
Proceedings on Privacy Enhancing Technologies ; 2020 (3):327–355

Wouter Lueks*, Brinda Hampiholi, Greg Alpár, and Carmela Troncoso

Tandem: Securing Keys by Using a Central
Server While Preserving Privacy
Abstract: Users’ devices, e.g., smartphones or laptops,
are typically incapable of securely storing and process-
ing cryptographic keys. We present Tandem, a novel set
of protocols for securing cryptographic keys with sup-
port from a central server. Tandem uses one-time-use
key-share tokens to preserve users’ privacy with respect
to a malicious central server. Additionally, Tandem en-
ables users to block their keys if they lose their device,
and it enables the server to limit how often an adversary
can use an unblocked key. We prove Tandem’s secu-
rity and privacy properties, apply Tandem to attribute-
based credentials, and implement a Tandem proof of
concept to show that it causes little overhead.

Keywords: privacy, threshold cryptography, anonymity

DOI 10.2478/popets-2020-0055
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
Privacy-preserving technologies are increasingly de-
ployed in real-life scenarios, such as identity manage-
ment, e.g., Kryptic1 and IRMA [4], and digital curren-
cies [60] and products, e.g., the Vega Protocol2. These
technologies rely on cryptographic protocols and thus
their security and privacy properties hinge on the secu-
rity of the underlying cryptographic keys.

Privacy-preserving cryptographic protocols are typ-
ically executed on users’ devices such as phones, tablets,
and laptops. These devices, however, are notoriously
hard to secure and the cryptographic keys are often

*Corresponding Author: Wouter Lueks: SPRING Lab,
EPFL; E-mail: wouter.lueks@epfl.ch
Brinda Hampiholi: Philips Research, all work done
while a PhD student at Radboud University; E-mail:
brinda.hampiholi@philips.com
Greg Alpár: Open University of the Netherlands, and Rad-
boud University; E-mail: greg.alpar@ou.nl
Carmela Troncoso: SPRING Lab, EPFL; E-mail:
carmela.troncoso@epfl.ch

1 https://kryptik.com/
2 https://vegaprotocol.io/

stored or processed insecurely. A common approach to
increase the security of the users’ keys is to rely on
threshold cryptography to not store the entire key in one
device. Instead, these protocols secret-share the user’s
key between two or more parties, and enable the key’s
use without ever reconstructing it. This prevents passive
and active attackers from learning the key. Typical solu-
tions, such as Shatter [7], assume the user has multiple
trustworthy devices that can hold shares. While effec-
tive, this approach has availability and usability issues.
To address these issues, some approaches instead rely
on a highly available central server to store the shares
that are not held in the user’s device.

Naïvely using threshold cryptography with a cen-
tral server, however, can harm the users’ privacy. As the
central server is involved in every key use, it learns the
users’ key-usage patterns. This information can enable
deanonymization of anonymous transactions by corre-
lating key uses with public activities; e.g., by correlating
key usages with updates to a blockchain ledger [44, 49].

We present Tandem, a set of protocols that aug-
ment threshold-cryptographic schemes in order to en-
able the use of a central server as share holder for in-
creased security, while preserving the privacy of key-
usage patterns. In Tandem, users obtain one-time-use
key-share tokens from the central server which contain
randomized versions of the central server’s key share.
To use their key, users send a key-share token to the
server via an anonymous communication channel. The
embedded randomized key share enables the server to
run the threshold-cryptographic protocol without learn-
ing the user’s identity.

The construction of key-share tokens decouples the
obtaining and using of tokens. The one-time property
provides two security features: the blocking of keys and
the rate limiting of unblocked keys. These hold even
against active attackers that can compromise the user’s
device, and thus obtain the user’s key share and key-
share tokens, and can observe usage of the key.

Tandem can be used to secure the keys of any
cryptographic scheme (e.g., encryption, signature, or
payments) for which a linearly randomizable threshold-
cryptographic version exists; this version does not re-
quire information that identifies the user besides the

https://kryptik.com/
https://vegaprotocol.io/


Tandem: Securing Keys by Using a Central Server While Preserving Privacy 328

key; and this version is secure when operating on lin-
early randomized keys. Not all threshold-cryptographic
schemes satisfy these properties. For example, Tandem
cannot be applied to existing threshold DSA schemes
because either they are multiplicative [57] or they re-
quire identifying information [40, 41].

To demonstrate the potential of Tandem, we ap-
ply it to a threshold version of BBS+ attribute-based
credentials (ABCs). ABCs [8, 18, 21, 27] protect users’
anonymity during authentication. Introducing a central
server that could learn which services users access de-
feats the very purpose of ABCs. Tandem enables users
to securely use their credential keys without the cen-
tral server learning who is using the key, preserving
the user’s privacy even if the central server and the
service provider collude. Tandem can be used to ex-
tend many privacy-enhancing technologies such as other
attribute-based credential schemes [18, 21, 27], group
signatures [14, 28], and electronic cash schemes [23, 60].

Tandem can also be beneficial to non-privacy-
preserving cryptographic primitives. For instance, it
can be used with threshold variants of Schnorr signa-
tures [42] or ElGamal-based encryption schemes [38, 73]
to increase key security without revealing usage patterns
to the third party storing the key shares.

We evaluate the practicality of the Tandem pro-
tocols on a prototype C implementation. When using
the key, Tandem introduces a 50 – 100ms overhead on
the central server with respect to traditional threshold-
cryptographic solutions. For the user, it only adds 5–
25ms overhead. This is negligible with respect to the
delay introduced by the use of anonymous communica-
tions, which is needed in privacy-preserving use cases.

In summary, we make the following contributions:
X We formalize the security and privacy properties re-
quired when using a threshold-cryptographic protocol
with a central server.
X We introduce Tandem. It enables the use of
threshold-cryptographic protocols with a central server
without revealing key-usage patterns. Tandem also en-
ables blocking and rate limiting of key usage against
active attackers.
X We provide a threshold version of BBS+ attribute-
based credentials [8], and show how Tandem augments
its security while retaining its privacy properties.
X We prove the security and privacy of Tandem, and
validate its practicality on a prototype implementation.
The time-critical computations take less than 100ms,
imposing reasonable overhead on server and users.

2 Related Work
Existing solutions to protect cryptographic keys fall into
two categories: single-party and decentralized. Securing
single-party software-based solutions is hard [47, 52, 55,
75]. Secure hardware [37, 58, 70] increases security but
it is expensive, is not always available or not accessible
to developers [5, 59], is harmful to usability [32], or is
not flexible enough to run advanced protocols.

Threshold cryptography [17, 33] strengthens cryp-
tographic protocols by distributing the user’s secret key
among several parties. There exist a number of thresh-
old encryption and signature schemes [3, 34, 42, 43, 45,
65, 68, 72], with versions that can run in users’ per-
sonal devices [7]. Other works have tackled more compli-
cated protocols, e.g., to distribute the user’s secret key
in attribute-based credentials [18], or to make threshold-
cryptographic versions of zero-knowledge proofs [51].

Many works propose systems in which the user’s
secret key is shared between a user’s device and a cen-
tral server [15, 16, 20, 26, 54, 56]. These schemes enable
users to block their keys, but do not provide user privacy
towards the central server as it is essential that users au-
thenticate themselves to the server to enable the server
to find the correct key. Adding anonymous communica-
tion or retrieval mechanisms does not resolve this pri-
vacy problem. Camenisch et al. [26] ensure privacy to
some extent in signature schemes by blinding the mes-
sage being signed during the threshold protocol with the
server. Yet, the server learns when and how often the
user uses her signing key. Hence, users are vulnerable to
timing attacks [49]. Brands’ scheme [18] protects against
timing attacks as long as the shareholder cannot store a
timed log of operations (e.g., when it is a smart card),
but not when keys are shared with an online server.

