
Proceedings on Privacy Enhancing Technologies ; 2019 (3):331–349

Sajin Sasy* and Ian Goldberg*

ConsenSGX: Scaling Anonymous
Communications Networks with Trusted
Execution Environments
Abstract: Anonymous communications networks enable
individuals to maintain their privacy online. The most
popular such network is Tor, with about two million
daily users; however, Tor is reaching limits of its scala-
bility. One of the main scalability bottlenecks of Tor and
similar network designs originates from the requirement
of distributing a global view of the servers in the network
to all network clients. This requirement is in place to
avoid epistemic attacks, in which adversaries who know
which parts of the network certain clients do and do not
know about can rule in or out those clients from being
responsible for particular network traffic.
In this work, we introduce a novel solution to this
scalability problem by leveraging oblivious RAM con-
structions and trusted execution environments in order
to enable clients to fetch only the parts of the network
view they require, without the directory servers learning
which parts are being fetched. We compare the perfor-
mance of our design with the current Tor mechanism
and other related works to show one to two orders
of magnitude better performance from an end-to-end
perspective. We analyse the requirements to actually
deploy such a scheme today and conclude that it would
only require a small fraction (<2.5%) of the relays to
have the required hardware support; moreover, these
relays can perform their roles with minimal network
bandwidth requirements.

Keywords: Anonymous Communications Network, Tor,
Secure Hardware

DOI 10.2478/popets-2019-0050
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

*Corresponding Author: Sajin Sasy: Cheriton School of
Computer Science, University of Waterloo, ssasy@uwaterloo.ca
*Corresponding Author: Ian Goldberg: Cheriton
School of Computer Science, University of Waterloo,
iang@uwaterloo.ca

1 Introduction
Privacy is an integral right of every individual in
society [72]. With almost every day-to-day interaction
shifting towards using the internet as a medium, it
becomes essential to ensure that we can maintain the
privacy of our actions online. Furthermore, in light
of nation-state surveillance and censorship, it is all
the more important that we enable individuals and
organizations to communicate online without revealing
their identities. There are a number of tools aiming to
provide such private communication, the most popular
of which is the Tor network [21].

Tor is used by millions of people every day to
protect their privacy online [70]. Tor is a low-latency
anonymous communication network that enables people
to communicate online without revealing what they are
communicating about and with whom. It is designed to
enable its users to beat an adversary that monitors a
part of the internet, by making connections through a
series of virtual tunnels instead of direct connections.
Tor is used today by whistleblowers, journalists, law-
enforcement, government organizations, and many oth-
ers [71].

However, Tor is currently reaching the limits of
its scalability. In order to make a secure and private
connection through Tor, a client constructs a three-
hop circuit through a sequence of Tor relays. A client
must have complete freedom in the selection of these
three hops lest the client be susceptible to epistemic
attacks [18, 19] that could deanonymize them. In an
epistemic attack, an adversary learns, through some
means, that particular clients do not know about all
of the relays in the network, and importantly, the
adversary knows which relays particular clients do
know. The adversary then uses this knowledge to rule in
or out specific clients from possibly being responsible for
specific circuits. In order to enable clients to freely select
the nodes for its connection, currently Tor requires each
client to maintain a global view of the Tor network. The
distribution of this global view of the network requires
significant network bandwidth: if the number of relays



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 332

in network (and thus the capacity) scales linearly with
the number of active users, then the bandwidth required
to send information about all relays to all clients scales
quadratically with the number of users. In previous
work, McLachlan et al. [43] showed that at the then-
current rate, Tor would spend more network bandwidth
distributing this global view rather than for anonymous
communication itself.1 In addition, simply storing the
complete current consensus could be problematic for
mobile or embedded Tor clients.

In this work, we propose a novel solution for en-
abling clients of anonymous communications networks
to pick relays for building secure circuits, without
requiring the clients to maintain a global view of the
network, and while avoiding epistemic attacks. Our
solution takes advantage of the performance benefits
of pairing Oblivious RAMs (ORAMs) [26] with trusted
execution environments (such as Intel SGX [3]) as shown
in recent works [2, 45, 60]. Our contributions are three-
fold:
– We design ConsenSGX, to enable clients to build

secure circuits in anonymous communications net-
works without holding a global view of the state of
the network.

– We implemented and evaluated our design on real
hardware, and provide the results from our experi-
ments in Section 5.

– We compare our work in terms of end-to-end latency
against 1) previous designs towards the same goal to
show one to four orders of magnitude improvement
and 2) Tor’s current mechanism to show one to two
orders of magnitude improvement.

In Section 2, we first describe Tor’s current network
consensus distribution mechanism in detail, followed
by other essential background information required
for our proposal. In Section 3, we discuss other re-
lated proposals that aim to achieve better scalability
for anonymous communication networks, followed by
Section 4, where we discuss our proposal in depth.

1 However, we note that Tor switched to a more efficient
mechanism for distributing this global view since McLachlan
et al.’s work; specifically the microdescriptor model, which
we elaborate on in Section 2.1. However even with the
microdescriptor model, a straightforward calculation shows that
the fraction of network bandwidth taken up by distributing
microdescriptor consensuses is still about N ∗ 10−5, where N

is the number of relays in the network. At the current size of
6300 relays this is a little more than 6%, with the percentage
itself linearly increasing as the network grows.

Section 5 describes the details of our implementation
and evaluation and Section 6 addresses deployment
details and considerations. Finally, Section 7 concludes
this work.

2 Background

2.1 Tor

The Tor network (as of November 30, 2018) consists of
about 6300 volunteer-run servers called onion routers or
relays. In order to make a secure and private connection
through Tor, a user makes a three-hop connection
or circuit through these relays. Currently, there are
nine dedicated servers called the directory authorities,
which host and periodically update an authenticated
copy of the global view of this network called the
network consensus. The network consensus lists the
relays currently available for making circuits, their IP
addresses and ports, their cryptographic keys, their
bandwidths for load-balancing purposes, and other such
pertinent details.

In order to generate this network consensus, every
relay in the Tor network, at the start of every epoch
(one hour window) uploads a self-signed relay descriptor
to each of the nine directory authorities. This descrip-
tor describes the relay’s keys, capabilities, and other
additional information. The directory authorities then
hourly generate their individual views of the current
network status and descriptors of routers in the network,
and then amongst themselves perform a consensus
protocol, the output of which is the network consensus
which contains all of the relay descriptors of active relays
in an epoch, signed by the directory authorities. Every
client in the Tor network then downloads this document
once per epoch from a Tor directory cache, which are
mirrors that host the signed network consensus for
global distribution.

Tor relays in a circuit can have three different roles.
The guard relays serve as the first hop of a circuit.
Clients use a fixed set of relays as its guard relays, and
hence the guard relay selection process is largely a one-
time operation [23, 52, 80], but each client refreshes its
guard set every 2 months [69]. Relays must be stable
and have sufficiently high bandwidth (2Mbps) [69] in
order to be eligible to be a guard relay. Exit relays serve
as the final hop of a circuit, and are the relays that
communicate directly with the internet services that
the Tor client is accessing. As the exit relay operators



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 333

sometimes have to handle complaints about Tor users,
only a small fraction (about 800 out of 6300) of relays
allow themselves to be used as exit relays. Those that do
can set exit policies that describe IP addresses and/or
ports to which they will or will not make connections.
Relays that do not serve as either guard or exit relays
can still serve as middle relays, acting as the middle hop
of a circuit.

In order to build a circuit, a client has to pick a
node from each of the above sets of relays, and build
a telescoping three-hop connection through them to its
destination. As mentioned before, currently Tor requires
each client to download the network consensus, to en-
sure clients have complete autonomy in the selection of
its relays. However this solution has poor scalablility; as
more routers join this network, this network consensus
grows larger. As more clients join Tor, more network
consensuses have to be distributed via this network,
thus leading to a large portion of the Tor network
bandwidth being used up in simply distributing network
consensuses.

There are several different ways the existing Tor
network serves network consensuses to Tor clients.
Currently Tor supports 28 different flavours of these net-
work consensus documents [69]. Most of these variants
are still maintained to continue supporting older Tor
clients. Broadly, these methods can be classified into
two main categories: the traditional server descriptor
consensus and the more recent microdescriptor consen-
sus.

Server Descriptor Consensus: This is the legacy
form of network consensus documents. In this model,
the network consensus contains the entire router de-
scriptor of every valid router in the network for the given
epoch. The clients then at every epoch downloads this
network consensus in its entirety for obtaining the global
view of the Tor network.

Microdescriptor consensus: The microdescrip-
tor consensus mechanism aimed to reduce the band-
width consumed in transmitting network consensus doc-
uments. The key observation here was that most relay
descriptors remained unchanged across epochs. Hence
the network consensus could become more lightweight
by not repeating these descriptors in its entirety. The
network consensus in this model has a reduced de-
scriptor for each active router and a hash of the
microdescriptor of the router. The microdescriptor of
the router contains the entire body of the router
descriptor, but clients only need to download them when
their local hash mismatches with the one published for
a router in an epoch.

