as a second token to the handoff
data. We conclude that while it is of practical useful-
ness to our algorithm, it should not be relied on as a
single identifying token.

Clearly, types of data which rarely appear in adver-
tising messages are not suitable identifying tokens. We
therefore consider the nearby and handoff data struc-
tures as the best candidates, since they appear an order
of magnitude more often than any other data type (see
Table 3).

An additional data type worth mentioning is the
Airdrop data type. Airdrop allows users to share files
with a nearby friend using an Apple-specific combina-

Tracking Anonymized Bluetooth Devices 60

AdvA: <48bit random address>
AdvData: 3 AD Structures:

0x01 → Flags: 0x06
0x06 → Incompl.List of 128-bit Service Class UUIDs:

adabfb006e7d4601bda2bffaa68956ba
0x16 → Service Data:

uuid: 0x180a → “Device Information”
data: <5 bytes of data>

Fig. 8. A typical Fitbit PDU Payload (relevant AD Types are
defined in [7, p. 10,p. 12f.,p. 18]).

tion of Wi-Fi and Bluetooth for peer-to-peer file trans-
fer. Airdrop produces a significant amount of advertis-
ing events, which are triggered whenever a user taps or
clicks a native share button in the respective OS. Inter-
estingly, Airdrop uses a separate randomized advertis-
ing address for this purpose, which cannot be associated
with the regular address used for other advertising –
making it unsuitable as an identifying token.

Overall, we observed no differences in advertising
behavior between the observed iOS or macOS devices
that would indicate noteworthy behavioral differences
between iOS 11, 12, or macOS 10.13. We therefore retain
the identifying tokens

AApple = AiOS = AmacOS = [nearby, handoff].(4)

6.1.3 Android smartphones

We observed Android advertising addresses to change in
intervals of about 15-45 minutes. However, the observed
Android smartphones use a completely different adver-
tising approach than Windows or iOS/macOS, making
them immune to the address-carryover algorithm. The
tested Android phones never send out manufacturer-
specific data or other potentially device-identifying data
in regular intervals. Instead the OS scans for advertise-
ments of other devices when the Bluetooth settings are
opened by the user. Due to the lack of active, contin-
uous advertising, identifying tokens cannot be assem-
bled, making the observed Android devices immune to
the carry-over algorithm.

6.1.4 Smartwatches

We analyze Fitbit smartwatches which use random ad-
dresses (according to their TxAdd flag) for advertising
and provide a constant 128-bit Service Class UUID as

well as some Device Information data (see Figure 8).
The smartwatch advertises approximately once every 7
seconds using this format.

While the TxAdd flag indicates that the devices use
random addresses, the addresses actually never change
(which has previously been analyzed in depth by Cyr et
al. [12] and Das et al. [16]). In the tracking section, we
provide some additional insights on this behavior, since
such permanent trackability raises considerable privacy
concerns.

The advertised 128-bit Service Class UUID
adabfb006e7d4601bda2bffaa68956ba is specific to the
watch model [30, 35], and is identical for the two
recorded watches. Service Class UUIDs are therefore not
suitable identifying tokens, as their value does not iden-
tify individual devices.

The Device Information data seems to be differ-
ent for different smartwatches8, and changes over time
in the scale of weeks or months. We observed changes
within one device which only concerned a single bit in
the Device Information data, whereas differences be-
tween the observed devices differed in 7 different bits.
More measurements on different devices would have to
be conducted to conclude its fitness as an identifying to-
ken – given the above-mentioned trivial case of a never-
changing address, we did not explore this further.

6.2 Device Tracking

Applying phase 2 of the algorithm reveal that multi-
ple classes of devices are vulnerable to tracking beyond
address randomization.