Tandem is designed to increase the privacy of these
threshold-cryptographic solutions. We compare the pri-
vacy properties obtained when using Tandem with
those in previous proposals in Table 1. We consider
three privacy aspects: user’s anonymity when running
the threshold protocol (i.e., need to authenticate); data
hiding (e.g., signed message) in the protocol from the
server; and usage pattern hiding to avoid timing at-
tacks. Generic schemes focus on the security of the key
and thus provide no privacy. The special-purpose de-
signs only protect data involved in the protocol.

Password-hardening services [25, 39] use decentral-
ization to increase security of authentication servers
against brute-force attacks. Similarly to Tandem, these
schemes introduce a hardening server to rate limits



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 329

Table 1. Comparison of generic, special-purpose and Tandem-
augmented threshold-cryptographic protocols (TCPS).

Generic S. Purpose with
e.g., [42, 73] [18, 26] Tandem

Anonymous key usage × × X
Hide protocol data × X (*)
Hide key-usage patterns × × X

* Achieved by Tandem if the underlying TCP does.

or block requests from the main authentication server.
However, in the password scenario the hardening server
is only accessed by the authentication server. Therefore,
there are no privacy concerns and indeed these tech-
niques do not provide any privacy protection.

Single-password authentication schemes [2, 48, 69]
hide the user’s password from potentially malicious au-
thentication servers. Similar to Tandem, [2, 48] use a
central server to help the user to authenticate to the
authentication server. These schemes, however, recon-
struct the user’s authentication key in the user’s device,
and thus cannot protect against active attackers.

3 Problem Statement
We consider a scenario where users are required to
perform cryptographic operations on insecure devices
(i.e., without secure hardware) to interact with a ser-
vice provider (SP). To keep their keys safe, users use
a central server to run threshold-cryptographic proto-
cols (TCPs). The TCP protects the security of users’
keys against active adversaries that can compromise a
users device, and that can observe the key being used in
protocols. As long as the central server remains honest,
security is guaranteed: key usage can be blocked and
rate-limited.

Users wish to retain the privacy they had with re-
spect to the SP before using the central server with
TCPs, even if the central server is malicious and col-
ludes with the SP. We call an execution of the protocol
between the user and the central server a transaction.
Security and privacy properties. We formalize the
desired security and privacy properties of the system.

Property 1 (Key security). The central server should
prevent unauthorized use of the user’s key even if the
user’s device is compromised. The user must be able to
block a compromised key at the server so that the at-
tacker can no longer use it.

Any solution that recomputes the full user’s key on the
user’s device, e.g., by deriving it from a user-entered
passphrase or by interacting with a central server [2, 48],
does not satisfy this property: an attacker who compro-
mises the user’s device can observe the full key. There-
after, the attacker can use the key indefinitely, making
blocking impossible.

Property 2 (Key-use privacy). The user must have
privacy of key use in transactions. The central server
must not be able to distinguish between two users per-
forming transactions even if it colludes with the ser-
vice provider (SP). (Unless the SP could distinguish the
users, in which case collusion leads to a trivial and un-
avoidable privacy breach).

Property 3 (Key rate-limiting). Users must be able to
limit the rate of usage of their keys in a given interval
of time called an epoch.

Threat model. We assume the central server is avail-
able, and follows the protocols to enforce key security
and rate-limits on the users’ keys (Property 1 and Prop-
erty 3) in the face of active attackers. Servers that vio-
late this assumption cannot use the user’s key as long
as the user’s device remains honest.

For privacy, the central server may be malicious, i.e.,
interested in breaching the privacy of users by trying to
learn which keys and services they use (Property 2). It
can collude with the SP.
Why naïve centralization does not work. Consider
a user that secret-shares her key with the central server.
When she needs to run a threshold-cryptographic pro-
tocol, she authenticates against the central server and
jointly executes the TCP with it. This scheme offers
key security (Property 1): The server alone cannot use
the user’s key and if an attacker compromises the user’s
device the user can authenticate to the central server
and request blocking. It also provides key rate-limiting
(Property 3): the central server can easily enforce a limit
on the number of times the key is used. However, since
the user is identified while using the key, the scheme
does not achieve key-use privacy (Property 2).

The lack of key-use privacy has implications when
the interactions between the user and the SP are anony-
mous (e.g., showing an anonymous credential). An SP
colluding with the central server can exploit time corre-
lations between the times when the authenticated user
interacts with the central server and when the anony-
mous user interacts with the SP to de-anonymize the
user. The anonymity set of the user is reduced to the



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 330

authenticated users interacting with the central server
around the transaction time. This attack has been used
in the early days of Tor to identify users and hidden ser-
vices [1, 61]. As this attack relies solely on time correla-
tion between accesses, it cannot be prevented by making
the messages seen by the central server and the SP dur-
ing the TCP cryptographically unlinkable [18].

Straightforward approaches to prevent time-
correlation attacks such as introducing delays and
introducing dummy requests are difficult to use in
practice. Either operations need to be delayed for a
long time, ruling out real-time applications such as
showing an anonymous credential or performing a
payment; or impose high overhead on the users and the
central server, and are difficult to generate [11, 31].

4 Tandem at a Glance
We introduce Tandem, a set of protocols that wrap
threshold-cryptographic schemes to provide privacy
when the user’s key is shared with a central server (the
Tandem server, TS). Tandem ensures key security and
key rate-limiting, formalized in Game 7.1, and key-use
privacy, formalized in Game 7.3, if the TS colludes with
service providers (SPs), and Definition 2, if it does not.

For simplicity, we assume that there is only one
Tandem server (TS). Secret-sharing the key with multi-
ple Tandem servers would increase security and/or ro-
bustness, without detriment to privacy. We explain how
to do so in Appendix A.2. We also assume that users
can use an anonymous communication channel [35, 66]
to communicate with the TS and SPs to protect their
privacy at the network layer.

Suppose that Alice uses Schnorr’s identification
protocol to authenticate herself to her bank. Let p

be the group order. To prevent others from accessing
her account, Alice protects her secret key x using the
threshold-cryptographic version of Schnorr’s protocol
in Fig. 2. The bank knows Alice’s public key h. Alice
creates shares xS and xU such that x = xS + xU . She
gives xS to a Tandem server, keeping xU on her de-
vice. We sketch how Tandem can wrap the threshold-
cryptographic Schnorr protocol so that Alice retains the
advantage of using a central server, without revealing
her actions to this party. Fig. 1 illustrates the process.

Tandem uses an additive homormorphic encryption
scheme (E+

pk ,D
+
sk) [50], and a blind signature scheme [8,

10]. The TS generates key-pairs (pk, sk) and (pkσ, skσ)
for these respective schemes and publishes pk and pkσ.

User TS
RegisterUser

xU

skU

xS

User TS
ObtainKeyShareToken

skU

GenShares
~xSxU

~
User TSTCP

an
on

ym
ou

s 
co

m
m

un
ic

at
io

n 

P
SP

R
eg

is
te

r
O

bt
ai

n 
to

ke
n

U
se

 to
ke

n 

User TS
BlockShare

B
lo

ck

xS

Fig. 1. During registration, the user and TS derive key-shares xU
and xS of a secret x = xU +xS . The user stores its authentication
key skU . Users authenticate before obtaining key-share tokens
( ), containing a randomized server key share x̃S . To use her
key x anonymously, the user connects to the TS via an anony-
mous channel and sends a key-share token. The TS recovers the
key share x̃S and uses it to run the TCP with the user share x̃U
(the user and SP run protocol P). The user can block her key-
share tokens at any time without any key. Inputs are shown above
the arrows, outputs below.