In both of these broad methods, there are “diff”
variants, which enable the clients to download just
the differences (the diff) between their outdated local
network consensus and the current network consensus.
Diffs of consensuses are only served for clients that have
a local state less than 5 hours apart from the current
epoch. If the required diff is too outdated and hence
not served by the directory caches, the client defaults
to downloading the entire network consensus.

While the microdescriptor consensus mechanism
slows the growth in bandwidth consumed by the con-
sensus distribution as the network grows, it is not a
long-term solution to this problem. There are two vital
flaws in this current design, namely:
– Every client is required to know every relay.
– Every directory cache is required to know every

relay.

Both of these are scalability throttles for the Tor
network as noted in Tor’s directory protocol v3 doc-
umentation [69]. Many privacy-preserving communica-
tions networks should aim to defend against epistemic
attacks, including Tor, I2P [82], and modern mixnets
like Loopix [55]. When any of these networks grow
substantially, they must be redesigned in a fashion that
does not mandate clients to possess the entire global
view of the network. This work focuses on solving the
former part of the problem, which is currently more
pressing, considering the significantly larger number of
clients than relays today in the Tor network.

2.2 Trusted Execution Environments
(TEEs)

Over the last decade, hardware-aided trusted execution
environments have been refined by industry and aca-
demic research. The initial designs like Intel’s Trusted
Execution Technology (TXT) [29] and AMD’s Platform
Security Processor (PSP) used Trusted Platform Mod-
ules (TPM) to provide measurements of software and
platform components. However, such designs implied
poor hardware utilization due to two main factors;
first, the TPM had to vet the entire platform before
it could instantiate a TEE. Second, once a TEE was
instantiated, other applications could not be inter-
leaved with trusted executions. Moreover, TXT was
also plagued with security vulnerabilities [78, 79] due
to memory leaks and its trusted System Management
Mode assumptions.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 334

More recent advances such as ARM TrustZone [5],
AMD Secure Encrypted Virtualization (SEV) [32], and
Intel SGX [3] embed cryptographic keys at manufacture
time into the processor, which enable these processors
to instantiate a TEE through modifications to their
instruction set. Intel 7th generation processors (Skylake
and onwards) have support for SGX (Software Guard
eXecution) [3], which are extensions to the x86 instruc-
tion set to enable execution of secure code remotely via
secure containers called enclaves. At a high level, the
cryptographic keys fused in the processor at the time of
manufacture enable the processors to set aside a portion
of their memory as PRM (Processor Reserved Memory).
Secure code to be executed within enclaves are loaded
page by page into the PRM, preserving confidentiality
and integrity using enclave-specific derived keys from
the keys fused in the processor. After loading a program,
SGX produces an enclave measurement, which is the
hash of the program that was loaded into the enclave,
thus allowing the remote user to verify the integrity of
the program that was loaded into the enclave.

All memory contents that reside in the PRM are
encrypted and integrity-verified (in hardware) using
the aforementioned cryptographic keys. While different
enclaves share the PRM, they store their pages using
enclave-specific keys derived from the fused keys. The
instruction set ensures that only enclaves that have the
expected measurement can access these pages. In order
to establish trust in a remote SGX-enabled machine,
a user must perform a remote attestation protocol
with it [30]. As of August 2018, this protocol involves
verifying an ECDSA signature produced by one of
Intel’s special architectural enclaves, the Provisioning
Certification Enclave (PCE). The PCE generates the
private key for this signature from the fused key in the
processor. The corresponding public key for verification
is distributed by Intel in the form of an X.509 certificate.

While these TEEs have promising and desirable
properties, we note that it is no panacea to generic se-
cure remote computations. Since its inception, research
has shown SGX to be susceptible to several side channel
attacks [12, 36, 62, 63, 81]. However, previous works
have also shown that applying known side-channel
proofing techniques [51, 56] can help preserve security
in specific application scenarios.

2.3 ORAM

ORAM or Oblivious RAM [26] is a cryptographic
primitive introduced by Goldreich and Ostrovsky in

1993 as a countermeasure to information leakage to
an adversary able to observe memory access patterns.
Over the last two decades, research has led to several
refined and improved constructions of ORAMs [20, 24,
58, 65, 66, 77]. However, ORAMs still remained confined
to theoretical realms; primarily, this can be attributed
to the large overheads introduced by this primitive.
In order to provide access to memory “obliviously”,
Goldreich and Ostrovsky [26] prove a lower-bound
logarithmic overhead with respect to the underlying
memory.

ORAM schemes can be broadly classified into tree-
based and hierarchical constructions. In this work we
limit ourselves to tree-based constructions since they
are simpler and more efficient. At a high level, in a tree-
based ORAM scheme, one stores the underlying data in
the form of a binary tree on the server side, where each
node in the tree has a mix of real and dummy blocks
encrypted under a probabilistic encryption scheme,
and clients store a mapping from block identifiers to
leaves of the tree. These constructions maintain the
invariant that a block in the system will be present
somewhere on the path leading from the root to the
leaf the block is mapped to. In order to query data
obliviously, ORAM schemes require clients to expend
both storage and computation resources; the client-side
storage maintains the block-to-leaf mapping and also
stores ‘overflow’ blocks. Computation at the client side
involves decrypting, reordering, and encrypting paths
of the tree. In order to perform an oblivious access, the
client queries for the path that the required block maps
to from the server, decrypts the path to extract the
required block from the path, and then reorders, re-
encrypts, and returns this freshly encrypted path back
to the server to replace the old one.

In practice this results in two major overheads:
multiple network roundtrips2 and significant client-side
computation and/or memory. However, with the advent
of trusted execution environments like Intel SGX [3],
recent works [2, 45, 60] have shown that one can leverage
such trusted execution environments to efficiently and
securely instantiate ORAMs with overheads that are
practically viable. With such a system, ORAM protocols
get reduced to a single round trip request-response
protocol, with only trivial client-side computation and

2 In order to maintain a small client state, ORAMs require
multiple network roundtrips. This can be reduced to a single
round trip at the expense of a much larger client state, which is
typically unusable in real-world deployments.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 335

memory overheads, at the expense of trust in a secure
hardware module.

In our work, we make use of the Circuit ORAM [77]
implementation in ZeroTrace [60]. We do not elaborate
in detail on ZeroTrace here, but refer the interested
reader to the original paper. In short, ZeroTrace is a
doubly oblivious ORAM; that is, it fits the ORAM
client logic (called the ORAM controller) into a secure
hardware module, but given that Intel SGX is known to
be susceptible to side-channel attacks [12, 36, 62, 63, 81],
Sasy et al. modify the ORAM controller logic itself to be
oblivious via linear scans and oblivious assembly-level
functions through use of the x86 CMOV instruction. In
our work, we make use of ZeroTrace as a black-box tool
which enables secure and practical ORAM deployments
via secure hardware modules.

We note that although our implementation uses
Intel SGX as the underlying secure hardware module,
our techniques are not tied to any unique property of
SGX itself and in fact are generic enough to be realized
by any trusted execution environment.

3 Related Work
In this section we discuss previous research towards
scaling anonymous communication networks, which can
be broadly classified into two directions: predominantly
through peer-to-peer techniques, all of which were
shown to be susceptible to a variety of attacks,
and PIR-Tor, which is the only other proposal that
can be classified as a client-server model. Here we
do not consider Tor’s own optimizations (that we
discussed earlier in Section 2.1) that improve scalability
through constant factors, but instead we focus on other
works that try to improve the underlying asymptotic
complexity. We use the same taxonomy described by
PIR-Tor [48] to classify and discuss relevant related
work in this area.

3.1 Peer-to-peer Models

Peer-to-peer models aim to build anonymous connec-
tions via circuits or tunnels constructed with limited
knowledge of the global network. Each node in this
model knows only about a small number of other nodes,
called neighbours. In its simplest form, a client would
initiate circuits through one of its neighbouring nodes,
and then extend these circuits from the current last hop

to one of the last hop’s neighbours. However, this intro-
duces an avenue for malicious nodes to perform route
capture attacks, which are attacks that subvert these
circuits by extending circuits only through colluding
malicious nodes. Hence most of these proposals focus
on reducing the impact of such colluding adversaries.

Additionally, peer-to-peer networks also enable
Sybil attacks [22], hence almost all of these proposals
rely on the assumption that an adversary would not be
able to control nodes that are spread across global IP
subnets; i.e., they use diversity of IP subnets to reduce
the impact of Sybil attacks.