Windows 10 devices are vulnerable to the
address-carryover algorithm because the advertising ad-
dress and the identifying token AW in10’s value changes
occur at different intervals and out of sync. This allows
the algorithm to either update the payload while the
address is known, or vice versa. Figure 9 shows how we
are able to track the device with the initial advertising
address 1da6aa6d7b4e and associate it with the device
2662e1021647 almost four hours later, and after 12 ad-
dress randomizations. The longest observed MTTW in10
is 11.2 hours of continous tracking. However, assum-
ing an always-on target device there is no clear upper
bound, i.e., MTTW in10 ∈ [11.2 hours,∞).

8 We did not have access to a sufficient amount of watches of
this type to make a strong claim about its uniqueness

Tracking Anonymized Bluetooth Devices 61

address:

payload:

09
:4

8:
41

09
:5

6:
00

10
:1

2:
00

10
:2

7:
58

10
:3

1:
21

10
:4

3:
58

10
:5

9:
57

11
:1

5:
56

11
:3

1:
20

11
:3

1:
57

11
:4

7:
55

12
:0

3:
55

12
:1

9:
55

12
:3

1:
22

12
:3

5:
54

12
:5

1:
53

13
:0

7:
52

13
:2

3:
55

13
:3

1:
20

13
:3

9:
51

3b53acb2...feffa92adfdceea9...514feee1bd0810ce...f54dedfcd2f263ca...4b9cdc9a 4883de9d...cdc5fce7

1da6aa6d7b4e0265aa31d96c09940c1c007e3980a7d6747914ad7b1271620029374df4011ac7364f46cf2f507edc63d8049728a906d70b43fca5358239e2218858c120891f7e96c73b567a4cade43e02757912e70dfc4c7aab342662e1021647

time

Fig. 9. An experiment illustrating the carry-over effect on Windows 10 devices. Asynchronous value changes allow updating the device
identity whenever it changes.

address:

handoff:

nearby:

12
:2

6:
24

12
:2

7:
08

12
:2

7:
32

12
:3

0:
57

12
:3

2:
03

12
:3

4:
02

12
:3

4:
57

12
:3

6:
21

12
:4

1:
30

12
:4

4:
16

12
:4

6:
46

12
:4

7:
11

12
:4

9:
16

12
:5

0:
16

12
:5

1:
30

12
:5

3:
49

12
:5

6:
19

12
:5

8:
07

12
:5

8:
53

12
:5

9:
27

13
:0

1:
53

13
:0

4:
22

13
:0

5:
10

13
:0

7:
06

13
:0

8:
04

13
:1

5:
32

13
:1

8:
07

13
:1

9:
07

13
:2

0:
19

003...10c 003...953 004...647

0b1...e20

488d4dbaa162 5f4cb95c9be6 50889aae1b43 40514e890446 7fb552cfec20

time

Fig. 10. This timeline shows address-carryover across 5 random addresses on iOS. The first three hops occur via the handoff identify-
ing token, the last one occurs via the nearby token. Different colors denote different values.

iOS or macOS devices have two identifying tokens
(nearby, handoff) which change in different intervals. In
many cases, the values of the identifying tokens change
in sync with the address. However, in some cases the to-
ken change does not happen in the same moment, which
allows the carry-over algorithm to identify the next ran-
dom address. Figure 10 shows such a carry-over chain, in
which a device is trackable across five address random-
izations. In contrast to the Windows 10 implementation,
synchronized value changes appear to be more preva-
lent than asynchronous changes, the latter representing
carry-over opportunities. MTTApple = 53 minutes is the
longest time we were able to track during our experi-
ments; additional tests may yield a longer time.

Prior findings by other groups [12, 16] indicate that
Fitbit smartwatches advertising addresses do not peri-
odically randomize. However, since the address carries
the flag indicating a random address, we seek to further
investigate its nature by subjecting the smartwatch to
different conditions which may trigger a new random
address. Our tests include:

– Draining the battery;
– Performing a hard reset;
– Performing a factory reset.