Registration. Alice registers with the TS using the
RegisterUser protocol. During registration, Alice and the
TS jointly compute long-term shares xU and xS of a
long-term key x. Alice generates a public-private key
pair (pkU , skU ), and sends pkU to the TS. The TS sends
an homomorphic encryption xS = E+

pk(xS) to Alice. Be-
cause xS is encrypted against the TS’s key, Alice does
not learn anything about the share xS .
Obtain token. Key-share tokens enable Alice to later
anonymously use her key (see below). To obtain a to-
ken, Alice runs the ObtainKeyShareToken protocol with

Server User SP
x̃S ∈ Zp x̃U ∈ Zp h = gx

tS ∈R Zp tU ∈R Zp
uS = gtS

uS uU = gtU

u = uSuU
u

c c c ∈R Zp
rS = tS + cx̃S

rS rU = tU + cx̃U

r = rU + rS
r u

?= grh−c

Fig. 2. A threshold version of Schnorr’s proof of identity. The
user and the server respectively hold the (fresh) shares x̃U and
x̃S of the private key x = x̃U + x̃S corresponding to the public
key h = gx . They jointly compute a proof of knowledge of x
such that h = gx . We write TCP for the threshold-cryptographic
protocol between the user and the server, and P for the protocol
between the user and the SP.



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 331

the TS. First, she uses skU to authenticate to the TS.
Then, Alice and the TS construct a one-time-use key-
share token containing a randomized version of the TS’s
key share xS . To do so, Alice picks a large δ and com-
putes c = xS ·E+

pk(δ) = E+
pk(xS + δ). Then, she sends to

the TS a commitment C commiting to both c and her
key skU . She proves that the committed ciphertext c
was constructed by additively randomizing xS and that
C contains the correct private key. If the proof is cor-
rect, the TS blindly signs the commitment and Alice
receives a signature σ on a rerandomized commitment
C̃. Alice stores these in her one-time-use key-share token
τ = (σ, C̃, c, δ). The TS can limit the number of issued
tokens, enforcing a rate limit on Alice’s key.

Key-share tokens may seem similar to passwords:
both unlock functionality. However, unlike passwords,
key-share tokens can be verified and used without know-
ing the user’s identity. Key-share tokens contain a ran-
domized key share x̃S = D+

sk(c) essential for the TCP.
Hence, Tandem cannot be replaced by a password-
hardening service [25, 39]. The randomized key shares
contained in the tokens also distinguish them from tra-
ditional eCash tokens [23, 30, 60].
Using keys. After obtaining a token τ = (σ, C̃, c, δ), Al-
ice can anonymously run threshold-cryptographic pro-
tocols with the TS using the GenShares protocol. Alice
contacts the TS via an anonymous channel, and sends
the signature σ, the commitment C̃, and the random-
ized encryption c of the TS’ key share. She proves that c
is committed to in C̃ and that the private key in C̃ does
not correspond to a blocked public key. The TS can-
not recognize the blindly signed commitment nor the
ciphertext c it contains.

If the signature and proof are correct, the TS derives
the fresh share x̃S = D+

sk(c) (mod p) = xS + δ (mod p).
The size of δ ensures that x̃S cannot be linked to the
long-term share xS , thus hiding Alice’s identity from the
TS. Alice derives her fresh share x̃U = xU − δ (mod p).
By construction, x = x̃S + x̃U = xU + xS (mod p).

Alice can now run the TCP protocol in Fig. 2 to
prove her identity to the bank. The TS and Alice use
the just computed respective fresh shares x̃S and x̃U .
The TS does not learn which user ran the TCP pro-
tocol. Note that the TS never communicates directly
with service providers. Therefore, Alice can use Tan-
dem without the SP’s knowledge.
Blocking keys. Alice can request the TS to block her
key by using the BlockShare protocol. She authenticates
to the TS using any pre-defined means (e.g., a PUK, or
a passphrase; knowledge of the private key skU is not

required). The TS adds Alice’s public key pkU to the
list of blocked keys, causing existing tokens to become
invalid, and she cannot create new tokens.

Storing the private key skU and unused tokens on
the user’s device is much safer than storing the full key
directly. Even if an attacker obtains skU and unused
tokens, Tandem guarantees key security and key rate-
limiting. Running BlockShare immediately invalidates
existing tokens, and prevents the attacker from obtain-
ing new ones. As a result, the attacker can no longer use
the user’s key x. This is not the case if the attacker can
obtain x directly.
Preventing time correlation. To preserve her
privacy, the actions of obtaining tokens—where Alice
is authenticated—and using tokens—where Alice is
anonymous—must be uncorrelated, i.e., tokens should
not be obtained right before being used. To avoid
correlation, Alice can configure her device to obtain
tokens at random or regular times (e.g., every night),
ensuring that tokens are always available. Suppose Alice
obtains fresh tokens every morning, then a time-line
of registration (r), obtaining tokens (oi), using tokens
(si), and blocking the key (b) events might look as
follows:

timetime
r o1o2o3 s1 s2 b

Note that the obtain and use events do not necessarily
follow each other and are not correlated. The third token
o3 is unused when Alice blocks her key at time b. This
token can thereafter not be used.

5 Cryptographic Preliminaries
Let ` be a security parameter. Throughout, G is a cyclic
group of prime order p (of 2` bits) generated by g. We
write Zp for the integers modulo p; by [n] we denote
the set {0, . . . , n − 1}; and by a ∈R A we denote that
a is chosen uniformly at random from the set A. We
use a cryptographic hash function H : {0, 1}∗ → Zp
that maps strings to integers modulo p. For reference,
Table 2 in Section 6 summarizes the notation used by
Tandem’s building blocks, and Table 3 in Section 6 ex-
plains frequently-used symbols in Tandem.

5.1 Cryptographic Building Blocks

Tandem relies on a couple of cryptographic building
blocks. We use an additive homomorphic encryption



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 332

scheme given by the algorithms HE.Keygen+, E+
pk ,D

+
sk

with plaintext space ZN and space of randomizers R.
Let (pk, sk) = HE.Keygen+(1`) be a key-pair, then we
write c = E+

pk(m;κ) to denote the homomorphic encryp-
tion of the message m ∈ ZN using randomness κ ∈ R.
The scheme is additively homomorphic, so

E+
pk(m1;κ1)E+

pk(m2;κ2) = E+
pk(m1+m2 (modN);κ1κ2).

Our proof of concept uses Joye and Libert’s encryption
scheme [50], see Appendix A.1, but Paillier’s scheme [62]
would also work.

Tandem uses two computationally hiding and bind-
ing commitment schemes. First, by Commit(m, r) we
denote a commitment function that takes a message
m ∈ Zp and a randomizer r ∈ Zp. Analogously, we
define Commit((m1, . . . ,mk), r) to commit to a tuple
of messages. We instantiate this scheme using Peder-
sen’s commitments [64]. Second, we denote by ∆ =
ExtCommit(m, r) with m ∈ {0, 1}∗, r ∈ {0, 1}2` an ex-
tractable commitment scheme [71]. That is, in our re-
ductions, we can extract the input m used to cre-
ate a commitment ∆. For example, the instantiation
ExtCommit(m, r) = H(m‖r) is extractable in the ran-
dom oracle model for H.

To construct key-share tokens the TS signs them us-
ing a blind signature scheme supporting attributes [10]
given by the following protocols:

– The signer runs (pkσ, skσ) = BSA.KeyGen(1`, k) to
setup a system for signatures on k attributes. It ob-
tains a public-private key pair (pkσ, skσ).