3.1.1 Structured Peer-to-peer Networks

Structured peer-to-peer topologies are predominantly
distributed hash table (DHT) based topologies, in which
every node is initially assigned a list of neighbours using
a mathematical function based on a node identifier
(typically its IP address), so that initial neighbour
assignments are easily verifiable. However, routing and
lookup mechanisms in DHTs are extremely vulnerable
to attacks from malicious nodes in the system [39, 74].

In order to secure the lookup mechanism, Halo [31]
and Salsa [50] proposed using redundant routing
lookups. The idea is to perform multiple redundant
lookup queries through probabilistically different paths
in the network so as to reduce the impact of malicious
nodes subverting a lookup. Mittal and Borisov [47]
showed that these techniques of secure lookups for
node selection are susceptible to information leak
attacks, which are typically amplified by the redundancy
employed.

Similarly, Panchenko et al. proposed NISAN [53],
which is based on Chord [67], and used redundant
lookups as well. NISAN attempted to mitigate informa-
tion leak attacks by not revealing the lookup destination
to intermediate nodes but instead downloading and pro-
cessing the entire routing tables of intermediary nodes
locally. Torsk [43] proposed constructing circuits by
starting with the peer-to-peer models of Kademlia [42]
and Myrmic [75], and imbuing it with an additional
‘secret buddy’ mechanism to break correspondence at-
tacks while extending circuits. However, Wang et al. [76]
showed that NISAN was still susceptible to information
leak attacks which can be fine tuned by adversaries
through a range estimation process to deanonymise
traffic. Furthermore, they also demonstrated attacks
against discovering these secret buddy nodes in Torsk,
which eventually lead to user deanonymisation.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 336

3.1.2 Random Walk Based Architectures

In random walk based peer-to-peer models, there is no
well-defined initial assignment of neighbours for nodes,
but instead nodes get to know about other nodes in
the system through either some form of “information
servers” that know of recently active nodes or by trying
nodes from their local cache. Anonymous circuits are
then constructed by making a random walk through
these nodes and their individual neighbour lists.

In MorphMix [59] circuits are extended from the
current last hop with the help of a randomly chosen ‘wit-
ness’ by the user. In order to prevent malicious colluding
entities from breaking the anonymity of the system,
the extender has to provide a list of its neighbouring
nodes amongst which the witness randomly chooses the
node for the next hop in the circuit. In addition, nodes
use a tailored collusion detection mechanism (CDM)
to avoid using nodes that they deem malicious and
colluding. However, Tabriz and Borisov [68] showed
weaknesses in the collusion detection mechanism and
how an adversary can in fact model the user’s internal
CDM tables to avoid being detected and continue
subverting a majority of its circuits.

Mittal and Borisov proposed ShadowWalker [46],
which introduced the notion of ‘shadows’ for a node. A
shadow of a node is responsible for verifying the node’s
neighbour information, and it does so by providing a
digital signature of the routing table of that node. In
contrast to the witness in a MorphMix system, these
shadows need not be directly contacted by the initiator
of a circuit, instead the shadows provide the nodes it
monitors with the digital signature which can be passed
on to the initiator of a circuit extension step without
requiring separate lookups on the initiator’s part, thus
reducing the information leak attack surfaces. However,
Schuchard et al. [61] showed that this design opens to
another set of attacks, namely ‘eclipse’ attacks, where
if an adversary can acquire a neighbourhood (node and
all its shadows) composed entirely of adversary nodes
then he can corrupt honest nodes’ routing tables. The
natural defence would be to increase the neighbourhood
making it harder for adversaries to acquire such clusters,
but this defence enables adversarial nodes to launch
DoS attacks on honest nodes by refusing to issue
valid digital signatures, demonstrating an innate tension
between resistances to these two attacks. Their work
also provides a defence by optimizing this trade-off but
at the same time incurring significant overheads.

While peer-to-peer models have innate scalability
benefits, as we described above they open up several
other attack vectors.

3.2 Client-Server Model

Private Information Retrieval (PIR) allows a client to
retrieve information from an online database without
the database learning what was being requested. Mittal
et al. proposed PIR-Tor [48], using PIR techniques [25,
44] for securely distributing relay descriptors from
a network consensus. Instead of serving the entire
network consensus to clients, the directory caches act
as PIR servers, and clients then look up individual
relay descriptors from these caches. Importantly, this
technique avoids epistemic attacks, because no one other
than the client itself knows which relay descriptors were
fetched. In order to avoid malicious directory caches
serving false data, the network consensus is modified
to have individually signed relay descriptors which are
used as PIR data blocks by the directory caches. By
having each block contain a signature from the directory
authorities over the contents of the descriptor, the
timestamp of the consensus, and the block number
within the consensus, modification, substitution, and
replay attacks by the (untrusted) directory caches are
prevented. Moreover, Mittal et al. note that these
PIR queries are only required for the middle and exit
relays, since clients use a fixed set of guard relays
to enter the network [23, 80]. The paper considers
two flavours of PIR—information-theoretic PIR (IT-
PIR) and computational PIR (CPIR)—but discards the
ITPIR option despite having better performance due
to its requirement of non-colluding PIR servers which
are practically hard to ensure without selecting from
a small number of centralized trusted servers such as
the directory authorities. Our proposal borrows several
building-block ideas from PIR-Tor which translate well
even to the ORAM setting, such as BLS signatures [10]
to minimize the size overhead induced by individually
signing relay descriptors and limiting directory cache
queries to just middle and exit relays. We describe more
details of PIR-Tor in Section 5, when we evaluate the
performance of our proposal, and compare our system
to it.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 337

Fig. 1. Overview of the ConsenSGX architecture. When a key is used as a subscript of an element, we imply it is an encryption of that
element with the corresponding key. Clients make directory requests through a one-hop circuit through their guard relay. Requests are
hybrid encryptions of a sequence of relay indices they wish to fetch. Responses are the corresponding signed relay descriptors encrypted
with the ephemeral key used for the request. Note that the secret key of the ephemeral ConsenSGX asymmetric key pair is generated
within the TEE and never leaves the TEE unencrypted. The client learns this key (authenticated by the long-term ConsenSGX public
key) when it creates the one-hop circuit; see Section 4.2.2.

4 ConsenSGX
In order to enable clients to efficiently construct anony-
mous circuits without possessing the entire network
view, we propose that clients use an ORAM protocol
to fetch only small portions of the network consensus,
but to do so obliviously; i.e., without revealing which
parts of the network they learned about to passive
network adversaries or a malicious directory cache
(similar to what PIR-Tor did with PIR instead of
ORAM). The challenge we face is that while PIR
protocols are inherently multi-client, ORAM protocols
are typically single-client, since the client needs to store
the decryption keys for the ORAM tree contents as
well as the block-to-leaf mapping and overflow blocks.
We address this challenge using ZeroTrace [60], which
implements the ORAM controller inside a trusted exe-
cution environment that runs on the server itself. The
actual clients of the protocol (the Tor clients) then
make encrypted connections into the TEE so that the
server cannot observe the contents of the requests or the
replies. ZeroTrace is also itself oblivious, as mentioned
above, so that the server cannot learn the internal state
of ZeroTrace by observing its behaviour.

In Figure 1, we illustrate a high-level overview of our
system architecture. Just like Tor today, clients make
directory queries from a directory cache using a one-hop
circuit through its guard node. For every epoch, TEE-
supported directory caches instantiate ORAM con-
trollers with the network consensus of that epoch as
the underlying data. Clients can then perform batched
queries with these ORAM controllers to obliviously
retrieve portions of the network consensus. Importantly,
the multiple round trips required by ORAM protocols
in this setup become round trips between the ORAM
controller (within the TEE) and the DRAM (dynamic
RAM) on the same machine, and not network round
trips.

We list the design goals of our system below, and
then elaborate on the finer details of the architecture.

4.1 Design Goals

– Scalability: The current Tor design for distributing
network consensus information has a bandwidth
complexity that is linear in both the number of
relays in the network, and also the number of
clients. Thus assuming that the number of relays



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 338

scales linearly with the user base (in order to
provide enough capacity to support those users),
this results in a bandwidth complexity that scales
quadratically with number of users. In our system
this bandwidth overhead is constant (and small) per
client, and so linear over the whole network, with
a poly-logarithmic computational overhead at the
directory caches with respect to number of relays.

– Efficiency: Our system makes efficient fetches for
relay descriptors, with minimal computational over-
heads of a few milliseconds, which is significantly
overshadowed by Tor network throughputs. This
efficiency enables particularly lightweight deploy-
ments in scenarios where only a few circuits are
needed. For instance, private browsing modes for
Mozilla and Brave which plan to use Tor circuits [13,
49]; in this context we envision these browsers need
to construct just a handful of circuits corresponding
to a user’s private tabs, hence downloading an entire
network consensus is intuitively wasteful.3

– Minimal Changes: Our proposal can be weaved
into Tor as another network consensus mechanism,
without engineering efforts that require redesigning
Tor’s core components. This allows our proposal to
be incrementally deployed on the real Tor network.

