
Proceedings on Privacy Enhancing Technologies ; 2020 (3):62–152

Valerie Fetzer*, Max Hoffmann, Matthias Nagel, Andy Rupp*, and Rebecca Schwerdt*

P4TC—Provably-Secure yet Practical
Privacy-Preserving Toll Collection
Abstract: Electronic toll collection (ETC) is widely used
all over the world not only to finance our road infrastruc-
tures, but also to realize advanced features like conges-
tion management and pollution reduction by means of
dynamic pricing. Unfortunately, existing systems rely on
user identification and allow tracing a user’s movements.
Several abuses of this personalized location data have al-
ready become public. In view of the planned European-
wide interoperable tolling system EETS and the new
EU General Data Protection Regulation, location pri-
vacy becomes of particular importance.
In this paper, we propose a flexible security model and
crypto protocol framework designed for privacy-preserv-
ing toll collection in the most dominant setting, i.e.,
Dedicated Short Range Communication (DSRC) ETC.
A major challenge in designing the framework at hand
was to combine provable security and practicality, where
the latter includes practical performance figures and a
suitable treatment of real-world issues, like broken on-
board units etc. To the best of our knowledge, our work
is the first in the DSRC setting with a rigorous security
model and proof and arguably the most comprehensive
formal treatment of ETC security and privacy overall.
Additionally, we provide a prototypical implementation
on realistic hardware which already features fairly prac-
tical performance figures. An interaction between an on-
board unit and a road-side unit is estimated to take less
than a second allowing for toll collection at full speed
assuming one road-side unit per lane.

Keywords: Toll Collection, Privacy, Cyber-Physical Sys-
tems, Provable Security, Real-World Crypto, Universal
Composability

DOI 10.2478/popets-2020-0046
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

*Corresponding Author: Valerie Fetzer: Karlsruhe Insti-
tute of Technology, E-mail: valerie.fetzer@kit.edu
Max Hoffmann: Ruhr University Bochum, E-mail:
max.hoffmann@rub.de
Matthias Nagel: Karlsruhe Institute of Technology, E-mail:
matthias.nagel@kit.edu
*Corresponding Author: Andy Rupp: University of Lux-
embourg, E-mail: andy.rupp@rub.de

1 Introduction
Electronic toll collection (ETC) is already deployed in
many countries world-wide. A recent study [58] predicts
a Compound Annual Growth Rate (CAGR) for this
market of 9.16% from 2017 to 2022 reaching 10.6 Bil-
lion USD by 2022. Europe plans to introduce the first
implementation of a fully interoperable tolling system
(EETS) by 2027 [37]. As ETC will become the default
option for paying tolls with no easy way to opt-out,
privacy is a concern of particular importance. Unfor-
tunately, the systems in use today are inherently vi-
olating user privacy. This encourages abuse: EZ-Pass
records have been used as evidence in divorce lawsuits
[1], EZ-pass transponders are abused to track drivers
throughout New York City [6], and the Norwegian Au-
toPASS system allowed anyone to obtain a transcript of
visited toll booths [30]. The only legitimate reason for
a toll service provider (TSP) to store personalized loca-
tion records is to bill customers. Personalized location
records may also be needed for violation enforcement,
but for this the SA (cf. Section 2) is responsible and not
the TSP. Thus, an efficient and cost-effective privacy-
preserving mechanism which avoids data collection in
the first place, but still enables the billing functionality,
should be of interest to TSPs. In this way, there is no
need to deploy costly technical and organizational mea-
sures to protect a large amount of sensitive data and
there is no risk of a data breach resulting in costly law
suits, fines, and loss of customer trust. This is especially
interesting in view of the new EU General Data Protec-
tion Regulation (GDPR) [38].

Classification of ETC
One can classify ETC systems based on what the user
is charged for, where toll determination takes place, and
how this determination is done [36, 39]. Concerning
what the user is charged for, we distinguish between
two major types of charging schemes:

*Corresponding Author: Rebecca Schwerdt: Karlsruhe
Institute of Technology, E-mail: rebecca.schwerdt@kit.edu

P4TC 63

Distance-based: Toll is calculated based on the distance
traveled by the vehicle and adapted by other param-
eters like the type of vehicle, discounts, etc.

Access-based: Tolls apply to a specific geographic area,
e.g. part of a city, segment of a highway, tunnel,
etc. As before, it can dynamically be adapted by
other parameters. This charging scheme is typically
used in urban areas—not only to finance road in-
frastructure but also for congestion and pollution
management through dynamically adapted tolls.

There are two types of toll determination environments:

Toll plaza: This is the traditional environment where cars
pass toll booths on physically separated lanes which
may be secured by barriers or cameras to enforce
honest behavior.

Open road: In open road tolling the traffic is not dis-
rupted as tolls are collected in a seamless fashion
without forcing cars to slow down. In the DSRC set-
ting, this is enabled by equipping roads with toll
gantries and cameras enforcing participation.

Several key technologies define how toll is determined:

Dedicated Short-Range Communication (DSRC): This is the
most widely used ETC technology worldwide and
the de facto standard in Europe [39]. It is based
on bidirectional radio communication between road-
side units (RSUs) and on-board units (OBUs) in-
stalled in the vehicles. In conventional systems, the
OBU just identifies the user to trigger a payment.
However, more complex protocols (like ours) be-
tween OBU and RSU can be implemented.

Automatic Number Plate Recognition (ANPR): Video tolling
inherently violates privacy.

Global Navigation Satellite System (GNSS): With GNSS the
OBU keeps track of the vehicle’s location and pro-
cesses the necessary information to measure its road
usage autonomously, i.e., without the aid of an RSU.
GNSS is typically used in combination with GSM
for communicating with the toll service provider.

Drawbacks of Existing Systems and Proposals
Independent of the technology used, systems deployed
in practice build on identifying the user to charge him.
Previous academic work on privacy-preserving toll col-
lection mainly considers the GNSS setting and comes—
apart from a few exceptions [8, 28, 29]—without any
formal security analysis. Although DSRC is currently
the most dominant setting in practice, and according to
recent market forcasts [41], predicting an exponential
growth, it will stay like this at least for the near future,
it did not receive much attention in the literature so

far. Moreover, practical issues like “what happens if an
OBU breaks down”, are usually not taken into account
by these proposals. See Section 1.1 for details.

P4TC
We propose a comprehensive security model as well
as provably-secure and efficient protocols for privacy-
friendly ETC in the DSRC setting. Note that our in-
stantiation is not post-quantum secure as it relies on
pairing-based cryptography. Our definitional framework
and the system are very flexible. We cover access-based
and distant-based charging schemes as well as combina-
tions of those. Our protocols work for toll plaza environ-
ments, but are (due to offline precomputations) efficient
enough for open road tolling. Additionally, we also cope
with several issues that may arise in practice, e.g., bro-
ken/stolen OBUs, RSUs with non-permanent internet
connection, imperfections of violation enforcement tech-
nology, etc. To the best of our knowledge, we arguably
did the most comprehensive formal treatment of ETC
security and privacy overall.

1.1 Related Work

In this section, we review the academic literature on
privacy-preserving ETC. So far, more elaborate systems
have been proposed for the GNSS setting in comparison
to the actually more widely used DSRC setting. See
Table 1 for a comparison of the contemplated systems.

DSRC (OBU/RSU) Setting
Previous work [31, 47–49] in this setting mainly focuses
on a pre-pay scenario where some form of e-cash is used
to spend coins when passing an RSU. None of them
comes with a formal security model and proof.

General problems involved with an e-cash approach
are the assurance of sufficient funds and exact payments.
The first means that the user or some mechanism needs
to ensure that during a trip a user never runs out of e-
coins to pay his toll. The problem of “exact payments” is
well-known in the e-cash community and led to research
on divisible e-cash [17] (s.t. coins can be split-up appro-
priately) and transferable e-cash [9] (s.t. the payee can
return change). However, instantiations of these variants
still are significantly more heavyweight than traditional
e-cash which hampers the deployment in time-critical
settings such as toll collection. Moreover, in the case
of transferable e-cash there also is an impossibility re-
sult [21] negating “perfect anonymity”, which translated
to the ETC setting means: if the entity issuing e-coins

P4TC 64

Table 1. Comparison of Electronic Toll Collection Systems

Sy
st

em

Se
tt

in
g

Po
st

-p
ay

m
en

ts

D
yn

am
ic

Pr
ic

in
g

O
ffl

in
e

RS
U

s

N
o

T
PM

in
O

B
U

Fr
au

d
D

et
ec

tio
n

B
la

ck
lis

tin
g

M
ec

ha
ni

sm

Fo
rm

al
M

od
el

an
d

Pr
oo

f

Pr
ot

ot
yp

e
Im

pl
em

en
ta

tio
n

[47–49] DSRC ✗ (✓)2 ✗ ✗ ✓ ✗ ✗ ✗

SPEcTRe [31] DSRC ✓ ✗ n/a4 ✓ (✓)6 ✗ ✗ ✓

[12] DSRC ✓ –––1 ✓ ✗ ✓ ✓ ✓ ✗ ✓

P4TC DSRC ✓ ✓ (✓)5 ✓ ✓ ✓ ✓ ✓

VPriv [29, 61] GNSS ✓ ✓ n/a4 ✓ (✓)6 ✗ ✓ ✓

PrETP [8] GNSS ✓ (✓)3 n/a4 ✓ (✓)6 ✗ ✓ ✓

Milo [59] GNSS ✓ ✓ n/a4 ✓ (✓)6 ✗ ✗ ✓

[27, 28] GNSS ✓ ✓ n/a4 ✓ (✓)6 ✗ ✓ ✗

[40] GNSS ✓ ✗ n/a4 ✗ (✓)6 ✗ ✓ –––7 ✗

[52] GNSS ✓ ✓ (✓)5 ✓ ✓ ✗ ✗ ✓ –––8

1 Pre-payment scheme with refunds
2 In [47] the pricing is not dynamic, in [48, 49] it is dynamic
3 PrETP supports dynamic prices, but for practical reasons the set

of possible prices must be kept “small”
4 Not applicable, since these systems do no have RSUs
5 RSUs are offline most of the time, they only sometimes need to be

online to transmit data to a central server
6 Fraud detection is probabilistic, so fraud will not always be detected
7 Informal proof
8 No implementation is given, put performance is estimated

(usually the TSP) colludes with the RSUs, then e-coins
given out as change by an RSU to a user can be linked to
their spendings at other RSUs. Certainly, this reduces
the suitability for an ETC setting.1

In [47–49] multiple electronic road pricing systems
specifically tailored for Low Emission Zones (LEZ) are
proposed. In [47] a user drives by an RSU and directly
pays some price depending on this RSU. In [48, 49] the
user receives some e-ticket from an Entry-RSU when
entering the LEZ which he needs to present again at
an Exit-RSU when leaving the LEZ. For the actual
payment in all these systems, some untraceable e-cash
scheme that supports dynamic pricing is assumed but
not specified. The systems require tamper-proof hard-
ware for the OBU and are claimed to provide fraud pro-
tection and privacy for honest drivers.

SPEcTRe [31] is a simple access-based toll collec-
tion system, where RSA-based tokens/coins are used to
pay toll while driving. Some ideas are presented to keep
the double-spending database small.

1 Note that relaxations of “perfect anonymity” can be achieved
[9]. It would be interesting to see if those allow for practical ETC
constructions with reasonable privacy guarantees.

In [12], the authors propose an efficient scheme for
distance-based toll collection. Here, a user obtains a
coin, used as an entry ticket, which is worth the maxi-
mum toll in the system and can be reused a fixed number
of times. The actual toll is calculated at the exit RSU
where a reimbursement is done. Unfortunately, the de-
scription of their system misses some important details.
For instance, it is unclear how the zero-knowledge proof
generated by the user in their token issuance protocol
can be efficiently instantiated as it mixes statements
and variables over a Paillier ring and a discrete loga-
rithm group. As opposed to our scheme, their system
relies on online “over-spending” detection and lacks a
formal model and security proof.2

GNSS Setting
A variety of GNSS-based system proposals can be found
in the literature. Here, the OBU equipped with GPS
and GSM typically collects location-time data or road
segment prices and sends this data to the TSP. To en-
sure that the user behaves honestly and, e.g., does not

2 For the proofs the authors refer to the full version, which,
however, does not seem to be publicly available.

P4TC 65

omit or forge data, unpredictable spot checks are as-
sumed which force a user to reveal the data he sent at
a certain location and time. In a reconciliation phase,
the user calculates his toll based on the data sent and
proves his calculation to be correct.

In VPriv [61], the OBU anonymously sends tagged
location-time data to the TSP while driving. The user
previously committed to use exactly these random tags
in a registration phase with the TSP. In an inefficient
reconciliation phase, each user downloads the database
of all tagged location-time tuples, calculates his total
fee, and proves that for this purpose, he correctly used
the tuples belonging to his tags without leaking those.
In [29], ProVerif is used to verify VPriv’s privacy guar-
antees for honest-but-curious adversaries.

In the PrETP [8] scheme, the OBU non-anony-
mously sends payment tuples consisting of commitments
to location, time, and the corresponding price that the
OBU determined itself. During reconciliation with the
TSP, the user presents his total toll and proves that
this is indeed the sum of the individual prices he sent,
using the homomorphic property of the commitment
scheme. The authors prove their system secure using
the ideal/real world paradigm.

In [59], the authors identify large-scale driver col-
lusion as a potential threat to the security of PrETP
(and other systems): As spot check locations are leaked
to the drivers in the reconciliation phase, they may col-
lude to cheat the system by sharing these locations and
only sending correct payment tuples nearby. To this end,
the Milo system is constructed. In contrast to PrETP,
the location of the spot checks is not revealed during the
monthly reconciliation phase. Therefore, drivers are less
motivated to collude and cheat. However, if a cheating
user is caught, the corresponding spot check location is
still revealed. Thus, Milo does not protect against mass-
collusion of dishonest drivers.

In [27], the authors propose a system based on group
signatures that achieves k-anonymity. A user is assigned
to a group of drivers during registration. While driv-
ing, the user’s OBU sends location, time, and group
ID—signed using one of the group’s signature keys—to
the TSP. At the end of a billing period, each user is ex-
pected to pay his toll. If the sum of tolls payable by the
group (calculated from the group’s location-time data)
is not equal to the total toll actually paid by the group, a
dispute solving protocol is executed. Choosing an appro-
priate group size is difficult (the larger the size, the bet-
ter the anonymity, but the computation overhead rises),
as well as choosing a suited group division policy (users
in a group should have similar driving regions and simi-

lar driving patterns). In [28], the system’s security and
privacy properties are verified using ProVerif.

Another cell-based road pricing scheme is presented
in [40]. Here, a roadpricing area is divided into cells
and certain cells randomly selected as spot check cells.
A trusted platform module (TPM) inside each OBU is
aware of this selection. While driving, the OBU tells its
TPM the current location and time. The TPM updates
the total toll and generates a “proof of participation”
which is sent to the TSP. This proof is the signed and en-
crypted location-time data under the TSP’s public key
if the user is inside a spot check cell and 0 otherwise.
In this way, the TSP can easily verify that a user be-
haved honestly at spot check cells without leaking their
locations to honest users. A security proof is sketched.

A key issue with all of the above systems is that
their security relies on a strong assumption: invisible
spot checks at unpredictable locations in each billing
period. Otherwise users could easily collude and cheat.
On the other hand, spot checks reveal a user’s location.
Hence, fixing the number of spot checks is a trade-off be-
tween ensuring honesty and preserving privacy. Clearly,
the penalty a cheater faces influences the number of spot
checks required to ensure a certain security level.

In [52], the authors argue that even mass surveil-
lance, protecting no privacy at all, cannot prevent collu-
sion under reasonable penalties. They present a protocol
for a privacy-preserving spot checking device where the
locations of these devices can be publicly known. Drivers
interacting with the device identify themselves with a
certain probability, but do not learn whether they do
so, therefore being forced to honesty. To let a user not
benefit from turning off his OBU between two spot check
devices, such a device is needed at every toll segment.
Furthermore, to encourage interaction with the device,
an enforcement camera is required. However, since all
these road-side devices are needed anyway, there is no
advantage anymore in terms of infrastructure require-
ments compared to the DSRC setting.

1.2 Our Contribution

The contribution of this work is threefold:

Protocols
A major challenge of this work was to select, adapt, and
combine the numerous cryptographic building blocks
and techniques to design a system satisfying simulation-
based security and practicality at the same time.

P4TC 66

To this end, we started from a payment sys-
tem building-block called black-box accumulation
(BBA+) [44]. BBA+3 offers the core functionality of
an unlinkable user wallet maintaining a balance. Val-
ues can be added to and subtracted from the wallet by
an operator, where the use of an old wallet is detected
offline by a double-spending mechanism.4 The system
guarantees that a wallet may only be used by its legiti-
mate owner and with its legitimate balance.

While BBA+ provides us with some ((P1), (P3),
(P4) and (P9) partially) of the desired properties identi-
fied in Section 2, it has not been designed to cope with
the real-world issues of an ETC scenario. Thus, we have
to enhance BBA+ in several ways to enable its usage in
our scenario in the first place.

For instance, consider the case an OBU, which con-
tains the BBA+ wallet, is (claimed to) be broken. As a
user collects debt with this wallet and those transactions
are perfectly anonymous, the TSP is not able to recal-
culate what the user owes (P7) nor blacklist his wallet
(P6). As this could result in a serious loss of revenue for
the TSP, it renders the original BBA+ scheme imprac-
tical for an ETC scenario. We solve this by having an
individual anonymity revocation trapdoor for each wal-
let. In case of an incident (like a broken OBU or possibly
court-ordered assistance to law enforcement) this makes
its transactions forward and backward linkable with the
help of a trusted dispute resolver (DR). The trapdoor
does not allow to link transactions of other wallets. To
realize this, we adopt an idea from the e-cash literature
[18]. More precisely, we make use of a PRF applied to
a counter value to generate some fraud detection ID for
a wallet state. To ensure security and privacy, we let
both the user and the TSP jointly choose the PRF key
with the key remaining unknown to the TSP. To make
it accessible in case of an incident, the user deposits the
key encrypted under the DR’s public key. The correct-
ness of this deposit is ensured by a NIZK proof. This
part is tricky due to the use of Groth-Sahai NIZKs for
efficiency reasons and the lack of a compatible (i.e., al-
gebraic) encryption scheme with message space Zp.

As a minor but very useful modification we added
(user and RSU) attributes, which get signed along with

3 Note that we cannot build on the faster version of BBA+ [46]
as we aim for a proof in the UC model which collides with their
need to rewind adversaries.
4 Unfortunately, online double-spending detection is not feasible
in this scenario (even if we required permanent online connection
from RSUs) due to the strong time constraints of open road
tolling and potentially simultaneously conducted interactions.

the wallet to protect from forgery. This allows to bind
wallets to a billing period encoded in the attribute. Hav-
ing RSUs only accept wallets from the current period
reduces the size of the blacklist it has to check, which en-
ables faster transactions. Similarly, the database needed
to recalculate balances can be kept small.

Another problem is the use of a single shared wal-
let certification key in the BBA+ scheme. Translated
to our setting, the TSP and all RSUs would share the
same secret key. Hence, if an adversary corrupted a sin-
gle RSU, he could arbitrarily create new wallets, forge
user attributes and balances, etc. In order to mitigate
this problem (P8), we take the following measures: First,
we separate user identity and attribute information, i.e.,
the fixed part of a wallet, from balance information, i.e.,
the updatable part. The first part is signed by a signa-
ture key only held by the TSP when the wallet is issued.
The second part is signed by an RSU each time the bal-
ance of a wallet is updated. This prevents a corrupted
RSU to issue new wallets or fake user attributes. Fur-
thermore, the individual key of each RSU is certified by
the TSP along with its attributes. In this way, a RSU
may not forge its attributes (P2) but may still fake the
balance. By including an expiration date into the RSU
attributes, one can limit the potential damage involved
with the latter issue. In view of the fact that RSUs are
usually not easily accessible physically and key material
is usually protected by a HSM, we believe that these
measures are sufficient. We intentionally refrain from
using key revocation mechanisms like cryptographic ac-
cumulators [56] in order to retain real-time interactions.

Finally, we added mechanisms for a user to prove
its participation in certain transactions (P10) and to
enable simulation-based security.

System Definition, Security Model and Proof
Having the scenario from Section 2 at the back of our
mind, we propose a system definition and security model
for post-payment toll collection systems based on the
UC framework [24]. Our work is one of very few com-
bining a complex, yet practical crypto system with a
thorough UC security analysis.

The security of BBA+ has been modeled by individ-
ually formalizing and proving security properties from
a list. This approach is common in the game-based set-
ting but bears the intrinsic risk that important but
non-obvious security aspects are overlooked, i.e., the
list is incomplete. This danger is eliminated by our UC-
approach where we do not formalize a list of individual
properties but rather what an ideal system looks like.

P4TC 67

A challenging task was to find a formalization of
such an ideal functionality which accomplishes a rea-
sonable trade-off between various aspects: On one hand,
it needs to be sufficiently abstract to represent the se-
mantics of the goal “toll collection” while still admitting
a realization. On the other hand, keeping it too close to
the concrete realization and declaring aspects as out-of-
scope only provides weak security guarantees.

We decided to directly model the ETC system as
a single functionality with (polynomially) many parties
that reactively participate in (polynomially) many in-
teractions. This leads to a clean interface but makes se-
curity proofs highly non-trivial. At first sight, it seems
tempting to follow a different approach: Consider the
system as a composition of individual two-party proto-
cols, analyze their security separately and deduce the se-
curity of the system from the composition theorem. We
refrain from this approach, as it entails a slew of techni-
cal subtleties due to the shared state between protocols.

Moreover, although our system uses cryptographic
building blocks for which UC formalizations exist (com-
mitments, signatures, NIZK), these abstractions cannot
be used. For example, UC-signatures are just random
strings that are information-theoretic independent of
the message they sign. Thus it is impossible to prove in
zero-knowledge any statement about message-signature-
pairs. Hence, our security proof has to start almost from
scratch, is very complex, and technically demanding.

Implementation
In addition to our theoretical framework, we also evalu-
ate the real-world practicality of P4TC by means of an
implementation. We specifically benchmarked our pro-
tocols on an embedded processor which is known to be
used in currently available OBUs such as the Savari Mo-
biWAVE [62]. The major advantage for real-world de-
ployment originates in the use of non-interactive zero-
knowledge proofs, where major parts of the proofs
can be precomputed and verification equations can be
batched efficiently. This effectively minimizes the com-
putations which have to be performed by the OBU
and the RSU during an actual protocol run. Our im-
plementation suggests that provably-secure ETC at full
speed can indeed be realized using present-day hard-
ware. More details on the implementation and perfor-
mance figures can be found in Section 6.

2 Considered Scenario
This sketch of the scenario shows the flexibility and com-
plexity required of our system. We target post-payment
toll collection in a DSRC setting which allows access- as
well as distance-based charging and can be deployed in
a toll-plaza as well as an open-road environment.

Parties
Our scenario involves the following entities:

TSP: A Toll Collection Service Provider (TSP) which
may be a private company.

SA: A State Authority (SA), e.g., Department of Trans-
portation, which outsourced toll collection to the
TSP but is responsible for violation enforcement.

DR: A Dispute Resolver (DR), e.g., a privacy-protecting
NGO. It is involved in case of incidents or disputes.5

User: Users who participate in the system by means
of a (portable or mounted) On-Board Unit (OBU).
OBUs are used for on-road transactions and in debt
and dispute clearance periods. For the latter, it
needs to establish a (3G) connection to the TSP/SA.
Alternatively, a smartphone might be used for that
purpose, which, however, needs access to the OBU.

RSU: Road-Side Units (RSUs) which interact with
OBUs, typically managed by the TSP. To enable
fast and reliable transactions with OBUs, we do not
require RSUs to have a permanent connection to
the TSP. We only assume them to be periodically
online for a short duration (e.g., at night when there
is not much traffic) to exchange data with the TSP.

Camera: Enforcement Cameras triggered by the RSUs
which are typically owned by the SA and used to
make photos of license plates (and possibly drivers)
only in case anything goes wrong. Alternatively,
there might be barriers in a toll-plaza environment.

Main Protocols
In the following, we sketch the main protocols of the
system involving the parties from above. Figure 1 pro-
vides an overview of these interactions. A more detailed
description that also includes the remaining protocols
can be found in Section 4. For simplicity, let us envision
a system with monthly billing periods.

User Registration: To participate in the system, a user
needs to register with the TSP using some physi-

5 Note that we assume the DR to be trusted by all other parties
as it implements a key escrow mechanism.

P4TC 68

TSP
(Toll Collection
Service Provider)

RSU
(Road-Side Unit)

DR
(Dispute Resolver)

User
SA

(State Authority)Camera

RSU Certification

Debt Accumulation

Blacklisting and
Recalculation

Prove Participation

User
Registration

Wallet
Issuing

Debt
Clearance

Double-Spending Detection

Fig. 1. The P4TC System Model

cal ID (e.g., passport, SSN) which is verified out-of-
band. This is done once and makes the user account-
able in case he cheats or refuses to pay his bills.

RSU Certification: RSU gets a certificate from the TSP.
Wallet Issuing: An (empty) wallet is issued to a user by

the TSP. The wallet is bound to the user’s ID
and attributes (see next paragraph) in a privacy-
preserving manner.

Debt Accumulation: Every time a user passes an RSU, his
OBU and the RSU execute the Debt Accumula-
tion protocol. The due toll is determined and added
to the user’s wallet—possibly along with public at-
tributes of the RSU. The toll may be dynamic and
depend on different factors like the current time of
day, congestion level, some user attributes attached
to the wallet as well as some attributes of the pre-
vious RSU the user drove by.
The camera takes a photo of the license plate(s) in
case the RSU reports any protocol failure or a car
in the range of the RSU refuses to communicate at
all. Due to technical limitations, it might be impos-
sible to determine which car triggered the camera,
especially in open-road tolling environments [50]. In
this case, photos of more than one car in the range
of the RSU are taken and transmitted to the SA.

Prove Participation: After the SA has identified the users
behind the license plates involved in an incident,
it determines who caused the incident. Since we
demand that Debt Accumulation transactions are
anonymous, the users need to interact with the SA
to help with this matching. To this end, an in-
stance of the Prove Participation protocol is exe-
cuted between the SA and each of these users con-
secutively. This prevents honest users who success-
fully ran Debt Accumulation from being penalized.

Debt Clearance: At the end of a billing period, users par-
ticipate in an (asynchronous) clearance phase with
the TSP. As this protocol is not anonymous, users
can be penalized if they refuse to run the protocol
within a certain time frame. In a protocol execution,
a user presents his wallet and the accumulated debt
to the TSP. Then he may clear his debt immediately
or within a certain grace period. A successful pro-
tocol execution invalidates his wallet. He can get a
new one by rerunning Wallet Issuing.6

Double-spending Detection: As the system is largely offline,
a malicious user might re-use an old state of his
wallet (e.g., with lower debt) and thus commit dou-
ble-spending. To mitigate this problem, Wallet Issu-
ing, Debt Accumulation and Debt Clearance gener-
ate double-spending information that is eventually
collected by the TSP. The TSP periodically runs
Double-Spending Detection on its database to find
pairs of matching double-spending information and
to identify fraudulent users.

Blacklisting and Recalculation: With the help of the trusted
DR, the TSP is able to blacklist fraudulent users
and to recalculate what they owe.

Attributes, Pricing Function and Privacy Leakage
Our scenario involves two types of attribute vectors:
user attributes and (previous) RSU attributes. To keep
our framework flexible, we do not stipulate which kind
of attributes are used. Those details depend on the con-
crete pricing model. We expect, however, that for most

6 If a user plans to be inactive the upcoming billing periods, he
would request a new wallet not until he plans to become active
again. But this requires to plan inactivity periods in advance.
Alternatively, the TSP could be allowed to request the user’s
trapdoor for such a period from the DR, which would reveal an
empty transaction history.

P4TC 69

scenarios very little information needs to be encoded in
these attributes. For instance, access-based toll collec-
tion can be realized with prices primarily depending on
auxiliary input like location, time and possibly the con-
gestion level—without any previous RSU attributes and
only the current billing period as user attribute. Includ-
ing the previous RSU’s attributes into the toll calcula-
tion allows for distance-based charging, where RSUs are
installed at each entry and exit of a highway. Running
Debt Accumulation at the Entry-RSU does not add any
debt to the wallet but only encodes the previous RSU’s
ID as attribute. At the Exit-RSU, the appropriate toll
is calculated and added but no RSU attribute is set.7

To mitigate the damage of a stolen RSU, one might
want RSUs to have a common “expiration date” which
is periodically renewed and encoded as RSU attribute.
Likewise, to enforce that a user eventually pays his debt,
the user attributes should encode the billing period.8

Obviously, the concrete content of the attributes af-
fects the “level” of user privacy in an instantiation of
our system. Our goal is to provide provable privacy up
to what can be possibly be deduced by an operator who
explicitly learns (1) those attributes as part of its input
to the pricing function and (2) the total debt of a user at
the end of a billing period. Our framework guarantees
that protocol runs of honest users do not leak anything
(useful) beyond that (cp. Appendices A.3 and B).

In order to allow users to assess the privacy of a par-
ticular instantiation of our framework, we assume that
all attributes, all possible values for those attributes and
how they are assigned, as well as the pricing function
are public. In this way, the TSP is also discouraged from
running trivial attacks by tampering with an individ-
ual’s attribute values (e.g., by assigning a billing period
value not assigned to any other user). To this end, a
user needs to check if the assigned attribute values ap-
pear reasonable. Such checks could also be conducted
(at random) by a regulatory authority or often also au-
tomatically by the user’s OBU. Likewise, a (corrupted)
RSU could try to break the privacy of a user by charging
a peculiar price that differs from the prescribed pricing
function. We assume that the user verifies the validity
of the price after each transaction and files a claim if
the price was computed incorrectly.

7 This links entry and exit point. Our system still ensures
anonymity and that multiple entry/exit pairs are unlinkable.
8 Clearly, for privacy reasons, unique expiration dates in at-
tributes need to be avoided.

Desired Properties
The following list informally summarizes some desirable
high-level properties that one would reasonably expect
from an electronic toll collection system. These prop-
erties inspire the eventual definition of the ideal func-
tionality in Section 3. Note that the ideal functionality
(and not this list) formally determines the security of our
proposed protocol. In Appendix A.3 we show how these
high-level goals are reflected in the ideal functionality.

(P1) Owner-binding: A user may only use a wallet legiti-
mately issued to him.

(P2) Attribute-binding: In Debt Accumulation, a user can-
not pretend that he owes less by forging the at-
tributes attached to his wallet.

(P3) Balance-binding: In Debt Clearance, a user cannot
claim to owe less than the amount added to his
wallet unless he has committed double-spending.

(P4) Double-spending Detection: If a user reuses an old
copy of his wallet, he will be identified.9

(P5) Participation Enforcement: If a user fails to participate
in Debt Accumulation, he will be identified.

(P6) Blacklisting: The TSP is able—with a hint from the
DR—to efficiently blacklist wallets of individual
users. This is important in practice, e.g., to mit-
igate the financial loss due to stolen or compro-
mised OBUs or double-spending.

(P7) Debt Recalculation: The TSP is able—with a hint
from the DR—to efficiently recalculate the debt
for individual users during a billing period. This
is important in practice, e.g., to mitigate the fi-
nancial loss due to broken, stolen, or compromised
OBUs. Furthermore, it allows to determine the ac-
tual debt of a double-spender. Also, in a dispute, a
user may request a detailed invoice listing the toll
points he visited and the amounts being charged.

(P8) Renegade Expulsion: As an RSU’s secrets enable tam-
pering with user debt, there is a mechanism to
mitigate financial loss due to compromised RSUs.

(P9) Unlinkability: If user attributes and (previous) RSU
attributes are ignored, a collusion of TSP and

9 Note that this also applies to multiple instances of double-
spending. Since the TSP only periodically checks for double-
spendings, a user could reuse an old copy of his wallet several
times, say 100 times, before the TSP runs the Double-spending
Detection task. In that case all 100 double-spendings will be
identified and the user can be punished accordingly. Note that
hardware cloning is also captured by this property. An adversary
cloning his own/stolen hardware (including secrets) may coor-
dinate simultaneous double-spendings with many vehicles. All
these double-spendings will be detected and penalized.

P4TC 70

RSUs may not be able to link a set of Wallet Is-
sue, Debt Accumulation and Debt Clearance trans-
actions of an honest user given that he is not
blacklisted nor committed double-spending. More
precisely, Wallet Issuing, Debt Accumulation and
Debt Clearance do not reveal any information (ex-
cept for user attributes, RSU attributes and the
final balance in case of Debt Clearance) that may
help in linking transactions.

(P10) Participation Provability: Prove Participation enables
the SA to deanonymize a single transaction of an
honest user in case of an incident.

(P11) Protection Against False Accusation: The user is pro-
tected against false accusation of having commit-
ted double-spending (cp. (P4)).

3 System Definition
We model our system P4TC within the UC-framework
by Canetti [22], a simulation-based security notion. In
the UC-framework, an ideal functionality F , which is
acting as a trusted third party (TTP), is defined which
plainly solves the problem at hand in a secure and pri-
vacy-preserving manner. A protocol π is a secure real-
ization of this ideal functionality F if no PPT-machine
Z—called the environment—can distinguish between
two experiments: the real experiment (running π) and
the ideal experiment (using F).

In the real experiment, Z interacts with parties run-
ning the actual protocol π and is supported by a real ad-
versary A. The environment Z specifies the input of the
honest parties, receives their output and determines the
overall course of action. The adversary A is instructed
by Z and represents Z’s interface to the network, e.g.,
A reports all messages generated by any party to Z and
can manipulate, reroute, inject and/or suppress mes-
sages on Z’s order. Moreover, Z may instruct A to cor-
rupt parties. In this case, A takes over the role of the
corrupted party, reports its internal state to Z and from
then on may arbitrarily deviate from the protocol π.

In the ideal experiment the protocol parties are mere
dummies that pass their input to the TTP F and hand
over F ’s output as their own output. The ideal function-
ality F is incorruptible and executes the task in a trust-
worthy manner. The real adversary A is replaced by a
simulator S. The simulator must mimic the behavior of
A, e.g., simulate appropriate network messages (there
are no network messages in the ideal experiment), and

come up with a convincing internal state for corrupted
parties (dummy parties do not have an internal state).

If no environment Z can distinguish executions of
the real and ideal experiment, any attack on the real
experiment is also possible in the ideal one. Therefore
the protocol π guarantees the same level of security as
the (inherently secure) ideal functionality F .

Regarding privacy, note that all parties (incl. the
simulator) use the ideal functionality as a black-box and
only know what it explicitly allows them to know as part
of their output. This makes UC suitable to reason about
privacy in a very nice way. As no additional information
is unveiled, the achieved level of privacy can directly be
deduced from the output of the ideal functionality.

The Ideal Functionality FP4TC
Due to space limitations, we only give a brief sketch
in this section. More detailed information on the ideal
functionality FP4TC can be found in Appendix A.

The key idea behind FP4TC is to keep track of all
transactions in a pervasive transaction database TRDB.
Each entry trdb is of the form

trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b).

It contains the identities pidU and pidR of the involved
user and RSU (or TSP) respectively,10 the price p (toll)
of this particular transaction and the user wallet’s total
balance b, which is the accumulated sum of all transac-
tion prices up to and including p. In other words, FP4TC
implements a trustworthy global bookkeeping service
managing the wallets of all users. Each transaction en-
try is uniquely identified by a serial number s. Addition-
ally, each entry contains a pointer sprev to the logically
previous transaction, a unique wallet ID λ, a counter
x indicating the number of previous transactions with
this particular wallet, and a fraud detection ID ϕ.

Some explanations are in order with respect to
the different IDs. In a truly ideal world, FP4TC would
use the user identity pidU to look up its most re-
cent entry in the database and append a new entry.
Such a scheme, however, could only be implemented
by an online system. Since we require offline capabili-
ties—allowing a user and RSU to interact without the

10 The party identifier (PID) can best be depicted as the model’s
counterpart of a party’s physical identity in the real world. E.g.,
the this could be a passport number or SSN; the “identity” of an
RSU could be its geo-location. Generally, there is no necessary
one-to-one correspondence between a PID and a cryptographic
key. Also, the ideal functionality always knows the PID of the
party it interacts with by definition of the UC framework.

P4TC 71

help of other parties and without permanent access to
a global database—the inherent restrictions of such a
setting must be reflected in the ideal model: (Even for-
mally honest) users can misbehave and commit double-
spending without being noticed instantly and double-
spending is eventually detected after-the-fact.

In order to accurately define security, these tech-
nicalities have to be incorporated into FP4TC, which
causes the bookkeeping to be more involved. The trans-
action database is best depicted as a directed graph.
Nodes are identified by serial numbers s and addi-
tionally labeled with (ϕ, x, λ, pidU , b). Edges are given
by (sprev, s) and additionally labeled with (pidR, p). A
user’s wallet is represented by the subgraph of all nodes
with the same wallet ID λ and forms a connected com-
ponent. Unless a user commits double-spending the par-
ticular subgraph is a linked, linear list. In this case, each
transaction entry has a globally unique fraud detection
ID ϕ. If a user misbehaves and reuses an old wallet state
(i.e., there are edges (sprev, s) and (sprev, s′)), the corre-
sponding subgraph becomes a directed tree. In this case,
all transaction entries that constitute double-spending,
i.e., all nodes with the same predecessor, share the same
fraud detection ID ϕ. To consistently manage fraud de-
tection IDs, FP4TC uses a counter x and an injective
map fΦ : L × N0 → Φ, (λ, x) 7→ ϕ. For any newly is-
sued wallet with ID λ, the counter x starts at zero and
x = xprev + 1 always holds. It counts the number of sub-
sequent transactions of a wallet since its generation, i.e.,
x equals the depth of a node. The function fΦ maps a
transaction to its fraud detection ID ϕ, i.e., fΦ(λ, x) = ϕ.

Besides storing transaction data, FP4TC also keeps
track of parties’ attributes by internally storing RSU at-
tributes aR upon certification and user (or rather wallet)
attributes aU when the wallet is issued.

4 System Instantiation
This section briefly introduces the basic idea of P4TC
and provides some details of the main protocols. For the
full protocols see Appendix D.

We start with some remarks on cryptographic build-
ing blocks and the algebraic setting. For formal defini-
tions we refer to Appendix C.

Cryptographic Building Blocks: Our construction makes use
of non-interactive zero-knowledge (NIZK) proofs,
equivocal and extractable homomorphic commit-
ments, digital signatures, public-key encryption,
and pseudo-random functions (PRFs). The latter

building blocks need to be efficiently and securely
combinable with the chosen NIZK proof (which is
Groth-Sahai [42] in our case).

Algebraic Setting: Our system instantiation is based on
an asymmetric bilinear group setting (G1, G2, GT,

e, p, g1, g2). Here, G1, G2, GT are cyclic groups of
prime order p (where no efficiently computable
homomorphisms between G1 and G2 are known);
g1, g2 are generators of G1, G2, respectively, and
e : G1 × G2 → GT is a (non-degenerated) bilinear
map. We rely on the co-CDH assumption as well as
on the security of the building blocks in this setting.

Secure (Authenticated) Channels: All messages are encryp-
ted using CCA-secure encryption. To this end a new
session key is chosen by the user and encrypted un-
der the public key of the RSU/TSP for each inter-
action. We omit these encryptions in the following.
Apart from Debt Accumulation, we furthermore as-
sume all channels to be authenticated.

Basic Idea
The basic technique underlying P4TC is a commit-sign-
rerandomize-prove approach: a wallet is essentially a
commitment c to the balance b (and some important
auxiliary information) which is initially certified, i.e.,
signed, by the TSP during Wallet Issuing. To update
b during Debt Accumulation, c cannot be sent over to
the RSU as is since this would allow to link transac-
tions. Instead it has to be rerandomized, i.e., the user
generates a fresh commitment c′ on b to send it over for
updating. However, c′ is not certified (directly) but only
the original commitment c. Here a NIZK proof comes
into play to show that c′ is certified indirectly, i.e., that
c′ is just a new commitment to the same balance b as
contained in c for which the user knows a signature. If
the RSU is convinced that this proof is correct, the RSU
updates c′ by the price p the user has to pay using the
homomorphic property of the commitment and signs c′.
In this way the user obtains a new certified wallet state.
Debt Clearance essentially works the same as Debt Ac-
cumulation except that the user reveals b to the TSP.