– The interactive protocol BSA.BlindSign(pkσ, C) is
run by a user and the signer on input of the signer’s
public key pkσ and a Pedersen commitment C =
Commit((a1, . . . , ak), r) to the attributes. The signer
takes its private key skσ as private input, whereas
the user takes the attributes (a1, . . . , ak) and the
randomizer r as private input. At the end of proto-
col, the user obtains the tuple (σ, C̃, r̃) where σ is
a signature on C̃ = Commit((a1, . . . , ak), r̃), a fresh
commitment to the attributes. The issuer does not
learn the values of the attributes nor the resulting
signature σ.

– The verifier calls BSA.Verify(pkσ, σ, C̃) to verify the
signature σ on commitment C̃. The algorithm out-
puts > if the signature is valid, and ⊥ otherwise.

We require that the scheme has the blind signing prop-
erty [10]; and that signatures are unforgeable [10]. For
example, the scheme by Baldimtsi and Lysyanskaya [10]
satisfies these properties.

5.2 Threshold-Cryptographic Protocols

In this paper, we focus on cryptographic protocols run
between a user and a service provider, e.g., showing a
credential to an SP or spending an electronic coin. The
threshold-cryptographic version of such a protocol splits
the user’s key x and the user’s side of the original pro-
tocol in two parts, run by different parties. Each party
operates on a secret-share of the user’s key. Security
of the threshold-cryptographic protocol (TCP) ensures
that a large enough subset of shares (two in the case of
two parties) are required to complete the protocol.

We focus on TCPs where the user’s side of the pro-
tocol is distributed between the user and the TS. After
registration, the user and the TS hold the shares xU and
xS of x. After running GenShares with a new token, the
user and TS hold fresh key shares x̃U and x̃S . They then
run the TCP protocol, which we denote as:

P(inSP )↔ TCP.U(x̃U , inU )↔ TCP.TS(x̃S), (1)

where the SP, the user and the TS respectively run the
interactive programs P, TCP.U and TCP.TS. The user
mediates all interactions between the service provider
and the TS. The user and the SP take extra inputs
needed for the execution of the target cryptographic
protocol denoted as inU and inSP . We denote the com-
plete protocol from (1) by TCP(x̃U , x̃S , inU , inSP ).

Tandem can only enhance the privacy (Property 2)
of certain TCPs. We formalize the condition that these
TCPs should satisfy. To avoid that the TS can recognize
the user based on the shares input to the TCP, we ran-
domize long-term secret shares. Thus, we require that
TCPs enhanced with Tandem function with random-
ized key shares. In addition, our privacy-friendly Gen-
Shares protocol requires this randomization to be linear.

For simplicity, we assume that the user’s secret
x ∈ Zp for some field Zp of prime order p (e.g., cor-
responding to the group G defined above). Our con-
structions, however, can be modified to settings with un-
known order arising from RSA assumptions. Formally,
we require the TCP to be linearly randomizable:

Definition 1. Let xU , xS ∈ Zp be secret shares of
the user’s secret x. Then, we say that the TCP is
linearly randomizable if for all µ we have that (1) if
TCP(xU , xS , inU , inSP ) completes successfully, then so
does TCP(xU − µ, xS + µ, inU , inSP ), and (2) xS + µ is
independent from xS .

The first condition implies that the original secret shar-
ing (xU , xS) and the randomized secret sharing (xU −



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 333

δ, xS + δ) must share the same secret, whereas the sec-
ond implies that the TS cannot recognize the user from
the randomized secret share alone.
Security and privacy properties of TCPs. To en-
sure that a TCP with Tandem satisfies the security
properties (Property 1 and Property 3) we require that
the TCP itself is secure. That is, if the TS no longer
uses its share xS to run its part of the TCP, then no
malicious user can successfully complete the TCP with
the SP. We formalize this in Game 7.2 in Section 7.

To ensure that a TCP with Tandem satisfies the
privacy property (Property 2) we require that the TCP
itself is private with respect to the TS (respectively the
TS colluding with the SP): If the TS runs its part of the
TCP using a randomized key-share as input, then the
TS (respectively the TS and the SP) cannot recognize
the user. We formalize this in Game 7.4 in Section 7.

6 The Full Tandem Construction
We now introduce the full Tandem construction.
Setup. The TS sets up the Tandem system as follows.

Protocol 1. The Setup(1`, 1k) protocol is run by
the TS, where ` and k are security parame-
ters. The TS generates a public-private key-pairs
(pk, sk) = HE.Keygen+(1`) for the homomorphic en-
cryption scheme and (pkσ, skσ) = BSA.KeyGen(1`, k+3)
for the blind signature scheme. The TS publishes pk and
pkσ. Finally, the TS keeps track of an initially empty list
of revoked public keys rlist.

Registering users. When a user first registers at the
TS, the TS computes a key-share xS for that user, and
sends her an encrypted version xS = E+

pk(xS). To ensure
that the TS cannot hide an identifier in higher-order bits
of xS that are not randomized by the user in the remain-
der of the protocol, the TS proves that the plaintext xS
is in the correct range.

Protocol 2. The RegisterUser protocol is run between
a user and the TS, and proceeds as follows.
1. The user opens an encrypted channel to the TS and

authenticates it.
2. The user U and the TS generate secret shares

xU ∈R Zp and xS ∈R Zp, respectively. The user also
generates a public-private key-pair (pkU , skU ) =
(gskU , skU ) for skU ∈R Zp that we use to authen-

Table 2. Notation and cryptographic building blocks.

Symbol Interpretation

[n] The set {0, . . . , n− 1}
` The security parameter
G, g, p Cyclic group G = 〈g〉 of order p

Additively homomorphic encryption scheme
HE.Keygen+(1`) Generate public-private key-pair
E+
pk

(m; r) Encrypt m ∈ ZN with randomizer r ∈ R
D+
sk

(c) Decrypt ciphertext c
N Size of additive plaintext domain
R Space of randomizers

Commitment schemes and hash function
Commit(m, r) Commit to m ∈ Zp (or a tuple of mes-

sages) with randomizer r ∈ Zp
ExtCommit(m, r) Commit to m ∈ {0, 1}∗ with randomizer

r ∈ {0, 1}2`

H(s) Hash function from s ∈ {0, 1}∗ to Zp

Blind signature scheme with attributes
BSA.KeyGen(1`, λ) Generate signer’s key-pair for signatures

on λ attributes
BSA.BlindSign(pkσ , C) Protocol to blindly sign attributes in C
BSA.Verify(pkσ , σ, C̃) Verify signature σ on C̃.

ticate the user’s device and to revoke the user’s to-
kens. The user sends pkU to the TS.

3. The TS picks κ ∈R R, computes xS = E+
pk(xS ;κ)

and sends xS to the user. Moreover, the TS sends a
range proof to the user that xS is constructed cor-
rectly, i.e., that

D+
sk(xS) ∈ [0, p). (2)

See Appendix E for how to instantiate this proof.
4. The TS records (xS , xS , pkU ) for this user, and

marks this user as active. The user stores
(xU , xS , skU ) on her device.

In Appendix A.2 we explain how users can use multiple
TSs to increase robustness and/or security.
Obtain a key-share token. First, the user randomizes
the ciphertext xS . However, it seems difficult to prove
directly, for example in zero-knowledge, that the ran-
domized ciphertext produced by the user is of the cor-
rect form. Therefore, we use a standard cut-and-choose
approach [19, 30] to allow the TS to check that the key
share it uses in the TCP is a randomization of the cor-
rect secret key with overwhelming probability.