4.2 System Architecture

4.2.1 Server Side

The consensus protocol of Tor remains the same for
our proposal. Once consensus is achieved, the directory
authorities release multiple variants of the network
consensus as mentioned before. For the directory au-
thorities we require two new changes; first, they have
to publish two new variants of the network consensus
document, a network_consensgx, which contains a record
for each relay in the network, sorted by decreasing
bandwidth, and params_consensgx, which contains a
concise summary of the number and bandwidth dis-
tribution of the relays in the network. Each record
in the network_consensgx also contains a signature by
the directory authorities over the relay descriptor, its
index in the network_consensgx, and the timestamp of
the epoch. The combination of timestamp and relay

3 At the time of writing Mozilla’s project Fusion (Firefox USIng
ONions) is still ongoing work, while Brave has already rolled out
Tor circuits for private browsing tabs.

Fig. 2. Bandwidth distribution graph of relays in Tor as of
September 2018. We truncate the tail of the actual distribution,
which constitutes several relays that have less than 100KBps
bandwidth, which are never selected by clients to construct
circuits, as they lack the “Fast” flag in the consensus.

index ensures that a directory cache cannot deviate from
serving the correct network_consensgx without being
detected by clients.

Once the network_consensgx is published, the di-
rectory caches that serve the consensus instantiate two
ORAM trees populated with the signed relay descriptors
for the middle and exit relays respectively. Recall that
the guard relay selection process is performed only
rarely (on the order of months), so simply downloading
the full network consensus only at those times (or even
just the guards) is reasonable.

For relay selection, Tor uses a bandwidth-weighted
sampling mechanism biased towards higher-bandwidth
relays to select a random relay from the pool of mid-
dles and exit relays for constructing a circuit. The
params_consensgx document published by the directory
authorities contains all of the parameters of the network
that are not specific to a particular relay, including
various protocol versions, flags to enable network fea-
tures, etc.; this data is less than 4KB in size. The
params_consensgx also lists the number of relays in the
middle and exit pool, the distributions of bandwidths
for the relays in these pools, and the exit policies (or a
hash thereof; see Section 4.3 below) currently associated
to active exit relays in the network. The objective of
this document is to enable clients to pick their relays
obliviously and correctly with respect to the clients’
desired properties for the relay just like how a client
would do using the current Tor consensus mechanism. In
order to do so, we note that the bandwidth distribution
of relays is (as of September 2018) captured by an



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 339

exponential curve, which can be closely approximated
by a linear line on a linear-log plot of relay number
to relay bandwidth as shown in Figure 2. The directory
authorities would then have to compute and publish the
slope and intercept of this line in params_consensgx to
enable clients to sample relays correctly.

In order to deal with potential changes in this
distribution we propose that the directory authorities
select from a few common distributions (such as expo-
nential, Pareto, etc.) to best parameterize the empirical
bandwidth distribution. There are two things to note
here with respect to mismatches in the empirical and
best-fit bandwidth distribution: first, this process has no
implications on security, but it is simply a mechanism
that enables better load distribution of clients across
relays; second, the bandwidth measurements that Tor
uses are themselves noisy. In a recent proposal [41],
Mathewson outlines a related approach that works
for arbitrary distributions: our proposal above has the
individually signed descriptors implicitly containing the
index of the descriptor (and the client chooses the index
from a parameterized distribution). Mathewson pro-
poses that the individually signed descriptors explicitly
contain a range of values that a uniformly sampled
32-bit integer would fall into in order to select that
descriptor. The client then just chooses that uniform
integer, regardless of the distribution. This proposal
effectively increases descriptor sizes by eight bytes, but
has the benefit of being agnostic to the shape of the
empirical distribution.

While the params_consensgx needs to be distributed
to every client at the start of every epoch, it is extremely
lightweight and can be maintained at a constant size
irrespective of the total number of relays in the system.

The second main change for the directory author-
ities is to verify the authenticity of caches that serve
ConsenSGX. In order to provide the list of directory
caches that serve ConsenSGX, the directory authorities
have to verify the remote attestations produced by these
caches which will include the caches’ ConsenSGX public
keys, but we note that this is only required when a
new directory cache with ConsenSGX support joins the
network.4 These public keys are long-lived signature
verification keys; we make this choice in order to

4 This verification of TEE-aided directory caches is the only
component that will change for adapting our proposal to other
TEE architectures such as ARM TrustZone or AMD SEV.
Supporting a variety of TEE architectures can avoid reliance on
a monoculture and enhance security through platform diversity.

hedge against possible future compromises of the TEE
architecture that might expose the TEE’s secrets. We do
not want such an exposure to reveal past client lookups.
The ConsenSGX enclave then periodically creates a
fresh ephemeral asymmetric encryption keypair, signing
the encryption key with its long-lived signature key.

Once the directory authorities validate the attes-
tation, they can then provide the relay descriptors
(including the CongenSGX public keys created by these
enclaves) in the network_consensgx, thus allowing clients
to query them.

In order to bootstrap this system, clients need to
know the set of directory caches that support Con-
senSGX queries; observe that just like the guard relay
selection process this is a rare operation. Once a client
has a set of such directory caches locally available from
a one-time download of the entire network consensus,
the clients can update them at a later point, for
example, when among the local set of directory caches,
the amount of unreachable ones reaches a predefined
threshold. This update can then itself be done through
ConsenSGX queries.

Unlike the current consensus methods of Tor, in
ConsenSGX each of the relay descriptors must be
individually signed by all of the directory authorities
rather than bulk signed, since clients now retrieve only
a single descriptor at a time and have to validate the
authenticity of this descriptor in the current epoch.
As mentioned before, PIR-Tor also faced this same
issue and proposed BLS signatures [10] as the signature
scheme for this purpose, due to its small signature size
as a signature is just a single group element in this
scheme. Further, although the PIR-Tor system did not
use this fact, BLS signatures can also be aggregated [9],
so that a single group element can be used to capture
all of the directory authorities’ signatures. Hence we
use BLS aggregated signatures for each block in the
network_consensgx.

4.2.2 Client Side

Once the directory authorities converge on the
network_consensgx and have instantiated the aforemen-
tioned ORAM trees, clients can make oblivious relay
descriptor fetches from those directory caches that
support ConsenSGX. As in the current Tor protocol,
clients contact directory caches over a single-hop Tor
circuit consisting only of the client’s guard. In order to
save a network round trip, we could slightly extend
the circuit-creation protocol to have the directory



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 340

cache proactively send its current ConsenSGX-enclave
asymmetric encryption key, signed by its long-term
ConsenSGX-enclave public verification key, if requested
in the circuit creation message by the client. Clients,
already possessing the params_consensgx, locally select
the indices of which relay descriptors to fetch, and
simply send those indices, encrypted to the directory
cache’s ConsenSGX enclave public key, over that short
circuit. We note that the params_consensgx also enables
selection from the available relay descriptors on the
basis of either the current Tor router selection algorithm
or the Snader-Borisov criterion [64]; this choice is
orthogonal to our goal of reducing the bandwidth
consumed in constructing Tor circuits. Other router
selection algorithms have been proposed [73]; to use
ConsenSGX with such proposed algorithms, one could
put the summary information about the consensus
necessary for the algorithms into the params_consensgx.
If those algorithms require effectively the entire
consensus, then they themselves are a scalability
bottleneck that ConsenSGX cannot alleviate.

4.3 Server Descriptors Analysis

In order to select the appropriate block size for our
scheme, we analysed the relay descriptor sizes from the
network consensus of the first hour of September 25,
2018. Figure 3 shows that there is a large variance in
relay descriptor sizes. Looking closer at the cause of
this variance, we note that the exit policy and family
parameters are the main contributors. An exit policy is
a list of whitelisted/blacklisted IP addresses and ports
for exit relays, while the family is a list of other relays
that are owned by the same entity. Exit policies are
required for a client to build a circuit that can connect
to the desired server host and port, and the objective
of the family field is to build circuits with relays that
are owned by different entities to reduce the chance of
possible deanonymization.

We observe that these two fields change more slowly
than other attributes of the descriptor; moreover, in the
long run, the existence of very specific exit policies can
itself become a deanonymizing attribute, and hence it
would be ideal to limit exit policies (at least at the port
level) to selected exit policy sets. In Figure 4, we plot the
same histogram without these two fields and note that
all relay descriptors can be upper-bounded by blocks of
2800 bytes. In order to account for the overhead from

the BLS signature5 from the directory authorities, and
some extra headroom, we chose a block size of 3000
bytes for all our experiments. In order to pick a uniform
block size for these relay descriptors, we propose moving
the exit policies and families into a separate document
that can be served if the policy/family details were to
change, by merely appending a hash of this document
with every params_consensgx. We note that there are
other possible optimizations for compressing this policy
list itself to further decrease this additional bandwidth,
but we leave this as future work.