None of these measures resulted in a change of the ob-
served advertising address, leading to permanent non-
continuous trackability despite active attempts to re-
generate the address. Hence, by confirming that there

is no user-accessible way to anonymize the device iden-
tity periodicity, we conclude that there is no upper limit
for the trackability of a Fitbit smartwatch of the type
discussed, i.e., MTTF itbit =∞.

Android devices do not appear to be vulnerable to
our passive sniffing algorithm, as they typically do not
send advertising messages containing suitable identify-
ing tokens.

6.3 Other Vulnerabilities

This Section summarizes additional findings which do
not directly result from the application of our algorithm,
but were discovered in the process.

6.3.1 Accessory Activation

We look into the effect of BLE-connected accessories,
specifically pencils of touch-enabled laptops and tablets.

The Microsoft Surface Pen has a button which
can be configured to launch the note-taking (or any
other) application to facilitate activities which make use
of handwritten input. Whenever that button is pressed,
the pen sends an ADV_DIRECT_IND request to its con-
nected Surface device. These types of messages contain
the device’s own advertising address as well as the tar-
get address. In the case of the Surface Pen, this target
address uses the public static address of the device it is

Tracking Anonymized Bluetooth Devices 62

AdvA: <48bit random address>
AdvData: 2 AD Structures:

0x01 → Flags: 0x06
0x09 → Complete Local Name:

“Apple Pencil<13 Unicode Nullbytes>”

Fig. 11. Apple Pencil advertising during connection procedure..

associated to. The Surface Pen also features a magnetic
connector which allows it to be attached to the Surface.
When the Surface Pen is detached from the Surface, it
sends the same kind of address-leaking directed adver-
tising as well.

This means that even if the Surface computer itself
never discloses its public static address, the pen will ex-
pose it. The fact that it is a permanent identifier leads
to the Surface computer being trackable permanently
via active probing. Once the public address becomes
known, an adversary could periodically probe the Sur-
face device directly using its permanent address. The
response to such a directed advertising message (or ab-
sence thereof) results in indefinite presence tracking of
the Surface device, i.e., MTTSurface,leaked =∞.

We tested whether the Apple Pencil has similar
issues, but it uses an entirely different approach. When
it first connects to an iOS device, it emits a short burst
of ADV_IND messages containing a random address, ca-
pability flags and a Complete Local Name field of value
Apple Pencil (see Figure 11). After this initial advertis-
ing, the pen does not emit any advertising messages as
long as it is paired with the iOS device. Every time the
pen is set up again, the random address changes.

6.3.2 Activity Side-Channel on iOS

The handoff data structure only appears in certain pat-
terns. Closer inspection reveals the following two char-
acteristics:

– The handoff payload is triggered when a device gets
activated;

– The handoff payload changes depending on context
or content of the active application.

Both of these characteristics present a side channel
which allows a passive observer to deduct activity pat-
terns of the user using the target device. Figure 12
illustrates the presence of a burst of advertising mes-

unlock phone lock phone unlock phone lock phone

nearby: 031c6b0e3b 0b1c6b0e3b 031c6b0e3b 0b1c6b0e3b

handoff: 004b16627c02. . . 004c169f562d. . .

time

Fig. 12. The handoff data structure appears whenever an iOS
device is unlocked.

open link #1 link #2 link #3 close

nearby: 0b1c6b0e3b
handoff: H1 H2 H3 H4 H5

time

Fig. 13. The handoff payload changes correlate closely with cer-
tain user activity on iOS.

sages containing the handoff data structure every time
an iPhone is unlocked.

The handoff feature on macOS and iOS devices al-
lows a user to continue one activity on another device.
For example, it allows browsing a website on an iPhone
and then continuing to browse it on a computer running
macOS, when the two devices are in proximity. As such,
this feature is inherently dependent on content and con-
text of the user activity. It can be shown that handoff
data changes highly correlate with user navigation using
the Safari browser in iOS (see Figure 13).

7 Recommendations
Device implementations should follow a few simple rules
in order to protect themselves against address-carryover
tracking.