Let `µ be a security parameter. The user con-
structs 2k witness ciphertexts ci = xS ·E+

pk(µi;κi) with
µi ∈R [0, 2`µ) and κi ∈R R. The users sends commit-
ments Ci to these ciphertexts to the TS. The TS then
asks the user to open a subset D of cardinality k, so



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 334

Table 3. Frequently used symbols in Tandem protocols

Symbol Interpretation

D Disclose subset in cut-and-choose construction
δ, µi Randomizers of key shares
k Token security parameter
`µ Length of randomizers µi in bits
x Long-term secret key for a user
pk, sk Public-private encryption key-pair of TS
pkσ , skσ Public-private signing key-pair of TS
pkU , skU Public-private key-pair of the user U
p Order of the group G
xU , xS Long-term key share held by user resp. TS
xS Homomorphic encryption of xS
x̃U , x̃S User’s resp. TS’ key share output by GenShares
ε The current epoch
σ Blind signature of the TS

that the TS can verify that these k ciphertexts were
correctly formed. The user then picks δ ∈R [2`µ , 2`µ+1)
and κ ∈R R and constructs the randomized ciphertext
c = xS · E+

pk(δ;κ). The choice of δ ensures that it is
always bigger than the µis. The user constructs a com-
mitment to her private key skU , the current epoch ε, c,
and the remaining k unopened witness ciphertexts ci.
The TS blindly signs this commitment.

We set `µ = dlog pe+`+log(k+1)+2 to ensure that
the k + 1 plaintexts xS + µi and xS + δ corresponding
to the ciphertexts in the token statistically hide xS . We
require that the size of plaintext spaceN of E+

pk is bigger
than 2`µ+2 to ensure no overflows occur.

Protocol 3. The ObtainKeyShareToken protocol is run
between a user and the TS.
1. The user opens an encrypted channel to the TS and

authenticates it.
2. The user recovers (xU , xS , skU ) from storage, and

authenticates to the TS using skU . The TS looks
up the corresponding user’s record (xS , xS , pkU ) and
aborts if this user exceeded the rate-limit for the cur-
rent epoch, was banned, or was blocked.

3. The TS picks a random subset D ⊂ {1, . . . , 2k} of
cardinality k of indices of ciphertexts it will check at
step 5; and commits to D by picking θ ∈R {0, 1}2`

and sending ∆ = ExtCommit(D, θ) to the user.
4. The user picks randomizers µ1, . . . , µ2k ∈ {0, 1}`µ

and κ1, . . . , κ2k ∈ R to create witness ciphertexts;
and randomizers r1, . . . , r2k ∈ Zp and ξ1, . . . , ξ2k ∈

{0, 1}2` for the commitments and sets:

ci = xS ·E+
pk(µi;κi)

Ci = Commit(H(ci), ri)
∆i = ExtCommit((µi, κi), ξi),

(3)

for i = 1, . . . , 2k. She sends the commitments
C1, . . . , C2k and ∆1, . . . ,∆2k to the TS. Note that
the commitments Ci and ∆i are computationally
binding and hiding. We use the extractable commit-
ments ∆i to extract the inputs µi, κi in the proofs.

5. The TS opens the commitment ∆ by sending the
subset D and the randomizer θ to the user. The user
checks that ∆ = ExtCommit(D, θ), and aborts if the
check fails.

6. The user sends (ci, µi, κi, ri, ξi)i∈D to the TS to open
the requested commitments. The TS checks that
these values satisfy equation (3) and that µi < 2`µ .
If any check fails, the TS bans the user.

7. Next, the user creates the randomized ciphertext c =
xS · E+

pk(δ;κ) for δ ∈R [2`µ , 2`µ+1) and κ ∈R R.
Let H = {i1, . . . , ik} = {1, . . . , 2k} \ D be the set of
indices of unopened commitments. The user picks
r ∈R Zp and sends to the TS the commitment

C = Commit((skU , ε,H(c), H(ci1), . . . ,H(cik)), r)

to her private key skU , the epoch ε, the ciphertext c,
and the unopened witness ciphertexts. Finally, let-
ting η = H(c) and ηi = H(ci), she proves in zero-
knowledge to the TS that commitment C is correct:

PK{((ηi, ri)i∈H, skU , η, r) :
∀i ∈ H [Ci = Commit(ηi, ri)] ∧ pkU = gskU∧

C = Commit((skU , ε, η, ηi1 , . . . , ηik), r)}.

The TS checks this proof.
8. If any check fails, the TS bans the user and

aborts the protocol. If all checks pass, the TS
runs BSA.BlindSign(pkσ, C) with the user. The TS
takes as private input its signing key skσ, the
user takes as private input the attributes, and
r. Finally, the user obtains the tuple (σ, C̃, r̃)
where σ is a blind signature on the commitment
C̃ = Commit((skU , ε,H(c), H(ci1), . . . ,H(cik), r̃).
The user stores the key-share token τ = (σ, C̃, r̃,
ε, c, δ, κ, (ci, κi, µi)i∈H).

The following lemma states that even if a user is mali-
cious, at least one of the witness ciphertexts ci must be
correctly formed. (See Appendix D for the proof.)



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 335

Lemma 1. Consider a token τ = (σ, C̃, r̃, ε, c, δ, κ,
(ci, κi, µi)i=1,...,k) obtained using the above protocol by
a (potentially malicious) user with corresponding en-
crypted TS key-share xS. Let ∆1, . . . ,∆k be the set of
corresponding commitments used during the obtain step.
Then, with probability 1 − 1/

(2k
k

)
there exists an index

i∗; and randomizers µ∗ < 2`µ , κ∗, and ξ∗ such that:

ci∗ = xS ·E+
pk(µ∗;κ∗)

∆i∗ = ExtCommit((µ∗, κ∗), ξ∗).

Using a homomorphic-CCA secure [67] scheme with tar-
geted malleability that allows adding known randomiz-
ers only would obviate the need for extractable com-
mitments. Unfortunately, to the best of our knowledge
no such schemes exists. The RCCA scheme by Canetti
et al. [29] is not homomorphic, the schemes by Prab-
hakaran and Rosulek [67] are multiplicatively homo-
morphic, and the fully homomorphic scheme by Lai et
al. [53] is not homomorphic-CCA.
Using a key-share token. When using a token
τ = (σ, C̃, r̃, ε, c, δ, κ, (ci, κi, µi)i=1,...,k), the user sends
σ, C̃, ε, c, c1, . . . , ck to the TS, and proves that C̃ contains
ε,H(c), H(c1), . . . ,H(ck) and that the user’s tokens have
not been revoked. The TS decrypts c and uses the plain-
text as the key in the threshold-cryptographic protocol.
But how does the TS check if c is correctly formed? To
this end, the user reveals the differences γi = δ − µi for
all i = 1, . . . , k. We know from Lemma 1 that at least one
index i∗ exists such that ci∗ is correctly formed. There-
fore, if the differences γi are correct, then because ci∗ is a
randomization of xS , so must be c. In this, key-share to-
kens differ from Chaum et al.’s e-cash tokens [30], where
it suffices that the correct index i∗ exists.

Protocol 4. The GenShares protocol is run between an
anonymous user and the TS.
1. The user takes (xU , xS , skU ) and a token τ = (σ, C̃,

r̃, ε, c, δ, κ, (ci, κi, µi)i=1,...,k) as input and connects
to the TS via an anonymous encrypted channel and
authenticates the TS.

2. First, the user retrieves the current revocation list
rlist from the TS. If her public key pkU = gskU is
contained in rlist, her tokens are blocked and she
aborts the protocol, destroys her tokens, and does not
use the TS again. Otherwise, she sends σ, C̃, ε, c, c1,

. . . , ck to the TS together with a zero-knowledge
proof that C̃ commits to these values and that her

user’s tokens have not been revoked:

PK{(skU , r̃) : gskU 6∈ rlist ∧
C̃ = Commit((skU , ε,H(c), H(c1), . . . ,H(ck)), r̃)}.