4.4 Security Trade-off

In addition to the standard Tor threat model, Con-
senSGX introduces the security assumption of trusting
the underlying TEE that is used for deploying Con-
senSGX in exchange for efficiency. Specifically what
this implies is that we trust that processors with TEEs
have their hardware-fused cryptographic keys generated
in a secure fashion, and that the APIs exposed for
these TEEs perform exactly what their specifications
claim and are bug-free, and finally also that they do
not have any malicious backdoors inserted into them
by the vendor. A violation of this trust would allow a
ConsenSGX-enabled directory cache to potentially see
that some client (but not which client) was looking up
a particular set of server descriptors, opening the door
for an epistemic attack.

As explained in Section 4.2.1, by separating the
long-term signature verification keys and the ephemeral
asymmetric encryption key pair, we provide forward
secrecy that prevents a malicious processor vendor from
inserting a “retroactive” backdoor, but nonetheless by
design choices of our scheme we cannot undo an already-
existing backdoor in the processor.

In the context of Intel’s SGX in particular, this
perhaps not as bad as it might seem, but only because
a significant portion of processors in the wild are Intel
manufactured, and systems using these processors are
already implicitly reliant on Intel’s processors, Intel
Management Engine (ME), Intel’s hardware random
number generator (RDRAND), etc. not being back-
doored. We discuss in more detail the ramifications of
trusting trusted hardware in Section 6.1.

5 A BLS signature at the 128-bit security level is 461
bits [6, Table 14], or 58 bytes, taking into account the recent



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 341

Fig. 3. Histogram of relay descriptor sizes. Fig. 4. Histogram of relay descriptor sizes after pruning exit policy
and family.

5 Evaluation
As mentioned before, since P2P proposals have all
been shown to susceptible to attacks by the security
community [39, 47, 61, 68, 74, 76], we compare our
proposal primarily against PIR-Tor, which to our knowl-
edge is the only other scheme for scaling anonymous
communications that has its security tied to a well-
understood cryptographic protocol (PIR). The partic-
ular computational PIR scheme [44] used in PIR-Tor
was later shown to be susceptible to attacks [37], in
part due to the vulnerabilities of using non-standard
underlying security assumptions [7, 8, 16]. Therefore,
we compare ConsenSGX with PIR-Tor, but substituting
XPIR [1] as the underlying PIR protocol instead. XPIR
is the state-of-the art computational PIR scheme, using
the BV homomorphic encryption scheme [11], which
is based on standard Ring-LWE [57] assumptions and
hence believed to be secure.

For completeness we also compare ConsenSGX
against PIR-Tor’s information-theoretic PIR (ITPIR)
model with the simplest (and most efficient) XOR-based
ITPIR scheme by Chor et al. [15] as the underlying PIR
scheme. For this best-case performance setup for the
scheme we compare our results to, we made use of the
Percy++ v1.0.0 library. However, just like PIR-Tor,
we rule out ITPIR in practice due to the three non-
colluding server assumption which is hard to realize. In

improvements in finite field discrete logarithm computations by
Kim and Barbulescu [34].

our experiments we consider a single server that hosts
the corresponding PIR server (in the case of PIR-Tor)
or ORAM tree (in the case of ZeroTrace). We vary the
number of Tor relays in the network; these experiments
do not differentiate between middle and exit relays, but
we introduce this aspect later in this section.

All of our experiments are run on a server-grade
Intel Xeon E3-1270, with four physical cores, 64 GB of
DDR4 RAM, and support for Intel SGX. Our server ma-
chine runs Ubuntu 16.04, and our experimental results
are all for a single core without any parallelism for all the
systems we measure. Therefore, our measurements are
per-core values, and multiple cores can be used trivially
to serve independent clients in parallel, for example. Our
experimental source code is available on our website.6

We evaluate the performance of these proposals by
empirically evaluating how they would perform as we
scale the Tor network to much larger sizes than they
are today. To evaluate fairly, we analyse all facets of
the proposals; i.e., client computation overhead, server
computation overhead, bandwidth requirements, and an
evaluation of end-to-end performance with practically
reasonable bandwidth choices. We envision that in
deployments of these proposals, the client would batch
multiple requests in an epoch instead of querying for
each circuit individually, thus we evaluate performance
with varying choices of B, which denotes the number of
relays requested in a query. We perform our experiments
with two values of B: B = 10 and B = 50. We assume
10 circuits an hour to be representative of a low-usage

6 https://crysp.uwaterloo.ca/software/consensgx/

https://crysp.uwaterloo.ca/software/consensgx/


ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 342

Fig. 5. Client computation time (in ms) for performing a
query for B relay descriptors; i.e., cost of encrypting a query
as well as decrypting the response received. This graph
includes error bars for all points, but they may be too small
to be seen.

Fig. 6. Server computation time (in ms) for serving a
received query for B relay descriptors. Note that these
performance numbers are from a single core execution and
without any parallelism. This graph includes error bars for all
points, but they may be too small to be seen.

Fig. 7. Request size (in bytes) for a query to fetch B relay
descriptors. There are no error bars because these values are
all constant.

Fig. 8. Response size (in bytes) for a query to fetch B
relay descriptors. This graph also shows the sizes for Tor’s
microdescriptor consensus and its diff variant; these values
are extrapolated from the current consensus size. There are
no error bars because these values are all constant.

client, and 50 circuits an hour to represent a heavy-
usage client.

In Figure 5, we compare the client’s computation
overhead from both PIR-Tor and ConsenSGX. Con-
senSGX outperforms by several orders of magnitudes in
terms of client computation requirements, since when
using ZeroTrace the client query is a single hybrid

encrypted request; i.e. a single AES-GCM encryption
of all of the ORAM indices it wishes to retrieve from
the server, followed by one elliptic curve public key



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 343

encryption of the AES-GCM key.7 We note that the
client computation for our proposal is dominated by the
single public key operation (which takes close to 0.1ms).
Since AES instructions are heavily optimized by the
AES-NI [27] instructions today, we can perform an AES
encryption in a few processor cycles. For computational
PIR-Tor, XPIR has to perform a lattice encryption of
an array of size proportional to the total number of
relays, and this induces significant overheads as seen in
Figure 5. Information-theoretic PIR-Tor has overheads
that are significantly lower than its computational
counterpart since it does not have to perform lattice
encryptions, but this too scales poorly since the request
sizes are still very large. Therefore, ConsenSGX is
innately more suited for lightweight personal devices
such as mobile phones, tablets, etc.

In terms of the server computation required, we see
in Figure 6 that ConsenSGX is at least an order of
magnitude faster than the PIR-Tor counterparts. This
arises from the difference in asymptotic complexity of
the two schemes. For a network of N relays to service a
single query, a PIR server has to perform O(N) work,
while a ZeroTrace ORAM controller has to perform
(log3(N)) computation. Amongst the IT-PIR and CPIR
variants of PIR-Tor, we notice that the IT-PIR variant
performs much better; this is expected since it has
significantly lesser computation overheads being XOR-
based as opposed to lattice computations (at the cost
of requiring a non-collusion assumption amongst the
PIR servers used). We allow XPIR’s optimizer module
choose the best parameters for d (recursion levels) and
α (aggregation factor) in all of our experiments, given
the block size and bandwidth constraints.

Figures 7 and 8 compare the request and response
sizes involved in querying these schemes. The request
size is orders of magnitude smaller for ConsenSGX
since, as mentioned above, the query is simply an AES-
GCM encryption of B indices, whereas XPIR queries
contain B lattice encryptions of an N -length bit array.
Similarly the response sizes are also much smaller for
ConsenSGX, since it is an AES-GCM encrypted blob
of B relay descriptors, whereas the BV encryptions of
relay descriptors are much larger as seen in the graph.
We note that the request sizes and server computation
time for PIR-Tor with IT-PIR could be optimized a bit
further by using query batching techniques as shown by
Lueks and Goldberg [40].

7 We use the NIST P-256 (also known as secp256r1 or
prime256v1) curve for this purpose.

Fig. 9. End-to-end time taken for a query of B relay descriptors,
assuming the guard relays can provide a client with a link of 4
Mbps bandwidth. This graph includes error bars for all but the
Tor lines, but they may be too small to be seen.

Figure 8 also shows the bandwidth requirements of
Tor’s microdescriptor scheme and the diff variant of the
microdescriptor scheme. In order to fairly analyze these
two schemes, we ran experiments to analyse the amount
of relay descriptors that change in each epoch, over the
first six months of consensus data from Tor metrics [70]
for 2018. The microdescriptors over this period have an
average size of 660 bytes and on average 1.49% of them
change every epoch. The lines for these two schemes
take into account this additional bandwidth overhead in
maintaining the global view assuming that this fraction
stays the same with increase in the number of relays.
This graph clearly illustrates the bandwidth savings our
proposal introduces in comparison with PIR-Tor and
Tor’s current mechanism.