To incorporate blacklisting & recalculation as well
as double-spending detection capabilities, c has to be
augmented by additional information. For blacklisting
& recalculation, the user must additionally commit to
a PRF key λ and counter x as well as deposit λ with
the DR during Wallet Issuing and prove that this has
been done correctly. In the x-th transaction, the value
PRF(λ, x) now serves as the wallet’s fraud detection ID
ϕ which is revealed to the RSU/TSP. In the same trans-
action, the new wallet state c′ for the upcoming transac-

P4TC 72

tion x + 1 is generated in which b is increased by p and
the old counter value x by one. This is done in a similar
manner as for the simpler case before. The NIZK proof
now additionally enforces that the correct PRF key and
counter value is used. Computing the fraud detection ID
using a PRF has the advantage that the different (pre-
vious and future) states of a wallet are traceable given
λ but untraceable if λ is unknown.

To encourage the user to only use his most recent
wallet state by means of double-spending detection, each
wallet state is bound to a random straight line encod-
ing the user’s secret key as slope: t = skUu2 + u1. To
this end, the user chooses some random u1 for his wal-
let state and the parameters determining the straight
line, i.e., skU and u1, are added to the commitment c in
Wallet Issuing (resp. c′ in Debt Accumulation). Now in
each transaction using this wallet state, the user is en-
forced (by means of the NIZK) to reveal a point (u2, t)
for random u2 on this straight line. Clearly, if only one
such point is revealed, this leaks nothing about the slope.
However, if two (different) points are revealed, so the
wallet state is used twice, then the slope skU can be
determined. This allows to compute pkU identifying the
cheating user. Note that transactions involving the same
wallet state can be recognized by exhibiting the same
fraud detection ID ϕ (see before).

Some Details on Wallet Structure and Protocols
Fig. 1 gives an overview of the protocols and parties.

System Setup: In the setup phase, a TTP generates
the bilinear group and a public common reference
string.11 The latter contains parameters for the
NIZK and commitment scheme(s) we use.

DR/TSP/RSU Key Generation: The DR generates a key
pair (pkDR, skDR) for an IND-CCA secure encryp-
tion scheme, where pkDR is used to deposit a user-
specific trapdoor (PRF-key) which allows to link the
user’s transactions in case of disputes. An individ-
ual signature key pair (pkR, skR) is generated for
each RSU to sign the updatable part (see below)
of a user’s wallet. Moreover, the TSP generates key
pairs (pkTT , skTT), (pkcert

T , skcert
T) and (pkRT , skRT) for

an EUF-CMA secure signature scheme. The key skTT
is used to sign fixed user-specific information (see

11 If one does not want to assume the existence of a TTP,
one can let distrusting parties perform a secure multi-party
computation once to generate the common reference string (CRS).
We assume that the CRS (∼7 KB) is distributed along with the
OBU software, certified by a trusted certification authority.

below) when a new wallet is issued. Using skRT the
TSP plays the role of the initial RSU signing the
updatable part of a new wallet.

RSU Certification: An RSU engages with the TSP in this
protocol to get its certificate certR. It contains the
RSU’s public key pkR, its attributes aR (that are as-
signed in this protocol by the TSP), and a signature
on both, generated by the TSP using skcert

T .
User Registration: To participate in the system, a user

needs to generate a key pair (pkU = gskU
1 , skU) ∈

G1×Zp. We assume that the TSP out-of-band binds
pkU to a verified physical user ID, in order to hold
the user liable in case of a misuse. The key pair (pkU ,

skU) is used to bind a wallet to a user.
Wallet Structure: A user’s wallet essentially consists of

two signed commitments (cT , cR), where cT repre-
sents the fixed part and cR the updatable part. Ac-
cordingly, the fixed part is signed along with the
user’s attributes aU by the TSP using skTT dur-
ing Wallet Issuing. Every time cR is updated, it
is signed along with the serial number s of the
transaction by the RSU using skR. The fixed part
cT = Com(λ, skU) is a commitment on the PRF key
λ (used as wallet ID) and the user’s secret key skU .
The updatable part cR = Com(λ, b, u1, x) also con-
tains λ (to link both parts), the current balance b

(debt), some user-chosen randomness u1 to generate
double-spending tags for the current wallet state,
and a counter value x being the input to the PRF.

Wallet Issuing: This protocol is executed between user
and TSP to create a new wallet with a fresh wal-
let ID λ and balance 0. Additionally, the PRF key λ

is deposited under the DR’s public encryption key.
To generate the wallet, the user encodes λ together
with his other secrets into the wallet. The PRF key λ

needs to be chosen jointly and remain secret to the
TSP. If only the user chose the key, an adversary
could tamper with recalculations and blacklisting,
as well as with double-spending detection (e.g., by
choosing the same key for two different users). If
only the TSP chose it, a user’s transactions would be
linkable. To this end, the user and the TSP engage
in the first two messages of a Blum coin toss. After
the second message λ := λ′+λ′′ is fixed and the user
knows his own share λ′ as well as the TSP’s share
λ′′. Then the user computes the commitments cT =
Com(λ, skU) and cR := Com(λ, b := 0, u1, x := 0).
Additionally, he prepares the deposit of λ. This is
a bit tricky, as the user needs to prove that the ci-
phertext he gives to the TSP is actually an encryp-
tion of λ under pkDR. For practical reasons, we use

P4TC 73

Groth-Sahai NIZKs [42] and the Dodis-Yampolskiy
PRF [33]. Ideally, one would want an encryption
scheme that is compatible with Groth-Sahai and
whose message space equals the key space of the
PRF, i.e., Zp. Unfortunately, we are not aware of
any such scheme. Instead, we use a CCA-secure
structure-preserving encryption scheme for vectors
of G1-elements [20] and the following workaround:
The user splits up its share λ′ into small chunks
λ′i < B (e.g., B = 232) such that recovering the dis-
crete logarithm of Λ′i := g

λ′
i

1 becomes feasible. All
chunks Λi∈{0,...,ℓ−1}, the TSP’s share Λ′′ := gλ′′

1 ,
and the user’s public key pkU are jointly encrypted
as e∗ under pkDR. The CCA-secure ciphertext e∗

unambiguously binds λ to the user’s key pkU and
rules out malleability attacks. Otherwise, a mali-
cious TSP could potentially trick the DR into re-
covering the trapdoor of a different (innocent) user.
The user then sends over e∗, cT , cR along with a
NIZK π proving that everything has been generated
honestly and the wallet is bound to the user owning
skU . When the TSP receives this data, it verifies the
NIZK first. If the check passed, the TSP signs cT
along with attributes aU and cR along with s us-
ing skTT .12 The resulting signatures σT , σR are sent
to the user, who checks their correctness. The user
finally stores his freshly generated token τ := (aU ,

cR, dR, σR, cT , dT , σT , λ := λ′+λ′′, b := 0, u1, x := 1,

s), where dR and dT are the decommitment values
required to open cR and cT , respectively. The TSP
stores htd := (pkU , s, λ′′, e∗) as hidden user trapdoor
to recover λ with help of DR.

Blacklisting and Recalculation: This is a protocol executed
by the DR upon request of the TSP. We assume
that DR and TSP agreed out-of-band that the user
with public key pkDR

U should be blacklisted before
the protocol starts. Given e∗ and λ′′, the DR recov-
ers the contained PRF key but only if it is bound to
pkDR
U . To this end, DR decrypts e∗ using skDR to ob-

tain Λ′i, Λ′′, and pkU . If pkU ≠ pkDR
U or Λ′′ ̸= gλ′′

1 it
aborts. Otherwise, it computes the (small) discrete
logarithms of the Λ′i to the base g1 to recover the
chunks λ′i of the user’s share of the PRF key. The
key is computed as λ := λ′′ +

∑ℓ−1
i=0 λ′i · Bi. Using

λ, the fraud detection IDs belonging to the previ-
ous and upcoming states of a user’s wallet can be

12 A uniformly random serial number s for this transaction is
jointly generated by user and TSP by means of a Blum-like coin
toss (see also Debt Accumulation for details).

computed. Thus, all interactions of the user (includ-
ing double-spendings) in the TSP’s database can be
linked and the legitimate debt recalculated. Also,
the fraud detection IDs for upcoming transactions
with this wallet can be blacklisted.

Debt Accumulation: In this protocol (Fig. 2) executed be-
tween an anonymous user and an RSU, the toll p

is determined and a new state of the user’s wallet
with a debt increased by p is created.
The user’s main input is the token τprev := (aU ,

cprev
R , dprev

R , σprev
R , cT , dT , σT , λ, bprev, uprev

1 , x, sprev)
containing the state of his previous protocol run and
wallet. To update his wallet state, the user computes
a fresh commitment c′R on (λ, bprev, unext

1 , x), where
except for unext

1 the same values are contained in
the previous wallet state. The randomness unext

1 is
freshly chosen by the user and is used to generate
a double-spending tag for the new wallet state. In
order to get his new wallet state certified by the
RSU, the user needs to invalidate his previous state.
To do so, he needs to reveal the fraud detection
ID and double-spending tag of his previous state.
For the latter, the RSU sends a random challenge
u2 along with a commitment c′′ser = Com(s′′) on
his share of the serial number of this transaction
(which is part of the Blum coin toss). Upon re-
ceiving these values, the user computes the double-
spending tag t := u2 · skU + uprev

1 mod p (a linear
equation in the unknowns uprev

1 and skU), the fraud
detection ID ϕ := PRF(λ, x), and a hidden user
ID chid := Com(pkU). The latter is used in Prove
Participation to associate this interaction with the
user. As response, the user sends over chid, c′R, ϕ, t,
aU , aprev

R , π, and s′, where π is a NIZK proving that
everything has been computed honestly, and s′ is
the user’s share of the serial number. In particular,
π shows that the user knows a certified wallet state
involving commitments cT and cprev

R such that cprev
R

and c′R are commitments on the same messages
except for the double-spending randomness, that
the (hidden) signature on cprev

R verifies under some
(hidden) RSU key pkprev

R certified by the TSP, and
that t, ϕ, and chid have been computed using the
values contained in cT and cprev

R .
When receiving this data, the RSU first checks that
ϕ is not on the blacklist and π is correct. Then it
calculates the price p, adds it to the user’s balance
bprev and increases the counter x by 1 using the
homomorphic property of c′R. The resulting com-
mitment cR is signed along with the serial number
s := s′ ·s′′ using skR. Then the RSU sends cR to the

P4TC 74

U(pkU , skU , τprev) R(certR, skR, blR)

s′
R← G1 s′′

R← G1

unext
1

R← Zp u2
R← Zp

(c′R, d′R)← Com(λ, bprev, unext
1 , x) (c′′ser, d′′ser)← Com(s′′)

u2, c′′ser

t := skUu2 + uprev
1

ϕ := PRF(λ, x)

(chid, dhid)← Com(pkU)

Compute proof π

chid, c′R, ϕ, t, aU , aprev
R , π, s′

if ϕ ∈ blR ∨ π does not verify

return ⊥

Calculate price p

s := s′ · s′′

(c′′R, d′′R)← Com(0, p, 0, 1)

cR := c′R · c
′′
R

σR ← Sgn(skR, (cR, s))

cR, d′′R, σR, p, certR, s′′, d′′ser

dR := d′R · d
′′
R

if Open(s′′, c′′ser, d′′ser) = 0 ∨

Vfy(pkR, σR, (cR, s)) = 0

return ⊥

τ := (aU , cR, dR, σR, cT , dT , σT , λ,

b := bprev + p, unext
1 , x + 1, s := s′ · s′′)

return (τ, chid, dhid) return (ϕ, aU , aprev
R , p, t, u2, chid, s)

Fig. 2. A Simplified Version of Debt Accumulation

user, along with its decommitment information dR,
its signature σR, the added price p, the certificate
for pkR, RSU’s share s′′ of the serial number and
the decommitment d′′ser for c′′ser.
The user checks if the received data is valid and ends
up with an updated token τ := (aU , cR, dR, σR, cT ,

dT , σT , λ, bprev +p, unext
1 , x+1, s) containing his new

wallet state cT , cR, σT , σR. He additionally stores
(chid, dhid), where dhid allows to open the hidden ID.
The RSU stores (ϕ, aU , aprev

R , p, t, u2, chid, s) .
Prove Participation: In this protocol executed between a

user and the SA, the user proves that he partici-
pated in one of the Debt Accumulation transactions
under audit by the SA. This protocol is identifying,
as the SA retrieved the user’s physical ID from his

license plate number and, thus, is aware of his pub-
lic key pkU . First, it sends the list Ωpp

R of hidden
ID commitments observed by the RSU during the
considered time frame. If the user owns some chid
contained in Ωpp

R , he simply sends over chid along
with the corresponding opening dhid he stored and
the serial number s of the transaction. The SA ac-
cepts if the commitment dhid indeed opens to pkU
and s is part of the corresponding prove participa-
tion information the RSU stored. No other user may
claim to have sent chid, as this would imply to open
chid with a different public key.

Debt Clearance: In this protocol conducted by a user and
the TSP, the user identifies himself using skU and
reveals the balance of his current wallet state. The

P4TC 75

wallet is terminated by not creating a new state.
Upon receiving a challenge u2 from the TSP, the
user computes the double-spending tag t and fraud
detection ID ϕ. This is the same as in Debt Accu-
mulation. Then the user sends over pkU , bprev, ϕ, t

and a NIZK proof π. This NIZK proof asserts that
the user knows a certified wallet state with balance
bprev, fraud detection ID ϕ, and double-spending tag
t which is bound to pkU . Note that if the user does
not make use of his latest wallet state, double-spend-
ing detection will reveal this. If the proof verifies,
the balance and the double-spending information,
i.e., (bprev, ϕ, t, u2), is stored by the TSP.

Double-Spending Detection: This algorithm is applied by
the TSP to its database containing all double-spend-
ing information (ϕ, t, u2) collected by the RSUs.
The fraud detection ID ϕ is thereby used as the
database index. If the same index appears twice
in the TSP’s database, a double-spending occurred
and the cheater’s key pair can be reconstructed
from the two double-spending information as fol-
lows: Let us assume there exist two records (ϕ, t, u2),
(ϕ, t′, u′2). In this case, skU can be recovered as
skU = (t − t′)(u2 − u′2)−1 mod p with overwhelm-
ing probability. The cheater’s public key pkU can
be computed from skU . As a consequence, the wal-
let bound to pkU could be blacklisted. The output
of the protocol is the fraudulent user’s public key
pkU along with a proof-of-guilt π := skU .

Guilt Verification: This algorithm can be executed by any
party to verify the guilt of an accused double-
spender. Given a public key pkU and a proof-of-guilt
π, it checks if gπ

1 = pkU .

5 Security Theorem
Assuming co-CDH is hard and our building blocks are
secure, we prove that the protocols from Appendix D
(combined as one comprehensive toll collection proto-
col πP4TC) UC-realize the ideal model FP4TC from Ap-
pendix A.1 in the (FCRS,Gbb)-hybrid model, i.e.,

πFCRS,Gbb
P4TC ≥UC FGbb

P4TC.

Informally, this means the ideal model and our proto-
col are indistinguishable and therefore provide the same
guarantees regarding security and privacy. The state-
ment holds given a static corruption of either

1. A subset of users.
2. All users and a subset of RSUs, TSP and SA.
3. A subset of RSUs, TSP and SA.

4. All RSUs, TSP and SA as well as a subset of users.

Note that we assume the DR to be honest. While full
versions of all proofs can be found in Appendix E, the
following proof sketch explains the ideas behind them.

Proof Outline
For our security statement, we separately prove correct-
ness, system security and user security and privacy.

Although proofs of correctness are often neglected
for smaller UC-secure protocols, they are highly non-
trivial for extensive ideal models as are required for a
complex real-world task like toll collection. Since it is
not only instructive to understand the underlying func-
tionality but also a helpful basis for our proofs of system
and user security, we briefly sketch the idea behind our
proof of correctness here.

First, note that the entries trdb = (sprev, s, ϕ, λ,

pidU , pidR, p, b) of the ideal transaction database TRDB
define a graph structure where serial numbers s are
considered vertices and predecessors sprev define edges
(sprev, s). Assigning a label (pidR, p) to this edge and
(ϕ, λ, pidU , b) to the vertex s results in a graph where
every vertex represents the state of a wallet and the in-
coming edge represents the transaction that led to this
wallet state. We call this perception of TRDB the Ideal
Transaction Graph and give graph-theoretic proofs of its
structural properties. These properties include that the
graph as a whole is a directed forest where each tree cor-
responds to a wallet ID λ, double-spending corresponds
to branching and different wallet states have the same
fraud detection ID ϕ if and only if they have the same
depth in the same tree.

Secondly we add in and out commitments (cin
R, cin
T)

and (cout
R , cout

T) from the real protocols to each transac-
tion node in the Ideal Transaction Graph. These com-
mitments are the fixed and updatable part of the wallet
before and after the transaction (cp. Section 4). This
information gives a second set of edges where two trans-
actions trdb and trdb∗ are connected if (cout

R , cout
T) cor-

responds to (cin
R
∗
, cin
T
∗). We call the resulting graph the

Augmented Transaction Graph. Showing that in case of
an honest execution of the toll collection protocol both
of those graph structures coincide with overwhelming
probability yields correctness.

The proofs of system security and user security and
privacy are conducted by explicitly specifying a simu-
lator and reducing the indistinguishability of real and
ideal world to the security of our building blocks. Dur-
ing an execution of the protocol our simulator generates
the Augmented Transaction Graph as explained above.

P4TC 76

After showing that all messages sent by the simulator
are statistically close to the real messages, i.e., simu-
lated perfectly, that leaves only two kinds of reasons
the environment Z could be able to distinguish both
worlds. The first kind are failure events where the two
graph structures in the augmented transaction graph di-
verge and the second are discrepancy events where some
party’s outputs could be distinguished. We show that
both of those cases only occur with negligible probabil-
ity by various reductions to our cryptographic building
blocks and hardness assumptions.

6 Performance Evaluation
We implemented our system for a realistic target plat-
form. Measurements for the user side were done on an
i.MX6 Dual-Core processor running at 800MHz with
1GB DDR3 RAM and 4GB eMMC Flash, the same pro-
cessor as used in the Savari MobiWAVE-1000 OBU [62].
The processor runs an embedded Linux, is ARM Cortex-
A9 based (32-bit), and also exists in a more powerful
Quad-Core variant. For the RSU hardware we took the
ECONOLITE Connected Vehicle CoProcessor Module
as a reference system, which was specifically “designed
to enable third-party-developed or processor-intensive
applications” [34] and measured on comparable hard-
ware. The TSP’s runtime was measured on a standard
laptop featuring an i7-6600U processor, although the
TSP is typically equipped with more powerful hardware.

Building Block Instantiation
We implemented P4TC in C++17 using the RELIC
toolkit v.0.4.1, an open source cryptography and arith-
metic library written in C, with support for pairing-
friendly elliptic curves [7]. We developed our own li-
brary for Groth-Sahai NIZK proofs [35, 42] and em-
ployed the method in [19] to realize the range proofs
required in Wallet Issuing. We make use of two types
of commitments: the shrinking commitment scheme
from [4], as well as a (dual-mode) extractable com-
mitment scheme from [42]. Moreover, we implemented
the structure-preserving signature scheme from [2]. We
adapted the structure-preserving IND-CCA-secure en-
cryption scheme from [20] to the asymmetric setting
for encrypting PRF key shares in the Wallet Issuing
protocol, as well as implemented the IND-CCA-secure
encryption scheme from [26] (in combination with AES-
CBC and HMAC-SHA256) to establish secure channels.
The PRF is instantiated with the Dodis-Yampolskiy
construction [33].

Parameter Choice
As bilinear group setting we use the Barreto-Naehrig
curves Fp254BNb and Fp254n2BNb [13, 51] together
with the optimal Ate pairing, which yields shortest ex-
ecution times [60]). This results in a security level of
about 100 bit [11]. We evaluated P4TC for two sizes of
attribute vectors: |aU | = |aR| = 1 and |aU | = |aR| = 4.
With 254-bit curves, each vector component can encode
253 bits of information. In practice, it should be possible
to encode multiple attributes in one such component.

Implementation Results
Table 2 shows the results of our measurements in terms
of execution time and transmitted data. All values are
averaged over 1000 independent protocol executions.
Note that the processor is running an embedded Linux,
hence execution times can vary by tens of milliseconds
due to internal processes and scheduling. The row enti-
tled “Session Key Generation” in Table 2 includes the
execution time and size of data to setup a session key
for the secure channel which is established prior to any
protocol run. In order to utilize the capabilities of our
OBU hardware, the user side algorithms were optimized
for two CPU cores. Note that the given TSP times (the
bracketed entries in Table 2) are likely an upper bound,
since TSP hardware will be more powerful in practice.

Debt Accumulation: While Wallet Issuing and Debt Clear-
ance are non-time-critical as they only need to be
executed once a month (offroad), Debt Accumula-
tion is performed while driving—possibly at high
speed. Thus, execution has to be as efficient as pos-
sible. Fortunately, all parts of the expensive NIZK
proof which do not involve the challenge value u2
(provided by the RSU) can be precomputed (of-
fline phase) at the OBU which takes approximately
2700ms. During the actual interaction with the RSU
(online phase), the remaining part of the NIZK is
computed and all data is transmitted. Regarding
|aU | = |aR| = 1, computations in this online phase
take only approximately 350ms on the OBU, mostly
due to the verification of the RSU certificate. When
caching valid certificates, the runtime can be re-
duced to approximately 40ms. After the OBU re-
ceived a response from the RSU, which computes for
about 475ms, the internal wallet has to be updated.
Since this step can be done offline again, we measure
the execution time separately and call the phase
postprocessing. We also optimized the computations
performed by the RSU, taking advantage of the 4
CPU cores and the batching techniques for Groth-

P4TC 77

Table 2. P4TC performance results. Runtime t is averaged over 1 000 executions. Transmitted data n is rounded up to full bytes.

Protocol
|aU | = |aR| = 1 |aU | = |aR| = 4

tuser tRSU/TSP nuser nRSU/TSP tuser tRSU/TSP nuser nRSU/TSP
[ms] [ms] [byte] [byte] [ms] [ms] [byte] [byte]

Session Key Generation 15 ≈ 0 131 — 15 ≈ 0 131 —
Wallet Issuing 27 064 (8 490) 87 951 944 27 183 (8 545) 88 107 1 152
Debt Accumulation
– Precomp (offline) 2 715 — — — 2 716 — — —
– Online 348 475 8 128 976 456 5256 8 336 1 088
– Online (cached certificate) 41 475 8 128 976 40 526 8 336 1 088
– Postprocessing (offline) 34 — — — 34 — — —
Debt Clearance 2 435 (745) 7 071 96 2 436 (767) 7 280 96

Sahai verification by Herold et al. [45]. In summary,
all computations in the online phase of Debt Accu-
mulation can be performed in about 825ms or just
515ms when the certificate has already been cached.
The WAVE data transmission standard on DSRC
guarantees a transmission rate of 24 Mbit/s [57]. At
this rate, all data of the Debt Accumulation proto-
col are transmitted in approximately 27ms. While
the standard claims communication ranges of up to
1km, we assume a toll collection zone of 50m. More-
over, we may assume one RSU per lane [54] such
that the workload can be easily spread among the
available units. Going at 120km/h, it takes a car
1.5s to travel this distance, leaving us with a time
buffer of about 700ms for uncached certificates or
1s for cached certificates. Considering the mandated
safety distance at this speed, there should only be
a single car inside the 50m zone on each lane. How-
ever, since computations take less time than it takes
a car to cross the toll collection zone, the system
could theoretically handle cars with a distance of
only 28m (uncached certificate) or 17m (cached cer-
tificate) at 120km/h. We therefore conclude that the
performance is sufficient for real-world scenarios.

Storage Requirements: During Debt Accumulation, the
RSU and OBU collect data in order to, e.g., prevent
double-spending and prove participation in a pro-
tocol run. In Debt Accumulation, the OBU has to
store 137 bytes of transaction information and (op-
tionally) 268 bytes to cache the RSU certificate. As-
suming that the OBU performs 10000 transactions
in one billing period, it only has to store 1.37MB
of transaction information and—even if all visited
RSUs were different—2.68MB of cached certificates.
The wallet itself consumes 1kB of memory and is
fixed in size. The RSU stores 246 bytes of transac-
tion information for each run of Debt Accumulation

(32-bit toll values). All this information is eventually
aggregated at the TSP’s database. The US-based
toll collection system E-ZPass reported about 252.4
million transactions per month in 2016 [43], which
would result in a database of size 62GB.
In case a wallet is blacklisted, an RSU is updated
with a list of future fraud detection IDs. Each ID re-
quires 35 bytes of memory. Using appropriate data
structures such as hashsets or hashmaps, a lookup
is performed in less than 1ms in sets of size 106, re-
quiring 35MB of memory (neglecting overhead due
to the data structure). Hence, blacklisting does not
affect the execution time of the RSU.

Computing DLOGs: To blacklist a user, the DR has to
compute a number of discrete logarithms to recover
λ. With our choice of parameters, λ is split into
32-bit values, thus resulting in the computation
of eight 32-bit DLOGs. While DLOGs of this size
can be brute-forced naively, the technique of Bern-
stein et al. [16] can be used to speed up this process.
Using their algorithm, computing a discrete loga-
rithm in an interval of order 232 takes around 1.5
seconds on a single core of a standard desktop us-
ing a 55kB table of precomputed elements. These
precomputations need to be done only once by the
DR when setting up the system and take one hour
on a desktop computer. Thus, the required DLOGs
can be computed in reasonable time by the DR.

Acknowledgements
This research received funding from the German Re-
search Foundation (DFG) within grants RU 1664/3-1
and PA 587/10-1 and as part of the Research Training
Group GRK 2153.

P4TC 78

References
[1] ABC News. Toll records catch unfaithful spouses, 2008. URL

https://abcnews.go.com/Technology/story?id=3468712&
page=1.

[2] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal
structure-preserving signatures in asymmetric bilinear groups.
In P. Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 649–666. Springer, Heidelberg, Aug. 2011.

[3] M. Abe, J. Groth, M. Ohkubo, and T. Tango. Convert-
ing cryptographic schemes from symmetric to asymmetric
bilinear groups. In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 241–
260. Springer, Heidelberg, Aug. 2014. 10.1007/978-3-662-
44371-2_14.

[4] M. Abe, M. Kohlweiss, M. Ohkubo, and M. Tibouchi. Fully
structure-preserving signatures and shrinking commitments.
In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 35–65. Springer, Hei-
delberg, Apr. 2015. 10.1007/978-3-662-46803-6_2.

[5] C. Albrecht, F. Gurski, J. Rethmann, and E. Yilmaz. Knap-
sack problems: A parameterized point of view. Theoretical
Computer Science, 2018.

[6] American Civil Liberties Union. Newly obtained records
reveal extensive monitoring of e-zpass tags throughout
new york, 2015. URL https://www.aclu.org/blog/privacy-
technology/location-tracking/newly-obtained-records-reveal-
extensive-monitoring-e-zpass.

[7] D. F. Aranha and C. P. L. Gouvêa. Relic is an efficient
library for cryptography, 2016. URL https://github.com/relic-
toolkit/relic.

[8] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Ver-
bauwhede, and C. Geuens. PrETP: Privacy-preserving
electronic toll pricing. In USENIX Security 2010, pages 63–78.
USENIX Association, Aug. 2010.

[9] F. Baldimtsi, M. Chase, G. Fuchsbauer, and M. Kohlweiss.
Anonymous transferable E-cash. In J. Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 101–124. Springer, Heidelberg,
Mar. / Apr. 2015. 10.1007/978-3-662-46447-2_5.

[10] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally
composable protocols with relaxed set-up assumptions. In
45th FOCS, pages 186–195. IEEE Computer Society Press,
Oct. 2004.

[11] R. Barbulescu and S. Duquesne. Updating key size esti-
mations for pairings. Cryptology ePrint Archive, Report
2017/334, 2017. https://eprint.iacr.org/2017/334.

[12] A. Barki, S. Brunet, N. Desmoulins, S. Gambs, S. Gharout,
and J. Traoré. Private eCash in practice (short paper). In
J. Grossklags and B. Preneel, editors, FC 2016, volume 9603
of LNCS, pages 99–109. Springer, Heidelberg, Feb. 2016.

[13] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic
curves of prime order. In B. Preneel and S. Tavares, editors,
SAC 2005, volume 3897 of LNCS, pages 319–331. Springer,
Heidelberg, Aug. 2006.

[14] M. Bellare. New proofs for NMAC and HMAC: Security
without collision resistance. Journal of Cryptology, 28(4):
844–878, Oct. 2015. 10.1007/s00145-014-9185-x.

[15] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Re-
lations among notions of security for public-key encryption

schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 26–45. Springer, Heidelberg, Aug. 1998.

[16] D. J. Bernstein and T. Lange. Computing small discrete loga-
rithms faster. Cryptology ePrint Archive, Report 2012/458,
2012. https://eprint.iacr.org/2012/458.

[17] F. Bourse, D. Pointcheval, and O. Sanders. Divisible e-
cash from constrained pseudo-random functions. In S. D.
Galbraith and S. Moriai, editors, Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part I, volume 11921 of Lecture Notes in Computer Science,
pages 679–708. Springer, 2019. 10.1007/978-3-030-34578-
5_24.

[18] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact
e-cash. In R. Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 302–321. Springer, Heidelberg, May
2005.

[19] J. Camenisch, R. Chaabouni, and a. shelat. Efficient proto-
cols for set membership and range proofs. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
234–252. Springer, Heidelberg, Dec. 2008.

[20] J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon,
and V. Naessens. Structure preserving CCA secure encryp-
tion and applications. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 89–106.
Springer, Heidelberg, Dec. 2011.

[21] S. Canard and A. Gouget. Anonymity in transferable e-
cash. In S. M. Bellovin, R. Gennaro, A. D. Keromytis, and
M. Yung, editors, ACNS 08, volume 5037 of LNCS, pages
207–223. Springer, Heidelberg, June 2008.

[22] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145.
IEEE Computer Society Press, Oct. 2001.

[23] R. Canetti. Obtaining universally composable security:
Towards the bare bones of trust. Cryptology ePrint Archive,
Report 2007/475, 2007. https://eprint.iacr.org/2007/475.

[24] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally
composable security with global setup. In S. P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 61–85.
Springer, Heidelberg, Feb. 2007.

[25] R. Canetti, D. Shahaf, and M. Vald. Universally composable
authentication and key-exchange with global PKI. In C.-M.
Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang, editors,
PKC 2016, Part II, volume 9615 of LNCS, pages 265–296.
Springer, Heidelberg, Mar. 2016. 10.1007/978-3-662-49387-
8_11.

[26] D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman
problem and applications. In N. P. Smart, editor, EU-
ROCRYPT 2008, volume 4965 of LNCS, pages 127–145.
Springer, Heidelberg, Apr. 2008.

[27] X. Chen, G. Lenzini, S. Mauw, and J. Pang. A group signa-
ture based electronic toll pricing system. In 2012 Seventh
International Conference on Availability, Reliability and Secu-
rity, ARES 2012, pages 85–93, 2012.

[28] X. Chen, G. Lenzini, S. Mauw, and J. Pang. Design and
formal analysis of A group signature based electronic toll
pricing system. JoWUA, 4(1):55–75, 2013. URL http:
//isyou.info/jowua/papers/jowua-v4n1-3.pdf.

https://abcnews.go.com/Technology/story?id=3468712&page=1
https://abcnews.go.com/Technology/story?id=3468712&page=1
https://doi.org/10.1007/978-3-662-44371-2_14
https://doi.org/10.1007/978-3-662-44371-2_14
https://doi.org/10.1007/978-3-662-46803-6_2
https://www.aclu.org/blog/privacy-technology/location-tracking/newly-obtained-records-reveal-extensive-monitoring-e-zpass
https://www.aclu.org/blog/privacy-technology/location-tracking/newly-obtained-records-reveal-extensive-monitoring-e-zpass
https://www.aclu.org/blog/privacy-technology/location-tracking/newly-obtained-records-reveal-extensive-monitoring-e-zpass
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-662-46447-2_5
https://eprint.iacr.org/2017/334
https://doi.org/10.1007/s00145-014-9185-x
https://eprint.iacr.org/2012/458
https://doi.org/10.1007/978-3-030-34578-5_24
https://doi.org/10.1007/978-3-030-34578-5_24
https://eprint.iacr.org/2007/475
https://doi.org/10.1007/978-3-662-49387-8_11
https://doi.org/10.1007/978-3-662-49387-8_11
http://isyou.info/jowua/papers/jowua-v4n1-3.pdf
http://isyou.info/jowua/papers/jowua-v4n1-3.pdf

P4TC 79

[29] M. Dahl, S. Delaune, and G. Steel. Formal analysis of privacy
for anonymous location based services. Theory of Security
and Applications, pages 98–112, 2012.

[30] Datatilsynet. Statens vegvesen holdt tilbake viktig
autopass-informasjon (press release), 2007. URL http:
//www.datatilsynet.no/.

[31] J. Day, Y. Huang, E. Knapp, and I. Goldberg. Spectre:
Spot-checked private ecash tolling at roadside. In Proceed-
ings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, WPES ’11, pages 61–68, 2011.

[32] Deutsches Bundesamt für Güterverkehr. Monatliche
mautstatistik für januar 2018, 2018. URL https://www.
bag.bund.de/SharedDocs/Downloads/DE/Statistik/Lkw-
Maut/18_Monatstab_01.html.

[33] Y. Dodis and A. Yampolskiy. A verifiable random function
with short proofs and keys. Cryptology ePrint Archive, Report
2004/310, 2004. https://eprint.iacr.org/2004/310.

[34] ECONOLITE Group. Connected vehicle coprocessor module,
2018. URL http://www.econolitegroup.com/wp-content/
uploads/2017/05/controllers-connectedvehicle-datasheet.
pdf.

[35] A. Escala and J. Groth. Fine-tuning Groth-Sahai proofs.
In H. Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 630–649. Springer, Heidelberg, Mar. 2014.
10.1007/978-3-642-54631-0_36.

[36] European Commission. Study on state of the art of electronic
road tolling, 2015. URL https://ec.europa.eu/transport/
sites/transport/files/modes/road/road_charging/doc/study-
electronic-road-tolling.pdf.

[37] European Commission. Proposal for a directive of the euro-
pean parliament and of the council on the interoperability of
electronic road toll systems and facilitating crossborder ex-
change of information on the failure to pay road fees in the
union (recast), 2017. URL https://ec.europa.eu/transport/
sites/transport/files/com20170280-eets-directive.pdf.

[38] European Commission. The eu general data protection
regulation (gdpr), 2018. URL https://www.eugdpr.org/.

[39] European Parliament. Technology options for the european
electronic toll service, 2014. URL http://www.europarl.
europa.eu/RegData/etudes/STUD/2014/529058/IPOL_
STUD(2014)529058_EN.pdf.

[40] F. D. Garcia, E. R. Verheul, and B. Jacobs. Cell-based
roadpricing. In European Public Key Infrastructure Workshop
– EuroPKI 2011, volume 7163 of Lecture Notes in Computer
Science, pages 106–122, 2011.

[41] Global Markets Insights. ETC Market Report 2019,
2019. URL https://www.marketwatch.com/press-release/
electronic-toll-collection-market-2019-in-depth-industry-
analysis-by-product-technology-application-opportunities-
and-growth-forecast-by-2025-2019-11-12.

[42] J. Groth and A. Sahai. Efficient non-interactive proof
systems for bilinear groups. In N. P. Smart, editor, EU-
ROCRYPT 2008, volume 4965 of LNCS, pages 415–432.
Springer, Heidelberg, Apr. 2008.

[43] E.-Z. Group. E-ZPass Statistics: 2005 - 2016, 2017. URL
https://e-zpassiag.com/about-us/statistics.

[44] G. Hartung, M. Hoffmann, M. Nagel, and A. Rupp. BBA+:
Improving the security and applicability of privacy-preserving
point collection. In B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 1925–

1942. ACM Press, Oct. / Nov. 2017.
[45] G. Herold, M. Hoffmann, M. Klooß, C. Ràfols, and A. Rupp.

New techniques for structural batch verification in bilinear
groups with applications to groth-sahai proofs. In B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
ACM CCS 2017, pages 1547–1564. ACM Press, Oct. / Nov.
2017.

[46] M. Hoffmann, M. Klooß, M. Raiber, and A. Rupp. Black-box
wallets: Fast anonymous two-way payments for constrained
devices. Proceedings on Privacy Enhancing Technologies,
2020(1):165–194, 2020. 10.2478/popets-2020-0010.

[47] R. Jardí-Cedó, J. Castellà-Roca, and A. Viejo. Privacy-
preserving electronic toll system with dynamic pricing for low
emission zones. In Data Privacy Management, Autonomous
Spontaneous Security and Security Assurance – DPM 2014,
SETOP 2014 and QASA 2014. Revised Selected Papers,
volume 8872 of Lecture Notes in Computer Science, pages
327–334, 2014.

[48] R. Jardí-Cedó, M. Mut-Puigserver, M. M. Payeras-Capellà,
J. Castellà-Roca, and A. Viejo. Electronic road pricing
system for low emission zones to preserve driver privacy. In
Modeling Decisions for Artificial Intelligence – MDAI 2014.
Proceedings, pages 1–13, 2014.

[49] R. Jardí-Cedó, M. Mut-Puigserver, M. M. Payeras-Capellà,
J. Castellà-Roca, and A. Viejo. Privacy-preserving electronic
road pricing system for multifare low emission zones. In
Proceedings of the 9th International Conference on Security
of Information and Networks, SIN 2016, pages 158–165,
2016.

[50] Kapsch (Toll Collection System Integrator and Supplier).
Personal Communication, 2018.

[51] Y. Kawahara, T. Kobayashi, M. Scott, and A. Kato. Barreto-
naehrig curves. Internet draft, Internet Engineering Task
Force, Mar. 2016. Work in Progress.

[52] F. Kerschbaum and H. W. Lim. Privacy-preserving obser-
vation in public spaces. In G. Pernul, P. Y. A. Ryan, and
E. R. Weippl, editors, ESORICS 2015, Part II, volume 9327
of LNCS, pages 81–100. Springer, Heidelberg, Sept. 2015.
10.1007/978-3-319-24177-7_5.

[53] E. Kiltz, J. Pan, and H. Wee. Structure-preserving signatures
from standard assumptions, revisited. In R. Gennaro and
M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 275–295. Springer, Heidelberg, Aug.
2015. 10.1007/978-3-662-48000-7_14.

[54] H. Koelmeyer and S. Kandeepan. Tagless tolling using dsrc
for intelligent transport system: An interference study. In Asia
Modelling Symposium. IEEE, 2017.

[55] S. Kummer, M. Dieplinger, and M. Dobrovnik. Endbericht
der studie “flächendeckende schwerverkehrs-maut in Öster-
reich”, 2015. URL https://www.wko.at/branchen/stmk/
transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_
FlaechendeckendeMaut_final.pdf.

[56] J. Lapon, M. Kohlweiss, B. D. Decker, and V. Naessens.
Performance analysis of accumulator-based revocation mech-
anisms. In Security and Privacy - Silver Linings in the Cloud
- 25th IFIP TC-11 International Information Security Con-
ference, SEC 2010, Held as Part of WCC 2010, Brisbane,
Australia, September 20-23, 2010. Proceedings, pages 289–
301, 2010. 10.1007/978-3-642-15257-3_26.

http://www.datatilsynet.no/
http://www.datatilsynet.no/
https://www.bag.bund.de/SharedDocs/Downloads/DE/Statistik/Lkw-Maut/18_Monatstab_01.html
https://www.bag.bund.de/SharedDocs/Downloads/DE/Statistik/Lkw-Maut/18_Monatstab_01.html
https://www.bag.bund.de/SharedDocs/Downloads/DE/Statistik/Lkw-Maut/18_Monatstab_01.html
https://eprint.iacr.org/2004/310
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
https://doi.org/10.1007/978-3-642-54631-0_36
https://ec.europa.eu/transport/sites/transport/files/modes/road/road_charging/doc/study-electronic-road-tolling.pdf
https://ec.europa.eu/transport/sites/transport/files/modes/road/road_charging/doc/study-electronic-road-tolling.pdf
https://ec.europa.eu/transport/sites/transport/files/modes/road/road_charging/doc/study-electronic-road-tolling.pdf
https://ec.europa.eu/transport/sites/transport/files/com20170280-eets-directive.pdf
https://ec.europa.eu/transport/sites/transport/files/com20170280-eets-directive.pdf
https://www.eugdpr.org/
http://www.europarl.europa.eu/RegData/etudes/STUD/2014/529058/IPOL_STUD(2014)529058_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2014/529058/IPOL_STUD(2014)529058_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/STUD/2014/529058/IPOL_STUD(2014)529058_EN.pdf
https://www.marketwatch.com/press-release/electronic-toll-collection-market-2019-in-depth-industry-analysis-by-product-technology-application-opportunities-and-growth-forecast-by-2025-2019-11-12
https://www.marketwatch.com/press-release/electronic-toll-collection-market-2019-in-depth-industry-analysis-by-product-technology-application-opportunities-and-growth-forecast-by-2025-2019-11-12
https://www.marketwatch.com/press-release/electronic-toll-collection-market-2019-in-depth-industry-analysis-by-product-technology-application-opportunities-and-growth-forecast-by-2025-2019-11-12
https://www.marketwatch.com/press-release/electronic-toll-collection-market-2019-in-depth-industry-analysis-by-product-technology-application-opportunities-and-growth-forecast-by-2025-2019-11-12
https://e-zpassiag.com/about-us/statistics
https://doi.org/10.2478/popets-2020-0010
https://doi.org/10.1007/978-3-319-24177-7_5
https://doi.org/10.1007/978-3-662-48000-7_14
https://www.wko.at/branchen/stmk/transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_FlaechendeckendeMaut_final.pdf
https://www.wko.at/branchen/stmk/transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_FlaechendeckendeMaut_final.pdf
https://www.wko.at/branchen/stmk/transport-verkehr/gueterbefoerderungsgewerbe/Endbericht_FlaechendeckendeMaut_final.pdf
https://doi.org/10.1007/978-3-642-15257-3_26

P4TC 80

[57] Y. J. Li. An overview of the dsrc/wave technology. In
International Conference on Heterogeneous Networking for
Quality, Reliability, Security and Robustness, pages 544–558.
Springer, 2010.