The TS verifies the proof; that the signature is valid,
i.e., BSA.Verify(pkσ, σ, C̃) = >; that it has not seen
the signature σ before; and that the epoch ε corre-
sponds to the current epoch. The TS aborts if any
check fails. The revocation mechanism can be imple-
mented using BLAC (blacklistable anonymous cre-
dentials) [74] or dynamic accumulators [24].

3. Next, the user computes γi = δ − µi > 0 and νi =
κ−1
i · κ such that

c = ci ·E+
pk(γi; νi) (4)

for i = 1, . . . , k. She sends γ1, . . . , γk, ν1, . . . , νk to
the TS.

4. The TS verifies that the γis and νis satisfy equa-
tion (4) and that 0 < γi < 2`µ+1. The TS aborts if
any check fails.

5. The TS decrypts c, and sets x̃S = D+
sk(c) (mod p).

6. The user calculates her key share x̃U as:

x̃U ≡ xU − δ (mod p)

Using Lemma 1, we can show that the decrypted cipher-
text c must also be of the right form. (See Appendix D
for the proof.)

Lemma 2. If the tuple (ε, c, c1, . . . , ck, ) with γ1, . . . , γk
and ν1, . . . , νk satisfies equation (4), then with probabil-
ity 1− 1/

(2k
k

)
there exists δ < 2`µ+2 such that

D+
sk(c) = xS + δ

where xS is the TS key-share for the corresponding user.

The range proof in registration is essential. The range
proof in equation (2) in the RegisterUser protocol en-
sures that the plaintext xS = D+

sk(xS) is small compared
to the randomizers µi and δ. As a result, the randomized
ciphertexts ci statistically hide xS . It is not sufficient to
skip the range proof and instead choose the randomizers
µi and δ from the full plaintext domain [N ] to hide xS .
Without the range proof, the TS can construct tokens
that it can later recognize by exploiting the fact that a
large xS results in a reduction moduloN . More precisely,
the TS can set xS of its target user somewhat large, so
that xS + µj > N (with a non-negligible probability).
The user believes that the TS derives xS + µj (mod p)
(because she believes no modular reduction took place)



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 336

and compensates accordingly. However, the TS actually
derives x̃S = (xS + µj mod N) (mod p) = xS + µj − (N
mod p). To test if the current token is from its target
user, the TS adds (N mod p) to x̃S . If the guess was
correct, the TCP completes correctly, otherwise the pro-
tocol fails. This allows the TS to detect specific users.
Blocking the Key. To block her key, the user runs the
BlockShare protocol with the TS ensuring that no new
key-share tokens are created for her, and that all her
unspent tokens are blocked. Note that the user does not
require knowledge of skU , she only needs some mecha-
nism to authenticate to the TS.

Protocol 5. The user authenticates to the TS. The TS
looks up the user’s record (xS , xS , pkU ); marks the user
as blocked; and adds pkU to the revocation list rlist so
that the user’s unused tokens will be refused.

We assume the TS is honest with respect to blocking,
i.e., it correctly blocks all unspent tokens. A malicious
TS could try to attack privacy by revoking the tokens of
some honest user. Thereby revealing whether the cur-
rent user is in the revoked set or not. However, this
attack will only work once. As per the first step of the
GenShares protocol, the revoked user will detect this re-
vocation and then refuses to use the TS again. Making
the list rlist append-only ensures that the TS will always
be caught when it maliciously revokes users.

6.1 Alternative Constructions

An alternative method to construct tokens could be to
use an authenticated encryption scheme that the user
and the TS evaluate using secure multi-party computa-
tion [77]. The server inputs its key share xS while the
user inputs the randomizer µ. The user’s output is the
authenticated encryption of xS + µ for the TS’s sym-
metric key which serves as token. To ensure that the
TS cannot recognize this token, the protocol should re-
sist malicious servers and the circuit should validate the
TS’s inputs (i.e., that the encryption key is the same for
all users). Similarly, the protocol should resist malicious
users to ensure the server’s key share does not leak to
the user. Such a circuit requires at least 4 block cipher
operations and a hash computation. Taking results from
recent maliciously secure two-party computation proto-
cols [76] shows that this MPC is requires 1 to 2 orders
of magnitude more computation and 2 to 3 orders of
magnitude more bandwidth than our custom protocol.

Another simple alternative construction is to let
users retrieve xS = Enc(xS) using private information
retrieval (PIR) via an anonymous channel—the user
must still hide her identity. Then, users randomize xS
similarly to our construction, and the TS decrypts the
ciphertext to recover xS + µ, which it then uses in the
TCP. To enable blocking of keys, the TS needs to fre-
quently refresh its encryption keys, effectively invalidat-
ing previously retrieved ciphertexts xS . This simple pro-
tocol, however, has serious drawbacks. First, blocking is
only enforced upon key refreshing, thus the time span
when compromised keys can be used depends on the
refreshing schedule of the TS. Second, because the en-
cryption of xS for the current period can be random-
ized as often as the user wants (and the use of PIR
precludes record-keeping), this scheme cannot provide
rate-limiting. Third, because the TS acts as a decryp-
tion oracle for a homomorphic encryption scheme, which
is only CPA secure, proving security in this setting re-
quires very strong and non-standard assumptions.

7 Security and Privacy of Tandem
In this section we formalize the security and privacy
properties offered by Tandem. We refer to the appendix
for the complete security and privacy proofs.

7.1 Security of Tandem

We capture the security of Tandem using a security
game. It models that if the user’s key is compromised
(e.g., her device is stolen), the user can block the use of
her key, assuming the honesty of the Tandem server.

Game 7.1. The Tandem security game is between a
challenger controlling the TS and the SP, and an ad-
versary controlling up to n users. The adversary aims
to complete the TCP for a blocked or rate-limited user.
Setup phase The challenger sets up the TS by run-
ning Setup. The challenger also sets up the SP. The
challenger runs RegisterUser with the adversary for each
of the n users the adversary controls.
Query phase During the query phase, the adversary
can ask the TS to run the ObtainKeyShareToken and
BlockShare protocols with users controlled by the ad-
versary. Moreover, the adversary can make RunTCP
queries to the challenger. In response, the TS first runs



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 337

the GenShares protocol with the user (controlled by the
adversary), followed by a run of the TCP protocol.
Selection phase At some point the adversary outputs
the identifier of a blocked or rate-limited user U∗ on
which it wants to be challenged later. The challenger
runs BlockShare for user U∗ to ensure the user is blocked
respectively that the rate-limited user used all tokens.
Second query phase The adversary can keep asking
the TS to run the ObtainKeyShareToken and BlockShare
protocols. The adversary can also make RunTCP queries
as before.
Challenge phase Finally, upon request of the adver-
sary, the challenger acts as SP in the TCP protocol.
At the same time, the adversary may still make queries
and run protocols as before. The adversary wins if it
successfully completes the TCP with the SP on behalf of
the blocked user U∗. To prevent trivial wins, this TCP
protocol must be completable only by user U∗ (See Ap-
pendix B.2 for how to model this for attribute-based cre-
dentials).

In this game, all users are automatically corrupted right
from the moment they start the registration protocol.
This models the notion that users can even be blocked if
an active adversary is present right from the start, and
also implies that honest users—which are only corrupted
later by an active adversary—can still be blocked.

Of course, to have security using Tandem, the TCP
itself must be secure. Hence, we require that even if a
malicious user has interacted many times with the TS,
she cannot use her key when she does not have access
to the TS. We formalize this using the following game.

Game 7.2. The TCP security game is between a chal-
lenger controlling the TS and the SP, and the adversary
controlling a malicious user.
Setup phase During the setup phase, the adversary
generates xU ∈R Zp, whereas the TS, controlled by the
challenger, generates xS ∈R Zp.
Query phase In the query phase, the adversary can
make TCP(δ) queries to request that the TS runs
TCP.TS(xS + δ) with the user. The adversary is re-
sponsible for running TCP.U. Optionally, the adversary-
controlled user can communicate with the challenger-
controlled SP running P() as well.
Challenge phase In the challenge phase, the adver-
sary is not allowed to make TCP queries. Instead, it in-
teracts solely with the challenger-controlled SP running
P(). The adversary wins if the SP accepts.