Finally, Figure 9 shows the time taken in an end-to-
end setting for these schemes. Since consensus down-
loads and descriptor fetches in the Tor network cur-
rently use a one-hop path through the guard relay,
the bandwidth we consider for the end-to-end setting
should ideally be the average bandwidth available at
a guard relay in the network. We instead approximate
this bandwidth with double of Tor’s current average net-
work bandwidth, which is 2Mbps [70]. We intentionally
choose a much higher bandwidth than that available
today at Tor relays, since the schemes we compare
ConsenSGX against do benefit from higher bandwidths,
although ConsenSGX itself uses the least bandwidth as
shown by Figures 7 and 8.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 344

We note that this graph does not distinguish be-
tween middle and exit relays; instead it shows the end-
to-end time in downloading B relay descriptors from
a set of N relays. Hence, in practice the total cost
would be the sum of time taken for a query each to
the pool of middle relays and exit relays respectively.
For instance, today the Tor network has approximately
800 exits and the remaining 5500 serve as guards and
middles; scaling that up to a total of 100,000 relays while
preserving the ratio of exit to middle relays, implies a
query to a pool with 13,000 exit relays, which takes
472.2ms ± 0.4ms end-to-end time assuming a query
with B = 50, and another to a pool with 87,000 middle
relays, which takes 517.8ms ± 0.5ms, resulting in a
total time of 990ms ± 0.6ms, or barely one second.
For the same setting, PIR-Tor’s CPIR variant takes
4430.0 s ± 0.8 s and 20295 s ± 2 s for querying the middle
and exit pool respectively, resulting in a total time
of 24725 s ± 2 s. In contrast, PIR-Tor’s IT-PIR model
for the same queries takes 1.40 s ± 0.03 s and 5.1 s ±
0.05 s respectively, resulting in a much more reasonable
total of 6.5 s ± 0.06 s. Tor’s current microdescriptor
mechanism, when scaled to 100,000 relays, takes 65.46 s
and the diff variant takes 5.1 s.

In our experiments we use XPIR as the bench-
mark for CPIR, but we note that there have been
recent advancements in CPIR constructions since XPIR,
namely SealPIR [4] and PSIR [54]. Although we do
not perform empirical comparisons against these two
schemes in this work, here we provide intuitions as
to why these schemes cannot enable scalability to the
extent that ConsenSGX does. In comparison to XPIR,
SealPIR reduces the client computational costs and
query size due to their query compression technique, and
further it even speeds up server-side computation time
for batched query processing by their use of probabilistic
batch codes. However, they still have large response
sizes similar to that of XPIR, which are larger than the
current trivial download mechanism that Tor uses (as
illustrated by Figure 8). Similarly, while PSIR may seem
asymptotically interesting for query processing,8 the
construction practically requires streaming the entire
underlying database whenever the database changes (or
when a threshold of queries have been made), which
in our setting negates any of the asymptotic benefits

8 Unlike the standard O(N) query processing time in PIR
systems, PSIR has an O(

√
N) asymptotic processing time for

queries.

Fig. 10. Percentage of relays that need to support ConsenSGX
to distribute B = 50 relay descriptors every epoch to all clients;
we assume the number of clients scales linearly with the number
of relays, maintaining the current client-to-relay ratio (2000:6).
When we say the relay has ConsenSGX support we only assume it
contributes one of its cores towards serving ConsenSGX requests.

gained from the lower query processing times and is
strictly worse than just the current trivial download.

While PIR-Tor proposed a promising solution for
scaling anonymity networks like Tor, it incurs signifi-
cant overheads when used in practice as illustrated by
Figure 9. On the other hand, our comparisons with all
the other schemes towards the same goal shows that
ConsenSGX can be deployed today to gain significant
bandwidth savings along with the lowest end-to-end
latencies, as demonstrated by Figures 7 to 9. From
Figure 9, the only competitive system for ConsenSGX
at today’s network sizes is Tor’s microdescriptor diff
model, but ConsenSGX outperforms it quickly as the
network size grows; moreover, while the diff variant of
the microdescriptor scheme seems practically viable and
desirable, it has a few subtle drawbacks; note that its
advantages only apply to a user who is continuously
online. These performance benefits disappear once a
user goes offline for a few (currently five) hours and
Tor defaults back to the regular microdescriptor model.
Moreover, this also introduces a timing side channel
for an adversary, and although we are yet to see any
strong deanonymization attacks from this channel, this
can reduce the anonymity set of a user.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 345

6 Deployment Considerations
From a deployment perspective, in order to avoid
the potential hazards of introducing additional code
for pairing-based cryptography within Tor, we also
propose an alternative Merkle Tree based signature
mechanism which can simply use Tor’s current Ed25519
signature scheme. Specifically, instead of signing each
relay descriptor individually, the directory authori-
ties would construct a Merkle tree with the hash
of each relay descriptor in the epoch as leaf nodes;
the root of this Merkle tree is then published in the
params_consensgx document, which is signed by all the
directory authorities. The directory caches that serve
ConsenSGX should then first reconstruct this Merkle
tree from the network_consensgx and verify that the root
matches the one published in the params_consensgx.
These directory caches can then append each relay
descriptor from the middle and exit relays in the
network_consensgx with the Merkle validation path from
that relay’s leaf node to the root of the Merkle tree.
Any client that then retrieves a relay descriptor from
a ConsenSGX-serving directory cache, can verify the
integrity of this relay descriptor by verifying its path
on the Merkle tree.

While TEEs such as Intel SGX and TrustZone are
now available on commodity hardware today, it would
be ambitious to expect all existing relays to immediately
support it. Hence we evaluate the number of directory
caches with support for TEE required to serve all the
clients in the system. For this, we assume that the ratio
of clients to relays in the system remains the same as the
network size grows; i.e., the current ratio of 2,000,000
clients to an approximate 6000 relays is maintained. We
use the server computation overheads from Figure 6 for
serving one client with B = 50 on a single core of a relay
acting as a directory cache, to estimate how many such
relays we would need to serve all clients in an epoch.
Figure 10 plots the percentage of relays with secure
hardware support required against the total number of
relays in the system. We observe that this percentage is
relatively small, and consistently less than 2.5% of the
total relays in the network. Note that all our choices of
parameters are intentionally conservative; for instance,
we only consider a single core per relay that is used
towards serving ConsenSGX on these directory caches,
and a value of B = 50 which is generous as well, since
as mentioned earlier this value of B accounts for heavy-
usage clients.

A deployment question to address is that a number
of Tor relays are actually deployed as virtual machines
running in hosting facilities. While in this work we do
not empirically evaluate ConsenSGX for virtual hosts,
we note that SGX does currently have support for
virtualization for KVM and Xen hypervisors [28]. On
the other hand AMD’s TEE, AMD Secure Encrypted
Virtualization (SEV) [32] is designed exactly for this
use case of initializing VMs on a remote untrusted
host, while maintaining confidentiality and integrity
guarantees.

Another interesting facet of our proposal is the
low bandwidth overhead it has. We observe that even
relays with relatively low network bandwidths can be
used as directory caches for serving ConsenSGX, since
as seen in Figure 10, the average bandwidth required
is 0.812Mbps. This provides a new avenue for low-
bandwidth relays that are barely used for serving
anonymous communications9 to contribute more pro-
ductively to the network. For instance, from Figure 2,
we notice that out of Tor’s 6300 relays today, only
about 5200 of them have the “Fast” flag and are used
towards building anonymous circuits; the other 1000
relays (about 17.4% of the network) have less than
100KBps (= 0.8Mbps), which is approximately the
average bandwidth requirement10 for ConsenSGX, and
also accounts for a significantly larger fraction than
what is needed to serve the entire client set today
through ConsenSGX as shown by Figure 10.

6.1 Trusting Trusted Hardware

As mentioned before, secure hardware modules are
known to have their own set of security vulnerabili-
ties [12, 36, 62, 63, 81]. More recently, CacheQuote [17]
showed side-channel leakages in Intel’s architectural
enclaves, which are special enclaves that perform the
attestations, and Foreshadow [14] adapted the out-
of-order execution flaws demonstrated in Spectre [35]
and Meltdown [38] towards attacking SGX enclaves.
Both these works succeed in extracting the private
attestation keys from Intel’s architectural enclaves,
thereby dismantling its security guarantees.

9 Since relays for constructing a circuit are sampled using a
bandwidth-weighted sampling mechanism, these are used rarely
in practice.
10 Note that relays that have bandwidths lower than this can
also serve as ConsenSGX directory caches, but the network
would require more of such directory caches then to compensate.



ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 346

While these attacks are currently pressing, for-
tunately the defences for these have been shown by
the respective works and Intel is working towards
patches for the same. Fortunately, mitigating these
vulnerabilities does not require a complete redesign of
the hardware architecture. Hence this should be deemed
as part of the natural life cycle for such a hardware
component. Furthermore, we are also beginning to see
more promising open-source secure hardware modules
like Keystone [33] surfacing, which will significantly
further research in this space.

In our particular context, we note that ConsenSGX
is not innately tied to Intel SGX, but can be instan-
tiated through any hardware-aided TEE. We simply
use SGX to implement our proof-of-concept for the
design. We also note that compromising the secure
hardware module that serves ConsenSGX does not
directly compromise users’ anonymity online, but it
makes users susceptible to epistemic attacks or route
fingerprinting attacks. These attacks as we alluded to
before, aim to deanonymize users by having informa-
tion about which relays these users know of or do
not know of. In the context of a malicious adversary
running compromised hardware that serves users via
ConsenSGX, this adversary can then learn which B
relays were fetched. But there are two caveats to note
here; first, since users’ make this fetch through a one
hop circuit through their guard nodes, this implies that
this adversary can only know the set of relay descriptors
this guard relay fetched, and not end users directly.
Second a client or user can lessen the impact of this
attack by increasing this parameter B, as this would
make it harder for this adversary to observe all traffic
on all possible B relays that this user could use for their
circuits. While this is intuitively sound, we have not yet
seen any research in this direction of reducing impact
of epistemic attacks, but there are promising practical
implications from such a line of research.

7 Conclusion
In this work we described ConsenSGX, a novel tech-
nique for scaling anonymous communication networks.
This technique can be used as a generic form of defence
against epistemic attacks in any anonymity network,
without enforcing clients to maintain a global view
of the network. We evaluated our work by computing
the performance benefits of using it with the most
popular anonymity network used today, Tor, and also

against other relevant proposals towards the same goal
of scaling anonymous networks. Our experiment results
demonstrated the performance benefits of our proposal;
even when deployed today it can improve bandwidth
consumption by an order of magnitude.

While our implementation currently uses Intel SGX
as the underlying TEE, the ConsenSGX scheme is
agnostic to this choice, and can easily be adapted for use
with any other TEE. By enabling better scalability for
Tor and similar anonymity networks, this work acts an
incremental step towards enabling user’s privacy online.
There remains several future steps in this direction of
research to enable anonymous communication networks
to support every individual.

Ackowledgements
We thank our shepherd Nick Hopper for guiding this pa-
per towards final acceptance. We thank the anonymous
reviewers for their helpful suggestions, and particularly
for the Merkle Tree variant discussed in Section 6. The
authors thank NSERC for grants RGPIN-03858 and
STPGP-463324, and the Royal Bank of Canada for
funding this research.

References
[1] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.

Killijian. XPIR: Private Information Retrieval for Everyone.
Proceedings on Privacy Enhancing Technologies, 2016.

[2] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE:
A Data Oblivious Filesystem for Intel SGX. In 25th Network
and Distributed System Security Symposium (NDSS), 2018.

[3] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative
Technology for CPU Based Attestation and Sealing, 2013.
https://software.intel.com/en-us/articles/innovative-
technology-for-cpu-based-attestation-and-sealing.

[4] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with
compressed queries and amortized query processing. In 39th
IEEE Symposium on Security and Privacy (S&P). IEEE,
2018.

[5] ARM. ARM Security Technology: Building a Secure System
using TrustZone Technology, 2015. http://infocenter.arm.
com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-
GENC-009492C_trustzone_security_whitepaper.pdf.

[6] R. Barbulescu and S. Duquesne. Updating Key Size
Estimations for Pairings. Cryptology ePrint Archive, Report
2017/334, 2017.

[7] J. Bi, M. Liu, and X. Wang. Cryptanalysis of a
homomorphic encryption scheme from ISIT 2008. In IEEE
International Symposium on Information Theory (ISIT),

https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf


ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 347

2012.
[8] D. Bleichenbacher, A. Kiayias, and M. Yung. Decoding

of Interleaved Reed Solomon Codes over Noisy Data. In
International Colloquium on Automata, Languages, and
Programming. Springer, 2003.

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps. In
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2003.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
the Weil pairing. In International Conference on the Theory
and Application of Cryptology and Information Security.
Springer, 2001.

[11] Z. Brakerski and V. Vaikuntanathan. Efficient Fully
Homomorphic Encryption from (Standard) LWE. SIAM
Journal on Computing, 2014.

[12] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi. Software Grand Exposure: SGX
Cache Attacks Are Practical. In 11th USENIX Workshop on
Offensive Technologies (WOOT), 2017.

[13] Brave. Brave Private Tabs with Tor. https://brave.com/tor-
tabs-beta, Accessed September 2018.

[14] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In
27th USENIX Security Symposium, 2018.

[15] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private Information Retrieval. In IEEE Foundations of
Computer Science (FOCS), 1995.

[16] D. Coppersmith and M. Sudan. Reconstructing Curves in
Three (and Higher) Dimensional Space from Noisy Data. In
35th ACM Symposium on Theory of Computing (STOC),
2003.

[17] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin,
N. Heninger, A. Moghimi, and Y. Yarom. Cachequote:
Efficiently Recovering Long-Term Secrets of SGX EPID
via Cache Attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018.

[18] G. Danezis and R. Clayton. Route Fingerprinting in
Anonymous Communications. In 6th IEEE International
Conference on Peer-to-Peer Computing. IEEE, 2006.

[19] G. Danezis and P. Syverson. Bridging and Fingerprinting:
Epistemic Attacks on Route Selection. In 8th Privacy
Enhancing Technologies Symposium (PETS). Springer,
2008.

[20] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi,
and D. Wichs. Onion ORAM: A Constant Bandwidth
Blowup Oblivious RAM. In Theory of Cryptography
Conference (TCC). Springer, 2016.

[21] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In 13th USENIX Security
Symposium, 2004.

[22] J. R. Douceur. The Sybil attack. In International Workshop
on Peer-to-Peer Systems. Springer, 2002.

[23] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and
I. Goldberg. Changing of the Guards: A Framework for
Understanding and Improving Entry Guard Selection in Tor.
In 11th ACM Workshop on Privacy in the Electronic Society
(WPES). ACM, 2012.

[24] C. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov.
Bucket ORAM: Single Online Roundtrip, Constant
Bandwidth Oblivious RAM. Cryptology ePrint Archive,
Report 2015/1065, 2015.

[25] I. Goldberg. Improving the Robustness of Private
Information Retrieval. In 28th IEEE Symposium on Security
and Privacy (S&P), 2007.

[26] O. Goldreich and R. Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. Journal of the ACM
(JACM), 1996.

[27] S. Gueron. Intel® Advanced Encryption Standard (AES)
New Instructions Set, 2010. https://www.intel.com/
content/dam/doc/white-paper/advanced-encryption-
standard-new-instructions-set-paper.pdf.

[28] Intel. SGX Virtualization. https://01.org/intel-software-
guard-extensions/sgx-virtualization. Accessed February 2018.

[29] Intel. Intel Trusted Execution Technology, 2007. http:
//www.intel.com/technology/security/. Accessed September
2018.

[30] Intel. Software Guard Extensions (Intel® SGX) Data Center
Attestation Primitives: ECDSA Quote Library API, 2018.
https://download.01.org/intel-sgx/dcap-1.0/docs/SGX_
ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.pdf.

[31] A. Kapadia and N. Triandopoulos. Halo: High-Assurance
Locate for Distributed Hash Tables. In 16th Network and
Distributed System Security Symposium (NDSS), 2008.

[32] D. Kaplan, J. Powell, and T. Woller. AMD Memory
Encryption, 2016. https://developer.amd.com/wordpress/
media/2013/12/AMD_Memory_Encryption_Whitepaper_
v7-Public.pdf.

[33] S. Karandikar, S. Devadas, A. Ou, K. Asanovic, I. Lebedev,
D. Song, and D. Lee. Keystone Open-source Secure
Hardware Enclave, 2018. https://keystone-enclave.org/.
Accessed September 2018.

[34] T. Kim and R. Barbulescu. Extended Tower Number Field
Sieve: A New Complexity for the Medium Prime Case. In
CRYPTO. Springer, 2016.

[35] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting
Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P), 2019.

[36] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado. Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing. In 26th USENIX Security
Symposium, 2017.

[37] T. Lepoint and M. Tibouchi. Cryptanalysis of a (Somewhat)
Additively Homomorphic Encryption Scheme Used in PIR. In
3rd Workshop on Applied Homomorphic Cryptography and
Encrypted Computing (WAHC), 2015.

[38] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading Kernel
Memory from User Space. In 27th USENIX Security
Symposium, 2018.

