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Privacy violations of bystanders in photographs taken in public places is a
long-studied problem. Proposed solutions rely on bystanders to be proactive and
use tools and techniques to protect their privacy [1–9]. These tools require them
to share sensitive information, such as location, facial features, and privacy pref-
erences with other users and cloud servers, which are themselves violations of
privacy. Here, we attempt to detect bystanders in images automatically using
computer vision and machine learning. Upon detection, any privacy-preserving
action could be taken (e.g., obfuscation), enforcing a privacy-by-default policy
without placing the burden on the bystanders or sharing any sensitive informa-
tion.
We begin by understanding what rationales and concepts humans use to distin-
guish between subject and bystander in images, since these concepts are nuanced
and context-specific. In a study, we asked participants to label people in images
as bystanders or subjects, provide justification for their labels, and rate each
person for (presumably) relevant concepts, e.g., whether the person was posing
for and comfortable being in the image, can be replaced by another random
person and so on. Our correlation and regression analyses revealed significant
association among these features and the most common reasons humans use to
classify subject/bystander. Using factor analysis, we identified two underlying
constructs humans use to identify bystanders: visual-appearance and importance
of the person for the image. We experimented with several classification models
for automatic detection. The best performing model (mean accuracy 85% for
10-fold cross-validation) is a two-step prediction pipeline based on our hypoth-
esis on how humans do it. First, we predict the relevant concepts using features
extracted from the images (such as body-pose [10], facial expression [11], and the
location of a person) using regression models. These predicted values were then
used to classify subject/bystander. Detailed study methodology and (additional)
findings are presented in the poster.
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