Theorem 1. No PPT adversary can win the Tandem
security game with non-negligible probability, provided
that the TCP is secure (i.e., no PPT adversary can win
the TCP security game), the homomorphic encryption
scheme is CPA secure, the blind-signature scheme is un-
forgeable, and the commitment scheme ExtCommit(·, ·)
is extractable.

See Appendix F for the proof.

7.2 Privacy of Tandem

The following game models that Tandem provides key-
use privacy: A malicious Tandem server cannot distin-
guish between two unblocked honest users performing a
transaction using the TS even if it colludes with the ser-
vice provider, provided that the service provider alone
cannot distinguish transactions by these users. Thus,
users are unlinkable when using their keys at the TS.

Game 7.3. The Tandem privacy game with collud-
ing SP is between a challenger, who controls two honest
users U0 and U1, and an adversary A who controls the
TS and the SP.
Setup phase The adversary A outputs the number
of key-share tokens n0, n1 each respective honest user
should obtain. The adversary is responsible for setting
up the SP and the TS, i.e., it should publish public
keys pk and pkσ. Next, the honest users U0 and U1 run
RegisterUser with the adversary-controlled TS and then
obtain n0 and n1 key-share tokens respectively. First,
U0 runs ObtainKeyShareToken n0 times to obtain tokens
τ0,1, . . . , τ0,n0 . Then, U1 runs ObtainKeyShareToken n1
times to obtain tokens τ1,1, . . . , τ1,n1 .
Query phase During the query phase, the adversary
can make RunTCP(Ui, j, inU ) queries to request that user
Ui uses token τi,j and then runs the TCP with input
inU . If i ∈ {0, 1} and user Ui did not use token τi,j be-
fore, then user Ui, controlled by the challenger, first runs
GenShares with the TS using token τi,j and then runs
TCP.U(inU ) with the TS and the SP (running TCP.TS
and P respectively).
Challenge phase At some point, the adversary out-
puts a pair of token indices (i0, i1) for user U0 and U1
respectively on which it wants to be challenged. Let τ0 =
τ0,i0 and τ1 = τ1,i1 be the corresponding tokens. The ad-
versary loses if either token τ0 or τ1 has been used before
or if user U0 or U1 detects it is blocked when running
GenShares. Then, the challenger picks a bit b ∈ {0, 1}



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 338

and proceeds as if the adversary made a RunTCP(Ub, τb)
query followed by a RunTCP(U1−b, τ1−b) query.
Guess phase The adversary outputs a guess b′ of b.
The adversary wins if b′ = b.

The privacy game models the fact that there is no time
correlation between when tokens are obtained by a user,
and when they are spent by a user. At the same time,
the adversary has full control over the TS and the SP,
so this game also models the fact that the TS and the
SP can correlate events that they see.

Since the SP is controlled by the adversary, the TCP
must ensure privacy with respect to the SP and the TS,
if all that the TS sees are randomized secret shares. We
formalize this in the following game.

Game 7.4. The TCP privacy game with colluding SP
is between a challenger controlling honest users U0 and
U1 and an adversary A, controlling the TS and the SP.
Setup The adversary publishes the TS public key and
is responsible for setting up the SP. The challenger sets
up its users. First, user U0 generates x0,U ∈R Zp while
the TS generates x0,S ∈R Zp, then U1 and TS similarly
generate x1,U and x1,S. Finally, the TS sends x0,S and
x1,S to users U0 and U1 respectively.
Queries Adversary A can make RunTCP(i, inU )
queries, to request Ui to run the TCP protocol using
input inU with the TS and the SP (both controlled by
A). User Ui picks µ ∈R Zp and sends the randomized
secret-share x̃S = xi,S + µ (mod p) to the TS. The user
sets x̃U = xi,U − µ and runs TCP.U(x̃U , inU ) with the
TS and the SP running TCP.TS(x̃S) and P respectively.
Challenge Adversary A outputs an input inU . The
challenger picks a bit b ∈R {0, 1}. Then the challenger
acts as if A first made a RunTCP(b, inU ) query, and then
a RunTCP(1− b, inU ) query.
Guess A outputs a guess b′ for b, A wins if b = b′.

Tandem also provides key-use privacy against the TS
alone, even if the SP can identify users. (If the SP can
identify users, then so can the TS and the SP together.
We exclude this case to prevent a trivial win.) We model
this situation as a variant of the previous two games.

Definition 2. The Tandem privacy game with honest
SP and the TCP privacy game with honest SP are as in
Game 7.3 and Game 7.4 above, however, the challenger
controls the SP. The adversary can interact with the SP
as a normal user.

Theorem 2. No PPT adversary can win the Tandem
privacy game with colluding SP (respectively the Tan-
dem privacy game with honest SP) with probability
non-negligibly better than 1/2, provided that the TCP
is privacy-friendly (i.e., no PPT adversary can win the
TCP privacy game with colluding SP respectively the
TCP privacy game with honest SP), the commitment
scheme Commit(·, ·) is computationally hiding, and that
the commitment scheme ExtCommit(·, ·) is extractable.

See Appendix G for the proof.

8 Securing Protocols with
Tandem

Tandem enables the use of a central server in a com-
mon class of TCPs without incurring a privacy cost
with respect to this server. It operates on specific lin-
early randomizable TCPs (with corresponding group or-
der p) that satisfy the security an privacy properties in
Games 7.2 and 7.4. A central server that is willing to
run these TCPs can trivially offer them in a privacy-
preserving manner by implementing Tandem’s proto-
cols in Section 6. As a result, the central server can no
longer distinguish users when it runs a TCP. Of course,
it can still distinguish different TCPs and see inputs to
the TCPs that are not protected by Tandem.

Many protocols already have threshold-
cryptographic versions that satisfy the necessary
properties. For example, threshold variants of
Schnorr signatures [42] and ElGamal-based en-
cryption schemes [38, 73] rely on Shamir secret-sharing
and are thus linearly randomizable. A reduction to the
original security property shows they also satisfy the
TCP security property: given oracle access to a signer
or decryptor for a fixed private key, we can answer
the TCP(δ) queries by modifying the original response.
The protocols are also TCP private. The server-side
protocols for signing and decrypting operate solely on
the secret-share and the common input, the message
or ciphertext. In Appendix C we show how to protect
ElGamal decryption with Tandem.

Tandem can enhance threshold-cryptographic ver-
sions of electronic cash [23, 60]; group signatures [14,
28]; and attribute-based credentials (ABC) [8, 18, 21,
27]. Only Brands’ scheme has a threshold-cryptographic
version [18]. For the others, the threshold-cryptographic
versions of the zero-knowledge proofs must be created.
As an example, we show how to convert the BBS+



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 339

ABC scheme [8] into a Tandem-suitable threshold-
cryptographic scheme.

Not all threshold schemes are compatible with Tan-
dem. Threshold DSA signatures are notoriously compli-
cated. Some schemes use multiplicative secret-sharing
(instead of additive) [36, 57], and others require ad-
ditional information such as public keys or encryption
keys that break the TCP privacy property [40, 41]. Sim-
ilarly, threshold RSA encryption and decryption [72]
need the public modulus, and hence do not satisfy the
TCP privacy property.