[39] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.
A Survey and Comparison of Peer-to-Peer Overlay Network
Schemes. IEEE Communications Surveys & Tutorials, 2005.

[40] W. Lueks and I. Goldberg. Sublinear Scaling for Multi-Client
Private Information Retrieval. In International Conference on

https://brave.com/tor-tabs-beta
https://brave.com/tor-tabs-beta
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://01.org/intel-software-guard-extensions/sgx-virtualization
https://01.org/intel-software-guard-extensions/sgx-virtualization
http://www.intel.com/technology/security/
http://www.intel.com/technology/security/
https://download.01.org/intel-sgx/dcap-1.0/docs/SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.pdf
https://download.01.org/intel-sgx/dcap-1.0/docs/SGX_ECDSA_QuoteGenReference_DCAP_API_Linux_1.0.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://keystone-enclave.org/


ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 348

Financial Cryptography and Data Security (FC). Springer,
2015.

[41] N. Mathewson. Proposal 300: Walking Onions: Scaling and
Saving Bandwidth. https://gitweb.torproject.org/torspec.
git/tree/proposals/300-walking-onions.txt, 2019. Accessed
February 2019.

[42] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-
Peer Information System Based on the XOR Metric. In
International Workshop on Peer-to-Peer Systems. Springer,
2002.

[43] J. McLachlan, A. Tran, N. Hopper, and Y. Kim. Scalable
Onion Routing with Torsk. In 16th ACM Conference on
Computer and Communications Security (CCS), 2009.

[44] C. A. Melchor and P. Gaborit. A Fast Private Information
Retrieval Protocol. In IEEE International Symposium on
Information Theory (ISIT), 2008.

[45] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An Efficient Oblivious Search Index. In 39th IEEE
Symposium on Security and Privacy (S&P). IEEE, 2018.

[46] P. Mittal and N. Borisov. ShadowWalker: Peer-to-peer
Anonymous Communication using Redundant Structured
Topologies. In 16th ACM Conference on Computer and
Communications Security (CCS), pages 161–172. ACM,
2009.

[47] P. Mittal and N. Borisov. Information Leaks in Structured
Peer-to-Peer Anonymous Communication Systems. ACM
Transactions on Information and System Security (TISSEC),
2012.

[48] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg. PIR-Tor: Scalable Anonymous Communication
Using Private Information Retrieval. In 20th USENIX
Security Symposium, 2011.

[49] Mozilla. Fusion: Firefox USIng Onions, 2018. https://wiki.
mozilla.org/Security/Fusion. Accessed September 2018.

[50] A. Nambiar and M. Wright. Salsa: A Structured Approach
to Large-Scale Anonymity. In 13th ACM Conference on
Computer and Communications Security (CCS), 2006.

[51] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious multi-
party machine learning on trusted processors. In 25th
USENIX Security Symposium, 2016.

[52] L. Øverlier and P. Syverson. Locating Hidden Servers. In
IEEE Symposium on Security and Privacy (S&P), 2006.

[53] A. Panchenko, S. Richter, and A. Rache. NISAN: Network
Information Service for Anonymization Networks. In
16th ACM Conference on Computer and Communications
Security (CCS), 2009.

[54] S. Patel, G. Persiano, and K. Yeo. Private Stateful
Information Retrieval. In 25th ACM Conference on
Computer and Communications Security (CCS), 2018.

[55] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and
G. Danezis. The Loopix Anonymity System. In 26th
USENIX Security Symposium, 2017.

[56] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Digital
Side-channels Through Obfuscated Execution. In 24th
USENIX Security Symposium, 2015.

[57] O. Regev. On Lattices, Learning With Errors, Random
Linear Codes, and Cryptography. Journal of the ACM
(JACM), 2009.

[58] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van
Dijk, and S. Devadas. Constants Count: Practical
Improvements to Oblivious RAM. In 24th USENIX Security
Symposium, 2015.

[59] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-
to-Peer Based Anonymous Internet Usage with Collusion
Detection. In 1st ACM Workshop on Privacy in the
Electronic Society (WPES), 2002.

[60] S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace:
Oblivious Memory Primitives from Intel SGX. In 25th
Network and Distributed System Security Symposium
(NDSS), 2018.

[61] M. Schuchard, A. W. Dean, V. Heorhiadi, N. Hopper, and
Y. Kim. Balancing the Shadows. In 9th ACM Workshop on
Privacy in the Electronic Society (WPES), 2010.

[62] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and
S. Mangard. Malware Guard Extension: Using SGX to
Conceal Cache Attacks. In International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2017.

[63] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing Page Faults from Telling Your Secrets. In 11th
ACM Asia Conference on Computer and Communications
Security (AsiaCCS), 2016.

[64] R. Snader and N. Borisov. Improving Security and
Performance in the Tor Network through Tunable Path
Selection. IEEE Transactions on Dependable and Secure
Computing, 2011.

[65] E. Stefanov, E. Shi, and D. Song. Towards Practical
Oblivious RAM. In 19th Network and Distributed System
Security Symposium (NDSS), 2012.

[66] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In 20th ACM Conference on
Computer and Communications Security (CCS), 2013.

[67] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. ACM SIGCOMM
Computer Communication Review, 2001.

[68] P. Tabriz and N. Borisov. Breaking the collusion detection
mechanism of MorphMix. In 6th International Workshop
on Privacy Enhancing Technologies (PET), pages 368–383.
Springer, 2006.

[69] The Tor Project. Tor Directory Services v3. https:
//gitweb.torproject.org/torspec.git/tree/dir-spec.txt.
Accessed September 2018.

[70] The Tor Project. Tor Metrics. https://metrics.torproject.
org/. Accessed September 2018.

[71] The Tor Project. Who Uses Tor? https://www.torproject.
org/about/torusers.html.en. Accessed September 2018.

[72] United Nations. Universal Declaration of Human Rights
(Article 12), 1948. http://www.un.org/en/universal-
declaration-human-rights/. Accessed September 2018.

[73] C. Wacek, H. Tan, K. S. Bauer, and M. Sherr. An Empirical
Evaluation of Relay Selection in Tor. In 20th Network and
Distributed System Security Symposium (NDSS), 2013.

[74] D. S. Wallach. A Survey of Peer-to-Peer Security Issues. In
2002 Mext-NSF-JSPS International Conference on Software
Security: Theories and Systems (ISSS). Springer, 2003.

https://gitweb.torproject.org/torspec.git/tree/proposals/300-walking-onions.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/300-walking-onions.txt
https://wiki.mozilla.org/Security/Fusion
https://wiki.mozilla.org/Security/Fusion
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://metrics.torproject.org/
https://metrics.torproject.org/
https://www.torproject.org/about/torusers.html.en
https://www.torproject.org/about/torusers.html.en
http://www.un.org/en/universal-declaration-human-rights/
http://www.un.org/en/universal-declaration-human-rights/


ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments 349

[75] P. Wang and Y. Kim. Myrmic: Secure and Robust DHT
Routing, 2006.

[76] Q. Wang, P. Mittal, and N. Borisov. In search of an
anonymous and secure lookup: attacks on structured peer-
to-peer anonymous communication systems. In 17th ACM
Conference on Computer and Communications Security
(CCS), pages 308–318. ACM, 2010.

[77] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On
Tightness of the Goldreich-Ostrovsky Lower Bound. In
22nd ACM Conference on Computer and Communications
Security (CCS), 2015.

[78] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted
Execution Technology. Invisible Things Lab, 2009.

[79] R. Wojtczuk and J. Rutkowska. Attacking SMM Memory via
Intel CPU Cache Poisoning. Invisible Things Lab, 2009.

[80] M. Wright, M. Adler, B. N. Levine, and C. Shields.
Defending Anonymous Communications Against Passive
Logging Attacks. In 24th IEEE Symposium on Security and
Privacy (S&P). IEEE, 2003.

[81] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted
Operating Systems. In 36th IEEE Symposium on Security
and Privacy (S&P), 2015.

[82] B. Zantout and R. Haraty. I2P Data Communication
System. In 10th International Conference on Networks
(ICN), 2011.


	ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments
	1 Introduction
	2 Background
	2.1 Tor
	2.2 Trusted Execution Environments (TEEs)
	2.3 ORAM

	3 Related Work
	3.1 Peer-to-peer Models
	3.1.1 Structured Peer-to-peer Networks
	3.1.2 Random Walk Based Architectures

	3.2 Client-Server Model

	4 ConsenSGX
	4.1 Design Goals
	4.2 System Architecture
	4.2.1 Server Side
	4.2.2 Client Side

	4.3 Server Descriptors Analysis
	4.4 Security Trade-off

	5 Evaluation
	6 Deployment Considerations
	6.1 Trusting Trusted Hardware

	7 Conclusion