[58] Markets and Markets. Electronic Toll Collection Market
Study, 2017. URL https://www.marketsandmarkets.com/
Market-Reports/electronic-toll-collection-system-market-
224492059.html.

[59] S. Meiklejohn, K. Mowery, S. Checkoway, and H. Shacham.
The phantom tollbooth: Privacy-preserving electronic toll
collection in the presence of driver collusion. In USENIX
Security 2011. USENIX Association, Aug. 2011.

[60] D. Moody, R. C. Peralta, R. A. Perlner, A. R. Regenscheid,
A. L. Roginsky, and L. Chen. Report on pairing-based
cryptography. In Journal of Research of the National Institute
of Standards and Technology, volume 120, pages 11–27,
Gaithersburg, MD, USA, Feb. 2015. National Insititute of
Standards and Technology.

[61] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. VPriv:
Protecting privacy in location-based vehicular services. In
F. Monrose, editor, USENIX Security 2009, pages 335–350.
USENIX Association, Aug. 2009.

[62] Savari.net. Mobiwave on-board-unit (obu), 2017. URL
http://savari.net/wp-content/uploads/2017/05/MW-1000_
April2017.pdf.

[63] L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 10(5):557–570, 2002.
10.1142/S0218488502001648.

A Full System Definition
In this appendix we give a detailed description and
explanation of our ideal privacy-preserving electronic
toll collection functionality FP4TC. We first mention a
few preliminary remarks, then we describe the differ-
ent tasks in a high-level fashion before presenting the
full-fledged ideal functionality. Last, we discuss why this
ideal functionality precisely models a secure and privacy-
preserving electronic toll collection scheme.

Setup Assumptions and Implicit Writing Conventions
As commonly found in the UC setting, we also draw
from setup assumptions. Setup assumptions are ideal
functionalities that still remain ideal in the real experi-
ment, e.g., their secure realization is left unspecified. Es-
pecially, the security of their realization has to be either
proven outside of the (UC-)model or simply assumed.
In our scenario, we assume a common reference string
(CRS), denoted FCRS, and a globally available bulletin
board, denoted Gbb [25, Fig. 3], which is sometimes also
referred to as a key registration service in the literature
[10, 23].

A CRS is a short piece of information that is shared
between all parties. The trust assumptions are that the
CRS has been generated honestly and that all parties
possess the same CRS.

A bulletin board can be depicted as a key registra-
tion service which associates (physical) party identifiers
(PIDs) with (cryptographic) public keys. The assump-
tions about Gbb are that upon registration the operator
of the bulletin board checks the identity of the register-
ing party in a trustworthy way and that every party can
retrieve information from Gbb trustworthily. As the PID
establishes an entity’s physical identity it cannot be cap-
tured by cryptographic means. In our scenario the PID
of users could be a passport number or SSN. For RSUs
the geo-location could be used as a PID.

Lastly, we assume our functionality also uses the
implicit writing conventions for ideal functionalities [22].
In particular, our simulator can delay outputs and abort
at any point. Beyond that, the simulator has the power
to override the output to honest parties with an abort
reason (e.g., “blacklisting”) if it decides to abort.

A.1 Tasks provided by FP4TC

Before describing the ideal functionality in full detail, we
first give a condensed description. We explain Debt Ac-
cumulation in some detail and give only short sketches
of the remaining tasks.

Individual tasks (e.g., Wallet Issuing, Debt Accumu-
lation etc.) are not formalized as separate functionalities.
Instead the whole system is given as one monolithic,
highly reactive ideal functionality FP4TC with polyno-
mially many parties as users and RSUs. This allows for
a shared state between individual interactions. An ex-
cerpt of FP4TC is depicted in Fig. 3. For the ease of pre-
sentation, all instructions which are typically executed
are printed in normal font, while some conditional side
tracks are grayed out. The conditional branches deal
with corrupted, misbehaving,13 or blacklisted parties.

Task Debt Accumulation
In this task, the user provides a serial number sprev as
input to FP4TC, indicating which past wallet state he
wishes to use for this transaction. Of course, an honest
user always uses the wallet state resulting from the pre-

13 Please note, that users do not need to be formally corrupted
in order to commit double-spending. We call these users honest,
but misbehaving.

https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf
https://doi.org/10.1142/S0218488502001648

P4TC 81

Functionality FP4TC
I. State

The following information is stored by FP4TC:

– Set TRDB of transaction entries trdb. Each entry has the form trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b).
– Mapping fΦ : L × N0 → Φ, (λ, x) 7→ ϕ assigning a fraud detection ID ϕ to a wallet ID λ and counter x.
– Mapping fAU : L → AU , λ 7→ aU assigning user attributes to a given wallet ID λ.
– Mapping fAR : PIDR → AR, pidR 7→ aR assigning RSU attributes to a given RSU PID pidR.

I. Behavior—Task Debt Accumulation

User input (pay_toll, sprev)
RSU input (pay_toll, blR)

(1) Pick serial number s
R← S that has not previously been used.

(2) User corrupted: Ask the adversary if the PID pidU of another corrupted user should be used.a

(3) Look up (·, sprev, ϕprev, xprev, λprev, pidU , pidprev
R , ·, bprev) ∈ TRDB, with (sprev, pidU) being the unique key.

(4) Adopt previous walled ID λ := λprev and increase counter x := xprev + 1.
(5) Double-spending/Blacklisted: In this case ϕ := fΦ(λ, x) has already been defined; continue with (6).

Pick fraud detection ID ϕ
R← Φ that has not previously been used.

User corrupted: Allow the adversary to choose a previously unused fraud detection ID ϕ.b

Append assignment (λ, x) 7→ ϕ to fΦ.
(6) If ϕ ∈ blR, output blacklisted to both parties and abort.
(7) Look up attributes (aU , aR, aprev

R) :=
(
fAU (λ), fAR(pidR), fAR(pidprev

R)
)
.

(8) Calculate price p := Opricing(aU , aR, aprev
R).

RSU corrupted: Leak (aU , aR, aprev
R) to the adversary and obtain a price p.

(9) Calculate new balance b := bprev + p.
(10) Append new transaction (sprev, s, ϕ, x, λ, pidU , pidR, p, b) to TRDB.

User output (s, aR, p, b)
RSU output (s, ϕ, aU , aprev

R)

a If corrupted users collude, they might share their credentials and use each other’s wallet.
b The ideal model only guarantees privacy for honest users. For corrupted users the fraud detection ID might be chosen
adversarially.

Fig. 3. An excerpt of the ideal functionality FP4TC.

P4TC 82

vious transaction. The participating RSU inputs a list of
fraud detection IDs that are blacklisted. Firstly, FP4TC
randomly picks a fresh serial number s for the upcom-
ing transaction. If the user is corrupted, FP4TC allows
the simulator to provide a different value for pidU that
belongs to a another corrupted user.14 FP4TC looks up
the previous wallet state trdbprev in TRDB. The ideal
functionality extracts the wallet ID from the previous
record (λ := λprev) and increases the counter for this
particular wallet (x := xprev + 1). Then, it checks if
a fraud detection ID ϕ has already been defined for
the wallet ID λ and counter x (n.b.: tree and depth
of node). If so, the current transaction record will be as-
signed the same fraud detection ID ϕ. Otherwise, FP4TC
ties a fresh, uniformly and independently drawn fraud
detection ID ((λ, x) 7→ ϕ) to the x’th transaction of
the wallet λ. If this fraud detection ID is blacklisted,
the task aborts.15 If and only if the user is corrupted
and ϕ has not previously been defined, the adversary
is allowed to overwrite the fraud detection ID with an-
other value.16 Moreover, FP4TC looks up the user’s at-
tributes bound to this particular wallet (aU := fAU (λ))
and the attributes of the current and previous RSU
(aR := fAR(pidR), aprev

R := fAR(pidprev
R)). Finally, the

ideal functionality queries the pricing oracle Opricing for
the price p of this transaction, calculates the new bal-
ance of the wallet (b := bprev + p) and appends a new
record to the transaction database. If and only if the
RSU is corrupted, the adversary learns the involved
attributes and is allowed to override the price. Please
note that leaking the user/RSU attributes to the ad-
versary does not weaken the privacy guarantees as the
(corrupted) RSU learns the attributes as an output any-
way. The option to manipulate the price on the other
hand was a design decision. It was made to enable imple-
mentations in which the pricing function is unilaterally
evaluated by the RSU and the user initially just accepts
the price. It is assumed that a user usually collects any
toll willingly in order to proceed and (in case of a dis-

14 This is a required technicality as corrupted users might share
their credentials and thus might use each other’s wallet. Please
note that this does not affect honest users.
15 Note, that the probability to blacklist a freshly drawn fraud
detection ID is negligible. Only if fΦ(λ, x) has already been
defined by a past task, this yields a chance to successfully blacklist
a user.
16 Again, this is a technical concession to the security proof.
Corrupted users are not obliged to use “good” randomness. This
might affect untrackability, but we do not aim to provide this
guarantee for corrupted users.

pute) files an out-of-band claim later. The user’s output
are the serial number s of the current transaction, the
current RSU’s attributes aR, the price p to pay and
the updated balance b of his wallet. The RSU’s output
are the serial number s of the current transaction, the
fraud detection ID ϕ and the attributes aU and aprev

R of
the user and the previous RSU, respectively. Learning
their mutual attributes is necessary, because RSU and
user must evaluate the pricing function themselves in
the real protocol without the help of a third party.

Remaining Tasks
There are auxiliary tasks for registration and certifica-
tion of parties. They are modeled in the obvious way
and append the appropriate mappings (e.g., fAR) with
the given attributes for the PIDs.

In Wallet Issuing a new wallet ID λ is freshly, uni-
formly and independently drawn. A new transaction en-
try for the user is inserted into the database using λ and
a zero balance. This entry can be depicted as the root
node of a wallet tree.

The task Debt Clearance is very similar to Debt Ac-
cumulation described above except that the TSP addi-
tionally learns the user’s party ID pidU and the wallet
balance b. Debt Clearance is identifying for the user to
allow the operator to invoice him and check if he (phys-
ically) pays the correct amount. Also, the user does not
obtain a new serial number such that this transaction
entry becomes a leaf node of the wallet tree.

The task Blacklisting and Recalculation is run be-
tween the DR and TSP. The TSP inputs the PID of
a user it wishes to blacklist and obtains the debt the
user owes and a list of past and upcoming serial num-
bers. For the latter, FP4TC draws a sequence of fresh,
uniform and independent fraud detection IDs ϕi and pre-
fills the mapping fΦ for all wallets the user owns. This
ensures that upcoming transactions use predetermined
fraud detection IDs that are actually blacklisted.

The task Prove Participation checks if a TRDB
record exists for the particular user and serial number.

The task Double-Spending Detection checks if the
given fraud detection ID exists multiple times in the
database, i.e., if double-spending has occurred with this
ID. If so, FP4TC leaks the identity of the corresponding
user to the adversary and asks the adversary to provide
an arbitrary bit string that serves as a proof of guilt.
FP4TC outputs both—the user’s identity and the proof—
to the TSP and records the proof as valid for the user.

The task Guilt Verification checks if the given proof
is internally recorded as valid for the particular user.

P4TC 83

A.2 Full Ideal Functionality

As explained before we define FP4TC as a monolithic,
reactive functionality with polynomially many parties.
This is mainly due to a shared state that the system
requires. We will therefore first explain how this state
is recorded by FP4TC before we go on to describe its
behavior in a modular way by explaining each task17 it
provides.

The main feature of FP4TC is that it keeps track
of all conducted transactions in a global transaction
database TRDB (see Fig. 4). Note that in this case
by “transaction” we mean every instance of the tasks
Wallet Issuing, Debt Accumulation or Debt Clearance,
not just Debt Accumulation. Each transaction entry
trdb ∈ TRDB is of the form

trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b).

It contains the identities pidU and pidR of the involved
user and RSU (or TSP in the case of Wallet Issuing
and Debt Clearance) respectively, the ID λ of the wallet
that was used as well as the price p and total balance b

of the wallet state after this transaction. Furthermore,
each transaction entry is identified by a unique serial
number s and links via sprev to the previous transaction
trdbprev (which corresponds to the wallet state before
trdb). Lastly, a fraud detection ID ϕ and a counter x

are part of the transaction entry. The counter starts at
zero for any newly registered wallet and x = (xprev +
1) always holds. Hence, it is unique across all wallet
states belonging to the same wallet λ if and only if no
double-spending has been committed with this wallet.
The fraud detection ID is constant for each pair (λ, x)
of wallet ID and counter instead of being unique for each
transaction, but unique for different pairs of wallet ID
and counter. Therefore, fraud detection IDs are stored
in a partially defined, but one-to-one, mapping fΦ : (L×
N0)→ Φ within FP4TC. Full transaction entries trdb are
only created by instances of Debt Accumulation. Both
Wallet Issuing and Debt Clearance create stubs of the
form

(⊥, s,ϕ, 0, λ, pidU , pidT , 0, 0) and
(sprev,⊥,ϕ, x, λ, pidU , pidT ,−bbill, 0)

respectively. Every other task does not alter TRDB but
only queries it. Although this database and the map-

17 Note that we are intentionally avoiding the word
“phase”—which is commonly used in other composite functional-
ities—as it suggests a predefined order/number of executions.

Table 3. Notation that only occurs in the ideal functionality

Identifier Description

PIDcorrupt set of corrupted party identifiers

fΦ (partial) mapping assigning a fraud detection ID
ϕ to given wallet ID λ and counter x

fAU (partial) mapping assigning user attributes aU
to a given wallet ID λ

fAR (partial) mapping assigning RSU attributes aR
to a given RSU PID pidR

ping to fraud detection IDs contains most of the infor-
mation our toll collection scheme needs, FP4TC stores
three more partially defined mappings: fAU : L → AU
and fAR : PIDR → AR of user and RSU attribute vec-
tors as well as fΠ of proofs of guilt that have been issued
or queried in the context of double-spending detection.

The ideal function FP4TC provides twelve differ-
ent tasks in total which we divide up into three cat-
egories: “System Setup Tasks” (comprising all Regis-
trations and RSU Certification), “Basic Tasks” (Wallet
Issuing, Debt Accumulation and Debt Clearance), and
“Feature Tasks” (Prove Participation, Double-Spending
Detection, Guilt Verification and User Blacklisting).

For better clarity of the following task descriptions,
an overview of the variables used can be found in Ta-
bles 3 and 4.

A.2.1 System Setup Tasks

To set up the system two things are required: All par-
ties—the DR, TSP, RSUs and users—have to register
public keys with the bulletin board Gbb to be able to
participate in the toll collection system. As all of these
registration tasks are similar, we will not describe them
separately. In the special case of RSUs a certification
conducted with the TSP also needs to take place.

Registrations
The tasks of DR, RSU and User Registration (cp. Figs. 5
to 8) are straightforward and analogous. They do not
take any input apart from “register”, but in the case of
the user we assume the physical identity of the party has
been verified out-of-band before this task is conducted.
In each case a check is performed first whether the task
has been run before for this party. If this does not lead
to an abort, the adversary is asked to provide a public

P4TC 84

Functionality FP4TC

I. State

– Set TRDB = {trdb} of transactions

trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b)
∈ S × S × Φ× N0 × L× PIDU × PIDR × Zp × Zp.

– A (partial) mapping fΦ giving the fraud detection ID ϕ corresponding to given wallet ID λ and counter x:

fΦ : L × N0 → Φ, (λ, x) 7→ ϕ

– A (partial) mapping fAU assigning user attributes to a given wallet ID λ:

fAU : L → AU , λ 7→ aU

– A (partial) mapping fAR assigning RSU attributes to a given RSU PID pidR:

fAR : PIDR → AR, pidR 7→ aR

– A (partial) mapping fΠ assigning a user PID pidU and a proof of guilt π to a validity bit:

fΠ : PIDU ×Π→ {OK, NOK}

II. Behavior

– DR Registration (Fig. 5)
– TSP Registration (Fig. 6)
– RSU Registration (Fig. 7)
– User Registration (Fig. 8)

– RSU Certification (Fig. 9)
– Wallet Issuing (Fig. 10)
– Debt Accumulation (Fig. 11)
– Debt Clearance (Fig. 12)

– Prove Participation (Fig. 13)
– Double-Spending Detection (Fig. 14)
– Guilt Verification (Fig. 15)
– User Blacklisting (Fig. 16)

Fig. 4. The functionality FP4TC

Functionality FP4TC (cont.) – Task DR Registration

DR input: (register)

(1) If this task has been run before, output ⊥ and abort.
(2) Send (registering_dr, pidDR) to the adversary and obtain the key (pkDR).a

(3) Call Gbb with input (register, pkDR).

DR output: (pkDR)

a Giving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee,
i.e., security for a honest TSP is retained, even if its keys are maliciously generated (due to bad random number generator).
ii) It gives the simulator the lever to simulate faithfully.

Fig. 5. The functionality FP4TC (cont. from Fig. 4)

P4TC 85

Table 4. Notation that occurs in the ideal functionality and in the real protocol

Identifier Abstract Instantiation Description

pidDR PIDDR {0, 1}∗ party identifier of the DR

pidT PIDT {0, 1}∗ party identifier of the TSP

pidR PIDR {0, 1}∗ party identifier of a RSU

pidU PIDU {0, 1}∗ party identifier of a user

pkDR PKDR G3
1×G3

2× (G2
1)ℓ+2× (G2

2)4× (G2
2)ℓ+2 public DR key

pkT PKT Gj+3
1 × (G3

1 ×Gy+3
2)× (G3

1 ×G2) public TSP key

pkR PKR G3
1 ×G2 public RSU key

pkU PKU G1 public user key

aU AU Gj
2 user attributes

aR AR Gy
1 RSU attributes

aT AR Gy
1 TSP attributes

b Zp Zp balance

p Z Z price to pay at an RSU

ϕ Φ G1 fraud detection ID

s S G1 serial number

λ L Zp wallet ID; is used as PRF seed

x N0 {0, . . . , nPRF} (PRF) counter

blR list of Φ elements list of G1 elements RSU blacklist

xblR N N RSU blacklist parameter

blT list of PKU elements list of G1 elements TSP blacklist

Functionality FP4TC (cont.) – Task TSP Registration

TSP input: (register, aT)

(1) If this task has been run before, output ⊥ and abort.
(2) TRDB := ∅
(3) Send (registering_tsp, pidT , aT) to the adversary and obtain the key (pkT).a

(4) Call Gbb with input (register, pkT).

TSP output: (pkT)

a Giving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee,
i.e., security for a honest TSP is retained, even if its keys are maliciously generated (due to bad random number generator).
ii) It gives the simulator the lever to simulate faithfully.

Fig. 6. The functionality FP4TC (cont. from Fig. 4)

P4TC 86

Functionality FP4TC (cont.) – Task RSU Registration

RSU input: (register)

(1) If this task has been run before, output ⊥ and abort.
(2) Send (registering_rsu, pidR) to the adversary and obtain the key (pkR).a

(3) Call Gbb with input (register, pkR).

RSU output: (pkR)

a Giving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee,
i.e., security for honest parties is retained, even if their keys are maliciously generated (due to bad random number generator).
ii) It gives the simulator the lever to simulate faithfully.

Fig. 7. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task User Registration

User input: (register)

(1) If this task has been run before, output ⊥ and abort.
(2) Send (registering_user, pidU) to the adversary and obtain the key (pkU).a

(3) Call Gbb with input (register, pkU).

User output: (pkU)

a Giving the adversary the power to control the key generation serves two purposes: i) It gives a stronger security guarantee,
i.e., security for honest parties is retained, even if their keys are maliciously generated (due to bad random number generator).
ii) It gives the simulator the lever to simulate faithfully.

Fig. 8. The functionality FP4TC (cont. from Fig. 4)

P4TC 87

key pk for the respective party which is then registered
with the bulletin board Gbb and output to the newly
registered party.

The registration of the TSP is slightly different (cp.
Fig. 6). In addition to “register” it takes an attribute
vector aT as input, which—after a check if this task has
been run before—is leaked to the adversary together
with pidT when the public key pkT is obtained. In ad-
dition, all data structures of FP4TC are initialized as
empty sets and empty (partial) mappings respectively.
Again, the public key pkT is output to the TSP.

RSU Certification
RSU certification (cp. Fig. 9) is a two-party task be-
tween the TSP and an RSU in which the RSU is assigned
an attribute vector aR.18 The content of attribute vec-
tors is in no way restricted by FP4TC and can be used
to implement different scenarios like location-based toll
collection or entry-exit toll collection, but could also be
maliciously used to void unlinkability. This aR is input
by the TSP, while the RSU only inputs its desire to be
certified. FP4TC checks if there have already been at-
tributes assigned to the RSU previously (in which case
it aborts) and otherwise appends fAR(pidR) := aR to
the partial mapping fAR which internally stores all RSU
attributes already assigned. The identity pidR and at-
tributes aR are leaked to the adversary before the at-
tributes are output to the RSU.

A.2.2 Basic Tasks

Now we describe the basic tasks you would expect from
any toll collection scheme. These tasks are Wallet Issu-
ing, Debt Accumulation and Debt Clearance. As men-
tioned before, those are the only tasks in which transac-
tion entries are created.

Wallet Issuing
Wallet Issuing (cp. Fig. 10) is a two-party task between
a user and the TSP in which a new and empty wallet
is created for the user. The TSP inputs an attribute

18 Although only attributes are set in this task, we will later see
in the task of Debt Accumulation that these also serve as a kind
of certificate, as RSUs are only able to successfully participate
in Debt Accumulation if they have been assigned attributes by
the TSP.

vector aU and a blacklist blT of user public keys that
are not allowed to obtain any new wallets. First, FP4TC
randomly picks a (previously unused) serial number s

for the new transaction entry trdb. If the user is cor-
rupted, the adversary may at this point choose another
corrupted user’s identity pidU that is to be used for this
wallet. Multiple corrupted users are allowed to have wal-
lets issued for one another but are not able to request a
new wallet for an honest user. The corresponding public
key for the user ID pidU is obtained from the bulletin
board Gbb and checked against the TSP’s blacklist blT .
If this does not lead to an abort, a new wallet ID λ and
fraud detection ID ϕ are uniquely and randomly picked,
unless the user is corrupted in which case the adversary
chooses ϕ. This may infringe upon the unlinkability of
the user’s transactions and we do not give any privacy
guarantees for corrupted users. Finally, a transaction
entry

trdb := (⊥, s, ϕ, 0, λ, pidU , pidT , 0, 0)

corresponding to the new and empty wallet is stored
in TRDB and the wallet’s attributes fAU (λ) := aU are
appended to the partial mapping fAU . Both parties get
the serial number s as output; the user also receives
the attribute vector aU to check this has been assigned
correctly and more importantly does not contain any
identifying information.

Debt Accumulation
This two-party task (cp. Fig. 11) is conducted whenever
a registered user passes an RSU and it serves the main
purpose of adding toll to a previous wallet state of the
user. In this task the user only inputs a serial number
sprev, indicating which past wallet state he wishes to use
for this transaction. The participating RSU in turn in-
puts a blacklist blR of fraud detection IDs. First, FP4TC
randomly picks a (previously unused) serial number s

for the new transaction entry trdb. If the user is cor-
rupted, the adversary may at this point choose another
corrupted user’s identity pidU that is to be used for this
transaction. FP4TC looks up if a wallet state trdbprev in
TRDB corresponds to the user input sprev and belongs
to the users pidU . This guarantees that each user can
only accumulate debt on a wallet that was legitimately
issued to him. Multiple corrupted users may choose to
swap wallets between them but are not able to use an
honest user’s wallet. The ideal functionality uses part of

P4TC 88

Functionality FP4TC (cont.) – Task RSU Certification

RSU input: (certify)
TSP input: (certify, aR)

(1) If fAR(pidR) is already defined, output ⊥ to both parties and abort; else append fAR(pidR) := aR to
fAR .

(2) Leak (certifying_rsu, pidR, aR) to the adversary.

RSU output: (aR)
TSP output: (OK)

Fig. 9. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task Wallet Issuing

User input: (issue)
TSP input: (issue, aU , blT)

(1) Pick serial number s
R← S that has not previously been used.

(2) If pidU ∈ PIDcorrupt leak (s, aU) to the adversary, and ask if another PID pidU ∈ PIDcorrupt should be
used instead.a

(3) Receive pkU from the bulletin-board Gbb for PID pidU .⊥
(4) If pkU ∈ blT , output blacklisted to both parties and abort.
(5) Pick wallet ID λ

R← L that has not previously been used.
(6) If pidU ̸∈ PIDcorrupt pick ϕ

R← Φ that has not previously been used, otherwise ask the adversary for a
fraud detection ID ϕ that has not previously been used.b Append fΦ(λ, 0) := ϕ to fΦ.

(7) Append trdb := (⊥, s, ϕ, 0, λ, pidU , pidT , 0, 0) to TRDB
(8) Append fAU (λ) := aU to fAU .

User output: (s, aU)
TSP output: (s)

⊥If this does not exist, output ⊥ and abort.
a If a group of corrupted users collude, a correct mapping to a specific users cannot be guaranteed, because corrupted users
might share their credentials.
b Picking the upcoming fraud detection ID randomly asserts untrackability for honest users. For corrupted user, we do not
(and cannot) provide such a guarantee.

Fig. 10. The functionality FP4TC (cont. from Fig. 4)

P4TC 89

Functionality FP4TC (cont.) – Task Debt Accumulation

User input: (pay_toll, sprev)
RSU input: (pay_toll, blR)

(1) Pick serial number s
R← S that has not previously been used.

(2) If pidU ∈ PIDcorrupt ask the adversary, if another PID pidU ∈ PIDcorrupt should be used instead.a

(3) Select (·, sprev, ϕprev, xprev, λprev, pidU , pidprev
R , ·, bprev) ∈ TRDB (with sprev, pidU being the uniqe key)⊥.

(4) Set λ := λprev and x := xprev + 1.
(5) If fΦ(λ, x) is already defined, set ϕ := fΦ(λ, x).

Else, if pidU /∈ PIDcorrupt pick ϕ
R← Φ that has not previously been used, otherwise ask the adversary for

a fraud detection ID ϕ that has not previously been used.b Append fΦ(λ, x) := ϕ to fΦ.
(6) If ϕ ∈ blR, output blacklisted to both parties and abort.
(7) Set aU := fAU (λ), aR := fAR(pidR), and aprev

R := fAR(pidprev
R).⊥

(8) Calculate price p := Opricing(aU , aR, aprev
R). If pidR ∈ PIDcorrupt, then leak (aU , aR, aprev

R) to the adversary
and obtain a price p.

(9) b := bprev + p.
(10) Append (sprev, s, ϕ, x, λ, pidU , pidR, p, b) to TRDB.

User output: (s, aR, p, b)
RSU output: (s, ϕ, aU , aprev

R)

⊥If this does not exist, output ⊥ and abort.
a If a group of corrupted users collude, a correct mapping to a specific users cannot be guaranteed, because corrupted users
might share their credentials.
b The ideal model only guarantees privacy for honest users. For corrupted users the fraud detection ID might be chosen
adversarially (cp. text body).

Fig. 11. The functionality FP4TC (cont. from Fig. 4)

P4TC 90

the information from the previous wallet state

trdbprev = (·, sprev, ϕprev, xprev, λprev,

pidU , pidprev
R , ·, bprev)

to determine the content of the new transaction entry
trdb. The user ID pidU and wallet ID λ stay the same,
pidR is set to the identity of the participating RSU,
and the counter xprev is increased by one to obtain x.
FP4TC checks if there is already a fraud detection ID
ϕ := fΦ(λ, x) assigned to the pair (λ, x) (either because
the user committed double-spending or because it has
been precalculated for blacklisting purposes). If not and
the user is honest, it picks a new ϕ uniquely at random.
If the user is corrupted, the fraud detection ID is not
randomly drawn but picked by the adversary. This may
infringe upon the unlinkability of the user’s transactions,
but, as mentioned before, we do not give any privacy
guarantees for corrupted users. The fraud detection ID
ϕ is checked against blR.19 The attributes aU , aR and
aprev
R are again looked up internally and leaked to the

adversary who chooses the price p of this transaction.
Having the price determined in this way makes it clear
that FP4TC does not give any guarantees on the “right”
amount of debt being added at this point. Instead, it
gives the user enough information about the transaction
to appeal out-of-band afterwards if the wrong amount
of debt is added. We assume this detectability will keep
RSUs in the real world from adding too much debt. Fi-
nally, the new balance b is calculated from the price and
old balance before trdb is stored in TRDB. Note that all
information leading to the new wallet state came from
data internally stored in FP4TC itself, not from an input
by the user or RSU, and can therefore not be compro-
mised. The serial number, RSU attributes, price and
balance are output to the user so he may check he only
paid the amount he expected. The RSU gets the serial
number as well but also the fraud detection ID to enable
double-spending detection and the attributes of the user
and previous RSU.

Debt Clearance
As Debt Clearance (cp. Fig. 12) is very similar to the
task of Debt Accumulation, we will refrain from describ-
ing it again in full detail but rather just highlight the

19 Note, that the probability to blacklist a freshly drawn fraud
detection ID is negligible. Only if fΦ(λ, x) has already been
defined by a past task, this yields a chance to successfully blacklist
a user.

differences to Debt Accumulation. The first difference is
that it is conducted with the TSP rather than an RSU
and no blacklist is taken as input as we do not want to
prevent anyone from paying their debt. Although this
task results in a transaction entry trdb as well, no new
serial number s is picked. This emphasizes that the new
wallet state is final and can not be updated again by
using its serial number as input for another transaction.
Instead of obtaining a price from the adversary, the at-
tributes aprev

R of the previous RSU pidprev
R are leaked to

the adversary in case the TSP is corrupted. The (nega-
tive) price for the transaction entry is set to the billing
amount bbill which in turn is taken to be the previous
balance bprev of the wallet. As new transaction entry

trdb := (sprev,⊥, ϕ, x, λ, pidU , pidT ,−bbill, 0)

is added to TRDB and the bill bbill output to both par-
ties. Furthermore, the TSP gets the user’s ID pidU , as
we assume Debt Clearance to be identifying, as well as
the fraud detection ID ϕ to enable double-spending de-
tection.

A.2.3 Feature Tasks

To obtain a more secure toll collection system we also
provide the feature tasks Prove Participation, Double-
Spending Detection, Guilt Verification and User Black-
listing. All of those tasks deal with different aspects aris-
ing from fraudulent user behavior.

Prove Participation
This is a two-party task involving a user and the SA
(cp. Fig. 13) and assumed to be conducted with every
user that has been physically caught by one of the SA’s
cameras. It allows an honest user to prove his successful
participation in a transaction with the RSU where the
photo was taken, while the fraudulent user will not be
able to do so. The SA inputs the public key pkU of the
user which the SA wishes to prove its participation and
a set Spp

R of serial numbers in question. The user has
no explicit input but simply expresses its consent by
running the protocol.

First note, there is no guarantee that the user which
participates in the protocol (with PID pidU) is the
user the SA wants to prove its participation (with user
key pkU and pid ′U). Nonetheless, the ideal functionality
checks if TRDB contains a transaction for the requested
PID pid ′U and a serial number s in Spp

R . Hence, the ideal

P4TC 91

Functionality FP4TC (cont.) – Task Debt Clearance

User input: (clear_debt, sprev)
TSP input: (clear_debt)

(1) Pick serial number s
R← S that has not previously been used.

(2) If pidU ∈ PIDcorrupt ask the adversary, if another PID pidU ∈ PIDcorrupt should be used instead.a

(3) Receive pkU from the bulletin-board Gbb for PID pidU .⊥
(4) Select (·, sprev, ϕprev, xprev, λprev, pidU , pidprev

R , ·, bprev) ∈ TRDB (with sprev, pidU being the unique key).⊥
(5) Set λ := λprev and x := xprev + 1.
(6) If fΦ(λ, x) is already defined, set ϕ := fΦ(λ, x).

Else, if pidU /∈ PIDcorrupt pick ϕ
R← Φ that has not previously been used, otherwise ask the adversary for

a fraud detection ID ϕ that has not previously been used.b Append fΦ(λ, x) := ϕ to fΦ.
(7) If pidT ∈ PIDcorrupt, set aprev

R := fAR(pidprev
R)⊥, and leak aprev

R to the adversary.
(8) bbill := bprev.
(9) Append (sprev, s, ϕ, x, λ, pidU , pidT ,−bbill, 0) to TRDB.

User output: (bbill)
TSP output: (pkU , ϕ, bbill)

⊥If this does not exist, output ⊥ and abort.
a If a group of corrupted users collude, a correct mapping to a specific users cannot be guaranteed, because corrupted users
might share their credentials.
b The ideal model only guarantees privacy for honest users. For corrupted users the fraud detection ID might be chosen
adversarially (cp. text body).

Fig. 12. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task Prove Participation

User input: (prove_participation)
SA input: (prove_participation, pkU , Spp

R)

(1) Obtain pid ′U for pkU from Gbb.a

(2) If (pid ′U /∈ PIDcorrupt ∨ pidU /∈ PIDcorrupt) ∧ pid ′U ̸= pidU , abort.
(3) If pidU ∈ PIDcorrupt leak Spp

R to the adversary.
(4) If ∃ (·, s, ·, ·, ·, pid ′U , ·, ·, ·) ∈ TRDB such that s ∈ Spp

R ,
then outU := outSA := OK
else outU := outSA := NOK.

User output: (outU)
SA output: (outSA)

a pidU is the implicit PID of the user participating in the protocol. pidU is not necessarily equal to pid′U which denotes the
user that is expected by the SA.

Fig. 13. The functionality FP4TC (cont. from Fig. 4)

P4TC 92

functionality ensures that either the SA receives the cor-
rect answer—even for corrupted users—or aborts.

Some remarks are in order to the abort condi-
tion—which is only a technical concession to what can
be practically realized. If pid ′U = pidU holds (i.e., the
SA communicates with the expected user), everything
is fine. If pid ′U ̸= pidU holds (i.e., the SA communi-
cates with the wrong user) and at least one of the users
is honest, the ideal functionality aborts. This models
the fact that a malicious user must neither be able to
embody an honest user nor an honest user embodies
a malicious user. But if pid ′U ̸= pidU holds (i.e., the
SA communicates with the wrong user) and both users
are corrupted, the ideal functionality proceeds normally,
but guarantees to return the correct result for the user
in question (i.e., with pid ′U). This models the limitation
that two corrupted users can share their credentials. A
corrupted user (with pid ′U) can pass its transaction in-
formation to another corrupted user (with pidU) which
then proves participation to the SA. However, the latter
user can still only prove the participation of the origi-
nal user and not misuse the information to falsely prove
participation for itself.

If the user is corrupted, the set of serial numbers in
question is leaked to the adversary. Note further that
this task also deanonymizes the one transaction proven
by the user and leaks the respective serial number. Al-
though the SA only obtains a single bit of information,
whether the user’s serial number is a member of the set
Spp
R or not, this single bit of information is sufficient to

restore the complete serial number by means of a bi-
sectional search. The SA could repeatedly run the task
and summon the user to prove its participation for a
descending sequence of bi-sected sets until the last set
only contains a single serial number. Nonetheless, this
does not effect the anonymity or unlinkability of any
other transactions.

Double-Spending Detection and Guilt Verification
Due to our requirement to allow offline RSUs, a user
is able to fraudulently collect debt on outdated states
of his wallet. This double-spending can not be pre-
vented but must be detected afterwards. To ensure this,
FP4TC provides the tasks Double-Spending Detection
(cp. Fig. 14) and Guilt Verification (cp. Fig. 15).

Double-Spending Detection is a one-party task per-
formed by the TSP. It takes a fraud detection ID ϕ as
input and checks the transaction database TRDB for
two distinct entries containing this same fraud detec-
tion ID. In case such entries are present the adversary

is asked for a proof π to be issued for this instance of
double-spending. The user ID and proof (pidU , π) are ap-
pended to fΠ and marked as valid. Additionally, both
are output to the TSP.

Guilt Verification is a one-party task as well but can
be performed by any party. It takes a user ID pidU and a
double-spending proof π as input. First, it checks if this
particular pair (pidU , π) has already been defined and
outputs whatever has been output before. This is neces-
sary to ensure consistency across different invocations. If
(pidU , π) has neither been issued nor queried before and
the affected user is corrupted, the adversary is allowed
to decide if this proof should be accepted. This implies
that we do not protect corrupted users from false accu-
sations of guilt. If the user is honest and (pidU , π) has
neither been issued nor queried before, then the proof
is marked as invalid. This protects honest users from
being accused by made-up proofs which have not been
issued by the ideal functionality itself. Finally, the result
is recorded for the future and output to the party. This
possibility of public verification is vital to prevent the
TSP from wrongly accusing any user of double-spending
and should for instance be utilized by the DR before it
agrees to blacklist and therefore deanonymize a user on
the basis of double-spending.

User Blacklisting
User Blacklisting (cp. Fig. 16) is a two-party task be-
tween the DR and TSP and serves two purposes: First,
the debt bbill owed by the user that is to be blacklisted
is calculated. Second, fraud detection IDs for all of the
user’s wallets are determined and handed to the TSP so
it may add them to the RSU blacklist blR. Note that
the generation of the blacklist blT of user public keys is
handled internally by the TSP and not in the scope of
this task or FP4TC.

Both parties—the TSP and the DR—input the pub-
lic key (pkDR

U and pkTU , resp.) of the user that is going
to be blacklisted. We assume both parties to agree on
the same key out-of-band before the protocol starts. We
first describe the “normal” case (cp. Fig. 16, Step 3a)
for an honest TSP. (N.b.: The DR is assumed to be al-
ways honest.) To calculate the user’s outstanding debt,
all transaction entries in TRDB containing pidU are
taken and their respective prices p summed up to ob-
tain bbill. Note that although this sum may contain the
prices of transactions and wallets that have already been
cleared, this does not falsify the value of bbill as every
successful execution of Debt Clearance creates an en-
try with the amount that was cleared as negative price.

P4TC 93

Functionality FP4TC (cont.) – Task Double-Spending Detection

TSP input: (scan_for_fraud, ϕ)

(1) Pick trdb ̸= trdb′ in TRDB such that trdb = (·, ·, ϕ, ·, ·, pidU , ·, ·, ·) and trdb′ = (·, ·, ϕ, ·, ·, pidU , ·, ·, ·).⊥
(2) Ask the adversary for a proof π ∈ Π corresponding to pidU and append (pidU , π) 7→ OK to fΠ.
(3) Receive pkU from the bulletin-board Gbb for pidU⊥.

TSP output: (pkU , π)

⊥If this does not exist, output ⊥ and abort.

Fig. 14. The functionality FP4TC (cont. from Fig. 4)

Functionality FP4TC (cont.) – Task Guilt Verification

Party input: (verify_guilt, pkU , π)

(1) Receive pidU from the bulletin-board Gbb for key pkU .⊥
(2) If fΠ(pidU , π) is defined, then set out := fΠ(pidU , π) and output (out).
(3) If pidU ∈ PIDcorrupt, then leak (pidU , π) to the advesary and obtain result out, else set out := NOK.

(4) Append (pidU , π) 7→ out to fΠ.

Party output: (out)

⊥If this does not exist, output ⊥ and abort.

Fig. 15. The functionality FP4TC (cont. from Fig. 4)

For the actual blacklisting the set of all wallet IDs be-
longing to pidU is looked up and the remainder of the
task is conducted for every wallet λ separately. FP4TC
checks how many values of fΦ(λ, ·) are already defined
and extends them to the first xblR fraud detection IDs,
where xblR is a parameter we assume to be greater
than the number of transactions a user would be in-
volved in within one billing period. To that end, yet
undefined fraud detection IDs fΦ(λ, x) with x ≤ xblR

are uniquely and randomly drawn or—in case of a cor-
rupted user—obtained from the adversary. Finally, all
fraud detection IDs ϕ = fΦ(λ, x) for x ≤ xblR and all
wallets λ of the user are output to the TSP together
with the outstanding debt bbill.