Synchronize payload changes with address ran-
domizations. If the advertising message payload
contains any type of data that could be used as an
identifying token (see Section 4.3.1), the payload
should change in sync with the address to prevent
extended tracking. While there may be technical
reasons for keeping certain payloads around longer
than the default address randomization frequency
of a given operating system, it should be ensured
programmatically that there is no continuous car-
ryover, as shown to be the case in Windows 10 and
to a certain degree in iOS and macOS.

Implement address randomization for low-
powered devices. For some devices, especially
wearables and other battery-powered sensor de-
vices, frequently randomizing the address may be

Tracking Anonymized Bluetooth Devices 63

at conflict with energy constraints. In these situ-
ations, device states which are not concerned by
these constraints should be leveraged to change the
address, e.g., when charging the battery or when a
power cycle or other maintenance activity is per-
formed. For example, wearables typically have to be
recharged weekly or even every few days, which –
even though far from perfect – will at least prevent
trivial address-based tracking for the lifetime of the
device.

Implement reconnection addresses. BLE allows
devices to exchange Identity Resolving Keys (IRK)
which enable them to use resolvable random pri-
vate addresses of each other (see Section 3.3). This
allows for secure directed advertisement and con-
nection initiation that does not leak permanent
identifiers to the public [8, pp. 1251f., 2738]. De-
vices which currently use an advertising approach
involving static addresses (such as the Microsoft
Surface Pen) should consider integrating this pro-
tocol feature into their software architecture.

7.1 Workaround for Windows 10 devices

Our investigation showed that simply turning the Blue-
tooth setting in the Windows 10 Settings Panel off and
on did not regenerate the payload and address used for
Bluetooth advertising, instead merely paused advertis-
ing activity.

As Windows 10 is closed-source, a real fix has to
be implemented by the manufacturer. However, it is
still possible to break address-carryover tracking on the
user side by completely disabling the Bluetooth device
through the Windows Device Manager and re-enabling
it again. Contrary to the Windows 10 Settings page,
disabling the Bluetooth device in this manner will reset
both the advertising address and the payload, thereby
breaking the chain. Figure 14 shows an approach which
practically achieves protection from our algorithm by
cyclically performing this reset every x seconds when-
ever the device is not in the Connection state (in order
to not break ongoing communication).

7.2 Workaround for iOS / macOS

For iOS and macOS, the same approach shown in Fig-
ure 14 applies. Switching Bluetooth off and on in the
System Settings (or in the Menu Bar on macOS) will
randomize the address and change the payload.

start Bluetooth
active?

stop

State 6=
Connec-
tion?

Disable
Bluetooth
Device

Enable
Bluetooth
Device

Timeout
x seconds

no

yes yes

no

Fig. 14. A proposed workaround which breaks tracking via the
address-carryover algorithm on Windows 10 and iOS/macOS
devices.

8 Conclusion
Device manufacturers have flexibility in how to imple-
ment address randomization supported by BLE, and
may be compelled to take shortcuts for various reasons
– be it energy or memory constraints on the device level,
software complexity or just for the sake of cutting de-
velopment cost.

We showed that most computer and smartphone op-
erating systems do implement address randomizations
by default as a means to prevent long-term passive
tracking, as permanent identifiers are not broadcasted.

However, we identified that devices running Win-
dows 10, iOS or macOS regularly transmit advertis-
ing events containing custom data structures which are
used to enable certain platform-specific interaction with
other devices within BLE range. By observing typi-
cal advertising behaviors of these operating systems,
we identified that parts of these data structures allow
an adversary to abuse them as a temporary, secondary
pseudo-identity. These identifying tokens can be inte-
grated into an algorithm which allows device tracking
beyond address randomization.

The address-carryover algorithm exploits the
asynchronous nature of address and payload change,
and uses unchanged identifying tokens in the payload
to trace a new incoming random address back to a
known device. In doing so, the address-carryover algo-
rithm neutralizes the goal of anonymity in broadcasting
channels intended by frequent address randomization.

The main findings of this work are summarized in
Table 4. The algorithm succeeds consistently on Win-
dows 10 and sometimes on Apple operating systems. In
both cases, the respective identifying tokens change out
of sync with the advertising address. In the Windows 10
case, there is no evidence of any synchronization by de-
sign. In the Apple case, it seems that there exist mecha-

Tracking Anonymized Bluetooth Devices 64

Type ∅ Address life MT T∗ Adversary Mechanism
Windows 10 16 min unbounded continuous carry-over algorithm
macOS, iOS 20 min 53 min9 continuous carry-over algorithm
Android 15-45 min no vuln. identified continuous carry-over algorithm
Fitbit Charge static unbounded non-continuous vendor implementation
Microsoft Surface 16 min unbounded non-continuous identifier leak via Pen

Table 4. Trackability summary of the observed devices.

nisms to synchronize updates of identifying tokens with
address randomization, but they occasionally fail.

The Android devices that we tested are not affected
by the address-carryover algorithm, as they do not con-
tinuously send advertising messages. This is consistent
with the BLE Central role (see Section 3.1), which scans
for advertising from nearby Peripheral devices instead of
advertising itself. Note that the Android SDK contains
functionality for implementing BLE advertising [19],
but it does not seem to be used by the OS by default in
the devices we tested.

Fitbit has not fixed the trackability issue, despite
it being known for years [12, 16]. This is concerning
since such activity trackers are by design worn and car-
ried around in daily life, and there is no way to prevent
sniffing their permanent addresses.

Any device which regularly advertises data contain-
ing suitable advertising tokens will be vulnerable to the
carry-over algorithm if it does not change all of its iden-
tifying tokens in sync with the advertising address. As
Bluetooth adoption is projected to grow from 4.2 to
5.2 billion devices between 2019 and 2022 [9, p. 11], with
over half a billion amongst them wearables and other
data-focused connected devices [9, p. 15], establishing
tracking-resistant methods, especially on unencrypted
communication channels, is of paramount importance.
This privacy concern is compounded by the realistic fea-
sibility of BLE-based botnets [22] and complementary
threats such as large-scale tracking of users via compro-
mised Wi-Fi routers [31], which amplify trackability to
a global scale. It can further be imagined that additional
metadata such as electronic purchase transactions, fa-
cial recognition and other digital traces could be com-
bined with Bluetooth tracking to generate a fine-grained
location profile of a victim.

9 Longer tracking may be possible, but did not occur in our
experiments.

8.1 Further Research

In this work, we entirely focused on the existence of data
fields which could be re-purposed as pseudo-identifiers.
The discoveries presented in this work do not require
an SDR-based setup and should be reproducible using
common Bluetooth communication hardware.

Future work may focus on additional factors such
as the consideration of advertising message timing,
which may make the address-carryover algorithm even
more powerful. Another interesting factor would be
physical layer device fingerprinting using SDR, simi-
lar to previous work done on other wireless technolo-
gies [2, 15, 36, 39], which may allow tracking despite
immunity from the address-carryover algorithm to cer-
tain extents.

Furthermore, our current approach may be comple-
mented by active attacks previously considered for Wi-
Fi [22, 27, 34], and adapted to Bluetooth where applica-
ble. This includes Connection-based attacks which are
based on the data channels rather than just the BLE
advertising channels.

Responsible Disclosure

Vulnerability to the address-carryover algorithm discov-
ered in Microsoft and Apple software was disclosed with
the companies in November 2018. Additional findings
regarding the Microsoft Surface Pen and iOS activity
side channel were subsequently disclosed to the respec-
tive companies during the ongoing correspondence.

Acknowledgment

This research was supported in part by NSF under grant
CCF-1563753 and by the Boston University UROP pro-
gram. The authors also thank Jed Crandall for shep-
herding the paper and the anonymous reviewers for their
constructive suggestions.