It remains to describe the remaining two cases (cp.
Fig. 16, Steps 3b and 3c). If the TSP is corrupted but
the user in question honest (Step 3b), the TSP is free to
drop some of the user’s wallets and only partially black-
list the user. This “attack”—a demented TSP—cannot
be ruled out. In order to correctly map this in the ideal
model, the adversary is asked to provide a set of as-
sociated serial numbers and only the wallets from the
intersection are used for blacklisting. This ensures that

a malicious TSP can only blacklist less wallets but not
more wallets or even wallets of another user. If the TSP
and the user in question are both corrupted (Step 3c),
no guarantees are given. Please note that a corrupted
TSP could even come up with an “imaginary” corrupted
user (which only exists in the head of the TSP) and ask
the DR to blacklist this user. Essentially, this is nothing
else than a cumbersome way to evaluate the PRF at in-
puts chosen by the TSP. However, the TSP can do this
by itself anyway. We stress that this does not affect the
security or privacy of honest parties in the system.

A.3 Properties of FP4TC

In this appendix we discuss why the previously defined
ideal functionality FP4TC captures an ideal model of a
secure and privacy-preserving ETC scheme. Especially,
we illustrate how the high-level objectives of a toll col-
lection scheme (cp. Section 2) are reflected in FP4TC.
The properties (P1) to (P8) are consolidated under the
term Operator security, while properties (P9) to (P11)
are summed up under User Security and Privacy.

P4TC 94

Functionality FP4TC (cont.) – Task User Blacklisting

DR input: (blacklist_user, pkDR
U)

TSP input: (blacklist_user, pkTU)

(1) If pkDR
U ̸= pkTU , abort.

(2) Receive pidU from the bulletin-board Gbb for pkTU .⊥
(3) Distinguish 3 cases:

(a) pidT /∈ PIDcorrupt: Set Lbl := {λ | (·, ·, ·, ·, λ, pidU , ·, ·, ·) ∈ TRDB}.
(b) pidT ∈ PIDcorrupt, pidU /∈ PIDcorrupt: Obtain a set of serial numbers Sroot from the adversary and set
Lbl := {λ | (⊥, s, ·, ·, λ, pidU , ·, ·, ·) ∈ TRDB with s ∈ Sroot}.

(c) pidT ∈ PIDcorrupt, pidU ∈ PIDcorrupt: Let the adversary decide on the output for DR and TSP and
stop.

(4) TRDBbl := {trdb ∈ TRDB | trdb = (·, ·, ·, ·, λ, ·, ·, p, ·) s. t. λ ∈ Lbl}
(5) bbill :=

∑
trdb∈TRDBbl

p.
(6) For each λ ∈ Lbl:

(a) xλ := max{ x | fΦ(λ, x) is already defined}.
(b) For x ∈ {xλ + 1, . . . , xblR}:

(i) If pidU /∈ PIDcorrupt, pick ϕ
R← Φ that has not previously been used,

otherwise leak (λ, x) to the adversary and obtain fraud detection ID ϕ that has not previously
been used.

(ii) Append (λ, x) 7→ ϕ to fΦ.

(7) Φbl := {fΦ(λ, x) | λ ∈ Lbl, 0 ≤ x ≤ xblR}.

DR output: (OK)
TSP output: (bbill, Φbl)

⊥If this does not exist, output ⊥ and abort.

Fig. 16. The functionality FP4TC (cont. from Fig. 4)

P4TC 95

Operator Security
At the bottom line, operator security, especially correct-
ness of billing, follows from the fact that FP4TC rep-
resents an incorruptible accountant which manages all
wallets and their associated transactions in a single, per-
vasive database. In Debt Accumulation and Debt Clear-
ance a (possibly malicious) user only inputs a serial
number to indicate which previous wallet state should
be used. All relevant information is then looked up by
FP4TC internally.

(P1) Owner-binding: Given the serial number of a previous
wallet state, FP4TC checks that the associated wal-
let belongs to the calling user and thus that is has
legitimately been issued to him. If the user is mali-
cious, the adversary is allowed to indicate another
corrupted user instead. Only corrupted users are
able to swap wallets, they cannot use wallets of hon-
est users. Please note that this does not change the
total amount due to the operator. It only changes
the party liable, which is unavoidable if corrupted
users collude and mutually share their credentials.

(P2) Attribute-binding: As the attributes aU and aprev
R at-

tached to the users wallet are internally managed
by FP4TC, the user is unable to claim his wallet con-
tains any other information than it actually does.

(P3) Balance-binding: By the same argument as in (P2) a
user is unable to claim an incorrect balance bbill in
Debt Clearance. For each transaction, given the pre-
vious serial number, FP4TC looks up the previous
balance bprev, calculates the price p and creates a
new entry in the transaction database with balance
b := bprev +p. The user only learns the price and the
new balance, but cannot tamper with it. Assuming
that no double-spending occurred, the set of trans-
actions for a particular wallet forms a linked, linear
list and hence bbill equals the sum of all prices.

(P4) Double-spending Detection: The same fraud detection
ID ϕ occurs in multiple transaction entries if and
only if double-spending was committed. In this case
the task Double-Spending Detection provides the
TSP with the identity pidU of the respective user
and a publicly verifiable proof π that this user
has committed double-spending. Again, a fraudu-
lent user cannot elude detection as FP4TC internally
asserts that all transactions which have the same
predecessor share the same fraud detection ID ϕ.

(P5) Participation Enforcement: This is handled outside the
scope of FP4TC. As discussed in Section 2 we assume
users to be physically identified by cameras if they
do not properly participate in Debt Accumulation.

(P6) Blacklisting: Given a user ID pidU , the task Black-
listing and Recalculation provides the TSP with a
set of past and upcoming fraud detection IDs ϕ of
all wallets of this user. In order to lock down the up-
coming fraud detection IDs FP4TC pre-fills the map-
ping fΦ with fresh, uniform and independent fraud
detection IDs ϕi. In Debt Accumulation FP4TC uses
these already determined fraud detection IDs from
fΦ for the new wallet state. Then, FP4TC checks
whether the fraud detection ID of the new wallet
state is contained in the blacklist provided by the
RSU. Hence, the user is successfully blacklisted, if
the RSU inputs the “correct” blacklist, i.e., a list
containing fraud detection IDs from the TSP.

(P7) Debt Recalculation: Within the Blacklisting and Re-
calculation task, FP4TC sums up all prices of all
past transactions of all wallets of the user in ques-
tion and outputs the resulting amount bbill to the
TSP. As each instance of Debt Clearance results in
a transaction entry trdb with p = −bbill as the price,
correctly cleared and paid wallets cancel out in this
sum and the result accurately gives the amount of
debt still owed by the user. Again, the user is not
able to tamper with the resulting balance as the
database of all transaction entries is internally con-
trolled by FP4TC.

(P8) Renegade Expulsion: This is handled outside the
scope of FP4TC by encoding a limited time of va-
lidity into the RSU’s attributes (cp. Section 2).

User Security and Privacy
The information leakage needed to assess the level of
user privacy is directly determined by the in- and out-
put of FP4TC. We stress that we only care about pri-
vacy for honest, well-behaving, non-blacklisted20 users.
Hence, the grayed out steps in Fig. 3 can be ignored.

(P9) Unlinkability: First note that the serial number of the
previous transaction sprev is a private input of the
user and never output to any party. After Debt Ac-
cumulation the RSU only learns the serial number s

and fraud detection ID ϕ of the current transaction
which are both freshly, uniformly and independently
drawn by FP4TC. Wallet Issue only outputs s and
Debt Clearance additionally outputs the final bal-
ance bbill. Hence, it is information-theoretically im-
possible to track an honest and well-behaving user
across any pair of transactions using any of these

20 Note that the TSP cannot blacklist users alone and the incor-
ruptible DR only cooperates if the user agreed or misbehaved.

P4TC 96

numbers. The only “real” information leakage in
Debt Accumulation is determined by the user’s and
the previous RSU’s attributes aU and aprev

R which
need to be assessed separately (see below).

(P10) Participation Provability: As discussed in Section 2
we assume the user to be physically identified (out-
of-scope) if he does not properly participate in Debt
Accumulation. In Prove Participation the SA inputs
a user ID and a set Spp

R of serial numbers in question.
FP4TC checks whether the user participated in any
of these transactions. If so, FP4TC simply outputs
OK to the SA who does not learn anything about any
of the user’s transactions beyond that.

(P11) Protection Against False Accusation: Given a user ID
and a bit string the task Guilt Verification checks
if the bit string has been recorded as a legitimate
proof-of-guilt for this user. A proof-of-guilt can only
be registered via successful invocation of Double-
Spending Detection. Hence soundness of the proof
and thus protection against false accusation is guar-
anteed by the internal bookkeeping of FP4TC.

FP4TC provides unlinkability of transactions (P9) up
to information gained from user attributes, RSU at-
tributes, and the total debt. As discussed in Section 2
we assume the attributes to be sufficiently indistinct to
not enable any tracking. This is not ensured within the
scope of FP4TC—apart from outputs to the user, which
enable him to check attributes. Their real-world impact
on the privacy level crucially depends on the concrete
deployment of the system. Please note that this consti-
tutes a line of research on its own.

B Information Leakage and
Discussion on Privacy
Implications

As briefly discussed in Section 2 and Appendix A.3, pos-
sibly known background information and the leakage of
the ideal functionality determines the level of user pri-
vacy in P4TC. Since we prove our real protocol πP4TC to
be indistinguishable from the ideal functionality FP4TC,
it is ensured that an adversary attacking πP4TC in the
real world can only learn as much about a user as an
adversary in the ideal model. Table 5 summarizes what
an adversary learns about the users in each task. We
omitted the serial number s and the fraud detection
ID ϕ in the table as these are independently and uni-
formly drawn randomness and thus cannot be exploited

Table 5. Information an adversary learns about honest users.

Protocol Leakage
pkU aU aR/aT aprev

R p bbill

User Registration •
Wallet Issuing • • •
Debt Accumulation • • • •
Debt Clearance • (•) • •
Prove Participation •

(see (P9) in Appendix A.3). In all tasks except Debt
Accumulation the user’s public key pkU is leaked. The
variables aU , aR, aprev

R and aT refer to attributes of the
participating parties. The variable p denotes the price of
a Debt Accumulation transaction, and bbill is the total
debt the user owes at the end of the task Debt Clear-
ance.

For every billing period, the TSP collects all trans-
action information from every RSU. Hence, the TSP
eventually possesses two datasets:

1. A database of users that are identified by their pub-
lic key pkU together with their attributes and total
debt. This dataset comprises all information from
every conducted task but Debt Accumulation.

2. A database of anonymous transactions. This dataset
stems from the Debt Accumulation tasks (cp. Ta-
ble 5).

With respect to practical privacy considerations one can
naturally pose several questions: Can a single transac-
tion be linked to a specific user? Has a user passed by
a particular RSU? Can a user be mapped to a com-
plete track, i.e., a sequence of consecutive transactions?
A final answer to these questions crucially depends on
the concrete instantiation of the attributes aU , aR and
the pricing function but also on “environmental” pa-
rameters that cannot be chosen by the system designer
such as the total number of registered users, the average
length of a trip, etc. An in-depth analysis would require
plausible and justifiable assumptions about probability
distributions for these parameters, and would constitute
a separate line of research in its own right.

In the following, however, we would like to elabo-
rate a bit on the general aspects of the question, how
a user can be linked to a full track. This problem can
be depicted as a graph-theoretical problem of finding a
path in a directed, layered graph. The graph consists
of initial nodes, inner nodes that are ordered in layers
and terminal nodes. Initial nodes represent Wallet Is-
suing transactions and are linked to a users. Terminal

P4TC 97

nodes represent Debt Clearance transactions and are
also linked to users and final balances bbill.

Inner nodes represent the (anonymous) transactions
in between. Assuming that transactions can only occur
at discrete points in time, the inner nodes can be or-
dered in layers. A directed edge connects two nodes if
the target node is a plausible successor of the source
node. As a bare minimum, this requires that the repre-
sented transactions have equal user attributes aU , the
attribute aprev

R of the target node equal aR of the source
node and the target node is in a later layer than the
source node (because time can only increase). Addition-
ally, background knowledge such as the geo-position of
the RSUs, the given road infrastructure, etc. can be uti-
lized to only insert an edge between two nodes if, e.g.,
the corresponding RSUs are within a certain distance
bound. Obviously, the average in- and out-degree of a
node heavily depends on the distribution of distinct val-
ues for aU and aR. Given this graph, the task is to
find a path from the initial node to the terminal node
for a particular user such that the sum of the prices of
the transactions on this path equals the total balance.
Moreover, if the transactions of all users are taken into
account, there must be a path for each user such that all
paths are pairwise disjoint and every node (i.e., trans-
action) lies on exactly one path.

For privacy, two characteristics are important: How
many solutions do exist and what is the computational
complexity to find one (or all) solutions? This results in
a trade-off between two borderline cases:

1. There is exactly one unique solution. At first glance,
this contradicts privacy. However, the mere exis-
tence of a unique solution is worthless, if it is com-
putationally infeasible to find it.

2. Finding a solution is easy but there are many
equally valid solutions. In this case privacy is pre-
served as well.

If additional background information is omitted, the
problem can be cast as a specialized instance of vari-
ous NP-complete problems, e.g., the parallel-version of
the KNAPSACK problem. Parallel KNAPSACK is de-
fined as follows: Let {ui}i∈{1,...,n} be a finite set of knap-
sacks (users) with volume bi := b(ui) (total balance).
Further let {tj}j∈{1,...,m} be a finite set of items (trans-
actions) with volumes pj := p(tj) (price) respectively.
Let xij ∈ {0, 1} be variables that indicate if knapsack i

contains item j. The task is to maximize the objective
function

m∑
j=1

n∑
i=1

xijv(tj) (1)

under the constraints
m∑

j=1
xijpj ≤ bi for i ∈ {1, . . . , m} (2)

and
n∑

i=1
xij ≤ 1 for j ∈ {1, . . . , m} (3)

Here, v denotes a value function that assigns a benefit
to each item. In our case, we set v = const, i.e., each
item (transaction) is equally valuable. Informally, this
means to pack as many items (transactions) into knap-
sacks (invoices) without exceeding the volume (balance)
of each knapsack (invoice) or assigning an item to more
than one knapsack. Since we know that all knapsacks
can be filled exactly without any item being left over, we
can conclude that any solution that does not completely
use a knapsack up to its limit must omit an item. Hence,
such a solution is never optimal and equality holds for
all optimal solutions in Eq. (2).

Two remarks are in order. With the above expla-
nation, we map an instance of our track-finding prob-
lem onto an instance of the KNAPSACK problem, i.e.,
this only shows that our problem at hand is not harder
than KNAPSACK. To be fully correct, we would have to
show the inverse direction, namely that a restricted set
of instances of the parallel KNAPSACK problem can
be cast into our track-finding problem (without back-
ground knowledge). The general KNAPSACK problem
is NP-complete. This is beneficial as it implies that find-
ing a solution is generally believed to be intractable.
However, there might be good heuristics for all “natu-
ral” instances. Especially since we only need to consider
those instances for which the optimal solution is a per-
fect solution (i.e., each knapsack is completely filled).
Nonetheless, this restricted class of KNAPSACK prob-
lems is still NP-complete and can indeed be mapped
onto our track-finding problem. Moreover, depending
on the concrete parameters (e.g., an upper bound on
the maximum price p or the balance bbill) the problem
might become fixed-parameter tractable [5]. In other
words, although solving the general problem has super-
polynomial runtime in the instance size, it might still
be practically solvable for “real world” instances. We
stress again, that an in-depth analysis requires to look
at concrete distributions of these parameters which may
be the basis for an independent work.

Nonetheless, there are indicators that—if finding
one solution is easy—there might be a myriad of solu-
tions, which again yields privacy. We take the German

P4TC 98

Toll Collect21 for trucks and analyze the statistics from
January, 2018 [32], as a more concrete example. This sys-
tem uses 24 distinct22 values for the user attributes. We
assume that transaction times are recorded with 5 min
resolution which is a little bit larger than the timespan
a truck needs to travel between two subsequent RSUs.23

Within this timeslot each RSU is passed by 28.4 other
trucks. Picking a fixed RSU and a fixed timeslot, this
implies that the probability that at least one other truck
with identical attributes passes by equals

p = 1−
(

23
24

)28.4
≈ 0.7 (4)

This means, for a randomly chosen transaction in the
graph the probability to find at least one other transac-
tion in the same layer (i.e., timeslot) for the same RSU
and for identical user attributes equals 0.7. In other
words, for a randomly chosen node in the transaction
graph the in- and out-degree is at least two with proba-
bility 0.7.

The average length of trips per month of a single ve-
hicle equals 3 398 km and the vehicle passes 613 RSUs.
This means the average trip consists of 613 transactions.
For approximately 0.7 · 613 = 429 of these transactions
there are at least two identically looking transactions
that are a plausible predecessor or successor. However,
it is completely wrong to assume this would yield 2429

identically looking paths that could be assigned to a
particular user. This kind of analysis would assume an
independence of the transactions which does not hold.
Again, let us randomly pick a particular RSU and times-
lot and consider the geographically next RSU in the
following time slot. If two identical transactions are ob-
served at the first RSU, the conditional probability to ob-
serve two identical transactions at the next RSU again
is assumedly much higher than 0.7, given that there are
no entry points, exit points or intersections in between.
Vice versa, if an transaction is unique at the first RSU,
the conditional probability to observe a second, identical
transaction at the next RSU is assumedly much lower.
On the contrary, we expect to have some transaction
nodes with a high in-/out-degree, namely those before

21 https://www.toll-collect.de/en/
22 The actual system uses more attribute values (i.e., 720) for
statistical purposes. However, we only counted attribute values
that the price depends on.
23 Since the German toll collection system is GNSS-based and
has no RSUs, the average distance between two RSUs is as-
sumed to be 5 km as in the Austrian Toll Collection system [55].
Additionally, we assumed 80 km

h travel speed for trucks.

an exit point or after an entry point. If a truck leaves
the tolling system, it might either promptly re-enter the
system at some nearby entry point or at some distant
entry point in the remote future.

In summary, the analysis above is overly simplified
as we assume uniform distributions of all values and
an independence of random variables that is likely not
given in reality. Nonetheless, this indicates that the solu-
tion space for mapping a particular user to a specific trip
might be vast and it points out why an in-depth analy-
sis would justify an independent work on its own. Please
also note that this analysis is only based on trucks not
passenger cars where we expect much higher probabili-
ties for joint occurrence of identical attributes due to the
higher number of participants and higher travel speeds.

Remark B.1. In practice, several privacy notions like k-
anonymity are established. For several reasons these no-
tions are not directly applicable here. First of all, these
notions evaluate the privacy level of a concrete dataset
and we stress again that this is out of the scope of this
work. While at first glance the calculations above might
suggest that our system features k-anonymity [63] for
some yet to be determined k, the notion of k-anonymity
is actually not applicable due to formal reasons. The
definition of k-anonymity requires the database to have
exactly one entry for each individual, but our transac-
tion database features several entries per user. There-
fore, the notion of k-anonymity is syntactically not ap-
plicable to the users of our system. While we could still
discuss k-anonymity in this setting if the TSP combined
all entries that pertain to the same user into one single
entry, privacy of our system largely stems from the TSP
not being able to link transactions of the same user in
this way and hence such a discussion would largely un-
dervalue the privacy protection P4TC provides.

C Protocol Assumptions and
Building Blocks

In this appendix we introduce the algebraic setting and
building blocks we make use of. In particular, the latter
includes non-interactive zero-knowledge proofs, commit-
ments, signatures, encryption and pseudo-random func-
tions. We also describe possible instantiations for these
building blocks and explain how these primitives are
used in our system.

https://www.toll-collect.de/en/

P4TC 99

C.1 Algebraic Setting and Assumptions

Our protocol instantiations are based on an asymmetric
bilinear group setting gp := (G1, G2, GT, e, p, g1, g2). We
adopt the following definition from [44].

Definition C.1 (Prime-order Bilinear Group Generator).
A prime-order bilinear group generator is a PPT algo-
rithm SetupGrp that on input of a security parameter
1n outputs a tuple of the form

gp := (G1, G2, GT, e, p, g1, g2)← SetupGrp(1n)

where G1, G2, GT are descriptions of cyclic groups of
prime order p, log p = Θ(n), g1 is a generator of G1, g2
is a generator of G2, and e : G1 × G2 → GT is a map
(aka pairing) which satisfies the following properties:

– Efficiency: e is efficiently computable.
– Bilinearity: ∀a ∈ G1, b ∈ G2, x, y ∈ Zp: e (ax, by) =

e (a, b)xy.
– Non-Degeneracy: e (g1, g2) generates GT.

The setting is called asymmetric, if no efficiently com-
putable homomorphisms between G1 and G2 are known.
In the remainder of this paper, we consider the asym-
metric kind.

Our construction relies on the co-CDH assumption
for identification, and the security of our building blocks
(cp. Appendix C.2) in asymmetric bilinear groups. For
our special instantiation of the building blocks (see
there), security holds under the SXDH and co-DLIN as-
sumption. The former implies the co-CDH assumption.

The SXDH assumption essentially asserts that the
DDH assumption holds in both source groups G1 and
G2 of the bilinear map and is formally defined as:

Definition C.2.

1. We say that the DDH assumption holds with respect
to SetupGrp over Gi if SuccsDDH

SetupGrp,i,A(1n) is defined
by

Pr

 b = b′

∣∣∣∣∣∣∣∣
gp := (G1, G2, GT, e, p, g1, g2)← SetupGrp(1n)

x, y, z
R
← Zp; h0 := g

xy
i

; h1 := gz
i

b
R
← {0, 1}

b′ ← A(1n, gp, gx
i , g

y
i

, hb)


and the advantage

AdvDDH
SetupGrp,i,A(1n) :=

∣∣∣ SuccsDDH
SetupGrp,i,A(1n) − 1

2

∣∣∣
is a negligible function in n for all PPT algorithms
A.

2. We say that the SXDH assumption holds with re-
spect to SetupGrp if the above holds for both i = 1
and i = 2.

The co-CDH assumption is defined as follows:

Definition C.3. We say that the co-CDH assumption
holds with respect to SetupGrp if the advantage
AdvCO-CDH

SetupGrp,A(1n) defined by

Pr

 a = gx
2

∣∣∣∣∣∣
gp := (G1, G2, GT, e, p, g1, g2)← SetupGrp(1n)

x
R← Zp

a← A(1n, gp, gx
1)


is a negligible function in n for all PPT algorithms A.

The co-DLIN assumption is defined as follows:

Definition C.4. We say that the co-DLIN assump-
tion holds with respect to SetupGrp if the advantage
AdvCO-DLIN

SetupGrp,A(1n) defined by

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣

gp := (G1, G2, GT, e, p, g1, g2)← SetupGrp(1n)

α, β, γ
R← Zp

b
R← {0, 1}

ȟ1 := gα
1 , ȟ2 := gβ

1 , ȟ3 := gα+β+bγ
1

ĥ1 := gα
2 , ĥ2 := gβ

2 , ĥ3 := gα+β+bγ
2

b′ ← A(1n, gp, ȟ1, ȟ2, ȟ3, ĥ1, ĥ2, ĥ3)


is a negligible function in n for all PPT algorithms A.

C.2 Cryptographic Building Blocks

Our semi-generic construction makes use of various cryp-
tographic primitives including (Fgp-extractable) NIZK
proofs, equivocal and extractable homomorphic commit-
ments, digital signatures, public-key encryption, sym-
metric encryption and pseudo-random functions. The
latter building blocks need to be efficiently and securely
combinable with the chosen NIZK proof system, which
is Groth-Sahai (GS) in our case. In the following, we
give an introduction to the formal definition of these
building blocks.

C.2.1 Group setup

Let SetupGrp be a bilinear group generator (cp. Defini-
tion C.1) that outputs descriptions of asymmetric bilin-
ear groups gp ← SetupGrp(1n). The following building
blocks all make use of SetupGrp as their common group
setup algorithm.

C.2.2 NIZKs

Let R be a witness relation for some NP language

L = {stmnt | ∃wit s.t. (stmnt, wit) ∈ R}.

P4TC 100

A zero-knowledge proof system allows a prover P to
convince a verifier V that some stmnt is contained in
L without V learning anything beyond that fact. In a
non-interactive zero-knowledge (NIZK) proof, only one
message, the proof π, is sent from P to V for that pur-
pose.

More precisely, a (group-based) NIZK proof system
is defined as:

Definition C.5 (Group-based NIZK proof system). Let R

be an efficiently verifiable relation containing triples (gp,

x, w). We call gp the group setup, x the statement, and
w the witness. Given some gp, let Lgp be the language
containing all statements x such that (gp, x, w) ∈ R. Let
POK := (SetupGrp, SetupPoK, Prove, Vfy) be a tuple of
PPT algorithms such that

– SetupGrp takes as input a security parameter 1n and
outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms.

– SetupPoK takes as input gp and outputs a (public)
common reference string CRSpok.

– Prove takes as input the common reference string
CRSpok, a statement x, and a witness w with (gp, x,

w) ∈ R and outputs a proof π.
– Vfy takes as input the common reference string

CRSpok, a statement x, and a proof π and outputs 1
or 0.

POK is called a non-interactive zero-knowledge proof
system for R with Fgp-extractability, if the following
properties are satisfied:

1. Perfect completeness: For all gp ← SetupGrp(1n),
CRSpok ← SetupPoK(gp), (gp, x, w) ∈ R, and π ←
Prove(CRSpok, x, w) we have that Vfy(CRSpok, x, π) =
1.

2. Perfect soundness: For all (possibly unbounded) ad-
versaries A we have that

Pr

 Vfy(CRSpok, x, π) = 0

∣∣∣∣∣∣∣∣
gp← SetupGrp(1n)

CRSpok ← SetupPoK(gp)

(x, π)← A(CRSpok)

x ̸∈ Lgp


is 1.

3. Perfect Fgp-extractability: There exists a poly-
nomial-time extractor (SetupEPoK, ExtractW) such
that for all (possibly unbounded) adversaries A

(a) we have that the advantage Advpok-ext-setup
POK,A (n) de-

fined by∣∣∣∣∣∣∣∣∣
Pr

[
1← A(CRSpok)

∣∣∣∣ gp← SetupGrp(1n),

CRSpok ← SetupPoK(gp)

]
−Pr

[
1← A(CRS′

pok)

∣∣∣∣ gp← SetupGrp(1n),

(CRS′
pok, tdepok)← SetupEPoK(gp)

]
∣∣∣∣∣∣∣∣∣

is zero.
(b) we have that the advantage Advpok-ext

POK,A(n) defined
by

Pr


∃ w :

Fgp(w) = W∧

(gp, x, w) ∈ R

∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n)

(CRS′
pok, tdepok)← SetupEPoK(gp)

(x, π)← A(CRS′
pok, tdepok)

1← Vfy(CRS′
pok, x, π)

W ← ExtractW(CRS′
pok, tdepok, x, π)


is 1.

4. Composable Zero-knowledge: There exists a polyno-
mial-time simulator (SetupSPoK, SimProof) and hint
generator GenHint such that for all PPT adversaries
A

(a) we have that the advantage Advpok-zk-setup
POK,A (n) de-

fined by∣∣∣∣∣∣∣∣∣∣∣

Pr

[
1← A(CRSpok)

∣∣∣∣ gp← SetupGrp(1n),

CRSpok ← SetupPoK(gp)

]

−Pr

1← A(CRS′
pok)

∣∣∣∣∣∣
gp← SetupGrp(1n),

hint ← GenHint(gp),

(CRS′
pok, tdspok)← SetupSPoK(gp, hint),



∣∣∣∣∣∣∣∣∣∣∣
is negligible in n.

(b) we have that the advantage Advpok-zk
POK,A(n) defined

by∣∣∣∣∣∣∣
Pr
[

1← A
SimProof′(CRS′

pok,tdspok,·,·)
(1n, CRS′

pok, tdspok)

]
−Pr

[
1← A

Prove(CRS′
pok,·,·)

(1n, CRS′
pok, tdspok)

]
∣∣∣∣∣∣∣

is negligible in n, where gp ← SetupGrp(1n),
(CRS′pok, tdspok) ← SetupSPoK(gp), and
SimProof′(CRS′pok, tdspok, ·, ·) is an oracle which
returns SimProof(CRS′pok, tdspok, x) on input
(x, z) ∈ R. Both SimProof′ and Prove return
⊥ on input (x, z) ̸∈ R.

We wish to point out some remarks.

Remark C.6.

1. The considered language Lgp may depend on gp.
2. Fgp-extractability actually implies soundness inde-

pendent of Fgp: If there was a false statement x

P4TC 101

which verifies, violating soundness, then obviously
there is no witness w for x, which violates ex-
tractability.

3. Extractability essentially means that ExtractW—
given a trapdoor tdepok—is able to extract Fgp(wit)
for an NP-witness wit for stmnt ∈ Lgp from any valid
proof π. If Fgp is the identity function, then the ac-
tual witness is extracted and the system is called a
proof of knowledge.

Our Instantiation
We choose the SXDH-based Groth-Sahai proof system
[35, 42] as our NIZK, as it allows for very efficient proofs
(under standard assumptions). On the other hand, GS
comes with some drawbacks, which makes applying it
sometimes pretty tricky: It only works for algebraic lan-
guages containing certain types of equations, it is not
always zero-knowledge, and Fgp is not always the iden-
tity function. For the sake of completeness Appendix C.3
contains a description what types of equations are sup-
ported by GS. When choosing our remaining building
blocks and forming equations we ensured that they fit
into this framework. Likewise, we ensured that the ZK-
property holds for the languages we consider.

For proving correctness of the computations taking
place on the user’s side we need three different instanti-
ations of the GS proof system, denoted by P1, P2 and
P3, respectively. The corresponding functions F

(1)
gp , F

(2)
gp

and F
(3)
gp depend on the considered languages L1, L2 and

L3 (defined in Appendices D.6 to D.8) but they have the
following in common: They behave as the identity func-
tion with respect to group elements and map elements
from Zp either to G1 or G2 (by exponentiation with ba-
sis g1 or g2) depending on whether these are used as
exponents of a G1 or G2 element in the language.

All proof systems will share a common reference
string. More precisely, we demand that there is a shared
extraction setup algorithm which generates the CRS
and also a single extraction trapdoor for P1, P2 and
P3. Let us denote this algorithm by SetupEPoK and its
output by (CRSpok, tdepok) ← SetupEPoK(gp) in the fol-
lowing. Furthermore, let us denote the prove and ver-
ify algorithms of these proof systems by PX.Prove and
PX.Vfy, for 1 ≤ X ≤ 3.

C.2.2.1 Range Proofs
For one particular task24 we need range proofs in or-
der to show that some Zp-element λ′i is “smaller” than
some fixed system parameter B with both elements be-
ing regarded as elements from {0, . . . , p − 1} and the
normal ≤-relation from the integers. We realize these
range proofs using Groth-Sahai by applying the signa-
ture-based technique in [19]. Here, the verifier initially
chooses parameters q and t such that every possible λ′i
can be represented as λ′i =

∑t
j=0 djqj with 0 ≤ dj < q.

He also generates a signature on every possible value of
a digit, i.e., 0, . . . , q − 1. The prover then shows using
a Groth-Sahai NIZK that each λ′i can be indeed repre-
sented in this way and that he knows a signature by
the verifier for each of its digits. Clearly, a structure-
preserving signature scheme is needed for this purpose
and we use the one in [2].

C.2.3 Commitments

A commitment scheme allows a user to commit to a mes-
sage m and publish the result, called commitment c, in
a way that m is hidden from others, but also the user
cannot claim a different m afterwards when he opens c.
A commitment scheme is called an Fgp-binding commit-
ment scheme for a bijective function Fgp on the message
space, if one commits to a message m but opens the com-
mitment using Fgp(m). We call the codomain of Fgp the
implicit message space.

Definition C.7. A commitment scheme COM :=
(SetupGrp, Gen, Com, Open) consists of four algorithms:

– SetupGrp takes as input a security parameter 1n

and outputs public parameters gp. These param-
eters also define a message space M, an implicit
message space M′ and a function Fgp : M → M′

mapping a message to its implicit representation.
We assume that gp is given as implicit input to all
algorithms.

– Gen is a PPT algorithm, which takes gp as input
and outputs public parameters CRScom.

– Com is a PPT algorithm, which takes as input pa-
rameters CRScom and a message m ∈ M and out-
puts a commitment c to m and some decommitment
value d.

– Open is a deterministic polynomial-time algorithm,
which takes as input parameters CRScom, commit-

24 More precisely: The task Wallet Issuing

P4TC 102

ment c, an implicit message M ∈ M′, and opening
d. It returns either 0 or 1.

COM is correct if for all gp ← SetupGrp(1n), CRScom ←
Gen(gp), m ∈M, and (c, d)← Com(CRScom, m) it holds
that 1 = Open(CRScom, Fgp(m), c, d).

We say that COM is a (computationally) hiding, Fgp-
binding, equivocal, extractable commitment scheme if it
has the following properties:

1. Hiding: For all PPT adversaries A it holds that the
advantage AdvHiding

COM,A(1n) defined by∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n)

CRScom ← Gen(gp)

(m0, m1, state)← A(1n, CRScom)

b
R← {0, 1}

(c, d)← Com(CRScom, mb)

b′ ← A(c, state)


−

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
is negligible in n. The scheme is called statistically

hiding if AdvHiding
COM,A(1n) is negligible even for an un-

bounded adversary A.
2. Fgp-Binding: For all PPT adversaries A it holds that

the advantage AdvFgp-Binding
A (1n) defined by

Pr

 Open(CRScom, M, c, d) = 1

∧

Open(CRScom, M′, c, d′) = 1

∣∣∣∣∣∣∣∣
gp← SetupGrp(1n)

CRScom ← Gen(gp)

(c, M, d, M′, d′)← A(1n, CRScom)

M ̸= M′


is negligible in n.

3. Equivocal: There exist PPT algorithms SimGen,
SimCom and Equiv such that for all PPT adversaries
A

(a) we have that the advantage AdvSimGen
COM,A(n) de-

fined by∣∣∣∣∣∣∣∣∣
Pr

[
1← A(CRScom)

∣∣∣∣ gp← SetupGrp(1n),

CRScom ← Gen(gp)

]
−Pr

[
1← A(CRS′

com)

∣∣∣∣ gp← SetupGrp(1n),

(CRS′
com, tdeqcom)← SimGen(gp)

]
∣∣∣∣∣∣∣∣∣

is negligible in n.
(b) we have that the advantage AdvEquiv

COM,A(n) de-
fined by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A

CRS′
com,

tdeqcom,

m, c, d


∣∣∣∣∣∣∣∣

gp← SetupGrp(1n),

(CRS′
com, tdeqcom)← SimGen(gp),

m←M,

(c, d)← Com(CRS′
com, m)



−Pr

1← A

 CRS′
com,

tdeqcom,

m, c
′
, d

′


∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n),

(CRS′
com, tdeqcom)← SimGen(gp),

(c′, r)← SimCom(gp),

m←M,

d′ ← Equiv(CRS′
com, tdeqcom, m, r)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

is zero.

4. Extractable: There exist PPT algorithms ExtGen
and Extract such that for all PPT adversaries A

(a) we have that the advantage AdvExtGen
COM,A(n) de-

fined by∣∣∣∣∣∣∣∣∣
Pr

[
1← A(CRScom)

∣∣∣∣ gp← SetupGrp(1n),

CRScom ← Gen(gp)

]
−Pr

[
1← A(CRS′

com)

∣∣∣∣ gp← SetupGrp(1n),

(CRS′
com, tdextcom)← ExtGen(gp)

]
∣∣∣∣∣∣∣∣∣

is negligible in n.
(b) we have that the advantage AdvExt

COM,A(n) de-
fined by

Pr


Extract

CRS′
com,

tdextcom,

c


̸=

Fgp(m)

∣∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n),

(CRS′
com, tdextcom)← ExtGen(gp),

c← A(CRS′
com),

∃!m ∈ M, r : c← Com(CRS′
com, m; r)


is zero.

Furthermore, assume that the message space of COM is
an additive group. Then COM is called additively ho-
momorphic, if there exist additional PPT algorithms
c ← CAdd(CRScom, c1, c2) and d ← DAdd(CRScom, d1, d2)
which on input of two commitments and correspond-
ing decommitment values (c1, d1) ← Com(CRScom, m1)
and (c2, d2) ← Com(CRScom, m2), output a commit-
ment c and decommitment d, respectively, such that
Open(CRScom, c, Fgp(m1 + m2), d) = 1.

Finally, we call COM opening complete if for
all M ∈ M′ and arbitrary values c, d with
Open(CRScom, M, c, d) = 1 holds that there exists
m ∈ M and randomness r such that (c, d) ←
Com(CRScom, m; r).

Our Instantiation
We will make use of two commitment schemes that are
both based on the SXDH assumption. We first use the
shrinking α-message-commitment scheme from Abe et
al. [4]. This commitment scheme has message space Zα

p ,
commitment space G2 and opening value space G1. It is
statistically hiding, additively homomorphic, equivocal,
and F ′gp-Binding, for F ′gp(m1, . . . , mα) := (gm1

1 , . . . , gmα
1).

We use this commitment scheme as C1 with CRS CRS1
com

in the following ways in our system:

– In the Wallet Issuing task we use C1 for messages
from Zp (α := 1), Z2

p (α := 2) and Z4
p (α := 4).

P4TC 103

– In the Debt Accumulation task we use C1 for mes-
sages from Zp (α := 1) and Z4

p (α := 4).

We also use the (dual-mode) equivocal and extractable
commitment scheme from Groth and Sahai [42]. This
commitment scheme has message space G1, commit-
ment space G2

1 and opening value space Z2
p. It is equiv-

ocal, extractable, hiding and F ′gp-Binding for F ′gp(m) :=
m. In our system, we use this commitment scheme as
C2 with CRS CRS2

com in the Wallet Issuing and Debt
Accumulation tasks.

C.2.4 Digital signatures

A signature allows a signer to issue a signature σ on a
message m using its secret signing key sk such that any-
body can publicly verify that σ is a valid signature for
m using the public verification key pk of the signer but
nobody can feasibly forge a signature without knowing
sk.

Definition C.8. A digital signature scheme S :=
(SetupGrp, Gen, Sgn, Vfy) consists of four PPT algo-
rithms:

– SetupGrp takes as input a security parameter 1n and
outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms.

– Gen takes gp as input and outputs a key pair (pk, sk).
The public key and gp define a message space M.

– Sgn takes as input the secret key sk and a message
m ∈M, and outputs a signature σ.

– Vfy takes as input the public key pk, a message m ∈
M, and a purported signature σ, and outputs a bit.

We call S correct if for all n ∈ N, gp ← SetupGrp(1n),
m ∈ M, (pk, sk) ← Gen(gp), σ ← Sgn(sk, m) we have
1← Vfy(pk, σ, m).

We say that S is EUF-CMA secure if for all PPT ad-
versaries A it holds that the advantage AdvEUF-CMA

S,A (1n)
defined by

Pr

 Vfy(pk, σ∗, m∗) = 1

∣∣∣∣∣∣∣∣
gp← SetupGrp(1n)

(pk, sk)← Gen(gp)

(m∗, σ∗)← ASgn(sk,·)(1n, pk)

m∗ ̸∈ {m1, . . . , mq}


is negligible in n, where Sgn(sk, ·) is an oracle that, on

input m, returns Sgn(sk, m), and {m1, . . . , mq} denotes
the set of messages queried by A to its oracle.

Our Instantiation
As we need to prove statements about signatures, the
signature scheme has to be algebraic. For our construc-
tion, we use the structure-preserving signature scheme
from Abe et al. [2], which is currently the most efficient
structure-preserving signature scheme. Its EUF-CMA
security proof is in the generic group model, a restric-
tion we consider reasonable with respect to our goal of
constructing a highly efficient P4TC scheme. An alter-
native secure in the plain model would be [53]. For the
scheme in [2], one needs to fix two additional parame-
ters µ, ν ∈ N0 defining the actual message space Gν

1×Gµ
2 .

Then sk ∈ Zµ+ν+2
p , pk ∈ Gµ+2

1 ×Gν
2 and σ ∈ G2

2 ×G1.
We use the signature scheme S from Abe et al. [2]

in the following ways in our system:

– In the Wallet Issuing and Debt Accumulation tasks
we use S for messages from G2 × G1 (ν = 1 and
µ = 1).

– In the Wallet Issuing task we use S for messages
from G2ℓ+2

1 (ν = 2ℓ + 2 and µ = 0).
– In the RSU Certification and TSP Registration

tasks we use S for messages from G3+y
1 (ν = 3 + y

and µ = 0).