Tracking Anonymized Bluetooth Devices 65

References
[1] Apple Inc. iBeacon, 2014.
[2] Gianmarco Baldini, Raimondo Giuliani, Gary Steri, and Ri-

cardo Neisse. Physical Layer Authentication of Internet of
Things Wireless Devices Through Permutation and Disper-
sion Entropy. In 2017 Global Internet of Things Summit
(GIoTS), pages 1–6. IEEE, 6 2017.

[3] Bluetooth Special Interest Group (SIG). Company Identi-
fiers.

[4] Bluetooth Special Interest Group (SIG). Generic Access
Profile.

[5] Bluetooth Special Interest Group (SIG). Service Discovery.
[6] Bluetooth Special Interest Group (SIG). Bluetooth Core

Specification. v4.0. Bluetooth Special Interest Group (SIG),
2010.

[7] Bluetooth Special Interest Group (SIG). Supplement to the
Bluetooth Core Specification. Bluetooth Special Interest
Group (SIG), 2015.

[8] Bluetooth Special Interest Group (SIG). Bluetooth Core
Specification. v5.0. Bluetooth Special Interest Group (SIG),
2016.

[9] Bluetooth Special Interest Group (SIG). Bluetooth Market
Update 2018. Technical report, Bluetooth Special Interest
Group (SIG), 2018.

[10] Bluetooth Special Interest Group (SIG). Core Specifications,
2018.

[11] Bluetooth Special Interest Group (SIG). Our History, 2018.
[12] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter.

Security Analysis of Wearable Fitness Devices (Fitbit). Mas-
sachusetts Institute of Technology, pages 1–14, 2014.

[13] D.A. Dai Zovi and S.A. Macaulay. Attacking Automatic
Wireless Network Selection. In Proceedings from the Sixth
Annual IEEE Systems, Man and Cybernetics (SMC) Infor-
mation Assurance Workshop, 2005., volume 2005, pages
365–372. IEEE, 2005.

[14] Dino A Dai Zovi. KARMA Attacks Radioed Machines Auto-
matically, 2005.

[15] Boris Danev, Davide Zanetti, and Srdjan Capkun. On
Physical-Layer Identification of Wireless Devices. ACM
Computing Surveys, 45(1):1–29, 2012.

[16] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and Pras-
ant Mohapatra. Uncovering Privacy Leakage in BLE Net-
work Traffic of Wearable Fitness Trackers. In Proceedings
of the 17th International Workshop on Mobile Computing
Systems and Applications - HotMobile ’16, pages 99–104,
New York, New York, USA, 2016. ACM Press.

[17] Byron C Drachman and Michael J Cloud. Inequalities: With
Applications to Engineering. Springer-Verlag, 1998.

[18] Google. Eddystone.
[19] Google Developers. BluetoothLeAdvertiser.
[20] Robin Heydon. An Introduction to Bluetooth Low Energy,

2013.
[21] IEEE Computer Society. IEEE Standard for Local and

Metropolitan Area Networks - Link Aggregation. IEEE Stan-
dards Association, 2008.

[22] Taher Issoufaly and Pierre Ugo Tournoux. BLEB: Bluetooth
Low Energy Botnet for large scale individual tracking. 2017
1st International Conference on Next Generation Computing

Applications, NextComp 2017, pages 115–120, 2017.
[23] Markus Jakobsson and Susanne Wetzel. Security Weak-

nesses in Bluetooth. In David Naccache, editor, Topics in
Cryptology — CT-RSA 2001, pages 176–191, Berlin, Heidel-
berg, 2001. Springer.

[24] Mohamed Imran Jameel and Jeffrey Dungen. Low-Power
Wireless Advertising Software Library for Distributed M2M
and Contextual IoT. In 2015 IEEE 2nd World Forum on In-
ternet of Things (WF-IoT), pages 597–602. IEEE, 12 2015.

[25] Xianjun Jiao. BTLE, 2014.
[26] Heikki Karvonen, Carlos Pomalaza-Ráez, Konstantin

Mikhaylov, Matti Hämäläinen, and Jari Iinatti. Experimental
Performance Evaluation of BLE 4 Versus BLE 5 in Indoors
and Outdoors Scenarios. In Giancarlo Fortino and Zhelong
Wang, editors, Advances in Body Area Networks I, pages
235–251. Springer, Cham, 2019.

[27] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas
Foppe, Lamont Brown, Chadwick Riggins, Erik C. Rye, and
Dane Brown. A Study of MAC Address Randomization in
Mobile Devices and When it Fails. Proceedings on Privacy
Enhancing Technologies, 2017(4):365–383, 10 2017.

[28] Radius Networks. AltBeacon, 2015.
[29] reelyActive. reelyActive-git.
[30] reelyActive. Sniffypedia, 2018.
[31] Pierre Rouveyrol, Patrice Raveneau, and Mathieu Cunche.

Large Scale Wi-Fi Tracking Using a Botnet of Wireless
Routers. Workshop on Surveillance & Technology, 2015.

[32] Krishna Sampigethaya, Leping Huang, Mingyan Li, Radha
Poovendran, Kanta Matsuura, and Kaoru Sezaki. CARA-
VAN: Providing Location Privacy for VANET. Technical
report, Washington Univ Seattle Dept of Electrical Engineer-
ing, 2005.

[33] Dominic Spill and Andrea Bittau. BlueSniff: Eve meets Alice
and Bluetooth. WOOT ’07 Proceedings of the first USENIX
workshop on Offensive Technologies, page 10, 2007.

[34] Mathy Vanhoef, Célestin Matte, Mathieu Cunche,
Leonardo S. Cardoso, and Frank Piessens. Why MAC Ad-
dress Randomization is not Enough. In Proceedings of the
11th ACM on Asia Conference on Computer and Communi-
cations Security - ASIA CCS ’16, pages 413–424, New York,
New York, USA, 2016. ACM Press.

[35] virtualabs. probeZero, 2016.
[36] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara

Noubir. Fingerprinting Wi-Fi Devices Using Software De-
fined Radios. In Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks - WiSec
’16, pages 3–14, New York, New York, USA, 2016. ACM
Press.

[37] Isabel Wagner and David Eckhoff. Technical Privacy Met-
rics. ACM Computing Surveys, 51(3):1–38, 2018.

[38] Martin Woolley. Bluetooth Technology Protecting Your
Privacy, 2015.

[39] Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. De-
vice Fingerprinting in Wireless Networks: Challenges and
Opportunities. IEEE Communications Surveys & Tutorials,
18(1):94–104, 2016.

	Tracking Anonymized Bluetooth Devices
	1 Introduction
	2 Related Work
	3 Background
	3.1 Physical Layer and Link Layer
	3.2 Advertising Packet Format
	3.3 Advertising Addresses

	4 Methodology
	4.1 Adversarial Model
	4.2 Privacy Metrics
	4.3 Device Tracking Algorithm
	4.3.1 Phase 1: Pre-Processing
	4.3.2 Phase 2: Tracking

	5 Experimental Setup
	5.1 OS Advertising
	5.2 Accessory Activation

	6 Results
	6.1 Pre-Processing
	6.1.1 Windows 10 devices
	6.1.2 Apple (macOS and iOS) Computers and Smartphones
	6.1.3 Android smartphones
	6.1.4 Smartwatches

	6.2 Device Tracking
	6.3 Other Vulnerabilities
	6.3.1 Accessory Activation
	6.3.2 Activity Side-Channel on iOS

	7 Recommendations
	7.1 Workaround for Windows 10 devices
	7.2 Workaround for iOS / macOS

	8 Conclusion
	8.1 Further Research