C.2.5 Asymmetric Encryption

We use the standard definitions for asymmetric encryp-
tion schemes and corresponding security notions, except
that we enhance them with a SetupGrp algorithm to fit
our algebraic setting.

Definition C.9 (Asymmetric Encryption). An asymmet-
ric encryption scheme E := (SetupGrp, Gen, Enc, Dec)
consists of four PPT algorithms:

– SetupGrp takes as input a security parameter 1n and
outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms.

– Gen(gp) outputs a pair (pk, sk) of keys, where pk is
the (public) encryption key and sk is the (secret)
decryption key.

– Enc(pk, m) takes a key pk and a plaintext message
m ∈M and outputs a ciphertext c.

– Dec(sk, c) takes a key sk and a ciphertext c and out-
puts a plaintext message m or ⊥. We assume that
Dec is deterministic.

Correctness is defined in the usual sense.
An asymmetric encryption scheme E is IND-CCA2 -

secure if for all PPT adversaries A it holds that the

P4TC 104

advantage AdvIND-CCA-asym
E,A (1n) defined by∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n)

(pk, sk)← Gen(gp)

(state, m0, m1)← ADec(sk,·)(1n, pk)

b
R← {0, 1}

c∗ ← Enc(pk, mb)

b′ ← ADec′(sk,·)(state, c∗)


−

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
is negligible in n, where |m0| = |m1|, Dec(sk, ·) is an

oracle that gets a ciphertext c from the adversary and
returns Dec(sk, c) and Dec′(sk, ·) is the same, except that
it returns ⊥ on input c∗.

An asymmetric encryption scheme E is NM-CCA2 -
secure if for all PPT adversaries A it holds that the
advantage AdvNM-CCA

E,A (1n) defined by∣∣SuccsNM-CCA
E,A,real(1n)− SuccsNM-CCA

E,A,random(1n)
∣∣

is negligible with

SuccsNM-CCA
E,A,real(1n) :=

Pr


c /∈ c ∧
⊥ /∈m ∧

R(m, m) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n)
(pk, sk)← Gen(gp)

(M, state)← ADec(sk,·)(1n, pk)

m
R←M

c← Enc(pk, m)
(R, c)← ADec′(sk,·)(1n, state, c)

m← Dec(sk, c)


and

SuccsNM-CCA
E,A,random(1n) :=

Pr


c /∈ c ∧
⊥ /∈m ∧

R(m̃, m) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← SetupGrp(1n)
(pk, sk)← Gen(gp)

(M, state)← ADec(sk,·)(1n, pk)

m, m̃
R←M

c← Enc(pk, m)
(R, c)← ADec′(sk,·)(1n, state, c)

m← Dec(sk, c)


,

where M denotes a space of valid, equally long mes-
sages, R ⊆M ×M∗ denotes an relation, Dec(sk, ·) is an
oracle that gets a ciphertext c from the adversary and
returns Dec(sk, c) and Dec′(sk, ·) is the same, except that
it returns ⊥ on input c.

An encryption is IND-CCA2 secure if and only if it
is NM-CCA2 secure [15].

Our Instantiation
We will make use of two different IND-CCA2-secure en-
cryption schemes:

– We implicitly use the encryption scheme by Cash,
Kiltz, and Shoup [26] to realize the secure channels
underlying our model.

– We use a variant of Camenisch et al. [20] to instanti-
ate the explicit encryption scheme E1 for the deposit
Wallet IDs.

The former scheme is based on the TWIN-DH assump-
tion and is used to setup a session key for a symmetric
encryption of all protocol messages (cp. Appendix C.2.6)
in the usual way.

The latter scheme is an adapted variant of the struc-
ture-preserving, IND-CCA2 secure encryption scheme
by Camenisch et al. [20]. Thus, some remarks are in or-
der. The original scheme is formalized for a symmetric
type-1 pairing, but we need a scheme that is secure in
the asymmetric type-3 case. For the conversion we fol-
lowed the generic transformation proposed by Abe et
al. [3] with some additional, manual optimizations. The
transformed scheme encrypts vectors of G1-elements
and is secure under the co-DLIN assumption (cp. Defini-
tion C.4) which holds in the generic group model. This
follows automatically from [3] (or can also be easily seen
by inspecting the original proof in [20]). We present the
modified scheme in full detail.

Definition C.10 (Type-3 variant of Camenisch et al. [20]).
Let gp := (G1, G2, GT, e, p, g1, g2) ← SetupGrp(1n) be
as in Definition C.1. Let ℘ be the dimension of the
message space G℘

1 . The algorithms Gen, Enc and Dec
are depicted in Figs. 17 to 19.

P4TC 105

Gen(gp, ℘)

parse (G1, G2, GT, e, p, g1, g2) := gp

α1, . . . , α℘, β0, . . . , β3, γ1, . . . , γ℘
R← Z3

p

sk := ({αi}i=1,...,℘, {βi}i=0,...,3, {γi}i=1,...,℘)

ξ1, . . . , ξ3
R← Z∗p

ȟ1 := gξ1
1 , ȟ2 := gξ2

1 , ȟ3 := gξ3
1

ĥ1 := gξ1
2 , ĥ2 := gξ2

2 , ĥ3 := gξ3
2

xi,1 := ȟ
αi,1
1 ȟ

αi,3
3 , xi,2 := ȟ

αi,2
2 ȟ

αi,3
3 , for i = 1, . . . , ℘

yi,1 := ĥ
βi,1
1 ĥ

βi,3
3 , yi,2 := ĥ

βi,2
2 ĥ

βi,3
3 , for i = 0, . . . , 3

zi,1 := ĥ
γi,1
1 ĥ

γi,3
3 , zi,2 := ĥ

γi,2
2 ĥ

γi,3
3 , for i = 1, . . . , ℘

pk :=
(

ȟ1, ȟ2, ȟ3, ĥ1, ĥ2, ĥ3,

{xi,1, xi,2}i=1,...,℘, {yi,1, yi,2}i=0,...,3, {zi,1, zi,2}i=1,...,℘

)
return (pk, sk)

Fig. 17. The key generation algorithm Gen of the adapted CCA-
secure encryption scheme by Camenisch et al. [20] with parame-
ter ℘ and message space G℘

1

We instantiate this scheme with ℘ = ℓ + 2.

C.2.6 Symmetric Encryption

We use standard definitions for symmetric encryption
schemes and corresponding security notions.

Definition C.11 (Symmetric Encryption). A symmetric
encryption scheme E := (Gen, Enc, Dec) consists of three
PPT algorithms:

– Gen(1n) outputs a (random) key k.
– Enc(k, m) takes a key k and a plaintext message

m ∈M and outputs a ciphertext c.
– Dec(k, c) takes a key k and a ciphertext c and out-

puts a plaintext message m or ⊥. We assume that
Dec is deterministic.

As for asymmetric encryption, we require correctness in
the usual sense.

We now define a multi-message version of IND-
CCA2 security. It is a well-known fact that IND-CCA2
security in the multi-message setting is equivalent to
standard IND-CCA2 security. (This can be shown via a
standard hybrid argument.)

A symmetric encryption scheme E is IND-CCA2 -
secure if for all PPT adversaries A it holds that the

Enc(pk, m)

parse
(

ȟ1, ȟ2, ȟ3, ĥ1, ĥ2, ĥ3, {xi,1, xi,2}i=1,...,℘,

{yi,1, yi,2}i=0,...,3, {zi,1, zi,2}i=1,...,℘

)
:= pk

r, s
R← Zp

ǔ1 := ȟr
1 ǔ2 := ȟs

2 ǔ3 := ȟr+s
3

û1 := ĥr
1 û2 := ĥs

2 û3 := ĥr+s
3

ci = mix
r
i,1xs

i,2 for i = 1, . . . , ℘

v =
3∏

i=0

e
(

ǔi, yr
i,1ys

i,2
) ℘∏

i=1

e
(

ci, zr
i,1zs

i,2
)

with ǔ0 := g1

u := (ǔ1, ǔ2, ǔ3, û1, û2, û3)

c := (c1, . . . , c℘)

c := (u, c, v)

return (c)

Fig. 18. The encryption algorithm Enc of the adapted CCA-
secure encryption scheme by Camenisch et al. [20] with parame-
ter ℘ and message space G℘

1

Dec(sk, c)

parse ({αi}i=1,...,℘, {βi}i=0,...,3, {γi}i=1,...,℘) := sk

parse (u, c, v) := c

parse (ǔ1, ǔ2, ǔ3, û1, û2, û3) := u

parse (c1, . . . , c℘) := c

ǔ0 := g1

if v ̸=
3∏

i=0

e

(
ǔi, û

βi,1
1 û

βi,2
2 û

βi,3
3

) ℘∏
i=1

e
(

ci, û
γi,1
1 û

γi,2
2 û

γi,3
3
)

abort

if e (ǔi, g2) ̸= e (g1, ûi) for any i ∈ {1, 2, 3}

abort

mi := ciǔ
−αi,1
1 ǔ

−αi,2
2 ǔ

−αi,3
3 for i ∈ {1, . . . , ℘}

m := (m1, . . . , m℘)

return (m)

Fig. 19. The decryption algorithm Dec of the adapted CCA-
secure encryption scheme by Camenisch et al.[20] with parameter
℘ and message space G℘

1

P4TC 106

advantage AdvIND-CCA-sym
E,A (1n) defined by∣∣∣∣∣∣∣∣∣∣∣

Pr

b = b
′

∣∣∣∣∣∣∣∣∣∣∣

k ← Gen(1n)

(state, j, m0, m1)← AEnc(k,·),Dec(k,·)(1n)

b← {0, 1}

c∗ ← (Enc(k, mb,1), . . . , Enc(k, mb,j))

b′ ← AEnc(k,·),Dec′(k,·)(state, c∗)

 −
1
2

∣∣∣∣∣∣∣∣∣∣∣
is negligible in n, where m0, m1 are two vectors of

j ∈ N bitstrings each such that for all 1 ≤ i ≤ j:
|m0,i| = |m1,i|, Enc(k, ·) and Dec(k, ·) denote oracles that
return Enc(k, m) and Dec(k, c) for a m or c chosen by the
adversary, and Dec′(k, ·) is the same as Dec(k, ·), except
that it returns ⊥ on input of any c∗i that is contained in
c∗.

Our Instantiation
We use an IND-CCA2-secure symmetric encryption
scheme in our protocol to encrypt the exchanged pro-
tocol messages. To this end, we combine an IND-CCA2-
secure asymmetric encryption (see Appendix C.2.5)
with an IND-CCA2-secure symmetric encryption in the
usual KEM/DEM approach. The symmetric encryption
can for example be instantiated with AES in CBC mode
together with HMAC based on the SHA-256 hash func-
tion. The result will be IND-CCA2-secure if AES is a
pseudo-random permutation and the SHA-256 compres-
sion function is a PRF when the data input is seen as
the key [14].

C.2.7 Pseudo-Random Functions

A pseudo-random function (PRF) F : K × X → Y is
a keyed function whose output cannot be distinguished
from randomness, i.e., any PPT adversary given oracle
access to either F (k, ·) or a randomly chosen function
R : X → Y, cannot distinguish between them with non-
negligible probability. More precisely, a PRF—more pre-
cisely a family of PRF’s in the security parameter 1n—is
defined as follows.

Definition C.12. A (group-based) pseudo-random func-
tion (PRF) PRF := (SetupGrp, Gen, Eval) consists of
three PPT algorithms:

– SetupGrp takes as input a security parameter 1n and
outputs public parameters gp. We assume that gp is
given as implicit input to all algorithms. The input
domain Xgp, the key space Kgp, and the codomain
Ygp may all depend on gp.

– Gen takes gp as input and outputs a key k ∈ Kgp.
(Typically, we have k

R← Kgp.)
– Eval is a deterministic algorithm which takes as in-

put a key k ∈ Kgp and a value x ∈ Xgp, and outputs
some y ∈ Ygp. Usually, we simply write y = F (k, x)
for short.

We say that PRF is secure if for all PPT adversaries A
it holds that the advantage Advprf

A (1n) defined by∣∣∣∣∣∣∣∣∣
Pr

[
1← AF (k,·)(gp)

∣∣∣∣ gp← SetupGrp(1n),

k ← Gen(gp)

]
−Pr

[
1← AR(·)(gp)

∣∣∣∣ gp← SetupGrp(1n),

R
R← {R : Xgp → Ygp}

]
∣∣∣∣∣∣∣∣∣

is negligible in n.

Our Instantiation
As we want to efficiently prove statements about PRF
outputs, we use an efficient algebraic construction,
namely the Dodis-Yampolskiy PRF [33]. This function
is defined by F (k, x) : Z2

p → G1, (k, x) 7→ g
1

x+k

1 , where
k

R← Zp is the random PRF key. It is secure for inputs
{0, . . . , nPRF} ⊂ Zp under the nPRF-DDHI assumption.
This is a family of increasingly stronger assumptions
which is assumed to hold for asymmetric bilinear groups.

C.3 Types of Equations Supported by
GS-NIZKs

Let SetupGrp be a bilinear group generator (cf. Def-
inition C.1) for which the SXDH assumption holds
and gp := (G1, G2, GT, e, p, g1, g2, gT) ← SetupGrp(1n)
denotes the output of SetupGrp. Furthermore, let
X1, . . . , Xm1 ∈ G1, x1, . . . , xm2 ∈ Zp, Y1, . . . , Ym3 ∈ G2,
and y1, . . . , ym4 ∈ Zp denote variables in the following
types of equations:

– Pairing-Product Equation (PPE):

m3∏
i=1

e (Ai, Yi)
m1∏
i=1

e (Xi, Bi)
m1∏
i=1

m3∏
j=1

e (Xi, Yi)γi,j = tT

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT, γi,j ∈ Zp.
– Multi-Scalar Equation (MSE) over G1:

m4∏
i=1

Ayi

i

m1∏
i=1

Xbi
i

m1∏
i=1

m4∏
j=1

X
γi,jyj

i = t1

for constants Ai, t1 ∈ G1, bi, γi,j ∈ Zp.

P4TC 107

– Multi-Scalar Equation (MSE) over G2:
m2∏
i=1

Bxi
i

m3∏
i=1

Y ai
i

m2∏
i=1

m3∏
j=1

Y
γi,jxi

j = t2

for constants Bi, t2 ∈ G2, ai, γi,j ∈ Zp.
– Quadratic Equation (QE) over Zp:

m4∑
i=1

aiyi +
m2∑
i=1

xibi +
m2∑
i=1

m4∑
j=1

γi,jxiyj = t

for constants ai, bi, γi,j , t ∈ Zp.

Let Lgp be a language containing statements described
by the conjunction of n1 pairing-product equations over
gp, n2 multi-scalar equations over G1, n3 multi-scalar
equations over G2, and n4 quadratic equations over Zp,
where ni ∈ N0 are constants, as well as by witnesses

w = (X1, . . . , Xm1 , x1, . . . , xm2 ,

Y1, . . . , Ym3 , y1, . . . , ym4) ,

where mi ∈ N0. Then the Groth-Sahai proof system for
Lgp, as introduced by [42], is perfectly correct, perfectly
sound, and satisfies Fgp-extractability [35, 42] for

Fgp : Gm1
1 ×Z

m2
p ×Gm3

2 ×Zm4
p → Gm1

1 ×Gm2
1 ×Gm3

2 ×Gm4
2

with

Fgp(w) := ((Xi)i∈[m1], (gxi
1)i∈[m2],

(Yi)i∈[m3], (gyi

2)i∈[m4]).

There, Fgp acts as identity function on group elements
a ∈ G1 and b ∈ G2 but returns gs

1 ∈ G1 or gs
2 ∈ G2 for

exponents s ∈ Zp. It is also known to be composable
zero-knowledge [35, 42] as long as for all PPEs in Lgp
holds that either

– tT = 1 or
– the right-hand side of the PPE can be written as∏k

i=1 e (Ai, Bi) for constants Ai ∈ G1, Bi ∈ G2, such
that for each i DLOG(Ai) or DLOG(Bi) is known.

In the latter case, hint from Definition C.5 would con-
tain these discrete logarithms which would simply be
put (as additional elements) into the simulation trap-
door tdspok. Also note that if these discrete logarithms
are not known, there is a workaround which consists of
adding new helper variables to Lgp [42].

D Full Protocol
In this appendix we describe and define a real protocol
πP4TC that implements our toll collection system FP4TC.
We say

Definition D.1 (P4TC Scheme). A protocol π is called
a privacy-preserving electronic toll collection scheme, if
it GUC-realizes FP4TC.

The proof that πP4TC is a GUC-realization of FP4TC
is given in Appendix E. The style of the presentation
follows the same structure as the presentation of the
ideal model FP4TC in Appendix A.2: Although πP4TC
is a single, monolithic protocol with different tasks, the
individual tasks are presented as if they were individual
protocols.

While in the ideal model all information is kept in
a single, pervasive, trustworthy database, in the real
model such a database does not exist. Instead, the state
of the system is distributed across all parties. Each party
locally stores a piece of information: The user owns a
“user wallet”, which is updated during each transac-
tion, the RSU collects “double-spending tags” as well
as “proof of participation challenges”, which are period-
ically sent to the TSP, and the TSP creates and keeps
“hidden user trapdoors” for each wallet issued. A precise
definition what is stored by which party is depicted in
Fig. 20. For typographic reasons we additionally split
the presentation of most tasks into a wrapper protocol
and a core protocol. Except for a few cases, there is a one-
to-one correspondence between wrapper and core proto-
cols. The wrapper protocols have the same input/output
interfaces as their ideal counterparts and describe steps
that are executed by each party locally before and after
the respective core protocol. These steps include loading
keys, parsing the previously stored state, persisting the
new state after the core protocol has returned, etc. The
core protocols describe the actual interaction between
parties and what messages are exchanged.

This dichotomy between wrapper and core protocols
is lifted for four exceptions:

1. We give an algorithm for the setup of the system
(cf. Fig. 21) which explains how the CRS is gener-
ated. Of course, there is no wrapper protocol be-
cause setup of the CRS is not even part of our pro-
tocol but part of the setup assumption and provided
by FCRS.

2. We describe a “utility algorithm” WalletVerification
(cf. Fig. 46). This algorithm has no purpose on its
own, but simple collects some shared code of multi-
ple tasks.

3.+4. We only have “wrapper protocols” for the tasks Dou-
ble-Spending Detection and Guilt Verification (cf.
Figs. 42 and 43) because they are so simple that
splitting it each into two yields no advantage.

P4TC 108

UC-Protocol πP4TC

I. Local State

1. The TSP internally records:

– It’s public and private key (pkT , skT).
– A self-signed certificate certRT .
– A set HTD of hidden user trapdoors.
– A (partial) mapping {pkR 7→ aR} of RSU attributes.

2. Each RSU internally records:

– It’s public and private key (pkR, skR).
– A certificate certR signed by the TSP.
– Sets Ωdsp, Ωbl and Ωpp

R of double-spending information, blacklisting information and prove participa-
tion information.

3. Each user internally records:

– His public and private key (pkU , skU).
– A set {τ} of all past tokens issued to him.
– A set Ωpp

U of prove participation information.

II. Behavior

– DR Registration (Fig. 22)
– TSP Registration (Fig. 24)
– RSU Registration (Fig. 26)
– User Registration (Fig. 28)

– RSU Certification (Fig. 30)
– Wallet Issuing (Fig. 32)
– Debt Accumulation (Fig. 35)
– Debt Clearance (Fig. 38)

– Prove Participation (Fig. 40)
– Double-Spending Detection (Fig. 42)
– Guilt Verification (Fig. 43)
– User Blacklisting (Fig. 44)

Fig. 20. The UC-protocol πP4TC

P4TC 109

D.1 Secure Authenticated Channels

In our system, all protocol messages are encrypted using
CCA-secure encryption. For this purpose, a new session
key chosen by the user is encrypted under the public key
of an RSU/TSP for each interaction. Furthermore, we
make use of fully authenticated channels. The only ex-
ception to this is the task of Debt Accumulation where
only the participating RSU authenticates itself to the
user who in turn remains anonymous. We omit these en-
cryptions and authentications when describing the pro-
tocols.

D.2 Wallets

A central component of our toll collection system is the
wallet that is created during Wallet Issuing. It is of the
form

τ := (s, ϕ, xnext, λ, aU , cR, dR, σR, certR,

cT , dT , σT , b, unext
1).

Some of the components are fixed after creation, some
change after every transaction. The fixed components
consist of the wallet ID λ (which is also used as the PRF
seed), the user attributes aU , the TSP commitment cT
(a commitment on λ and the secret user key skU), its
corresponding opening dT and a signature σT on cT
and aU created by the TSP.

The alterable components consist of the RSU com-
mitment cR (a commitment on λ, b, unext

1 and xnext),
its corresponding opening dR, a signature σR on cR
and s created by a RSU, the balance b, the double-
spending mask unext

1 for the next transaction, the PRF
counter xnext for the next interaction, a RSU certificate
certR and the serial number s and fraud detection ID
ϕ := PRF(λ, xnext−1) for the current transaction. These
components change after each interaction with an RSU
via the Debt Accumulation task.

In the following, a protocol or algorithm for each
task is presented. For a better overview, it is depicted
in Fig. 1 which parties are involved in each task (except
for some registration tasks). Also, the used variables are
summarized in Tables 4 and 6.

D.3 System Setup

To setup the system once (see Fig. 21), the public param-
eter CRS must be generated in a trustworthy way. The

Setup(1n,B)

gp := (G1, G2, GT, e, p, g1, g2)← SetupGrp(1n)

CRS1
com ← C1.Gen(gp)

CRS2
com ← C2.Gen(gp)

CRSpok ← SetupPoK(gp)

CRS := (gp,B, CRS1
com, CRS2

com, CRSpok)

return CRS

Fig. 21. System Setup Algorithm

CRS CRS consists of a description of the underlying al-
gebraic framework gp, a splitting base B and the individ-
ual CRSs for the used commitments and zero-knowledge
proofs. We assume that the CRS is implicitly available
to all protocols and algorithms. Either a number of mu-
tually distrusting parties run a multi-party computation
(using some other sort of setup assumption) to generate
the CRS or a commonly trusted party is charged with
this task. As a trusted-third party (the DR) explicitly
participates in our system (for resolving disputes), this
party could also run the system setup.

D.4 Registration

The registration algorithms of DR, T , R and U are all
presented with a wrapper protocol πP4TC (see Figs. 22,
24, 26 and 28) and a core protocol (see Figs. 23, 25,
27 and 29). The wrapper protocol interacts with other
UC entities, pre-processes the inputs, post-processes the
outputs and internally invokes the core protocols. In the
following, only the mechanics of the core protocols are
explicitly described.

The DR computes a key pair (pkDR, skDR) which
can be used to remove the unlinkability of user trans-
actions in case of a dispute between the user and the
TSP (see Figs. 22 and 23). The DR could be a (non-
governmental) organization trusted by both, users to
protect their privacy and the TSP to protect operator
security.

The TSP must also generate a key pair (see Figs. 24
and 25). Therefore, the TSP generates several signature
key pairs (pkTT , skTT), (pkcert

T , skcert
T), (pkRT , skRT), where

skTT is used in the Wallet Issuing task to sign the TSP
commitment cT and the user attributes aU , skcert

T is used
to sign RSU public keys in the RSU Certification task
and skRT is used in the Wallet Issuing task to sign the
RSU commitment cR and the serial number s in place

P4TC 110

Table 6. Notation that only occurs in the real protocol

Identifier Domain Description

skDR Z2ℓ+8
p secret DR key

skT Zj+3
p × Zy+6

p × Z4
p secret TSP key

pkTT Gj+3
1 public TSP commitment signing key (part of pkT)

skTT Zj+3
p secret TSP commitment signing key (part of skT)

pkcert
T G3

1 ×Gy+3
2 public certification key (part of pkT)

skcert
T Zy+6

p secret certification key (part of skT)

pkRT G3
1 ×G2 public TSP’s RSU commitment signing key (part of pkT)

skRT Z4
p secret TSP’s RSU commitment signing key (part of skT)

skR Z4
p secret RSU key

skU Zp secret user key

cT G2 TSP commitment

dT G1 decommitment of cT

σT G2
2 ×G1 signature on cT and aU

cR G2 RSU commitment

dR G1 decommitment of cR

σR G2
2 ×G1 signature on cR and s

certR (G3
1 ×G2)×Gy

1 × (G2
2 ×G1) RSU certificate

certRT (G3
1 ×G2)×Gy

1 × (G2
2 ×G1) TSP certificate

σcert
R G2

2 ×G1 signature on pkR and aR
σcert
T G2

2 ×G1 signature on pkRT and aT
chid G2 hidden ID

dhid G1 opening of hidden ID

c′seed G2 commitment on the user half of the wallet ID

d′seed G1 opening of c′seed

c′′ser G2
1 commitment on the RSU half of the serial number

d′′ser Z2
p opening of c′′ser

ωdsp G1 × Zp × Zp double-spending information

ωbl G1 × Zp blacklisting information

ωpp
U G1 ×G2 ×G1 user’s prove participation information

ωpp
R G1 ×G2 RSU’s prove participation information

u1 Zp double-spending mask

u2 Zp double-spending randomness

t Zp double-spending tag

htd G1 ×G1 × Zp × ((G3
1 ×G3

2)×Gℓ+2
1 ×GT) hidden user trapdoor

HTD set of (G1×G1×Zp× ((G3
1×G3

2)×Gℓ+2
1 ×GT))

elements
set of hidden user trapdoors

nPRF N maximum value of the PRF counter

P4TC 111

UC-Protocol πP4TC (cont.) – Task DR Registration

DR input: (register)

(1) If a key pair (pkDR, skDR) has already been recorded, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkDR, skDR)← DRRegistration(CRS) (see Fig. 23).
(4) Record (pkDR, skDR) internally and call Gbb with input (register, pkDR).

DR output: (pkDR)

Fig. 22. The UC-protocol πP4TC (cont. from Fig. 20)

DRRegistration(CRS)

parse (gp,B, CRS1
com, CRS2

com, CRSpok) := CRS

(pkDR, skDR)← E.Gen(gp)

return (pkDR, skDR)

Fig. 23. DR Registration Core Protocol

of an RSU. The TSP also generates a certificate certRT
for its own key pkRT .

Each RSU must generate a key pair as well (see
Figs. 26 and 27). For that purpose, each RSU generates
a signature key pair (pkR, skR) that is used in the Debt
Accumulation task to sign the RSU commitment cR.

Each user also has to generate a key pair (see
Figs. 28 and 29). The public key pkU will be used to
identify the user in the system and is assumed to be
bound to a physical ID such as a passport number, so-
cial security number, etc. Of course, for this purpose the
public key needs to be unique. We assume that ensuring
the uniqueness of user public keys as well as verifying
and binding a physical ID to them is done “out-of-band”
before participating in the Wallet Issuing task. A simple
way to realize the latter could be to make use of external
trusted certification authorities.

D.5 RSU Certification

The RSU Certification task is executed between R and
T when a new RSU is deployed into the field. The task
is presented in two parts: a wrapper protocol πP4TC
(see Fig. 30) and a core protocol RSUCertification (see
Fig. 31). The wrapper protocol interacts with other
UC entities, pre-processes the input and post-processes
the output. The wrapper protocol internally invokes the

core protocol(
(certR),

(OK)

)
← RSUCertification

〈
R(pkT ,pkR),

T (pkT ,skT ,pkR,aR)

〉
.

In the core protocol, the TSP certifies the validity of the
RSU public key and stores the certificate on the RSU.

Note that the public key of an RSU pkR and the as-
sociated certificate certR has to be refreshed from time
to time. For the ease of presentation we assume that the
same RSU (identified by its PID pidR) can only be reg-
istered once. In other words, if the (physically identical)
RSU is removed from the field, goes to maintenance and
is re-deployed to the field, we consider this RSU a “new”
RSU.

D.6 Wallet Issuing

The Wallet Issuing task is executed between U and T .
It is executed at the beginning of each billing period to
generate a fresh wallet for the user. The task is presented
in two parts: a wrapper protocol πP4TC (see Fig. 32)
and a core protocol WalletIssuing (see Figs. 33 and 34).
The wrapper protocol interacts with other UC entities,
pre-processes the input, post-processes the output and
checks the validity of the created wallet by executing
the WalletVerification algorithm (see Fig. 46) after the
core protocol. The wrapper protocol internally invokes
the core protocol(

(τ),
(s,htd)

)
←WalletIssuing

〈
U(pkDR,pkU ,skU),

T (pkDR,skT ,aU ,certR
T ,blT)

〉
.

The joint input of the core protocol is the public key of
the DR pkDR. The user additionally obtains its public
and secret key pair (pkU , skU). The TSP also gets his
own secret key skT , the attribute vector aU for the user,
its own certificate certRT and the TSP blacklist blT as
input.

The protocol fulfills four objectives:

P4TC 112

UC-Protocol πP4TC (cont.) – Task TSP Registration

TSP input: (register, aT)

(1) If a key pair (pkT , skT) has already been recorded, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkT , skT , certRT)← TSPRegistration(CRS, aT) (see Fig. 25).
(4) Record (pkT , skT) and (certRT) internally and call Gbb with input (register, pkT).

TSP output: (pkT)

Fig. 24. The UC-protocol πP4TC (cont. from Fig. 20)

TSPRegistration(CRS, aT)

parse (gp,B, CRS1
com, CRS2

com, CRSpok) := CRS

(pkTT , skTT)← S.Gen(gp)

(pkcert
T , skcert

T)← S.Gen(gp)

(pkRT , skRT)← S.Gen(gp)

(pkT , skT) :=
(

(pkTT , pkcert
T , pkRT), (skTT , skcert

T , skRT)
)

σcert
T ← S.Sgn(skcert

T , (pkRT , aT))

certRT := (pkRT , aT , σcert
T)

return (pkT , skT , certRT)

Fig. 25. TSP Registration Core Protocol

1. Jointly computing a fresh and random wallet ID for
the user that is only known to the user.

2. Storing this wallet ID in a secret form at the TSP
such that it can only be recovered by the DR in the
case that the user conducts a fraud.

3. Jointly computing a fresh and random serial number
for this transaction.

4. Creating a new wallet for the user.

For the first objective, both parties randomly choose
shares of the wallet ID λ′ and λ′′, respectively, that to-
gether form the wallet ID λ := λ′ + λ′′. To this end, the
parties engage in the first two message of a Blum coin
toss and omit the last message. This way, the wallet ID
λ is fixed and known by the user, but remains secret to
the TSP.

The second objective requires some sort of key-
escrow mechanism. Ideally, the user would simply en-
crypt the wallet ID λ under the public key pkDR of the
DR and prove to the TSP that the encrypted value is
consistent to the committed shares in zero-knowledge.
Unfortunately, we are unaware of a CCA-secure encryp-
tion scheme whose message space equals the key space of
our PRF underlying the wallet (i.e., Zp) and that is com-
patible to the GS-NIZK proof system (i.e., is algebraic).

Moreover, it is impossible to recover λ from gλ
1 due to

the hardness of the DLOG problem in G1. Therefore, the
user splits its share λ′ into λ′0, . . . , λ′ℓ−1 ∈ {0, . . . ,B− 1}
s.t. λ′ =

∑ℓ−1
i=0 λ′i · Bi for some base B. The base B is

chosen in a way that it is feasible for the DR to re-
cover λ′i from g

λ′
i

1 in a reasonable amount of time (e.g.,
B = 232). Then the user encrypts a vector of all g

λ′
i

1
together with the TSP’s share gλ′′

1 and its own public
key pkU under the public key pkDR of the DR and sends
the ciphertext e∗ to the TSP. The TSP’s share gλ′′

1 and
the public key pkU are embedded into the ciphertext in
order to bind it to the user and to rule out malleability
attacks. The TSP creates the hidden user trapdoor as
htd := (pkU , s, λ′′, e∗). In the case that the user commits
a fraud, the TSP sends the htd for each wallet of the
fraudulent user to the DR and the DR recovers the wal-
let ID λ for each wallet. For more details see the User
Blacklisting task in Fig. 45.

The goal of the third objective is to create a truly
random serial number s ∈ G1 for this transaction. To
ensure that the serial number is indeed random (and
not maliciously chosen by either party), the user and
the TSP engage in another and complete Blum coin
toss.

For the last objective, the user generates the TSP
and RSU commitments, i.e., the fixed and the updat-
able part of the wallet. He commits to the wallet ID λ

and his secret user key skU for the TSP commitment cT .
For the preliminary RSU commitment cR, he commits
to the wallet ID λ, the balance b := 0, a fresh double-
spending mask unext

1 and the PRF counter xnext := 1.
He then computes a proof showing that these commit-
ments are formed correctly. The proof also shows that
the encryption e∗ has been honestly created and that
each λ′i is smaller than B. More precisely, P1 is used
to compute a proof π for a statement stmnt from the

P4TC 113

UC-Protocol πP4TC (cont.) – Task RSU Registration

RSU input: (register)

(1) If a key pair (pkR, skR) has already been stored, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkR, skR)← RSURegistration(CRS) (see Fig. 27).
(4) Store (pkR, skR) internally and call Gbb with input (register, pkR).

RSU output: (pkR)

Fig. 26. The UC-protocol πP4TC (cont. from Fig. 20)

RSURegistration(CRS)

parse (gp,B, CRS1
com, CRS2

com, CRSpok) := CRS

(pkR, skR)← S.Gen(gp)

return (pkR, skR)

Fig. 27. RSU Registration Core Protocol

language L
(1)
gp defined by



pkU

pkDR

e∗

cT

cR

c′
seed

Λ′′

λ′′



⊤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃λ, λ′, λ′
0, . . . , λ′

ℓ−1, r1, r2 ∈ Zp;

Λ, Λ′, Λ′
0, . . . , Λ′

ℓ−1, Unext
1 , dT , dR, d′

seed ∈ G1;

SKU ∈ G2 :

e (pkU , g2) = e (g1, SKU)

C1.Open(CRS1
com, (Λ, pkU), cT , dT) = 1

C1.Open(CRS1
com, (Λ, 1, Unext

1 , g1), cR, dR) = 1

C1.Open(CRS1
com, Λ′, c′

seed, d′
seed) = 1

e∗ = E1.Enc(pkDR, (Λ′
0, . . . , Λ′

ℓ−1, Λ′′, pkU); r1, r2)

λ = λ′ + λ′′

Λ = gλ
1 , Λ′ = gλ′

1

λ′ =
∑ℓ−1

i=0
λ′

i · B
i

∀i ∈ {0, . . . , ℓ− 1} :

λ′
i ∈ {0, . . . ,B − 1}

Λ′
i = g

λ′
i

1



(5)

Note that the first equation in Eq. (5) actually proves
the knowledge of gskU

2 (rather than skU itself).25 How-
ever, computing gskU

2 without knowing skU (only given
pkU) is assumed to be a hard problem (Co-CDH).

In temporal order, the protocol proceeds as follows:
In the first message (from user to TSP) the user sends
its own public key pkU and starts the Blum coin toss
for the wallet ID by sending c′seed. The TSP checks if
the user’s public key is contained in the TSP blacklist

25 Note that proving a statement ∃skU ∈ Zp : pkU = g
skU
1

instead would not help as we can only extract g
skU
1 from the

proof.

blT and potentially aborts. If not, the TSP replies with
with the second message of the Blum coin toss for the
wallet ID by sending its own share λ′′ and starts the
other Blum coin toss for the serial number by sending
c′′ser. Moreover, the TSP sends its own certificate certRT
and the attributes aU the user is supposed to incorpo-
rate into its wallet. This completes the first Blum coin
toss for the wallet ID. At this point the user knows
all information to create the two commitments cT and
cR of the wallet, the hidden user trapdoor e∗ for the
key-escrow mechanism and to create a proof π that ev-
erything is consistent. In the third message (again from
user to TSP) the user sends all these elements (e∗, cT ,
cR and π) to the TSP together with its share s′ of the
serial number as the second message of the second Blum
coin toss. If the proof π verifies, the TSP creates two sig-
natures: σT on cT together with aU for the fixed part of
the wallet, and σR on cR together with s on the updat-
able part of the wallet. Please note that at this point the
serial number s := s′ · s′′ is fixed and known to the TSP.
In the forth message (from TSP to user) the TSP sends
the signatures σT and σR to the user and completes
the Blum coin toss for the serial number by sending its
share s′′ together with the opening information d′′ser. At
this point the user assembles all part to obtain a fully
functional wallet

τ := (s, ϕ := PRF(λ, 0), xnext := 1, λ := λ′ + λ′′,

aU , cR, dR, σR, certRT , cT , dT , b := 0, unext
1).

At the end of the protocol, the user returns the wallet τ .
The TSP returns the serial number s of this transaction
and the hidden user trapdoor htd.

D.7 Debt Accumulation

When a driving car passes an RSU, the Debt Accu-
mulation task is executed between U and R. The task

P4TC 114

UC-Protocol πP4TC (cont.) – Task User Registration

User input: (register)

(1) If a key pair (pkU , skU) has already been stored, output ⊥ and abort.
(2) Obtain CRS CRS from FCRS.
(3) Run (pkU , skU)← UserRegistration(CRS) (see Fig. 29).
(4) Store (pkU , skU) internally and call Gbb with input (register, pkU).

User output: (pkU)

Fig. 28. The UC-protocol πP4TC (cont. from Fig. 20)

UserRegistration(CRS)

parse (gp,B, CRS1
com, CRS2

com, CRSpok) := CRS

y
R← Zp

(pkU , skU) := (gy
1 , y)

return (pkU , skU)

Fig. 29. User Registration Core Protocol

is presented in two parts: a wrapper protocol πP4TC
(see Fig. 35) and a core protocol DebtAccumulation
(see Figs. 36 and 37). The wrapper protocol inter-
acts with other UC entities, pre-processes the input,
post-processes the output and lets the user execute the
WalletVerification algorithm (see Fig. 46) after the core
protocol has terminated. The wrapper protocol inter-
nally invokes the core protocol(

(τ,ωpp
U),

(aU ,aprev
R ,ωdsp,ωbl,ωpp

R)

)
← DebtAccumulation

〈
U(pkT ,pkU ,skU ,τprev),

ROpricing(·,·,·)(pkT ,certR,skR,blR)

〉
.

The user gets his public and private key, the public key
of the TSP and his current wallet

τprev := (sprev, ϕprev, x, λ, aU , cprev
R , dprev

R ,

σprev
R , certRprev, cT , dT , σT , bprev, u1)

as input. The RSU gets its own secret key and certificate,
the public key of the TSP and the RSU blacklist blR as
input. It has also access to a pricing oracle Opricing(·, ·, ·),
which helps it to determine the price the user has to pay.

Analogous to WalletIssuing, the RSU and the user
utilize a Blum coin toss to jointly compute a fresh and
random serial number s for this transaction. The de-
tailed description of this coin toss is therefore omitted
in the following protocol description.

The RSU starts the protocol by sending its certifi-
cate certR and a fresh double-spending randomness u2

to the user. The user checks the validity of the certifi-
cate and uses the randomness to calculate the double-
spending tag t := skU · u2 + u1 mod p. He then calcu-
lates the fraud detection ID for the current transaction
as ϕ := PRF(λ, x). The user then proceeds by prepar-
ing the updated wallet. Therefore, he first chooses a
fresh double-spending mask unext

1 and executes (c′R, d′R)
← C1.Com(CRS1

com, (λ, bprev, unext
1 , x)) to commit to his

wallet ID, the current balance, the fresh double-spend-
ing mask and the current counter. He also executes (chid,

dhid) ← C1.Com(CRS1
com, skU) to create a fresh commit-

ment on his secret user key. This commitment can be
used at a later point in the Prove Participation task
(cf. Figs. 40 and 41) to prove to the TSP that the user
behaved honestly in this transaction.

The user continues by using P2 to compute a proof
π for a statement stmnt from the language L

(2)
gp defined

by



pkT
T

pkcert
T

ϕ

aU

aprev
R

chid

c′
R

t

u2



⊤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ x, λ, skU , u1 ∈ Zp; sprev, ϕprev, X, Λ, pkU ,

Bprev, U1, Unext
1 , dhid, d

prev
R , d′

R, dT ∈ G1;

pkprev
R ∈ G3

1; c
prev
R , cT ∈ G2; σ

prev
R , σcert

R
prev

,

σT ∈ G2
2 ×G1 :

C1.Open(CRS1
com, (Λ, pkU), cT , dT) = 1

C1.Open(CRS1
com, pkU , chid, dhid) = 1

C1.Open(CRS1
com, (Λ, Bprev, U1, X), c

prev
R , d

prev
R) = 1

C1.Open(CRS1
com, (Λ, Bprev, Unext

1 , X), c′
R, d′

R) = 1

S.Vfy(pkT
T , σT , (cT , aU)) = 1

S.Vfy(pkprev
R , σ

prev
R , (c

prev
R , sprev)) = 1

S.Vfy(pkcert
T , σcert

R
prev

, (pkprev
R , aprev

R)) = 1

ϕprev = PRF(λ, x− 1), ϕ = PRF(λ, x),

t = skU u2 + u1

pkU = g
skU
1 , U1 = g

u1
1 , X = gx

1 , Λ = gλ
1



(6)

This proof essentially shows that the wallet τ is valid,
i.e., that the commitments cT and cprev

R are valid, bound
to the user and have valid signatures, that the certifi-
cate certRprev from the previous RSU is valid and that
the fraud detection ID ϕprev from the last transaction

P4TC 115

UC-Protocol πP4TC (cont.) – Task RSU Certification

RSU input: (certify)
TSP input: (certify, aR)

(1) At the RSU side:

– Load the internally recorded (pkR, skR).⊥
– Receive pkT from the bulletin-board Gbb for PID pidT .⊥

(2) At the TSP side:

– Load the internally recorded (pkT , skT).⊥
– Receive pkR from the bulletin-board Gbb for PID pidR.⊥
– Check that no mapping pkR 7→ a′R has been registered before, else output ⊥ and abort.

(3) Both sides: Run the code of RSUCertification between the RSU and the TSP (see Fig. 31)

((certR) , (OK))← RSUCertification ⟨R(pkT , pkR), T (pkT , skT , pkR, aR)⟩ .

(4) At the RSU side:

– Parse aR from certR.
– Record certR internally.

(5) At the TSP side:

– Record pkR 7→ aR internally.

RSU output: (aR)
TSP output: (OK)

⊥If this does not exist, output ⊥ and abort.

Fig. 30. The UC-protocol πP4TC (cont. from Fig. 20)

R(pkT , pkR) T (pkT , skT , pkR, aR)

parse (pkTT , pkcert
T , pkRT) := pkT parse (pkTT , pkcert

T , pkRT) := pkT
parse (skTT , skcert

T , skRT) := skT
σcert
R ← S.Sgn(skcert

T , (pkR, aR))

certR := (pkR, aR, σcert
R)

certR

parse (pk′R, aR, σcert
R) := certR

if S.Vfy(pkcert
T , σcert

R , (pkR, aR)) = 0

return ⊥

return (certR) return (OK)

Fig. 31. RSU Certification Core Protocol

P4TC 116

UC-Protocol πP4TC (cont.) – Task Wallet Issuing

User input: (issue)
TSP input: (issue, aU , blT)

(1) At the user side:

– Load the internally recorded (pkU , skU).⊥
– Receive pkT from the bulletin-board Gbb for PID pidT .⊥
– Receive pkDR from the bulletin-board Gbb for PID pidDR.⊥

(2) At the TSP side:

– Load the internally recorded (pkT , skT).⊥
– Load the internally recorded certRT .⊥
– Receive pkDR from the bulletin-board Gbb for PID pidDR.⊥

(3) Both sides: Run the code of WalletIssuing between the user and the TSP (see Figs. 33 and 34)

((τ) , (s, htd))←WalletIssuing
〈
U(pkDR, pkU , skU), T (pkDR, skT , aU , certRT , blT)

〉
.

(4) At the user side:

– Run the code of WalletVerification(pkT , pkU , τ) (see Fig. 46).
– If WalletVerification returns 0, output ⊥ and abort.
– Record τ internally.
– Parse s and aU from τ .

(5) At the TSP side:

– Insert htd into HTD.

User output: (s, aU)
TSP output: (s)

⊥If this does not exist, output ⊥ and abort.

Fig. 32. The UC-protocol πP4TC (cont. from Fig. 20)

P4TC 117

U(pkDR, pkU , skU) T (pkDR, skT , aU , certRT , blT)

parse (skTT , skcert
T , skRT) := skT

s′
R← G1 s′′

R← G1

λ′i
R← {0, . . . ,B − 1} for i ∈ {0, . . . , ℓ− 1}

λ′ :=
ℓ−1∑
i=0

λ′i · B
i λ′′

R← Zp

(c′seed, d′seed)← C1.Com(CRS1
com, λ′) (c′′ser, d′′ser)← C2.Com(CRS2

com, s′′)

pkU , c′seed

if pkU ∈ blT
return blacklisted

certRT , aU , c′′ser, λ′′

parse (pkRT , aT , σcert
T) := certRT

if S.Vfy(pkcert
T , σcert

T , (pkRT , aT)) = 0

return ⊥

λ := λ′ + λ′′

Λ := gλ
1 , Λ′ := gλ′

1 , Λ′′ := gλ′′
1 Λ′′ := gλ′′

1

Λ′i := g
λ′

i
1 for i ∈ {0, . . . , ℓ− 1}

r1, r2
R← Zp

e∗ ← E1.Enc(pkDR, (Λ′0, . . . , Λ′ℓ−1, Λ′′, pkU); r1, r2)

unext
1

R← Zp

(cT , dT)← C1.Com(CRS1
com, (λ, skU))

(cR, dR)← C1.Com(CRS1
com, (λ, 0, unext

1 , 1))

stmnt := (pkU , pkDR, e∗, cT , cR, c′seed, Λ′′, λ′′)

wit := (λ, λ′, λ′0, . . . , λ′ℓ−1, r1, r2, Λ, Λ′,

Λ′0, . . . , Λ′ℓ−1, g
unext

1
1 , dT , dR, d′seed, g

skU
2)

π ← P1.Prove(CRSpok, stmnt, wit)

s′, e∗, cT , cR, π

Fig. 33. Wallet Issuing Core Protocol

P4TC 118

s′, e∗, cT , cR, π

s := s′ · s′′

stmnt := (pkU , pkDR, e∗, cT , cR, c′seed, Λ′′, λ′′)

if P1.Vfy(CRSpok, stmnt, π) = 0

return ⊥

σT ← S.Sgn(skTT , (cT , aU))

σR ← S.Sgn(skRT , (cR, s))

s′′, d′′ser, σT , σR

if C2.Open(CRS2
com, s′′, c′′ser, d′′ser) = 0

return ⊥

s := s′ · s′′

τ := (s, PRF(λ, 0), 1, λ, aU ,

cR, dR, σR, certRT , cT , dT , σT , 0, unext
1) htd := (pkU , s, λ′′, e∗)

return (τ) return (s, htd)

Fig. 34. Wallet Issuing Core Protocol (cont. from Fig. 33)

has been computed correctly. It also shows that chid is
valid and contains the secret user key, that cprev

R and c′R
contain the same values (except for the double-spending
mask) and that the fraud detection ID ϕ and the double-
spending tag t are computed correctly.

The user then sends (π, ϕ, aU , aprev
R , chid, c′R, t) to the

RSU, who first checks whether the proof π verifies and
the fraud detection ID ϕ is on the RSU blacklist blR
or not. If one of the checks fails, the RSU aborts the
communication with the user and takes certain mea-
sures. These measures should include instructing the
connected camera to take a picture of the cheating ve-
hicle.

If the tests have been passed, the RSU calculates
with the help of the pricing oracle the price p the user
has to pay, depending on factors like the user’s at-
tributes, the attributes of the current and previous RSU
and auxiliary information (e.g., the time of the day, the
current traffic volume). Then the RSU does its part to
update the user’s wallet. It blindly adds the price p to
the wallet balance b and increases the PRF counter x by
1 by calculating (c′′R, d′′R) := C1.Com(CRS1

com, (0, p, 0, 1)).
Then it computes the new RSU commitment cR by
adding c′R and c′′R (remember that C1 is homomor-
phic) and also signs it along with the serial number s.
The RSU then sends (cR, d′′R, σR, p) to the user. It also
stores several information: The blacklisting information
ωbl := (ϕ, p) can be used at a later point in the User
Blacklisting task (cf. Fig. 44) to calculate the total fee
of a fraudulent user. The double-spending information

ωdsp := (ϕ, t, u2) enables the TSP to identify the user
if he uses the old state of the wallet (with unchanged
balance) in another transaction (cf. Fig. 42). The RSU’s
prove participation information ωpp

R := (s, chid) can be
used later in the Prove Participation task (cf. Fig. 40).

The user can then calculate the remaining values
needed to update the wallet, e.g., increasing the counter
and the balance. Then he can construct the updated
wallet

τ := (s, ϕ, xnext, λ, aU , cR, dR, σR, certR,

cT , dT , σT , b, unext
1).

The user’s output is the updated wallet along with
the user’s prove participation information ωpp

U :=
(s, chid, dhid). The RSU’s output are the user’s attributes
aU , the attributes aprev

R of the RSU from the previous
transaction of the user and the three information ωbl,
ωdsp and ωpp

R .

D.8 Debt Clearance

After the end of a billing period, the Debt Clearance
task is executed between U and T . The task is presented
in two parts: a wrapper protocol πP4TC (see Fig. 38) and
a core protocol DebtClearance (see Fig. 39). The wrapper
protocol interacts with other UC entities, pre-processes
the input and post-processes the output. The wrapper
protocol internally invokes the core protocol(

(bbill),

(pkU ,ωbl,ωdsp)

)
← DebtClearance

〈
U(pkT ,pkU ,skU ,τprev),

T (pkT)

〉
.

P4TC 119

UC-Protocol πP4TC (cont.) – Task Debt Accumulation

User input: (pay_toll, sprev)
RSU input: (pay_toll, blR)

(1) At the user side:

– Load the internally recorded (pkU , skU).⊥
– Receive pkT from the bulletin-board Gbb for PID pidT .⊥
– Load the internally recorded token τprev for serial number sprev.⊥

(2) At the RSU side:

– Load the internally recorded (pkR, skR).⊥
– Load the internally recorded certR.⊥
– Receive pkT from the bulletin-board Gbb for PID pidT .⊥

(3) Both sides: Run the code of DebtAccumulation between the user and the RSU (see Figs. 36 and 37)((
τ, ωpp
U
)

,(
aU , aprev

R , ωdsp, ωbl, ωpp
R
))← DebtAccumulation

〈
U(pkT , pkU , skU , τprev),

ROpricing(·,·,·)(pkT , certR, skR, blR)

〉

and forward calls to the pricing oracle Opricing of the form (aU , aR, aprev
R) to the adversary and pass the

result p back.
(4) At the user side:

– Run the code of WalletVerification(pkT , pkU , τ) (see Fig. 46).
– If WalletVerification returns 0, output ⊥ and abort.
– Record τ and ωpp

U internally.
– Parse s, certR, p and b from τ .
– Parse aR from certR.

(5) At the RSU side:

– Record ωdsp, ωbl and ωpp
R internally.

– Parse s from ωpp
R .

– Parse ϕ from ωbl.

User output: (s, aR, p, b)
RSU output: (s, ϕ, aU , aprev

R)

⊥If this does not exist, output ⊥ and abort.

Fig. 35. The UC-protocol πP4TC (cont. from Fig. 20)

P4TC 120

U(pkT , pkU , skU , τprev) ROpricing(·,·,·)(pkT , certR, skR, blR)

parse (pkTT , pkcert
T , pkRT) := pkT parse (pkTT , pkcert

T , pkRT) := pkT
parse (sprev, ϕprev, x, λ, aU ,

cprev
R , dprev

R , σprev
R , certRprev,

cT , dT , σT , bprev, u1) := τprev

parse (pkprev
R , aprev

R , σcert
R

prev) := certRprev parse (pkR, aR, σcert
R) := certR

ϕ := PRF(λ, x)

s′
R← G1 s′′

R← G1

unext
1

R← Zp u2
R← Zp

(c′R, d′R)← C1.Com(CRS1
com, (λ, bprev, unext

1 , x)) (c′′ser, d′′ser)← C2.Com(CRS2
com, s′′)

u2, c′′ser, certR

parse (pkR, aR, σcert
R) := certR

if S.Vfy(pkcert
T , σcert

R , (pkR, aR)) = 0

return ⊥

t := skUu2 + u1 mod p

(chid, dhid)← C1.Com(CRS1
com, skU)

stmnt := (pkTT , pkcert
T , ϕ, aU , aprev

R , chid, c′R, t, u2)

wit := (x, λ, skU , u1, sprev, ϕprev, gx
1 , gλ

1 ,

pkU , gbprev
1 , gu1

1 , g
unext

1
1 , dhid, dprev

R , d′R, dT ,

pkprev
R , cprev

R , cT , σprev
R , σcert

R
prev

, σT)

π ← P2.Prove(CRSpok, stmnt, wit)

s′, π, ϕ, aU , aprev
R , chid, c′R, t

Fig. 36. Debt Accumulation Core Protocol

P4TC 121

s′, π, ϕ, aU , aprev
R , chid, c′R, t

stmnt := (pkTT , pkcert
T , ϕ, aU , aprev

R ,

chid, c′R, t, u2)

if P2.Vfy(CRSpok, stmnt, π) = 0

return ⊥

if ϕ ∈ blR
return blacklisted

// obtains the price from the pricing

// oracle based on aU , aR, aprev
R and

// possibly other public-verifiable,

// environmental information

p← Opricing(aU , aR, aprev
R)

s := s′ · s′′

(c′′R, d′′R)← C1.Com(CRS1
com, (0, p, 0, 1))

cR := c′R · c
′′
R

σR ← S.Sgn(skR, (cR, s))

s′′, d′′ser, cR, d′′R, σR, p

if C2.Open(CRS2
com, s′′, c′′ser, d′′ser) = 0

return ⊥

s := s′ · s′′

dR := d′R · d
′′
R

b := bprev + p

xnext := x + 1

τ := (s, ϕ, xnext, λ, aU , cR, dR, σR, certR,

cT , dT , σT , b, unext
1)

ωdsp := (ϕ, t, u2)

ωbl := (ϕ, p)

ωpp
U := (s, chid, dhid) ωpp

R := (s, chid)

return (τ, ωpp
U) return (aU , aprev

R , ωdsp, ωbl, ωpp
R)

Fig. 37. Debt Accumulation Core Protocol (cont. from Fig. 36)

P4TC 122

UC-Protocol πP4TC (cont.) – Task Debt Clearance

User input: (clear_debt, sprev)
TSP input: (clear_debt)

(1) At the user side:

– Load the internally recorded (pkU , skU).⊥
– Receive pkT from the bulletin-board Gbb for PID pidT .⊥
– Load the internally recorded token τprev for serial number sprev.⊥

(2) At the TSP side:

– Load the internally recorded (pkT , skT).⊥

(3) Both sides: Run the code of DebtClearance between the user and the TSP (see Fig. 39)(
(bbill), (pkU , ωbl, ωdsp)

)
← DebtClearance ⟨U(pkT , pkU , skU , τprev), T (pkT)⟩ .

(4) At the TSP side:

– Record ωbl and ωdsp internally.
– Parse ϕ and −bbill from ωbl.

User output: (bbill)
TSP output: (pkU , ϕ, bbill)

⊥If this does not exist, output ⊥ and abort.

Fig. 38. The UC-protocol πP4TC (cont. from Fig. 20)

The user gets the public key pkT of the TSP, his own
public and private key (pkU , skU) and his current wallet

τprev := (sprev, ϕprev, x, λ, aU , cprev
R , dprev

R ,

σprev
R , certRprev, cT , dT , σT , bprev, u1)

as input. The TSP gets its own public key pkT as input.
The protocol is similar to the DebtAccumulation pro-

tocol, with the difference that the user here is not
anonymous, the wallet balance is no secret and the
TSP does not give the user an updated wallet. Like in
DebtAccumulation, the TSP first sends a fresh double-
spending randomness u2 to the user and the user calcu-
lates the double-spending tag t := skUu2 +u1 mod p and
the fraud detection ID ϕ for this transaction. He then
continues by preparing a proof of knowledge. More pre-
cisely, P3 is used to compute a proof π for a statement

stmnt from the language L
(3)
gp defined by



pkU

pkT
T

pkcert
T

ϕ

aU

aprev
R

Bprev

t

u2



⊤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ λ, x, u1, skU ∈ Zp; ϕprev, sprev, X, Λ, U1,

d
prev
R , dT ∈ G1; pkprev

R ∈ G3
1; c

prev
R , cT ∈ G2;

σ
prev
R , σcert

R
prev

, σT ∈ G2
2 ×G1 :

C1.Open(CRS1
com, (Λ, pkU), cT , dT) = 1

C1.Open(CRS1
com, (Λ, Bprev, U1, X), c

prev
R , d

prev
R) = 1

S.Vfy(pkT
T , σT , (cT , aU)) = 1

S.Vfy(pkprev
R , σ

prev
R , (c

prev
R , sprev)) = 1

S.Vfy(pkcert
T , σcert

R
prev

, (pkprev
R , aprev

R)) = 1

ϕprev = PRF(λ, x− 1), ϕ = PRF(λ, x),

t = skU u2 + u1

pkU = g
skU
1 , U1 = g

u1
1 , X = gx

1 , Λ = gλ
1



(7)

The proof is a simplified version of the one in the
DebtAccumulation protocol. The balance and the pub-
lic user key are now in the statement and not in the
witness and one does not need to prove anything about
c′R and chid.

The user then sends (pkU , π, ϕ, aU , aprev
R , bprev, t) to

the TSP. Unlike in DebtAccumulation, the balance and
the user’s public key are transmitted. The TSP then
checks the validity of the proof and signals the user that
the proof successfully verified.

P4TC 123

U(pkT , pkU , skU , τprev) T (pkT)

parse (pkTT , pkcert
T , pkRT) := pkT parse (pkTT , pkcert

T , pkRT) := pkT
parse (sprev, ϕprev, x, λ, aU ,

cprev
R , dprev

R , σprev
R , certRprev,

cT , dT , σT , bprev, u1) := τprev

parse (pkprev
R , aprev

R , σcert
R

prev) := certRprev

ϕ := PRF(λ, x)

u2
R← Zp

u2

t := skUu2 + u1 mod p

stmnt := (pkU , pkTT , pkcert
T , ϕ, aU , aprev

R ,

gbprev
1 , t, u2)

wit := (x, λ, skU , u1, sprev, ϕprev, gx
1 , gλ

1 ,

gu1
1 , dprev

R , dT ,

pkprev
R , cprev

R , cT , σprev
R , σcert

R
prev

, σT)

π ← P3.Prove(CRSpok, stmnt, wit)

pkU , π, ϕ, aU , aprev
R , bprev, t

stmnt := (pkU , pkTT , pkcert
T , ϕ,

aU , aprev
R , gbprev

1 , t, u2)

if P3.Vfy(CRSpok, stmnt, π) = 0

return ⊥

OK

bbill := bprev bbill := bprev

ωbl := (ϕ,−bbill)

ωdsp := (ϕ, t, u2)

return (bbill) return (pkU , ωbl, ωdsp)

Fig. 39. Debt Clearance Core Protocol

P4TC 124

At the end of the protocol, the TSP outputs
the user’s public key pkU , the blacklisting information
ωbl := (ϕ,−bprev) and the double-spending information
ωdsp := (ϕ, t, u2). The user just outputs his final debt
bprev for this billing period.

Note that the wallet itself is discarded. It is expected
that the user and the TSP execute the Wallet Issuing
task next, to give the user a fresh wallet. After the pro-
tocol has ended, the TSP can issue an invoice to the
user for the current billing period. The specifics of the
actual payment process are out of scope.

D.9 Prove Participation

The Prove Participation task is used by a user to prove
to the SA that he behaved honestly at a specific Debt
Accumulation transaction. In the case that more than
one vehicle is captured on a photograph taken by a
RSU camera after a fraud occurred, this protocol can be
used to identify the fraudulent driver.26 The SA recovers
the identities of the users captured on the photograph
and executes the Prove Participation task which each
of them. The user that is not able to prove that he hon-
estly participated in a corresponding RSU transaction
is found guilty.

The task is presented in two parts: a wrapper
protocol πP4TC (see Fig. 40) and a core protocol
ProveParticipation (see Fig. 41). In the wrapper protocol,
the SA interacts with other UC entities and processes
the set Spp

R of all serial numbers that were recorded by
the RSU that took the photo at roughly the time the
photo was taken. In particular, the SA loads the RSU’s
internally recorded set Ωpp

R of all prove participation in-
formation that contain serial numbers that are also in
Spp
R . Afterwards, the wrapper protocol invokes the core

protocol(
(outU),
(outSA)

)
← ProveParticipation

〈
U(Ωpp

U),

SA(pkU ,Spp
R ,Ωpp

R)

〉
.

The SA gets the user’s public key pkU , the set Spp
R of

serial numbers that were observed roughly at the time
the photograph was taken and the set of corresponding
prove participation information Ωpp

R from the RSU as
input. The user gets his internally recorded set Ωpp

U of
all prove participation information as input.

26 Of course, the task can also be used in the case that only
one vehicle was captured on the photograph to eliminate the
possibility that the RSU falsely instructed the camera to take a
photograph.

The protocol itself is simple. The SA first sends Spp
R

to the user who searches Ωpp
U for a his prove participa-

tion information ωpp
U for which the serial number s in

ωpp
U is also in Spp

R . If one is found, the user’s output bit
outU is set to OK, if none is found, outU is set to NOK
(“not ok”). The user then sends ωpp

U := (s, chid, dhid)
to the SA and the SA checks if (s, chid) ∈ Ωpp

R and if
dhid is the opening of chid under pkU . If both checks suc-
ceed, the SA’s output bit outSA is set to OK, if at least
one check fails, outSA is set to NOK. At the end of the
protocol both parties output their bits outU and outSA,
respectively.27

If the SA’s output equals NOK, the user is found
guilty and appropriate measures are taken (e.g., the user
gets blacklisted).

D.10 Double-Spending Detection

The double-spending information ωdsp collected by
the RSUs are periodically transmitted to the TSP’s
database, which is regularly checked for two double-
spending information associated with the same fraud
detection ID. If the database contains two such records,
the Double-Spending Detection task (see Fig. 42) can be
used by the TSP to extract the public key of the user
these double-spending information belong to as well as
a proof (such as his secret user key) that the user is
guilty.

In particular, the task gets a fraud detection ID ϕ as
input and searches the internal database for two double-
spending information ωdsp = (ϕ, t, u2) and ωdsp′ = (ϕ′,
t′, u′2) that contain the same fraud detection ID ϕ = ϕ′

but not the same double-spending randomness u2 ̸= u′2.
Then the fraudulent user’s secret key can be recovered
as skU := (t − t′) · (u2 − u2)−1 mod p. His public key is
then pkU := gskU

1 . The secret key skU can be used as a
proof of guilt in the Guilt Verification task (cf. Fig. 43).

Every user that is convicted of double-spending is
added to the blacklist via the User Blacklisting task
(cf. Figs. 44 and 45) and additional measures are taken
(these are out of scope).

27 Note that after a successful (both parties output OK) execution
of the Prove Participation protocol a single transaction can be
linked to the user. But as long as the user does not get guiltlessly
photographed at every RSU he passes, tracking is not possible.

P4TC 125

UC-Protocol πP4TC (cont.) – Task Prove Participation

User input: (prove_participation)
SA input: (prove_participation, pkU , Spp

R)

(1) At the SA side:

– Load the internally recorded set Ωpp
R of all prove participation transaction information with serial

numbers in Spp
R .

(2) At the user side:

– Load the internally recorded set Ωpp
U of all prove participation transaction information.

(3) Both sides: Run the code of ProveParticipation between the User and the SA (see Fig. 41)

((outU), (outSA))← ProveParticipation
〈
U(Ωpp

U), SA(pkU , Spp
R , Ωpp

R)
〉

.

User output: (outU)
SA output: (outSA)

⊥If this does not exist, output ⊥ and abort.

Fig. 40. The UC-protocol πP4TC (cont. from Fig. 20)

U(Ωpp
U) SA(pkU , Spp

R , Ωpp
R)

Spp
R

if ∃ ωpp
U = (s, chid, dhid) ∈ Ωpp

U with s ∈ Spp
R

then outU := OK

else outU := NOK

s, chid, dhid

outSA := OK

if ωpp
R = (s, chid) /∈ Ωpp

R

outSA := NOK

if C1.Open(CRS1
com, pkU , chid, dhid) = 0

outSA := NOK

return (outU) return (outSA)

Fig. 41. Prove Participation Core Protocol

P4TC 126

UC-Protocol πP4TC (cont.) – Task Double-Spending Detection

TSP input: (scan_for_fraud, ϕ)

(1) Load the internally recorded set Ωdsp of all double-spending information.
(2) Pick double-spending information ωdsp = (ϕ, t, u2) and ωdsp′ = (ϕ′, t′, u′2) from the database Ωdsp, such

that ϕ = ϕ′ and u2 ̸= u′2.⊥
(3) skU := (t− t′) · (u2 − u′2)−1 mod p.
(4) pkU := gskU

1 .
(5) π := skU .

TSP output: (pkU , π)

⊥If this does not exist, output ⊥ and abort.

Fig. 42. The UC-protocol πP4TC (cont. from Fig. 20)

D.11 Guilt Verification

Whether a user is indeed guilty of double-spending can
be verified using the Guilt Verification task depicted
in Fig. 43. This algorithm may be run by anyone, in
particular by justice. Essentially, the algorithm checks
if a given public user key pkU and a proof of guilt π

match. This is easily accomplished because they match
if and only if gπ

1 = pkU holds. This equation holds if
and only if π equals the user’s secret key skU that was
recovered using the Double-Spending Detection task (cf.
Fig. 42).

D.12 User Blacklisting

The User Blacklisting task executed between the DR
and TSP is used to put a user on the blacklist. There
are several reasons why a user is entered on the blacklist:

1. A user did not submit his balance at the end of the
billing period.

2. A user did not physically pay his debt after submit-
ting his balance.

3. A user has been convicted of double-spending.
4. The wallet (or the vehicle including the wallet) of a

user has been stolen and the user wants to prevent
the thief from paying tolls from his account.

Blacklisted users are unable to get issued a new wallet
and they also get photographed at every RSU they pass.
They may also be punished by other means (which are
out of scope).

The User Blacklisting task is presented in two parts:
a wrapper protocol πP4TC (see Fig. 44) and a core
protocol BlacklistingAndRecalculation (see Fig. 45). The

wrapper protocol interacts with other UC entities, pre-
processes the input and afterwards internally invokes
the core protocol(

(OK),
(ΦU)

)
← BlacklistingAndRecalculation

〈
DR(pkDR,skDR,pkDR

U),
T (HTDU)

〉
.

The DR gets as input its public and private key (pkDR,

skDR) together with the public key pkDR
U of the user to

be blacklisted. The TSP gets a set HTDU containing
all his hidden user trapdoors from the current billing
period as input.28 We assume that the DR and TSP
agreed upon which user is going to be blacklisted before
the protocol out-of-band.

At the beginning of the protocol the TSP sends
its input HTD to the DR. The DR then recov-
ers the corresponding wallet ID λ for every htd :=
(pkTU , s, λ′′, e∗) ∈ HTD. To this end, the DR decrypts
e∗ to get (Λ′0, . . . , Λ′ℓ−1, Λ′′, pkTU). Firstly, the DR checks
if the decrypted public key pkTU equals the expected pub-
lic pkDR

U of the correct user in question.29 This way, the
DR cannot be tricked into recovering the wallet ID of
another (possibly innocent) user. Since each λ′i is small
(λ′i < B), the DR can compute the discrete logarithms

28 In the case that a user owns more than one vehicle he can
have more than one wallet and hence more than one hidden user
trapdoor is stored at the TSP for this user.
29 N.b.: The public key pkTU is stored redundantly: in clear as
part of htd := (pkTU , s, λ′′, e∗) and encrypted as part of the cipher
text e∗ = Enc(Λ′0, . . . , Λ′ℓ−1, Λ′′, pkTU). The DR only considers
the latter version as this is protected by the non-malleability of
the CCA encryption. The outer public key is only required as
management information and utilized by the TSP which cannot
look inside e∗. The DR ignores the outer pkTU .

P4TC 127

UC-Protocol πP4TC (cont.) – Task Guilt Verification

Party input: (verify_guilt, pkU , π)

(1) Receive pidU from the bulletin-board Gbb for key pkU .⊥
(2) If gπ

1 = pkU , then out := OK, else out := NOK.

Party output: (out)

⊥If this does not exist, output ⊥ and abort.

Fig. 43. The UC-protocol πP4TC (cont. from Fig. 20)

UC-Protocol πP4TC (cont.) – Task User Blacklisting

DR input: (blacklist_user, pkDR
U)

TSP input: (blacklist_user, pkTU)

(1) At the DR side:

– Load the internally recorded (pkDR, skDR)⊥.
– Receive pkDR

U from the bulletin-board Gbb for PID pidDR
U .⊥

(2) At the TSP side:

– Load internally recorded set HTD of all hidden user trapdoors and set HTDU := {htd | (pkTU , ·, ·, ·) ∈
HTD}.

(3) Both sides: Run the code of BlacklistingAndRecalculation between the DR and the TSP (see Fig. 45)

((OK), (ΦU))← BlacklistingAndRecalculation
〈

DR(pkDR, skDR, pkDR
U), T (HTDU)

〉
.

(4) At the TSP side:

– Load the internally recorded set Ωbl of all blacklisting information.
– Let Ωbl

U be the subset of entries ωbl = (ϕ, p) with fraud detection IDs ϕ ∈ ΦU .
– bbill :=

∑
ωbl∈Ωbl

U
p.

DR output: (OK)
TSP output: (bbill, ΦU)

⊥If this does not exist, output ⊥ and abort.

Fig. 44. The UC-protocol πP4TC (cont. from Fig. 20)

P4TC 128

DR(pkDR, skDR, pkDR
U) T (HTDU)

HTDU

ΦU := ∅

for all htd ∈ HTDU
parse (pkTU , s, λ′′, e∗) := htd

(Λ′0, . . . , Λ′ℓ−1, Λ′′, pkTU)← E1.Dec(skDR, e∗)

if decryption fails ∨ Λ′′ ̸= gλ′′
1 ∨ pkDR

U ̸= pkTU
return ⊥

λ := λ′′ +
ℓ−1∑
i=0

DLOG(Λ′i) · B
i

ΦU ← ΦU ∪ {PRF(λ, 0), . . . , PRF(λ, xblR)}

ΦU

return (OK) return (ΦU)

Fig. 45. User Blacklisting Core Protocol

of (Λ′0, . . . , Λ′ℓ−1) in a reasonable amount of time to re-
cover (λ′0, . . . , λ′ℓ−1). This algorithm is also not time-crit-
ical and is expected to be executed only a few times per
billing period. Therefore, the amount of required com-
putation should be acceptable. Secondly, the DR checks
if the claimed TSP’s share λ′′ of the wallet ID is con-
sistent to the decrypted Λ′′ ?= gλ′′

1 . (Remember that λ′′

is directly stored in htd.) The DR calculates the wallet
ID as λ = λ′′ +

∑ℓ−1
i=0 λ′i · Bi. Finally, the DR sends the

union of all sets {PRF(λ, 0), . . . , PRF(λ, xblR)} of fraud
detection IDs for every htd ∈ HTD to the TSP. The
blacklist parameter xblR is chosen in such a way that
a user is expected to perform at most xblR executions
of the Debt Accumulation task in a single billing period.
The DR’s output of the core protocol is simply OK, while
the TSP’s output is a set of fraud detection IDs.

After the core protocol has terminated, the TSP
calculates the total toll amount the user owes for the
billing period in question in the wrapper protocol. To
this end, the TSP calculates the subset Ωbl

U ⊆ Ωbl of all
blacklisting information that correspond to the unveiled
fraud detection IDs in ΦU . By summing up all the prices
in Ωbl

U , the TSP can calculate the total fee bbill the user
owes.

After the wrapper protocol has terminated, the
fraud detection IDs ΦU are added to the RSU black-
list blR and the user’s public key pkU is added on the
TSP blacklist blT .

In the Wallet Issuing task the TSP uses the blacklist
blT to prevent a user that did not pay its invoice from

WalletVerification(pkT , pkU , τ)

parse (pkTT , pkcert
T , pkRT) := pkT

parse (s, ϕ, xnext, λ, aU , cR, dR, σR,

certR, cT , dT , σT , b, unext
1) := τ

parse (pkR, aR, σcert
R) := certR

if

C1.Open(CRS1
com, (gλ

1 , pkU), cT , dT) = 0 ∨

S.Vfy(pkTT , σT , (cT , aU)) = 0 ∨

C1.Open(CRS1
com, (gλ

1 , gb
1, g

unext
1

1 , gxnext
1), cR, dR) = 0 ∨

S.Vfy(pkR, σR, (cR, s)) = 0 ∨

S.Vfy(pkcert
T , σcert

R , (pkR, aR)) = 0 ∨

PRF(λ, xnext − 1) ̸= ϕ

then return 0

else return 1

Fig. 46. Algorithm for Wallet Verification

receiving a fresh wallet. In the Debt Accumulation task
a RSU checks if the fraud detection ID that the current
user presents is on the RSU blacklist blR.

D.13 Wallet Verification

The WalletVerification algorithm is depicted in Fig. 46.
A user can verify with this algorithm that the wallet he
stores at the end of a transaction is valid. In particular,
the algorithm verifies that the commitments cT and cR

P4TC 129

are valid and contain the values they are supposed to
contain, that σT is a valid signature under skTT of cT
and aU , that σR is a valid signature under skR of cR
and s, that the certificate certR containing pkR is valid
and that the fraud detection id ϕ was calculated using
the correct values.

Of course, this algorithm can also be run by a third
party to verify the validity of a wallet (since no secret
keys are needed to run this algorithm).

E Security Proof
In this appendix we show that πP4TC UC-realizes FP4TC
in the (FCRS,Gbb)-hybrid model for static corruption.
More precisely, we show the following theorem:

Theorem E.1 (Security Statement). Assume that the
SXDH-problem is hard for gp := (G1, G2, GT, e, p, g1,

g2), the Co-CDH problem is hard for (G1, G2), the
nPRF-DDHI problem is hard for G1, the DLOG-problem
is hard for G1 and our building blocks (NIZK, commit-
ment schemes, signature scheme, encryption schemes
and PRF) are instantiated as described in Appendix C.2.
Then

πFCRS,Gbb
P4TC ≥UC FGbb

P4TC

holds under static corruption of either

1. a subset of users,
2. all users and a subset of RSUs, TSP and SA,
3. a subset of RSUs, TSP and SA, or
4. all RSUs, TSP and SA as well as a subset of users.

Please note that the hardness of the Co-CDH problem
and DLOG-problem is already implied by the SXDH-
assumption. For a discussion of the reasons and why
this limited corruption model is not a severe restriction
from a practical vantage point see Appendix E.1.

We prove Theorem E.1 in three steps:

– In Appendix E.2 we first show some structural prop-
erties of FGbb

P4TC.
– In Appendix E.3, Theorem E.10 proves Theorem E.1

for the corruption scenario 1 and 2. We call this case
“Operator Security”.

– In Appendix E.4, Theorem E.25 proves Theorem E.1
for the corruption scenario 3 and 4. We call this case
“User Security and Privacy”.

Proof of Theorem E.1. The theorem is immediately im-
plied by Theorems E.10 and E.25.

Before giving the proof in full detail and complexity
in Appendices E.2 to E.4, Appendix E.1 explains our
adversarial model.

E.1 Adversarial Model

For our security analysis to hold we consider a restricted
class of adversarial environments Z and will argue why
these restrictions are reasonable.

Restricted Corruption
Firstly, we only consider security under static corrup-
tion. This is a technical necessity to enable the use of
PRFs to generate fraud detection IDs. With adaptive
corruption the simulator would be required to come up
with a consistent PRF that could explain the up to
the point of corruption uniformly and randomly drawn
fraud detection IDs. We deem static corruption to pro-
vide a sufficient level of security as a statically corrupted
party may always decide to interact honestly first and
then deviate from the protocol later. Adaptive corrup-
tion is tightly related to deniability which is not part of
our desired properties.

Secondly, we only consider adversaries Z that cor-
rupt one of the following sets30:

1. A subset of users.
2. All users and a subset of RSUs, TSP and SA.
3. A subset of RSUs, TSP and SA.
4. All of RSUs, TSP and SA as well as a subset of

users.

We subsume the cases 1 and 2 under the term Opera-
tor Security and the cases 3 and 4 under the term User
Security. For both Operator Security and User Security
the two subordinate cases are collectively treated by the
same proof. It is best to picture the cases inversely: To
prove Operator Security we consider a scenario in which
at least some parties at the operator’s side remain hon-
est; to prove User Security we consider a scenario in
which at least some users remain honest. Please note
that both scenarios also commonly cover the case in
which all parties are corrupted, however, this extreme
case is tedious as it is trivially simulatable.

One might believe that the combination of all cases
above should already be sufficient to guarantee privacy,
security and correctness under arbitrary corruption. For
example, case 4 guarantees that privacy and correctness

30 Note that “subset” also includes the empty or full set.

P4TC 130

of accounting are still provided for honest users, even if
all of the operator’s side and some fellow users are cor-
rupted. This ought to be the worst case from a honest
user’s perspective. Further note that the proof of indis-
tinguishability quantifies over all environments Z. This
includes environments that—still in case 4—first cor-
rupt all the operator’s side but then let some (formally
corrupted) parties follow the protocol honestly.

However, consider a scenario in which a party acts
as a Man-in-the-Middle (MitM) playing the roles of a
user and an RSU at the same time while interacting
with an honest user in the left interaction and an hon-
est RSU in the right interaction. The MitM simply re-
lays messages back and forth unaltered. If the MitM ap-
proaches the RSU and the RSU requests the MitM to
participate in Debt Accumulation, the MitM relays all
messages of the RSU to the honest user (possibly driv-
ing the same road behind the MitM). The honest user
replies and the MitM forwards the messages to the hon-
est RSU. The MitM passes by the RSU unnoticed and
untroubled, while the honest user pays for the MitM.

This scenario is not captured by any of the above
cases and is the missing gap towards arbitrary corrup-
tion. As the MitM is corrupted and plays both roles of
a user and RSU, this falls into case 2 or 4. But either all
users are corrupted in case 2, which contradicts the ex-
istence of an honest user in the left interaction, or all of
RSUs, TSP and SA are corrupted in case 4, which does
not allow for an honest RSU in the right interaction.

This attack is known as relay attack. Please note
that the MitM does not need to break any cryptographic
assumption for this kind of attack as it just poses as a
prolonged communication channel. There are some pos-
sible counter measures that can be applied in the real
world. For example, using distance-bounding the hon-
est user could refuse to participate in the protocol, if
the RSU is known to be to far away. However, these are
physical counter measures and thus are not captured by
the UC notion nor any other cryptographic notion. Ac-
tually, it is a strength of the UC model that this gap is
made explicit. For example, a set of game-based security
notions that cover a list of individual properties would
most likely not unveil this issue.

Channel Model
Most of the time we assume channels to be secure
and authenticated. The only exception is Debt Accu-
mulation, which uses a secure but only half-authenti-
cated channel. Half-authenticated channel means only
the RSU authenticates itself and the user does not.
These channels exempt us from the burden of defining a

s, ϕ, x, λ, pidU , bsprev pidR, p

Fig. 47. An entry trdb ∈ TRDB visualized as an element of a
directed graph

simulator for the case where only honest parties interact
with each other and rules out some trivial replay attacks.
Of course, the authentication of the channels must be
tied to the parties’ credentials used in the toll collection
system. In other words, the same key registration ser-
vice that registers the public keys for the toll collection
system must also be used to register the public keys to
authenticate the communication.

E.2 Proof of Correctness

Many papers that show some protocol to be UC-secure
consider rather simple cases (e.g., a commitment, an
oblivious transfer, a coin toss) and correctness of the
ideal functionality is mostly obvious. In contrast, our
ideal functionality FP4TC is already a complex system
on its own with polynomially many parties that can
reactively interact forever, i.e., FP4TC itself has no in-
herent exit point except that at some point the poly-
nomially bounded runtime of the environment is ex-
hausted. In this appendix no security reduction occurs,
because we only consider the ideal functionality FP4TC.
We start with a series of simple lemmas which also help
to develop a good conception about how the individual
tasks/transactions are connected. Moreover, these lem-
mas a closely associated to the desired properties of a
toll collection scheme (cp. Appendix A.3 and Section 2).

Internally, FP4TC stores a pervasive database
TRDB whose entries trdb are of the form

trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b).

This set can best be visualized as a directed graph in
which each node represents the state of a user after the
respective transaction, i.e., at the end of an execution of
Wallet Issuing, Debt Accumulation or Debt Clearance,
and the edges correspond to the transition from the pre-
vious to the next state. Each trdb entry represents a
node together with an edge pointing to its predecessor
node. The node is labeled with (s, ϕ, x, λ, pidU , b) and
identified by s. The edge to the predecessor is identified
by (sprev, s) and labeled with (pidR, p). See Fig. 47 for a
depiction. Transaction entries or nodes that are inserted
by Wallet Issuing do not have a predecessor, therefore
sprev = ⊥ and also p = 0 holds. All other tasks besides

P4TC 131

Wallet Issuing, Debt Accumulation and Debt Clearance
do not alter the graph but only query it. We show that
the graph is a directed forest, i.e., a set of directed trees.
Wallet Issuing creates a new tree by inserting a new root
node. Debt Accumulation and Debt Clearance extend a
tree. Debt Clearance results in a leaf node from where
no further extension is possible. As long as no double
spending occurs, each tree is a path graph.

Definition E.2 (Ideal Transaction Graph (informal)).
The transaction database TRDB = {trdbi} with
trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b) is a directed,
labeled graph as defined above. This graph is called the
Ideal Transaction Graph.

Lemma E.3 (Ideal Transaction Forest). The Ideal Trans-
action Graph TRDB is a forest.

Proof. TRDB is a forest, if and only if it is cycle-free
and every node has in-degree at most one. A new node
is only inserted in the scope of Wallet Issuing, Debt Ac-
cumulation or Debt Clearance. Proof by Induction: The
statement is correct for the empty TRDB. If Wallet Is-
suing is invoked, a new node with no predecessor is in-
serted. Moreover, the serial number s of the new node is
randomly chosen from the set of unused serial numbers,
i.e., it is unique and no existing node can point to the
new node as its predecessor. If Debt Accumulation or
Debt Clearance is invoked, a new node is inserted that
points to an existing node. Again, the serial number s of
the new node is randomly chosen from the set of unused
serial numbers, i.e., it is unique and no existing node can
point to the new node as its predecessor. Hence, no cycle
can be closed. Since the only incoming edge of a node is
defined by the stated predecessor sprev (which may also
be ⊥), each vertex has in-degree at most one.

Lemma E.4 (Tree-wise Uniqueness of the Wallet ID).
The wallet ID λ maps one-to-one and onto a connected
component (i.e., tree) of the Ideal Transaction Graph.

Proof. “⇐= ”: Let trdbi be an arbitrary node in TRDB
and λ be its wallet ID. Furthermore let trdb∗i be the
root of the tree containing trdbi. Then on the (unique)
path from trdb∗i to trdbi, every node apart from trdb∗i
was inserted by means of either Debt Accumulation or
Debt Clearance, both of which ensure the inserted node
has the same λ as its predecessor. By induction over the
length of the path, trdbi has the same wallet ID as trdb∗i
and hence the wallet ID is a locally constant function
on TRDB.

“ =⇒ ”: For contradiction assume there are two
nodes trdbi and trdbj with equal wallet IDs λi = λj in

two different connected components. Pick the root nodes
trdb∗i and trdb∗j of their respective trees. By “⇐= ” it we
get λ∗i = λi = λj = λ∗j , i.e., the root nodes have equals
wallet IDs, too. Both root nodes are inserted in the scope
of Wallet Issuing and the wallet ID is randomly drawn
from the set of unused wallet IDs, i.e., they can not both
have the same wallet ID. Contradiction!

Lemma E.5. Within a tree of the Ideal Transaction
Graph the PID pidU of the corresponding user is con-
stant.

Proof. Same proof as “⇐= ” in the proof of Lemma E.4.

In other words, Lemma E.5 states that a wallet (a tree
in TRDB) is always owned by a distinct user. But a user
can own multiple wallets.

Lemma E.6. Within a tree of TRDB, every node trdb =
(sprev, s, ϕ, x, λ, pidU , pidR, p, b) has depth x and all
nodes of the same depth in the same tree have the same
fraud detection ID ϕ. Conversely, nodes with the same
fraud detection ID are in the same tree and have the
same depth within this tree.

Proof. Proof by Induction. The statement is true for the
empty TRDB. In the scope of Wallet Issuing a new root
node is inserted, Wallet Issuing sets x := 0 and an un-
used ϕ is chosen. In the scope of Debt Accumulation or
Debt Clearance, x is calculated as x := xprev + 1, where
by induction xprev is the depth of its predecessor. With
respect to ϕ we note that when inserted, every node gets
as fraud detection ID the value stored in fΦ(λ, x) which
only depends on the node’s wallet ID and depth. When
this value is set (in either Wallet Issuing, Debt Accumu-
lation, Debt Clearance or User Blacklisting) it is chosen
from the set of unused fraud detection IDs and therefore
unique for given λ and x.

Lemma E.7 (Billing Correctness). Let trdb = (sprev, s,

ϕ, x, λ, pidU , pidR, p, b) be an arbitrary but fixed node.
If trdb is not a root let trdbprev = (sprev,prev, sprev,

ϕprev, xprev, λ, pidU , pidprev
R , pprev, bprev) be its predeces-

sor. Then b = bprev + p holds for non-root nodes and
p = ⊥, b = 0 for root nodes.

Proof. Same induction argument as in proof of
Lemma E.6.

Before we start to show that πP4TC correctly imple-
ments FP4TC, we make note of two additional simple
statements about the ideal functionality itself.

Lemma E.8 (Protection Against False Accusation).

P4TC 132

1. The task Double-Spending Detection returns a proof
π ̸= ⊥ if and only if the user has committed double-
spending.

2. The task Verify Guilt returns OK if and only if its
input (pidU , π) has been output at a previous invo-
cation of Double-Spending Detection.

Proof. The first part obviously follows by the definition
of the task Double-Spending Detection (cp. Fig. 14).
Note for the second part that users are assumed to be
honest. If fΠ(pidU , π) is undefined, then out is set to NOK
and the result is recorded (cp. Steps 3 and 4 in Fig. 15).
Guilt Verification only returns OK, if fΠ(pidU , π) = OK
has already been defined (cp. Step 2). As (in case of hon-
est users) Guilt Verification extends fΠ by nothing but
invalid proofs, Double-Spending Detection exclusively
sets fΠ(pidU , π) = OK (cp. Step 2, in Fig. 14).

Lemma E.9 (Correctness of Blacklisting). Let U be an
arbitrary but fixed user with pidU . Under the assumption
that U participates in less then xblR transactions, i.e., in
less then xblR invocations of Wallet Issuing, Debt Accu-
mulation and Debt Clearance, the following two state-
ments hold:

1. Let the TSP be honest. The set ΦU returned to T
by User Blacklisting contains all fraud detection IDs
that have ever been used by U .

2. Any invocation of Debt Accumulation for U with in-
put blR = ΦU aborts with message blacklisted.

Proof. We prove both claims separately.

1. Let TRDBU ⊆ TRDB be the subset of all transac-
tion entries trdb = (·, ·, ·, ·, ·, pidU , ·, p, ·) correspond-
ing to pidU and let LU denote the set of wallet
IDs occurring in TRDBU . For λ ∈ LU the depth
of the tree associated to the wallet id λ is given by
xλ := max{x | fΦ(λ, x) ̸= ⊥}. If U with pidU partic-
ipated in less than xblR transaction, then the max-
imum depth xmax = maxλ∈LU xλ is smaller than
xblR . The set of used fraud detection IDs is given
by {fΦ(λ, x) | λ ∈ LU , 0 ≤ x ≤ xλ} which is a subset
of ΦU := {fΦ(λ, x) | λ ∈ LU , 0 ≤ x ≤ xblR}.

2. Let sprev denote the serial number for which Debt
Accumulation is invoked and let trdbprev = (·, sprev,

ϕprev, xprev, λ, . . .) be the corresponding transaction
entry. By assumption xprev < xblR holds. As
User Blacklisting has previously been called, ϕ =
fΦ(λ, xprev +1) is already fixed. Moreover, ϕ ∈ ΦU =
blR holds and thus Debt Accumulation aborts.

E.3 Proof of Operator Security

In this appendix we show the following theorem.

Theorem E.10 (Operator Security). Under the assump-
tions of Theorem E.1

πFCRS,Gbb
P4TC ≥UC FGbb

P4TC

holds under static corruption of

1. a subset of users, or
2. all users and a subset of RSUs, TSP and SA.

The definition of the UC-simulator Ssys-sec
πP4TC for The-

orem E.10 can be found in Figs. 48 to 51.Please note
that while the real protocol πP4TC lives in the (FCRS,

Gbb)-model the ideal functionality FP4TC has no CRS.
Hence, the CRS (but not the bulletin board) is likewise
simulated by Ssys-sec

πP4TC , giving it a lever to extract the ZK
proofs P1, P2, and P3 and to equivoke the commitment
C2.

While the protocol executes, the simulator Ssys-sec
πP4TC

records certain information similar to what the parties
or the ideal functionality internally record, namely the
set of simulated double-spending detection information
Ωdsp, the set of simulated prove participation informa-
tion Ωpp

U , and the simulated transaction graph TRDB.
Basically, Ωdsp, Ωpp

U and TRDB correspond to Ωdsp, Ωpp
U

and TRDB resp., but exist in the head of the simulator
and are augmented by additional information. The sim-
ulator uses them as “lookup tables” to keep up a consis-
tent simulation in later parts of the protocol. Obviously,
this implies information is stored redundantly: In the
head of Ssys-sec

πP4TC as Ωpp
U and TRDB and inside the ideal

functionality FP4TC (in case of TRDB) or the environ-
ment (in case of Ωpp

U for a corrupted user).31 A crucial
part of the security proof is to show that these sets stay
in sync.

Before starting with the security proof we explain
the Simulated Transaction Graph TRDB and the addi-
tional information beyond the Ideal Transaction Graph
(cp. Definition E.2) in more details. The Ideal Transac-
tion Graph is a theoretical construct that helps us to
link the interactions of the parties across the various
tasks our protocol provides. An Simulated Transaction

31 Note, that we get rid of Ωdsp during the proof, because honest
user are only dummy parties and only Ωdsp remains.

P4TC 133

Simulator Ssys-sec
πP4TC

Setup:

(1) Run a modified version of the algorithm CRS← Setup(1n) with

(a) CRS2
com ← C2.Gen being replaced by (CRS2

com, tdeqcom)← C2.SimGen, and
(b) CRSpok ← SetupPoK being replaced by (CRSpok, tdepok)← SetupEPoK.

(2) Record CRS, tdeqcom and tdepok.
(3) Set TRDB := ∅.
(4) Set Ωdsp := ∅.
(5) Set Ωpp

U := ∅.

DR Registration: Upon receiving (registering_dr, pidDR) run (pkDR, skDR) ← DRRegistration(CRS), record
pidDR 7→ (pkDR, skDR), and return pkDR to FP4TC.

TSP Registration: Upon receiving (registering_tsp, pidT , aT) run (pkT , skT , certRT) ←
TSPRegistration(CRS, aT), record pidT 7→ (pkT , skT , certRT), and return pkT to FP4TC.

RSU Registration: Upon receiving (registering_rsu, pidR) run (pkR, skR)← RSURegistration(CRS), and record
pidR 7→ (pkR, skR), and return pkR to FP4TC.

User Registration: If user is corrupted, then nothing to do, as this is a local algorithm.
If user is honest: Upon receiving (registering_user, pidU) run (pkU , skU)← UserRegistration(CRS), record
pidU 7→ (pkU , skU), and return pkU to FP4TC.

RSU Certification: Upon receiving (certifying_rsu, pidR, aR) . . .

(1) Load the recorded pidT 7→ (pkT , skT , certRT), and pidR 7→ (pkR, skR); if any of these do not exist, let
FP4TC abort.

(2) Generate certR := (pkR, aR, σcert
R) with σcert

R ← S.Sgn(skcert
T , (pkR, aR)) faithfully.

(3) Update record pidR 7→ (pkR, skR, certR).

Fig. 48. The simulator for Operator Security

P4TC 134

Simulator Ssys-sec
πP4TC

Wallet Issuing:

(1) Load the recorded pidT 7→ (pkT , skT , certRT), pidDR 7→ (pkDR, skDR); if any of these do not exist, let
FP4TC abort.

(2) Upon receiving (pkU , c′seed) from Zsys-sec in the name of U with pid∗U . . .

(a) Look up pidU from Gbb for which pkU has been recorded; if no pidU exists abort.
(b) If pidU /∈ PIDcorrupt give up simulation.
(c) Call FP4TC with input (issue)

(3) Upon receiving leaked (s, aU) from FP4TC . . .

(a) (c′′ser, dser)← C2.SimCom(CRS2
com).

(b) λ′′
R← Zp.

(c) Send (certRT , aU , c′′ser, λ′′) to Zsys-sec as the 1st message from T to U .

(4) Upon receiving (s′, e∗, cT , cR, π) from Zsys-sec in the name of U with pid∗U . . .

(a) stmnt := (pkU , pkDR, e∗, cT , cR, π).
(b) If P1.Vfy(CRSpok, stmnt, π) = 0 let FP4TC abort.
(c) Extract Wit = (Λ, Λ′, Λ′0, . . . , Λ′ℓ−1, . . . , Unext

1 , dT , dR, d′seed, SKU) ← P1.ExtractW(CRS, tdepok,

stmnt, π).
(d) Assert that (stmnt, Wit) fullfills the projected equations from L

(1)
gp , else abort (event E1)

(e) λ := λ′′ +
∑ℓ−1

i=0 DLOG(Λ′i) · Bi

(f) Provide alternative user PID pidU to FP4TC.

(5) Upon being asked by FP4TC to provide ϕ . . .

(a) ϕ := PRF(λ, x) with x := 0
(b) Provide ϕ to FP4TC.

(6) Upon receiving output (s, aU) from FP4TC for U . . .

(a) s′′ := s · s′−1

(b) Equivoke d′′ser ← C2.Equiv(CRS2
com, tdeqcom, s′′, c′′ser, dser).

(c) σT ← S.Sgn(skTT , (cT , aU))
(d) σR ← S.Sgn(skRT , (cR, s))
(e) Set sprev := ⊥, p := 0, b := 0, cin

T := ⊥, din
T := ⊥, M in

T := ⊥, cin
R := ⊥, din

R := ⊥, M in
R := ⊥,

cout
T := cT , dout

T := dT , Mout
T := (Λ, pkU), cout

R := cR, dout
R := dR, and Mout

R := (Λ, gb
1, U1, gx+1

1).
(f) Append (sprev, s, ϕ, x, λ, pidU , pidT , p, b, cin

T , din
T , M in

T , cin
R, din

R, M in
R , cout

T , dout
T , Mout

T , cout
R , dout

R , Mout
R)

to TRDB.
(g) Send (s′′, d′′ser, σT , σR) to Zsys-sec as the 2nd message from T to U .

Fig. 49. The simulator for Operator Security (cont. from Fig. 48)

P4TC 135

Simulator Ssys-sec
πP4TC

(cont.)

Debt Accumulation:

(1) Load the recorded pidT 7→ (pkT , skT , certRT), and pidR 7→ (pkR, skR, certR); if any of these do not
exist, let FP4TC abort.

(2) Pick u2
R← Zp.

(3) (c′′ser, dser)← C2.SimCom(CRS2
com).

(4) Send (u2, c′′ser, certR) to Z as the 1st message from R to U .
(5) Upon receiving (s′, π, ϕ, aU , aprev

R , chid, c′R, t) from Z as the 2nd message from U to R . . .

(a) stmnt := (pkTT , pkcert
T , ϕ, aU , aprev

R , chid, c′R, t, u2).
(b) If P2.Vfy(CRSpok, stmnt, π) = 0 let FP4TC abort.
(c) Extract Wit = (X, Λ, pkU , U1, sprev, ϕprev, X, Λ, pkU , Bprev, U1, Unext

1 , dhid, dprev
R , d′R, dT , pkprev

R ,

cprev
R , cT , σprev

R , σcert
R

prev
, σT)← P2.ExtractW(CRS, tdepok, stmnt, π).

(d) Assert that (stmnt, Wit) fullfills the projected equations from L
(2)
gp , else abort (event E1)

(e) Look up trdb∗ := (sprev,∗, s∗, ϕ∗, x∗, λ∗, pid∗U , pid∗T , p∗, b∗, cin
T
∗
, din
T
∗
, M in
T
∗
, cin
R
∗
, din
R
∗
, M in
R
∗
, cout
T
∗
,

dout
T
∗
, Mout
T
∗
, cout
R
∗
, dout
R
∗
, Mout
R
∗) with s∗ = sprev being used as key; if no unique entry exists,

give up simulation (event E2).
(f) Give up simulation if any of these conditions meet: cout

R
∗ ̸= cprev

R (event E3), Λ ̸= gλ∗

1 (event E4),
cout
T
∗ ≠ cT (event E5), pkU ̸= pk∗U with (Λ∗, pk∗U) := Mout

T
∗ (event E6), Bprev ̸= gb∗

1 (event E7),
or X ̸= gx∗+1

1 (event E8).
(g) Retrieve pidU from Gbb for pkU
(h) Call FP4TC with input (pay_toll, sprev) in the name of U

(6) Upon being asked by FP4TC to provide an alternative PID, return pidU to FP4TC.
(7) If being asked by FP4TC to provide ϕ, return ϕ := PRF(λ, x) with x := x∗ + 1 to FP4TC.a

(8) Upon being ask by FP4TC to provide a price for (aU , aR, aprev
R), return a price p as the dummy

adversary would do.
(9) Upon receiving output (s, aR, p, b) from FP4TC for U . . .

(a) Set ωpp
U := (s, chid, dhid, pkU) and append ωpp

U to Ωpp
U .

(b) Run (c′′R, d′′R)← C1.Com(CRS1
com, (0, p, 0, 1)), cR := c′R · c′′R, and σR ← S.Sgn(skR, (cR, s)) honestly

as the real protocol would do.
(c) Set s′′ := s · s′−1 and equivoke d′′ser ← C2.Equiv(CRS2

com, s′′, c′′ser, dser).
(d) Set cin

T := cT , din
T := dT , M in

T := (Λ, pkU), cin
R := cprev

R , din
R := dprev

R , M in
R := (Λ, Bprev, U1, X), cout

T :=
cT , dout

T := d′T · d′′T , Mout
T := (Λ, pkU), cout

R := cR, dout
R := d′R · d′′R, and Mout

R := (Λ, gb
1, U1, gx+1

1).
(e) Append (sprev, s, ϕ, x, λ, pidU , pidR, p, b, cin

T , din
T , M in

T , cin
R, din

R, M in
R , cout

T , dout
T , Mout

T , cout
R , dout

R , Mout
R)

to TRDB.
(f) Append ωdsp = (ϕ, t, u2) to Ωdsp

(g) Check if ωdsp‡ = (ϕ‡, t‡, u‡2) ∈ Ωdsp exists with ϕ = ϕ‡ and u2 ̸= u‡2; in this case

(i) skU := (t− t‡) · (u2 − u‡2)−1 mod p

(ii) Record pidU 7→ (pkU , skU) internally

(h) Send (s′′, d′′ser, cR, d′′R, σR, p) to Z as the 3rd message from R to U .

a N.b.: FP4TC does not always ask for the next serial number. If the corrupted user re-uses an old token, then FP4TC internally
picks the next serial number which has already been determined in some earlier interaction. Hence, the simulator only needs to
provide the next serial number, if the chain of transactions is extended.

Fig. 50. The simulator for Operator Security (cont. from Fig. 48)

P4TC 136

Simulator Ssys-sec
πP4TC

(cont.)

Debt Clearance:

(1) Load the recorded pidT 7→ (pkT , skT , certRT) if this does not exist, let FP4TC abort.
(2) Pick u2

R← Zp.
(3) Send u2 to Z as the 1st message from T to U .
(4) Upon receiving (pkU , π, ϕ, aU , aprev

R , bprev, t) from Z as the 2nd message from U to T . . .

(a) stmnt := (pkU , pkTT , pkcert
T , ϕ, aU , aprev

R , gbprev

1 , t, u2).
(b) If P3.Vfy(CRSpok, stmnt, π) = 0 let FP4TC abort.
(c) Extract Wit = (X, Λ, pkU , U1, sprev, ϕprev, X, Λ, U1, dprev

R , dT , pkprev
R , cprev

R , cT , σprev
R , σcert

R
prev

,

σT)← P3.ExtractW(CRS, tdepok, stmnt, π).
(d) Assert that (stmnt, Wit) fullfills the projected equations from L

(3)
gp , else abort (event E1)

(e) Lookup trdb∗ := (sprev,∗, s∗, ϕ∗, x∗, λ∗, pid∗U , pid∗T , p∗, b∗, cin
T
∗
, din
T
∗
, M in
T
∗
, cin
R
∗
, din
R
∗
, M in
R
∗
, cout
T
∗
,

dout
T
∗
, Mout
T
∗
, cout
R
∗
, dout
R
∗
, Mout
R
∗) with s∗ = sprev being used as key; if no unique entry exists,

give up simulation (event E2).
(f) Give up simulation if any of these conditions meet: cout

R
∗ ̸= cprev

R (event E3), Λ ̸= gλ∗

1 (event E4),
cout
T
∗ ≠ cT (event E5), pkU ̸= pk∗U with (Λ∗, pk∗U) := Mout

T
∗ (event E6), or Bprev ̸= gb∗

1 (event E7).
(g) Retrieve pidU from Gbb for pkU
(h) Call FP4TC with input (clear_debt, sprev) in the name of U

(5) Upon being asked by FP4TC to provide an alternative PID, return pidU to FP4TC.
(6) If being asked by FP4TC to provide ϕ, return ϕ := PRF(λ, x) with x := xprev + 1 to FP4TC.a

(7) Upon receiving output (bbill) from FP4TC for U . . .

(a) Set cin
T := cT , din

T := dT , M in
T := (Λ, pkU), cin

R := cprev
R , din

R := dprev
R , M in

R := (Λ, gbprev

1 , U1, X),
cout
T := ⊥, dout

T := ⊥, Mout
T := ⊥, cout

R := ⊥, dout
R := ⊥, and Mout

R := ⊥.
(b) Append (sprev, s, ϕ, x, λ, pidU , pidR, p, b, cin

T , din
T , M in

T , cin
R, din

R, M in
R , cout

T , dout
T , Mout

T , cout
R , dout

R , Mout
R)

to TRDB.
(c) Append ωdsp = (ϕ, t, u2) to Ωdsp

(d) Check if ωdsp‡ = (ϕ‡, t‡, u‡2) ∈ Ωdsp exists with ϕ = ϕ
‡ and u2 ̸= u‡2; in this case

(i) skU := (t− t‡) · (u2 − u‡2)−1 mod p

(ii) Record pidU 7→ (pkU , skU) internally

(e) Send (OK) to Z as the 3rd message from T to U .

a N.b.: FP4TC does not always ask for the next serial number. If the corrupted user re-uses an old token, then FP4TC internally
picks the next serial number which has already been determined in some earlier interaction. Hence, the simulator only needs to
provide the next serial number, if the chain of transactions is extended.

Fig. 51. The simulator for Operator Security (cont. from Fig. 48)

P4TC 137

Simulator Ssys-sec
πP4TC

(cont.)

Prove Participation:

(1) Call FP4TC with input (prove_participation) in the name of U
(2) Obtain leaked set Spp

R of serial numbers from FP4TC.
(3) Upon receiving output (outU) from FP4TC for U . . .

(a) Delay the output of FP4TC to SA.
(b) Send Spp

R to Z as the 1st message from SA to U .

(4) Upon receiving (s, chid, dhid) from Z as the 2nd message from U to SA . . .

(a) If (s, chid, ·, ·) /∈ Ωpp
U , let FP4TC abort.

(b) Look up pkU from Gbb for PID pidU ; if no pkU has been recorded abort.
(c) If C1.Open(CRS1

com, pkU , chid, dhid) = 0, let FP4TC abort.
(d) If outU = NOK give up simulation.
(e) Let FP4TC return the delayed output to SA.

Double-Spending Detection: Upon being ask to provide a proof for pidU , look up pidU 7→ (pkU , skU), and return
skU .

Guilt Verification: Upon being ask by FP4TC to provide out for (pidU , π) . . .

(1) Receive pkU from Gbb for pidU .
(2) If gπ

1 = pkU , then return out := OK, else out := NOK to FP4TC.

User Blacklisting: Upon receiving (λ, x) and being ask to provide a serial number, return ϕ := PRF(λ, x).

Fig. 52. The simulator for Operator Security (cont. from Fig. 48)

s, ϕ, x, λ, pidU , bsprev pidR, p

cout
T , dout

T , Mout
T ,

cout
R , dout

R , Mout
R

cin
T , din

T , M in
T ,

cin
R, din

R, M in
R

Fig. 53. An entry trdb ∈ TRDB visualized as an element of a
directed graph

Entry trdb has the form

trdb = (sprev, s, ϕ, x, λ, pidU , pidR, p, b,

cin
T , din

T , M in
T , cin

R, din
R, M in

R ,

cout
T , dout

T , Mout
T , cout

R , dout
R , Mout

R)
(8)

with c, d and M with equal suffixes denoting a commit-
ment, its decommitment information and the opening in
the implicit message space (see Fig. 53). At the begin-
ning of a transaction in the scope of Debt Accumulation
or Debt Clearance the user loads his token τprev which
contains two commitments cT and cprev

R , randomizes the
commitments and at the end the user possesses two up-
dated commitments cT , cR which are stored in τ again.
We call the initial commitments the in-commitments of
the transaction and the resulting commitments the out-
commitments.

Definition E.11 (Simulated Transaction Graph (informal)).
The set TRDB = {trdbi} with trdbi defined as in Eq. (8)
is called the Simulated Transaction Graph. It inherits
the graph structure of the Ideal Transaction Graph
and augments each edge by additional labels, called the
in-commitments and out-commitments.

Two remarks are in order: Firstly, none of the (commit-
ment, decommitment, message)-triples is neither com-
pletely received nor sent by the RSU or TSP, respec-
tively. The RSU receives a randomized version of the
in-commitment and no decommitment at all. In the re-
verse direction, the RSU sends the out-commitment and
a share of the decommitment. The complete triples only
exist inside the user’s token. Secondly, it is tempting
but misleading to assume that cin

R = cprev
R (or similar

equations) hold. Note that we do not make any of these
assumptions for the definition. Hence we decided on a
new notion and coined the term in-/out-commitments
instead of re-using the term “previous commitment”. Ac-
tually, these kind of equalities is what we have to show.

The overall proof idea is to define a sequence of
hybrid experiments Hi together with simulators Si and
protocols πi such that the first hybrid H0 is identical to

P4TC 138

the real experiment and the last hybrid H16 is identical
to the ideal experiment. Each hybrid is of the form

Hi := EXEC
πi,Gbb,Si,Zsys-sec(1n).

Instead of directly proving indistinguishability of the
real and ideal experiment we can break the proof down
into showing indistinguishability of each pair of consec-
utive hybrids. We achieve this by demonstrating that
whenever Zsys-sec can distinguish between two consecu-
tive hybrids with non-negligible probability this yields
an efficient adversary against one of the underlying cryp-
tographic assumptions. The general idea is that the pro-
tocol πi that honest parties perform gradually declines
from the real protocol π0 = πP4TC to a dummy protocol
π16, which does nothing but relay in- and outputs. At
the same time Si progresses from a dummy adversary
S0 to the final simulator S16 which can be split up into
the ideal functionality FP4TC and Ssys-sec

πP4TC .
We proceed by giving concrete (incremental) defini-

tions of all hybrids Hi. Please note that input privacy
for the honest TSP, RSU, DR and SA does not pose a
difficulty for the definition of the sequence of the sim-
ulators. The users learns most information as part of
its prescribed output anyway. In other words, the simu-
lator Ssys-sec

πP4TC mimicking the role of an honest operator
can perfectly simulate most messages towards the (ma-
licious) user after is has received the user’s output from
the ideal functionality. The essential part is to ensure
that no malicious user can make the Simulated Transac-
tion Graph to deviate from the Ideal Transaction Graph
and thereby cause a different (wrong) output at some
later point in the protocol. To this end, most hybrids in-
troduce additional “sanity checks” to the simulation: if
the sanity check holds, both transaction graphs are still
in sync and the simulator proceeds; if the sanity check
fails, the adversary has caused the transaction graphs to
fall apart and the simulator immediately gives up the
simulation. Each sanity check is related to the security
of one of the building blocks or cryptographic assump-
tions. Finally, after the last hybrid all sanity checks col-
lectively assert that no efficient adversary can deviate
from the Ideal Transaction Graph.

Hybrid H0
The hybrid H0 is defined as

H0 := EXEC
π0,Gbb,S0,Zsys-sec(1n)

with S0 = A being identical to the dummy adversary
and π0 = πP4TC. Hence, H0 denotes the real experiment.

Hybrid H1
In hybrid H1 we modify S1 such that CRSpok is generated
by SetupEPoK, and CRS2

com is generated by C2.SimGen.
Additionally, S1 initializes the internal sets TRDB, Ωdsp,
and Ωpp

U as empty sets.

Hybrid H2
Hybrid H2 replaces the code in the tasks DR/TSP/RSU/
User Registration of the protocol π2 such that the sim-
ulator S2 is asked for the keys instead. This equals the
method in which the keys are generated in the ideal
experiment.

Hybrid H3
In hybrid H3 the task RSU Certification is modified.
The protocol π3 is modified such that the simulator S3
receives the message (certifying_rsu, pidR, aR), cre-
ates the certificate σcert

R and records it.
Whenever the honest TSP or honest RSU running

π3 would send σcert
R as part of its messages in the scope

of Wallet Issuing or Debt Accumulation, they omit σcert
R .

Instead, the simulator S3 injects σcert
R into the message.

Hybrid H4
Hybrid H4 replaces the code in the tasks Wallet Issuing
and Debt Accumulation of the protocol π4 such that the
RSU/TSP do not create signatures, but the simulator S4
creates the signatures σT , σR and σR resp. and injects
them into the messages instead.

Moreover, in Debt Accumulation the RSU running
π4 does not send cR and d′′R in its final message, but
reports the price p to S4, S4 creates cR and d′′R honestly
and injects them into the message.

Hybrid H5
H5 modifies the tasks of Wallet Issuing and Debt Ac-
cumulation. The code of π5 for the TSP/RSU is mod-
ified such that it does not send c′′ser in the scope of
Wallet Issuing or Debt Accumulation. Instead S5 runs
(c′′ser, dser) ← C2.SimCom(CRS2

com) and injects c′′ser into
the message. Moreover, π5 for the TSP/RSU is mod-
ified such that it uniformly and independently picks
s

R← Zp and passes s to S5 as part of the final mes-
sage. S5 calculates s′′ := s · (s′)−1, executes d′′ser ←
C2.Equiv(CRS2

com, tdeqcom, s′′, c′′ser, dser) and injects s′′ to-
gether with d′′ser into the messages from TSP/RSU to
the user.

Hybrid H6
When S6 receives a NIZK proof π in the scope of Wallet
Issuing, Debt Accumulation and Debt Clearance, it ex-

P4TC 139

tracts the witness, restores λ := λ′′+
∑ℓ−1

i=0 DLOG(Λ′i)·Bi,
assembles trdb and appends it to TRDB. Additionally,
S6 also assembles ωpp

U , ωdsp in the scope of Debt Ac-
cumulation and appends entries to Ωpp

U , Ωdsp resp. If
Ωdsp already contains an entry ωdsp‡ with matching
fraud detection ID, the secret key skU is immediately
reconstructed and the pair pidU 7→ (pkU , skU) is also
recorded.

Moreover, the verification of the proof is moved from
π6 for the honest TSP/RSU to the simulator. If the
verification fails, S6 aborts as the TSP/RSU running
the real protocol would do.

Additionally, S6 checks if the pair of the statement
and the extracted witness fulfills the languages L

(1)
gp ,

L
(2)
gp , and L

(3)
gp resp. If not, S6 abort with failure event

(E1).

Hybrid H7
This hybrid modifies the code π7 for T , SA and DR
in the scope of the tasks Prove Participation, Double-
Spending Detection, Guilt Verification and User Black-
listing. The honest parties become dummy parties, the
code is moved to the simulator and S7 resorts to its
“lookup tables” TRDB, Ωpp

U , and Ωdsp that have been
introduced by the previous hybrid.

More precisely, in Prove Participation the party SA
becomes a dummy party and simply forwards the set of
serial numbers Spp

R to S7. The simulator uses its own
set Ωpp

U to validate the response of the environment (in
the name of the malicious user) and returns the result
to SA.

In the task Double-Spending Detection the honest
T becomes a dummy party, too. It simply asks the sim-
ulator S7 to provide a proof. To this end, S7 checks if
pidU 7→ (pkU , skU) has been recorded and returns skU .

The same applies to the task Guilt Verification. The
honest party does not locally run the algorithm itself,
but simply forwards its input to the simulator (as the
dummy party would do) and S7 actually checks if gπ

1 = π

holds.
The task User Blacklisting is modified accordingly.

The dispute resolver DR becomes a dummy party and
simply sends it input (blacklist_user, pkDR

U) to the
simulator S7 in order to signal its consent to blacklist
the user. The simulator S7 utilizes the Simulated Trans-
action Graph TRDB and runs the code as the ideal func-
tionality FP4TC would do eventually.

Hybrid H8
Hybrid H8 replaces the code in the tasks Wallet Issuing
and Debt Accumulation of the protocol π8 such that the

RSU/TSP do not neither send λ′′ nor u2. Instead S8
draws λ′′ and u2 and injects them into the appropriate
messages. Consequently, the code of the TSP is modified
such that it does not longer record htd. Likewise, the
code of the RSU is modified such that it does not longer
record ωdsp.

Hybrid H9
In the scope of Debt Accumulation or Debt Clearance,
the simulator S9 looks up the predecessor entry with
sprev being used as the unique key. If this fails, S9 gives
up the simulation with event E2 .

Hybrid H10
The simulator S10 additionally checks for cout

R
∗ ≠ cprev

R
and gives up the simulation with event E3 , if the check
succeeds.

Hybrid H11
The simulator S11 additionally checks for Λ ̸= gλ∗

1 and
gives up the simulation with event E4 , if the check
suceeds.

Hybrid H12
The simulator S12 additionally checks for cout

T
∗ ̸= cT

and gives up the simulation with event E5 , if the check
suceeds.

Hybrid H13
The simulator S13 parses (Λ∗, pk∗U) := Mout

T
∗ and checks

for pkU ̸= pk∗U . If the check succeeds, it gives up the
simulation with event E6 .

Hybrid H14
The simulator S14 additionally checks for Bprev ̸= gb∗

1
and gives up the simulation with event E7 , if the check
succeeds.

Hybrid H15
The simulator S15 additionally checks for X ̸= gx∗+1

1
and gives up the simulation with event E8 , if the check
succeeds.

For the proof of Theorem E.10 we show the indistin-
guishability of subsequent hybrids by a series of lem-
mas. The Lemmas E.12 to E.14 are rather trivial and
thus Lemma E.13 handles various hybrids at once.

Lemma E.12 (Indistinguishability between H0 and H1).
Under the assumptions of Theorem E.10, H0

c≡ H1
holds.

P4TC 140

Proof. This hop solely changes how the CRS is created
during the setup phase. This is indistinguishable for
CRSpok, and CRS2

com (see the extractability property of
Definition C.5 and the equivocality property of Defini-
tion C.7, resp., condition (a) each).

Lemma E.13 (Indistinguishability H1→H4 and H6→H8).
Under the assumptions of Theorem E.10, H1

c≡ H2,
H2

c≡ H3, H3
c≡ H4, H6

c≡ H7, and H7
c≡ H8 holds.

Proof. The hops are all indistinguishable as the do not
change anything in the view of Zsys-sec. Please note, that
Zsys-sec only sees the in-/output of honest parties and
these hops only syntactically change what parts of the
code are executed by the parties or by the simulator.
With each hop the parties degrade more to a dummy
party while at the same time more functionality is put
into the simulator.

Lemma E.14 (Indistinguishability between H4 and H5).
Under the assumptions of Theorem E.10, H4

c≡ H5
holds.

Proof. This hop is indistinguishable as the equivoced
decommitment information is perfectly indistinguish-
able from a decommitment that has originally been
created with the correct message (cp. Definition C.7,
Item 3).

So far, none of hops between two consecutive hybrids
changes anything from the environment’s perspective:
either the hops are only syntactical or the modification
is perfectly indistinguishable. Hence, no reduction argu-
ment is required. In the contrary, each of the upcom-
ing security proofs roughly follows the same lines of ar-
gument. If the environment Zsys-sec can efficiently dis-
tinguish between two consecutive hybrids, then we can
construct an efficient adversary B against one of the un-
derlying cryptographic building blocks. To this end, B
plays the adversary against the binding property in the
outer game and internally executes the UC-experiment
in its head while mimicking the role of the simulator.
It is important to note that although B emulates the
environment internally, it only has black-box access to
it. In other words, although everything happens inside
“the head of B” it cannot somehow magically extract
Z’s attack strategy.

Lemma E.15 (Indistinguishability between H5 and H6).
Under the assumptions of Theorem E.10, H5

c≡ H6
holds.

Proof. First note that the only effective change between
H5 and H6 are the additional checks that abort the sim-

ulation with event E1 , if the extracted witnesses are in-
valid. Again, the other modification are purely syntacti-
cal. To proof indistinguishability between H5 and H6 we
split this hop into three sub-hybrids. Each sub-hybrid
introduces the check for one of the languages L

(1)
gp , L

(2)
gp

and L
(3)
gp , resp. In the following only the sub-hybrid for

the language L
(1)
gp is considered, the indistinguishability

of the remaining two is proved analogously. Further note,
that the view of Zsys-sec is perfectly indistinguishable,
if the simulation does not abort.

Assume there is an environment Zsys-sec that trigger
the event E1 in the first sub-hybrid with non-negligible
advantage. This immediately yields an efficient adver-
sary B against the extraction property of the NIZK
scheme. Internally, B runs Zsys-sec in its head plays the
role of the simulator and all honest parties. Externally,
B plays the adversary in Definition C.5, Item 3b. If the
event E1 occurs internally, B outputs the corresponding
pair (stmnt, π). In the second and third sub-hybrid B in-
ternally extracts the witness for the previous sub-hybrid
using the extraction trapdoor tdepok which B obtains as
part of its input.

Remark E.16. We observe that Lemma E.15 implies
with m = (Λ, pkU):

C1.Open(CRS1
com, m, cT , dT) = 1,

with m = (Λ, 1, Unext
1 , g1):

C1.Open(CRS1
com, m, cR, dR) = 1,

with m = (Λ, Bprev, U1, X):

C1.Open(CRS1
com, m, cprev

R , dprev
R) = 1,

with m = (Λ, Bprev, Unext
1 , X):

C1.Open(CRS1
com, m, c′R, d′R) = 1,

furthermore

C1.Open(CRS1
com, Λ′, c′seed, d′seed) = 1,

C1.Open(CRS1
com, pkU , chid, dhid) = 1,

with m = (cT , aU):

S.Vfy(pkTT , σT , m) = 1,

with m = (cprev
R , sprev):

S.Vfy(pkprev
R , σprev

R , m) = 1,

with m = (pkprev
R , aprev

R):

S.Vfy(pkcert
T , σcert

R
prev

, m) = 1,

P4TC 141

and that all variables can efficiently be extracted. Re-
member, that Fgp acts as the identity function on group
elements. Moreover, given the extracted chunks of the
Wallet ID Λ′0, . . . , Λ′ℓ−1 the unique Wallet ID λ can be
reconstructed. The projection Fgp becomes injective if
the pre-image is restricted to Zp and the inverse, i.e.
DLOG, can be efficiently computed as λ′0, . . . , λ′ℓ−1 are
sufficiently “small”.

Up to this point, we already know that H0
c≡ H8 holds.

Except for two small changes (from H4 to H5 and from
H5 to H6) all hops are only syntactical. Moreover, the
simulator S8 of hybrid H8 is indeed sufficient to simulate
an indistinguishable view for Zsys-sec in the ideal model.
Note, that all subsequent hybrids from H10 to H15 only
add more sanity checks but do not change any messages.
Actually, even the modification introduced by H6 is not
required for a indistinguishable simulation, as H6 only
records TRDB, but TRDB is not used yet. However,
only TRDB and the upcoming sanity checks enable a
reduction to cryptographic assumptions and thus are
vital to proof the indistinguishably between H8 and the
ideal model.

To this end, two additional lemmas about the struc-
ture of TRDB are necessary. These lemmas are in the
same spirit as Lemmas E.3 and E.4. Intuitively, the com-
mitments cT , cR induce a graph structure onto TRDB
comparable to the wallet ID λ and serial number s.

Lemma E.17 (Simulated Transaction Forest).

1. Every trdb = (sprev, s, . . .) ∈ TRDB is uniquely
identified by s with overwhelming probability.

2. The Simulated Transaction Graph TRDB is a forest
with edges defined by (sprev, s).

Proof. We prove both claims separately.

1. A new entry is only inserted in the scope of Wal-
let Issuing, Debt Accumulation or Debt Clearance.
Proof by Induction: The statement is correct for the
empty TRDB. For each insertion, the simulator S6
(and every following simulator) draws s uniformly
and independently. The chance to pick a serial num-
ber that has already been used is negligible.

2. As the serial number s of the new node is randomly
chosen, no existing node can point to the new node
as its predecessor and thus no cycle is closed with
overwhelming probability.

Lemma E.18 (Indistinguishability between H8 and H9).
Under the assumptions of Theorem E.10, H8

c≡ H9
holds.

Proof. Assume there is an environment Zsys-sec that
trigger the event E2 with non-negligible advantage. This
immediately yields an efficient adversary B against the
EUF-CMA security of S. We only need to deal with the
case that s∗ does not exist. If it exists, Lemma E.17,
Item 1 implies its uniqueness. We need to distinguish
two cases. On an abstract level these cases correspond to
the following scenarios: Either the previous RSU exists.
Then the signature σprev

R on (cprev
R , sprev) is a forgery. Or

alternatively, the allegedly previous RSU does not exits
but has been imagined by the user. Then (cprev

R , sprev)
may have a honest, valid signature (because the user
feigned the RSU), but the certificate certRprev for the
fake RSU constitutes a forgery. Please note, that the sim-
ulator always records an entry trdb when it legitimately
issues a signature σR and vice versa.

1. A record pidprev
R 7→ (pkprev

R , skprev
R) has been recorded:

In other words, (cprev
R , sprev) has never been legiti-

mately issued by a the the allegedly previous RSU.32

We construct an efficient adversary B against the
EUF-CMA security of S. Internally, B runs Zsys-sec

in its head and plays the role of the simulator and
all honest parties. Externally, B plays the EUF-
CMA security experiment with a challenger C and
a signing oracle OS

pk,sk. B needs to guess for which
pidprev
R the event (E2) eventually occurs. When the

RSU with pidprev
R registers itself, and B playing S9

needs to provide pkprev
R it embeds the challenge as

pkprev
R := pkC . Whenever B playing the role of S9

needs to issue a signature with respect to pkprev
R , it

does so using its external EUF-CMA oracle OS
pk,sk.

When the event (E2) occurs, B extracts (cprev
R , sprev)

and σprev
R from the proof and outputs the forgery.

N.b., (cprev
R , sprev) has never been signed with re-

spect to pkprev
R = pkC by assumption.

2. A record pidprev
R 7→ (pkprev

R , skprev
R , certR) has not

been recorded: We construct an efficient adversary B
against the EUF-CMA security of S along the same
lines as above. Internally, B runs Zsys-sec in its head
and plays the role of the simulator and all honest
parties. Externally, B plays the EUF-CMA security

32 N.b.: RSU may also denote the TSP, if the transaction at
hand happens to be the first after a Wallet Issuing and thus s∗

has been signed by the TSP playing the role an RSU. For brevity,
we only consider RSUs here.

P4TC 142

experiment with a challenger C and a signing ora-
cle OS

pk,sk. When the adversary B has to internally
provide pkT = (pkcert

T , pkRT , pkTT) playing the role
of S9 in the scope of the TSP Registration, B em-
beds the external challenge as pkcert

T := pkC . When-
ever B playing the role of S9 in the scope of RSU
Certification needs to issue signatures with respect
to pkcert

T , it does so using its external EUF-CMA
oracle OS

pk,sk. When the event (E2) occurs, B ex-
tracts certRprev = (pkR, aR, σcert

R) from the proof
and outputs (pkR, aR) together with σcert

R as the
forgery. N.b.: (pkR, aR) has never been signed by
the TSP with respect to pkcert

T = pkC as otherwise
a mapping pidprev

R 7→ (pkprev
R , skprev

R , certR) would
have been recorded.

The forgeries are indeed valid due to Remark E.16.

Remark E.19. Without Lemma E.18 it is unclear in
Lemma E.17, Item 2 if the denoted predecessor of edge
(sprev, s) actually exists. The simulator extracts the se-
rial number sprev of the predecessor from the proof and
puts this serial number into the newly added trdb. With
this in mind Lemma E.17, Item 2 would have to be in-
terpreted such that an edge (sprev, s) is ignored, if the
predecessor did not exist. Nonetheless, TRDB is still a
forest and Lemma E.17, Item 2 remains correct. Any-
way, this oddity is ruled out by Lemma E.18.

Lemma E.20 (Indistinguishability between H9 and H10).
Under the assumptions of Theorem E.10, H9

c≡ H10
holds.

Proof. Assume there is an environment Zsys-sec that
trigger the event E3 with non-negligible advantage. This
immediately yields an efficient adversary B against the
EUF-CMA security of S by the same argument as in the
proof of Lemma E.18 as (cprev

R , sprev) are jointly signed
by the same signature σR.

Lemma E.21 (Indistinguishability between H10 and H11).
Under the assumptions of Theorem E.10, H10

c≡ H11
holds.

Proof. Assume there is an environment Zsys-sec that
trigger the event E4 with non-negligible advantage. We
construct an efficient adversary B against the binding
property of C1. Internally, B runs Zsys-sec in its head
and plays the role of the simulator and all honest par-
ties. Externally, B plays the role of the adversary as
defined by Definition C.7, Item 2. When the event (E3)
occurs, B sets

Mprev
R := (Λ, Bprev, U1, X)

from the extracted witness and obtains

Mout
R
∗ = (Λ∗, B∗, U∗1 , X∗)

from TRDB. B outputs (cout
R
∗
, Mprev
R , dprev

R , Mout
R
∗
, dout
R
∗)

to the external game. By assumption Λ ̸= Λ∗ holds and
Remark E.16 asserts that both openings are valid.

Lemma E.22 (Tree-wise Uniqueness of the Wallet ID).
The wallet ID λ maps one-to-one and onto a connected
component (i.e., tree) of the Simulated Transaction
Graph.

Proof. Same argument as in the proof of Lemma E.4.

Lemma E.23 (Indistinguishability between H11 and H12).
Under the assumptions of Theorem E.10, H11

c≡ H12
holds.

Proof. We introduce a sub-hybrid that splits between
two cases why event E5 is triggered: 1 cout

T
∗ ̸= cT and

cT is not recorded in any trdb ∈ TRDB. 2 cout
T
∗ ̸= cT and

cT is recorded in some record trdb‡ ∈ TRDB. An envi-
ronment Zsys-sec that can differentiate between H11 and
the sub-hybrid yields an efficient adversary B against
the EUF-CMA security of S. An environment Zsys-sec

that can differentiate between the sub-hybrid and H12
yields an efficient adversary B against the binding prop-
erty of C1.

1. We construct an efficient adversary B against the
EUF-CMA security of S. Internally, B runs Zsys-sec

in its head, and plays the role of the simulator
and all honest parties. Externally, B plays the EUF-
CMA security experiment with a challenger C and
a signing oracle OS

pk,sk. When B must internally pro-
vide pkT = (pkcert

T , pkRT , pkTT) playing the role of S12
in the scope of the TSP Registration, B embeds the
external challenge as pkTT := pkC . Whenever B play-
ing the role of S12 needs to issue signatures with
respect to pkT , it does so using its external EUF-
CMA oracle OS

pk,sk. When the event (E5) occurs, B
extracts cT and σT from the proof and outputs the
forgery.

2. We construct an efficient adversary B against the
binding property of C1. Internally, B runs Zsys-sec

in its head and plays the role of the simulator and
all honest parties. Externally, B plays the role of the
adversary as defined by Definition C.7, Item 2. As
(E5) has not been raised earlier, cout

T
(i) = cout

T
∗ ̸= cT

holds for all cout
T

(i) in the same tree. Consequently,
trdb‡ with cout

T
‡ = cT is part of a different tree

in TRDB and thus Λ‡ ̸= Λ∗ = Λ follows by

P4TC 143

Lemma E.22. B sets

MT := (Λ, pkU)

from the extracted witness and obtains

Mout
T
‡ = (Λ‡, pk‡U)

from TRDB. B outputs (cT , MT , dT , Mout
T
‡
, dout
T
‡)

to the external game.

Remark E.16 asserts that the forgery in 1 and both open-
ings in 2 are indeed valid.

Lemma E.24 (Indistinguishability H12 → H15).
Under the assumptions of Theorem E.10, H12

c≡ H13
c≡

H14
c≡ H15 holds.

Proof. If an environment Zsys-sec can distinguish be-
tween any of the hops from H12 to H15 this yields an
efficient adversary against the binding property of C1.
As usual, B runs Zsys-sec in its head and internally plays
the role of the simulator and all honest parties. Exter-
nally, B plays the role of the adversary as defined by
Definition C.7, Item 2. If event (E7) or (E8) occurs, B
sets

Mprev
R = (Λ, Bprev, U1, g1X)

from the extracted witness and obtains

Mout
R
∗ := (Λ∗, B∗, U∗1 , X∗)

from TRDB. B outputs (cR, Mprev
R , dprev

R , Mout
R
∗
, dout
R
∗)

to the external game. If the event (E6) is triggered, B
proceeds analogous but for the fixed part of wallet cT .

Taking all the aforementioned statements together, The-
orem E.10 from the beginning of this appendix follows.
For the sake of formal completeness we recall it again.

Theorem E.10 (Operator Security). Under the assump-
tions of Theorem E.1

πFCRS,Gbb
P4TC ≥UC FGbb

P4TC

holds under static corruption of

1. a subset of users, or
2. all users and a subset of RSUs, TSP and SA.

Proof. A direct consequence of Lemmas E.12 to E.15,
E.18, E.20, E.21, E.23 and E.24.

E.4 Proof of User Security and Privacy

In this appendix we show the following theorem.

Theorem E.25 (User Security and Privacy). Under the
assumptions of Theorem E.1

πFCRS,Gbb
P4TC ≥UC FGbb

P4TC

holds under static corruption of

1. a subset of RSUs, TSP and SA, or
2. all RSUs, TSP and SA as well as a subset of users.

The definition of the UC-simulator Suser-sec
πP4TC for Theo-

rem E.25 can be found in Figs. 54 to 58. Please note
that while the real protocol πP4TC lives in the (FCRS,

Gbb)-model, the ideal functionality FP4TC has no CRS.
Hence, the CRS (but not the bulletin board) is likewise
simulated, providing Suser-sec

πP4TC with a lever to simulate
the ZK proofs P1, P2, and P3, to equivoke C1, and to
extract C2.

The overall proof idea is to define a sequence of
hybrid experiments Hi together with simulators Si and
protocols πi such that the first hybrid H0 is identical to
the real experiment and the last hybrid H12 is identical
to the ideal experiment. Each hybrid is of the form

Hi := EXEC
πi,Gbb,Si,Zuser-sec(1n).

Instead of directly proving indistinguishability of the
real and ideal experiment we can break the proof down
into showing indistinguishability of each pair of consec-
utive hybrids. We achieve this by demonstrating that
whenever Zuser-sec can distinguish between two consec-
utive hybrids with non-negligible probability this yields
an efficient adversary against one of the underlying cryp-
tographic assumptions. The general idea is that the pro-
tocol πi that honest parties perform gradually declines
from the real protocol π0 = πP4TC to a dummy protocol
π12, which does nothing but relay in- and outputs. At
the same time Si progresses from a dummy adversary S0
to the final simulator S12 which can be split up into the
ideal functionality FP4TC and Suser-sec

πP4TC . We proceed by
giving concrete (incremental) definitions of all hybrids
Hi.

Hybrid H0
The hybrid H0 is defined as

H0 := EXEC
π0,Gbb,S0,Zuser-sec(1n)

with S0 = A being identical to the dummy adversary
and π0 = πP4TC. Hence, H0 denotes the real experiment.

Hybrid H1
In hybrid H1 we modify S1 such that CRSpok is gener-
ated by SetupSPoK, CRS1

com is generated by C1.SimGen

P4TC 144

Simulator Suser-sec
πP4TC

Setup:

(1) Run a modified version of the algorithm CRS← Setup(1n) with

(a) CRS1
com ← C1.Gen being replaced by (CRS1

com, tdeqcom)← C1.SimGen,
(b) CRS2

com ← C2.Gen being replaced by (CRS2
com, tdextcom)← C2.ExtGen, and

(c) CRSpok ← SetupPoK being replaced by (CRSpok, tdspok)← SetupSPoK.

(2) Record CRS, tdeqcom, tdextcom, and tdspok.
(3) Set Ωdsp := ∅.
(4) Set Ωpp

U := ∅.
(5) Set HTD := ∅.

DR Registration: Upon receiving (registering_dr, pidDR) run (pkDR, skDR) ← DRRegistration(CRS), return
pkDR to FP4TC and record pidDR 7→ (pkDR, skDR).

TSP Registration: Distinguish two cases:

TSP is corrupted: (nothing to do as this is a local algorithm for a corrupted TSP)
TSP honest: Upon receiving (registering_tsp, pidT , aT) run (pkT , skT , certRT) ←

TSPRegistration(CRS, aT), return pkT to FP4TC and record pidT 7→ (pkT , skT , certRT).

RSU Registration: Distinguish two cases:

RSU is corrupted: (nothing to do as this is a local algorithm for a corrupted RSU)
RSU honest: Upon receiving (registering_rsu, pidR) run (pkR, skR)← RSURegistration(CRS), return pkR

to FP4TC and record pidR 7→ (pkR, skR).

User Registration: Upon receiving (registering_user, pidU) run (pkU , skU) ← UserRegistration(CRS), return
pkU to FP4TC and record pidU 7→ (pkU , skU).

RSU Certification: Distinguish four cases:

TSP and RSU honest: Upon receiving (certifying_rsu, pidR, aR) . . .

(1) Load the recorded pidT 7→ (pkT , skT , certRT), and pidR 7→ (pkR, skR); if any of these do not exist,
let FP4TC abort.

(2) Generate certR := (pkR, aR, σcert
R) with σcert

R ← S.Sgn(skcert
T , (pkR, aR)) faithfully.

(3) Update record pidR 7→ (pkR, skR, certR).

TSP honest, RSU corrupted: Upon receiving (certifying_rsu, pidR, aR) . . .

(1) Load the recorded pidT 7→ (pkT , skT , certRT), and obtain pkR from Gbb for pidR; if any of these do
not exist, let FP4TC abort.

(2) Generate certR := (pkR, aR, σcert
R) with σcert

R ← S.Sgn(skcert
T , (pkR, aR)) faithfully.

(3) Record pidR 7→ (pkR,⊥, certR).
(4) Output cert to Zuser-sec.

TSP corrupted, RSU honest: Upon receiving (certR) from Zuser-sec in the name of T with pidT . . .

(1) Load the recorded pidR 7→ (pkR, skR), and obtain pkT from Gbb for pidT ; if any of these do not
exist, let FP4TC abort.

(2) Parse aR and σcert
R from certR.

(3) If S.Vfy(pkcert
T , σcert

R , (pkR, aR)) = 0, let FP4TC abort.
(4) Call FP4TC with input (certify, aR) in the name of T with pidT .

TSP and RSU corrupted: (nothing to do as Zuser-sec plays both parties)

Fig. 54. The simulator for User Security and Privacy

P4TC 145

Simulator Suser-sec
πP4TC

(cont.)

Wallet Issuing: Distinguish two cases:

TSP is honest: (nothing to do)
TSP is corrupted:

(1) Load the recorded pidU 7→ (pkU , skU), and obtain pkT from Gbb for pidT ; if any of these do not
exist, let FP4TC abort.

(2) (c′seed, d′sim
seed)← C1.SimCom(CRS1

com)
(3) Send (pkU , c′seed) to Zuser-sec as the 1st message from U to T
(4) Upon receiving (certRT , aU , c′′ser, λ′′) from Zuser-sec in the name of T with pidT . . . a

(a) Parse (pkRT , aT , σcert
T) := certRT .

(b) If S.Vfy(pkcert
T , σcert

T , (pkRT , aT)) = 0 abort.
(c) Λ′′ := gλ′′

1
(d) s′′ ← C2.Extract(CRS2

com, tdextcom, c′′ser).
(e) Call FP4TC with input (issue, aU , ∅) in the name of T with pidT .b

(5) Upon receiving output (s) from FP4TC for T . . .

(a) s′ := s · s′′−1.
(b) r1, r2

R← Zp.
(c) e∗ ← E1.Enc(pkDR, (1, . . . , 1︸ ︷︷ ︸

ℓ+2

); r1, r2)

(d) (cT , dT)← C1.Com(CRS1
com, (0, 0)).

(e) (cR, dR)← C1.Com(CRS1
com, (0, 0, 0, 0)).

(f) stmnt := (pkU , pkDR, e∗, cT , cR, c′seed, Λ′′, λ′′).
(g) π ← P1.SimProof(CRSpok, tdspok, stmnt).
(h) Send (s′, e∗, cT , cR, π) to Zuser-sec as the 2nd message from U to T

(6) Upon receiving (s′′, d′′ser, σT , σR) from Zuser-sec in the name of T with pidT . . .

(a) If C2.Open(CRS2
com, s′′, c′′ser, d′′ser) = 0, let FP4TC abort.

(b) Set htd := (pkU , s, λ′′, e∗) and insert htd into HTD.
(c) Create real token τ faithfully.
(d) If WalletVerification(pkT , pkU , τ) = 0, let FP4TC abort.
(e) Let FP4TC return the delayed output to the User.

a If no message is received, let FP4TC abort; if blacklisted is received, override FP4TC’s delayed output for the User with
blacklisted.
b Use empty set as blacklist. If the TSP intended to blacklist the user, the TSP would not have sent the previous message.

Fig. 55. The simulator for User Security and Privacy (cont. from Fig. 54)

P4TC 146

Simulator Suser-sec
πP4TC

(cont.)

Debt Accumulation: Distinguish two cases:

RSU is honest: (nothing to do)
RSU is corrupted:

(1) Obtain pkT from Gbb for pidT ; if it does not exist, let FP4TC abort.
(2) Upon receiving u2, c′′ser, certR from Zuser-sec in the name of R with pidR, do . . .

(a) Parse (pkR, aR, σcert
R) := certR.

(b) If S.Vfy(pkcert
T , σcert

R , (pkR, aR)) = 0 abort.
(c) s′′ ← C2.Extract(CRS2

com, c′′ser).
(d) Call FP4TC with input (pay_toll, ∅)a in the name of R with pidR.
(e) Obtain RSU’s output (s, ϕ, aU , aR) from FP4TC, and delay the output of the User.
(f) s′ := s · s′′−1.

(3) Upon being requested by Zuser-sec to provide the second message . . .

(a) Run (chid, dhid)← C1.SimCom(CRS1
com) and append (s, chid, dhid) to Ωpp

U .
(b) (c′R, d′R)← C1.Com(CRS1

com, (0, 0, 0, 0)).
(c) Check if any (ϕ, t′, u′2) ∈ Ωdsp has been recorded previously with (ϕ) being used as key. If no,

pick t
R← Zp. If yes, load the recorded pidU 7→ (pkU , skU) and set t := t′ + skU (u2 − u′2). Insert

(ϕ, t, u2) into Ωdsp.
(d) stmnt := (pkT , pkcert

T , ϕ, aU , aprev
R , chid, c′R, t, u2).

(e) π ← P2.SimProof(CRSpok, tdspok, stmnt).
(f) Output (s′, π, ϕ, aU , aprev

R , chid, c′R, t) to Zuser-sec.

(4) Upon being ask to provide a price for (aU , aR, aprev
R) return a price p as the dummy adversary

would do.
(5) Upon receiving (s′′, d′′ser, cR, d′′R, σR, p) from Zuser-sec . . . b

(a) dR := d′R · d′′R.
(b) If C1.Open(CRS1

com, (1, gp
1 , 1, g1), cR, dR) = 0 let FP4TC abort.

(c) If S.Vfy(pkR, σR, (cR, s)) = 0 let FP4TC abort.
(d) Let FP4TC return the delayed output to the User.

a Use empty set as blacklist.
b If no message is received, let FP4TC abort; if blacklisted is received, override FP4TC’s delayed output for the User with
blacklisted.

Fig. 56. The simulator for User Security and Privacy (cont. from Fig. 54)

P4TC 147

Simulator Suser-sec
πP4TC

(cont.)

Debt Clearance: Distinguish two cases:

TSP is honest: (nothing to do)
TSP is corrupted:

(1) Load the recorded pidU 7→ (pkU , skU), and obtain pkT from Gbb for pidT ; if any of these do not
exist, let FP4TC abort.

(2) Upon receiving u2 from Zuser-sec in the name of T with pidT , do . . .

(a) Call FP4TC with input (clear_debt) in the name of T with pidT .
(b) Obtain leaked aprev

R .
(c) Obtain TSP’s output (pidU , ϕ, bbill) from FP4TC, and delay the output of the User.

(3) Upon being requested by Zuser-sec to provide the second message . . .

(a) Check if any (ϕ, t′, u′2) ∈ Ωdsp has been recorded previously with (ϕ) being used as key. If no,
pick t

R← Zp. If yes, load the recorded pidU 7→ (pkU , skU) and set t := t′ + skU (u2 − u′2). Insert
(ϕ, t, u2) into Ωdsp.

(b) stmnt := (pkU , pkT , pkcert
T , ϕ, aU , aprev

R , gbbill

1 , t, u2).
(c) π ← P3.SimProof(CRSpok, tdspok, stmnt).
(d) Output (pkU , π, ϕ, aU , aprev

R , bbill, t) to Zuser-sec.

(4) Upon receiving (OK) from Zuser-sec,a let FP4TC return the delayed output to the User.

a If no message is received, let FP4TC abort.

Fig. 57. The simulator for User Security and Privacy (cont. from Fig. 54)

P4TC 148

Simulator Suser-sec
πP4TC

(cont.)

Prove Participation:

(1) Load the recorded pidU 7→ (skU , pkU); if this does not exist let FP4TC abort.
(2) Upon receiving Spp

R from Zuser-sec in the name of SA . . .

(a) Call FP4TC with input (prove_participation, pidU , Spp
R).

(b) Obtain the SA’s output (out) from FP4TC.
(c) If out = NOK, abort.
(d) Pick ωpp

U = (s, chid, dhid) from Ωpp
U such that s ∈ Spp

R ; if this does not exist abort.
(e) Equivoke dhid ← C1.Equiv(CRS1

com, skU , chid, dhid).
(f) Output (s, chid, dhid) to Zuser-sec as message from U to SA.

Double-Spending Detection: Upon being ask to provide a proof for pidU , look up pidU 7→ (pkU , skU), and return
skU .

Guilt Verification: Upon being ask by FP4TC to provide out for (pidU , π) . . .

(1) Receive pkU from Gbb for pidU .
(2) If gπ

1 = pkU , then return out := OK, else out := NOK to FP4TC.

User Blacklisting: Distinguish two cases:

TSP honest: (nothing to do)
TSP corrupted:

(1) Load the recorded pidDR 7→ (pkDR, skDR).
(2) Upon receiving HTDU from Zuser-sec . . .

(a) HTDgenuine
U =

{
(pkU , s, λ′′, e∗)

∣∣ (·, ·, λ′′, e∗) ∈ HTDU ∧ (pkU , s, λ′′, e∗) ∈ HTD
}

(b) HTDfake
U = {(pkU , s, λ′′, e∗) | (·, s, λ′′, e∗) ∈ HTDU ∧ (·, ·, λ′′, e∗) /∈ HTD∧

(. . . , pkU)← E1.Dec(skDR, e∗)}
(c) Assert pk(1)

U = pk(2)
U for all (pk(1)

U , ·, ·, ·), (pk(2)
U , ·, ·, ·) ∈ HTDgenuine

U ∪ HTDfake
U and set pkTU :=

pk(1)
U , else abort

(d) Call FP4TC with (blacklist_user, pkTU).

(3) Upon being ask by FP4TC to provide Sroot . . .

(a) Sroot :=
{

s
∣∣ (·, s, ·, ·) ∈ HTDgenuine

U
}

(b) Provide Sroot to FP4TC

(4) Upon receiving TSP’s output (bbill, Φbl) from FP4TC . . .

(a) For HTDfake
U recover Φfake as the real DR would do

(b) Send ΦU := Φbl ∪ Φfake to FP4TC as the message from DR to T

Fig. 58. The simulator for User Security and Privacy (cont. from Fig. 54)

P4TC 149

and CRS2
com is generated by C2.ExtGen. Additionally, S1

initializes the internal sets Ωdsp, Ωpp
U and HTD as empty

sets and records the respective entries as the final simu-
lator Suser-sec

πP4TC does.

Hybrid H2
Hybrid H2 replaces the code in the tasks DR/TSP/RSU/
User Registration of the protocol π2 such that the sim-
ulator S2 is asked for the keys instead. This equals the
method in which the keys are generated in the ideal
experiment.

Hybrid H3
In hybrid H3 the task RSU Certification is modified.
For an honest TSP or an honest RSU the code of π3 is
replaced by the code of a dummy party. The simulator
S3 behaves in this case as the final simulator Suser-sec

πP4TC

would.

Hybrid H4
H4 modifies the tasks of Wallet Issuing and Debt Accu-
mulation. The code of π4 for the user is modified such
that it does not send s′ but randomly picks s and sends
it to S4. Then S4 extracts s′′ ← C2.Extract(CRS2

com, c′′ser),
calculates s′ := s · (s′′)−1 and inserts s′ into the message
from the user to the TSP or RSU respectively.

Hybrid H5
This hybrid modifies π5 such that the honest parties do
not send any proofs. Instead, the simulator S5 appends
a simulated proof to the message from a user to a TSP
or RSU without knowing the witness.

Hybrid H6
H6 modifies π6 such that honest users do not send the
commitments c′seed, cT and cR in the Wallet Issuing
task and c′R in the Debt Accumulation task. Instead, S6
injects suitable commitments to vectors of zeros. This
equals the behavior of the final simulator Suser-sec

πP4TC .

Hybrid H7
This hybrid introduces a lookup table that links hid-
den user trapdoors to their origin. More precisely, if
the task Wallet Issuing is executed, S7 records htd =
(pkU , s, λ′′, e∗) in HTD. Please note that S7 knows s due
to the change in H4.

Moreover, if the task User Blacklisting is invoked,
S7 partitions the set of hidden user trapdoors HTDU

provided by the environment into two “subsets”33

HTDgenuine
U and HTDfake

U (cp. Fig. 58, Steps 2a to 2c). If
for a hidden user trapdoor htd = (pkU , s, λ′′, e∗) a corre-
sponding entry (·, ·, λ′′, e∗) is recorded in HTD, then we
call it a genuine hidden user trapdoor and the public
key pkU and the serial number s are set to the orig-
inally recorded value. Genuine hidden user trapdoors
are those which have legitimately been created in the
scope of Wallet Issue. Else we call it a fake hidden user
trapdoor. In this case, the provided serial number s is
left as is and the public key pkU is set to the decrypted
value from e∗.34 S7 additionally checks if the hidden user
trapdoors of both sets HTDgenuine

U and HTDfake
U belong

to the same user public key pkTU or else aborts. This
equals the behavior of the final simulator.
S7 runs the code of an honest DR on HTDgenuine

U ∪
HTDfake

U to recover ΦU , i.e., it decrypts every hidden
user trapdoor and evaluates the PRF itself. For the DR
the code of π7 is changed such that it simply signals its
consent by forwarding its input pkDR

U to S7.
Hybrid H7 is a preparative step to eventually free

the simulator from having to actually decrypt genuine
hidden user trapdoors in case a user is blacklisted. De-
cryption of genuine hidden user trapdoors becomes im-
possible for the final simulator Suser-sec

πP4TC as hybrid H9 re-
places all hidden user trapdoors with an encryption of
zeros. However, a hidden user trapdoor is not bound to
any user secrets. This allows a (malicious) TSP to pick
an arbitrary chosen wallet ID λfake and create a syntacti-
cally valid hidden user trapdoor for λfake and any public
user key pkU . If the DR and the (malicious) TSP agree
to blacklist a user, the TSP may send these fake hidden
user trapdoors in addition to the genuine hidden user
trapdoors to the DR. In the real protocol the DR sim-
ply decrypts both types of hidden user trapdoors and
returns a list of pseudo-random fraud detection IDs for
each of them.35 The final simulator needs to mimic this
behavior. The ideal functionality always returns a list
of uniformly drawn fraud detection IDs of the correct
length only for legitimately issued wallets. Hence, the
final simulator extends this list by fraud detection IDs
for each of the fake hidden user trapdoors.

33 The sets HTDgenuine
U and HTDfake

U might be no actual “sub-
sets”. The hidden user trapdoors are classified with respect to
(·, ·, λ′′, e∗) which are left unmodified, but the first two compo-
nents (pkU , s, ·, ·) are sanitized.
34 We assume, that Dec returns ⊥ if e∗ cannot be decrypted.
35 Skipping ahead, please note that this is not a “real” attack
but only a very cumbersome way for the TSP to evaluate the
PRF on self-chosen seeds.

P4TC 150

Hybrid H8
This hybrid introduces a new incorruptible entity
Fϕ-rand into the experiment that is only accessible by
honest users and the simulator through subroutine in-
put/output tapes.36

Fϕ-rand provides the following functionality: Inter-
nally, Fϕ-rand manages a partial map fΦ, mapping pairs
of wallet IDs λ and counters x to fraud detection IDs.
Whenever an as yet undefined value fΦ(λ, x) is required,
Fϕ-rand defines fΦ(λ, x) := PRF(λ, x). If a user requests a
fraud detection ID ϕ for (λ, x), Fϕ-rand returns fΦ(λ, x)
to the user. If an honest user inquires Fϕ-rand for the
first time for a fresh λ, the user has to also provide the
corresponding serial number s of the current transac-
tion. Fϕ-rand internally records that s is associated with
λ. If Fϕ-rand is invoked by the simulator with input s,
Fϕ-rand looks up the associated wallet ID λ and returns
the set {fΦ(λ, 0), . . . , fΦ(λ, xblR)}.

An honest user running π8 does not evaluate the
PRF to obtain a fraud detection ID ϕ, but requests
Fϕ-rand to provide one.

If User Blacklisting is invoked, the simulator S8 pro-
ceeds as follows: For hidden user trapdoors in the set
HTDfake

U it still decrypts the seed and evaluates the PRF.
However, for hidden user trapdoors (pkU , s, λ′′, e∗) in the
set HTDgenuine

U , S8 it does not decrypt e∗, but requests
Fϕ-rand for the corresponding set of fraud detection IDs
using s.

Hybrid H9
In the scope of Wallet Issuing π9 is modified such that
honest users do not send e∗. Instead, S6 injects an en-
crypted zero-vector as e∗.

Hybrid H10
Hybrid H10 replaces the PRF inside Fϕ-rand by truly
random values. Whenever an as yet undefined value
fΦ(λ, x) is required, Fϕ-rand independently and uni-
formly draws a fresh random fraud detection id ϕ and
sets fΦ(λ, x) := ϕ.

Hybrid H11
In H11 Debt Accumulation and Debt Clearance are mod-
ified such that the simulator S11 replaces t in the mes-
sage from the user. If no (ϕ, t′, u′2) ∈ Ωdsp has been
recorded previously, S11 picks t

R← Zp, else S11 sets

36 I.e., communication is confidential, reliable and trustworthy.
One might think of this entity as a preliminary version of the
eventual ideal functionality.

t := t′ + skU (u2 − u′2). Finally, S11 inserts (ϕ, t, u2) into
Ωdsp. This equals the behavior of the final simulator
Suser-sec

πP4TC .

Hybrid H12
The hybrid H12 modifies Debt Accumulation and Prove
Participation. In Debt Accumulation the simulator S12
runs (chid, dhid) ← C1.SimCom(CRS1

com) and appends
(s, chid, dhid) to Ωpp

U . In Prove Participation the code
of S12 for the honest user is replaced by a code that
just checks if the user has a matching and correct
(s∗, c∗hid, d∗hid) and respectively sends OK or NOK to S12.
If S12 receives OK from the user, then it picks ωpp

U =
(s, chid, dhid) from Ωpp

U such that s ∈ Spp
R . Furthermore,

it runs dhid ← C1.Equiv(CRS1
com, skU , chid, dhid) and sends

(s, chid, dhid) to T . Again, this equals the behavior of the
final simulator Suser-sec

πP4TC .

The combinations of all modifications from H0 to H12
yields

H12 = EXEC
π12,Gbb,S12,Zuser-sec(1n)

= EXECFP4TC,Gbb,Suser-sec
πP4TC

,Zuser-sec(1n).

With these hybrids we can now give the proof of Theo-
rem E.25. We do not spell out all steps of the proofs in
full detail, but rather sketch the necessary reductions.

Proof of Theorem E.25.
From H0 to H1: This hop solely changes how the

CRS is created during the setup phase. This is indistin-
guishable for CRSpok, CRS1

com, and CRS2
com (see the com-

posable zero-knowledge property of Definition C.5, the
equivocality property and the extractability property of
Definition C.7, resp., condition (a) each).

From H1 to H2: This hop does not change anything
in the view of Zuser-sec as S2 runs the same key gen-
eration algorithm as the real protocol does for honest
parties.

From H2 to H3: Again, this hop only changes which
party runs which part of the code, but has no effect on
the view of Zuser-sec.

From H3 to H4: This hop does not change anything
from the perspective of Zuser-sec as C2 is perfectly ex-
tractable. The change is a purely syntactical one to push
the simulator closer to Suser-sec

πP4TC .
From H4 to H5: This game hop replaces the real

proofs by simulated proofs. To show indistinguishabil-
ity despite this change, we actually have to consider a
sequence of sub-hybrids—one for each of the different
ZK proof systems P1, P2 and P3. In the first sub-hybrid

P4TC 151

all proofs for P1 are replaced by simulated proofs, in
the second sub-hybrid all proofs for P2 are replaced and
finally all proofs for P3. Assume there exists Zuser-sec

that notices a difference between H4 and the first sub-
hybrid. Then we can construct an adversary B that has
a non-negligible advantage Advpok-zk

POK,B(n). Internally, B
runs Zuser-sec and plays the protocol and simulator for
Zuser-sec. All calls of the simulator to P1.Prove are for-
warded by B to its own oracle in the external challenge
game which is either P1.Prove or P1.SimProof. B out-
puts whatever Zuser-sec outputs. The second and third
sub-hybrid follow the same line, but this time B inter-
nally needs to generate simulated proofs for the proof
system that has already been replaced in the previous
sub-hybrid. As B gets the simulation trapdoor as part
of its input in the external challenge game, B can do so.

From H5 to H6: In this hop the commitments c′seed,
cT , cR and c′R are replaced with commitments to zero-
messages for every honest user. Again, the hop from
H5 to H6 is further split into a sequence of sub-hybrids
with each sub-hybrid replacing a single commitment in
reverse order of appearance. Assume Zuser-sec can distin-
guish between H5 and H6 with non-negligible advantage.
This yields an efficient adversary B against the hiding
property of C1. Please note that none of the commit-
ments are ever opened, hence in each sub-hybrid only
a single message is replaced. Internally, B runs Zuser-sec

and plays the role of all parties and the simulator for
Zuser-sec. Externally, B plays the hiding game. First, B
guesses the index i of the sub-hybrid which lets Zuser-sec

distinguish. For the first (i−1) commitments, B commits
to the true message. For the ith commitment, B sends
the actual message and an all-zero message to the ex-
ternal challenger. B embeds the external challenge com-
mitment (either to the actual message or the all-zero
message) as the ith commitment. All remaining commit-
ments are replaced by commitments to zeros. B outputs
whatever Zuser-sec outputs.

From H6 to H7: This hop is perfectly indistinguish-
able from the environment’s perspective as the addi-
tional code executed by S7 does not change the output.
Note that the hidden user trapdoors are still recovered
in the same way the real DR would. For hidden user trap-
doors htd = (pkU , s, λ′′, e∗) in HTDgenuine

U the (outer)
public key pkU is replaced by the public key that has
originally been recorded for (·, ·, λ′′, e∗). However, due
to the correctness of E1 the ciphertext e∗ determines
a unique message (for a fix key pair pkDR, skDR) and
thus the originally recorded pkU equals the one that e∗

decrypts to. The additional, pairwise equality check for

all public keys triggers an abort if and only if the real
DR aborts as well.

From H7 to H8: Again, this hop is purely syntacti-
cal. The inserted entity Fϕ-rand is invisible for Zuser-sec.
Moreover, Fϕ-rand still uses the real PRF to generate
fraud detection IDs. However, this hop frees S8 from
the decryption of genuine hidden user trapdoors. In-
stead, S8 uses the originally recorded serial number s

of the associated Wallet Issuing task to look up the set
{PRF(λ, 0), . . . , PRF(λ, xblR)}, if required. Again, this is
possible due to the correctness of E1, i.e., e∗ uniquely
determines λ and thus maps to a unique s.

From H8 to H9: In this hop every encryption e∗ of
a wallet ID λ is replaced by an encryption of a 1-vector
for every honest user. We further split this hop into a
sequence of sub-hybrids, with each sub-hybrid replacing
a single encryption in reverse order of appearance. As-
sume Zuser-sec can distinguish between H8 and H9 with
non-negligible advantage. This yields an efficient adver-
sary B against the IND-CCA security of the encryption
scheme E1. Internally, B runs Zuser-sec and plays the
role of all parties and the simulator for Zuser-sec. Exter-
nally, B plays the IND-CCA game. When B—playing
the role of the simulator—needs to provide the public
key in the scope of DR Registration, it embeds the chal-
lenge key pkDR := pkC . B needs to guess the index of the
sub-hybrid that causes a non-negligible difference, i.e.,
B needs to guess which (user) wallet causes distinguisha-
bility. For the first (i− 1) invocations of Wallet Issuing,
B encrypts the true seed, in the ith invocation B embeds
the external challenge and B encrypts a 1-vector for the
remaining invocations of Wallet Issuing. If Zuser-sec in-
vokes the task Blacklist User and B needs to restore the
wallet ID, the following two cases may occur: a) The
presented hidden user trapdoor is a genuine trapdoor.
In this case B uses its lookup table to recover the cor-
rect set of fraud detection IDs. b) The presented hidden
user trapdoor is a fake trapdoor. In this case B uses its
decryption oracle of the external CCA-game to restore
the wallet ID λ and to create a set of fraud detection
IDs. B outputs whatever Zuser-sec outputs.

From H9 to H10: In this hop the pseudo-random
fraud detection IDs for honest users are replaced by uni-
formly drawn random IDs. Again, we proceed by intro-
ducing a sequence of sub-hybrids. In each sub-hybrid
the fraud detection IDs for one particular wallet ID λ

are replaced. If Zuser-sec can distinguish between two
of the sub-hybrids, this immediately yields an efficient
adversary against the pseudo-random game as defined
in Definition C.12. Internally, B runs Zuser-sec and plays
the protocol and simulator for Zuser-sec. Externally, B in-

P4TC 152

teracts with an oracle that is either a true random func-
tion R(·) or a pseudo-random function PRF(λ̂, ·) for an
unknown seed λ̂. Whenever B playing Fϕ-rand internally
needs to draw a fraud detection ID for the particular
wallet λ, B uses its external oracle. B outputs whatever
Zuser-sec outputs. Please note, this argument crucially
uses the fact that Zuser-sec is information-theoretically
independent of λ. The hidden user trapdoors e∗ have
already been replaced by encryptions of 1-vectors in the
previous hybrid H9. This enables the external challenger
to pick any seed λ̂.

From H10 to H11: This hop is statistically identi-
cal. As long as no double-spending occurs, the user
chooses a fresh u1 in every transaction and thus a sin-
gle point (u2, t) is information-theoretically independent
from skU .

From H11 to H12: In this hop the simulator S12 sends
simulated commitments chid for the hidden user ID in-
stead of commitments to the true values. Later, S12
equivokes these commitments on demand to the correct
pkU , if Zuser-sec triggers Prove Participation. Again, if
Zuser-sec has a non-negligible advantage to distinguish
between H11 and H12, then an efficient adversary B can
be constructed against the hiding property and equivo-
cality of C1. The reduction follows the same lines as in
the hop from hybrid H5 to H6.

	P4TC—Provably-Secure yet Practical Privacy-Preserving Toll Collection
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Considered Scenario
	3 System Definition
	4 System Instantiation
	5 Security Theorem
	6 Performance Evaluation
	A Full System Definition
	A.1 Tasks provided by FP4TC
	A.2 Full Ideal Functionality
	A.2.1 System Setup Tasks
	A.2.2 Basic Tasks
	A.2.3 Feature Tasks

	A.3 Properties of FP4TC

	B Information Leakage and Discussion on Privacy Implications
	C Protocol Assumptions and Building Blocks
	C.1 Algebraic Setting and Assumptions
	C.2 Cryptographic Building Blocks
	C.2.1 Group setup
	C.2.2 NIZKs
	C.2.3 Commitments
	C.2.4 Digital signatures
	C.2.5 Asymmetric Encryption
	C.2.6 Symmetric Encryption
	C.2.7 Pseudo-Random Functions

	C.3 Types of Equations Supported by GS-NIZKs

	D Full Protocol
	D.1 Secure Authenticated Channels
	D.2 Wallets
	D.3 System Setup
	D.4 Registration
	D.5 RSU Certification
	D.6 Wallet Issuing
	D.7 Debt Accumulation
	D.8 Debt Clearance
	D.9 Prove Participation
	D.10 Double-Spending Detection
	D.11 Guilt Verification
	D.12 User Blacklisting
	D.13 Wallet Verification

	E Security Proof
	E.1 Adversarial Model
	E.2 Proof of Correctness
	E.3 Proof of Operator Security
	E.4 Proof of User Security and Privacy