8.1 Use Case: Attribute-Based Credentials

Attribute-based credentials can be conceptualized as
digital equivalents to classic identity documents such
as passports. The owner of a credential can selectively
disclose any subset of attributes to a service provider so
that the validity of the disclosed attributes can be ver-
ified. In many ABC systems credentials are unlinkable
across disclosures, making users anonymous within the
set of users having the same disclosed attributes.

Credentials contain the user’s secret key to bind cre-
dentials to a user, and to ensure that only the owner can
use them. Tandem can be used to strengthen the secu-
rity of this key to ensures that credentials cannot be
abused while preserving users’ privacy.

We now show how to apply Tandem to BBS+ cre-
dentials [8] by converting its issuing and showing pro-
tocols into threshold-cryptographic alternatives. BBS+
credentials are anonymous credentials built from BBS+
signatures [8]. BBS+ signatures operate in a pairing set-
ting and rely on discrete-logarithm based assumptions.
Let (G1,G2) be a bilinear group pair, both of prime or-
der p, generated by g and h respectively. The pairing
is given by ê : G1 × G2 → GT where GT , also of or-
der p, is generated by ê(g, h). Let l be the number of
attributes. In the BBS+ credential scheme, an issuer
randomly chooses generators B,B0, .., Bl ∈R G1, picks
a private key skI ∈R Zp, and computes w = hskI . The
issuer’s public key is pkI = (w,B,B0, .., Bl).
Obtaining a credential. Attribute-based credentials
contain the user’s secret key as an attribute. For sim-
plicity, we describe the Tandem BBS+ issuance and
showing protocols below with two attributes: the secret
key x and an issuer-determined attribute a1. To obtain
a credential, the user and the Tandem server run the
following TCP version of the issuance protocol with the
issuer. Let x̃U and x̃S be the shares of the user’s secret
key x = x̃U + x̃S held by the user and the TS respec-

tively. The user must commit to her secret key x to
allow the issuer to blindly sign it. As the user’s secret
key is shared between the user and the TS, they both
have to participate in creating the commitment. First,
the user sends B0 to the TS so that it can compute
Bx̃S

0 . Then the user and the TS create a commitment
U = Bs

′
Bx̃U

0 Bx̃S
0 = Bs

′
Bx

0 where s′ ∈R Zp. To prove to
the issuer that U is well-formed, the user and the TS
construct the proof PK{(x, s′) : U = Bs

′
Bx

0}. The con-
struction of this proof is very similar to the threshold
version of Schnorr’s protocol in Fig. 2. For completeness,
we include the full protocol in Fig. 4 in Appendix B.1.
If this proof of knowledge verifies, the issuer randomly
generates s′′, e ∈R Zp, calculates

A =
(
gBs

′′
UBa1

1

) 1
e+skI ∈ G1,

and sends the tuple (A, e, s′′) to the user. The user cal-
culates s = s′+s′′ and stores the credential σ = (A, e, s).
Showing a credential. After the issuance protocol,
the user can show the credential to authenticate to a
service provider. We convert the showing protocol into
a TCP that uses the Tandem server.

Using the showing protocol, the user can prove pos-
session of a credential σ = (A, e, s) over her key x and a
revealed attribute a1 (x remains hidden) by convincing
the service provider the credential is valid, i.e., that

ê(A, hew) = ê(gBsBx
0B

a1
1 , h). (5)

We follow the approach by Au et al. [8] to prove this in
zero-knowledge. Let g1, g2 be generators in G1. First, the
user creates commitments C1 = Agr1

2 and C2 = gr1
1 gr2

2
for r1, r2 ∈R Zp, and sends them to the SP. Finally,
she and the TS engage in the following zero-knowledge
proof with the SP:

PK
{

(r1, r2, α1, α2, e, x, s) : C2 = gr1
1 gr2

2 ∧C
e
2 = gα1

1 gα2
2 ∧

ê(C1, w)ê(C1, h)e = ê(g, h)ê(B, h)sê(B0,h)x ·

ê(B1, h)a1 ê(g2, w)r1 ê(g2, h)α1
}

to prove that she indeed posseses the signature over the
hidden and the disclosed attributes and that equation
(5) is satisfied. In the proof, α1 = er1 and α2 = er2.
The user can herself generate the proofs for the first
two conjuncts. The third conjuct, however, contains the
user’s secret key x of which the user only has a share.
Thus, the user has to contact the TS to construct this
part of the proof. This proof is just a proof of represen-
tation, as before, albeit a bit more complex. As a result,
a construction similar to Fig. 2 and 4 (in the appendix),



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 340

allows the user and the TS to jointly compute this proof.
See Appendix B.1 for the full protocol.
Security and privacy of the TCPs. These TCPs
satisfy the TCP security and privacy notions defined in
Section 7. The TS computes zero-knowledge proofs of
knowing x̃S . A malicious user learns nothing about x̃S
(thus nor xS) as a result of the zero-knowledge property.
Hence, the TCP showing and issuance protocols satisfy
the TCP security property (see Game 7.2).

For privacy (see Game 7.4), the TS operates on a
randomized key x̃S , so the TS cannot distinguish users if
the SP is honest. The indistinguishability of the creden-
tial scheme guarantees that the TS cannot distinguish
by colluding with the SP either. Thus, the TCP showing
protocol is private for honest and colluding SPs.

We refer to Appendix B.2 for the full TCP security
and privacy proofs.
Revocation and rate-limiting with Tandem.
When applying Tandem to ABC schemes, the TS can
rate-limit and block keys, and therefore rate-limit and
revoke credentials. Complex custom solutions create re-
vocable [9, 74] and rate-limitable [22] credentials di-
rectly. While the end-result is similar, Tandem makes
different trust assumptions.

Consider the case where honest users want to pro-
tect themselves against compromise of their credentials.
The custom solutions rely on the honesty of SPs to en-
force rate-limits and revocations on behalf of the user.
Tandem instead ensures rate-limiting and blocking as
long as the TS, which the user chooses, is honest.

The Tandem approach in this section, however, can-
not protect SPs against malicious users as users are not
forced to use Tandem. In Appendix B.3 we show a mod-
ification that forces all users to use the (same) TS. With
this change, the TS can rate-limit and block any misbe-
having users on behalf of issuers and service providers,
replacing complex ad-hoc cryptographic techniques.

9 Performance Evaluation
We evaluate Tandem’s computational and bandwidth
cost. We use the ABC instantiation as a case study and
compare its performance without key protection, with
vanilla threshold-cryptographic version of the ABC pro-
tocols, and with Tandem protection.

Tandem consists of four protocols: RegisterUser,
ObtainKeyShareToken, GenShares, and BlockShare. We
implemented in C the time-critical protocols, Obtain-

0 10 20 30 40 50 60 70
0

50

100

150

200

Difficulty (k)

T
im

e
(m

s)

Obtain User
Obtain Server

GenShares Server

Fig. 3. ObtainKeyShareToken protocol computing time at the
user (black) and the server side (blue), and GenShares protocol
computation time at the server side (red) for increasing difficulty
levels k excluding revocation cost.

KeyShareToken and GenShares.3 We used Pedersen com-
mitments [64] as commitment scheme, and BBS+ cre-
dentials [8] to construct the blind signature (we use an
extra attribute containing a serial number to ensure that
the blind signature can be used only once). We use the
RELIC cryptographic library to implement them [6].4

We use a recent implementation [12] of Joye and Lib-
ert’s additive homomorphic encryption scheme [50], see
Appendix A.1. We set the modulus size to 2048 bits and
the size of the plaintext space N to 394 bits, such that
N > 2`µ+2 for k < 64 (recall `µ is the size of the ran-
domizers, see page 6). With this setting, encrypting a
single 394 bits plaintext takes 0.9ms whereas it takes
24.2ms to decrypt a ciphertext.

We empirically measure performance on a single
core of an Intel i7-7700 running at 3.6GHz.
Obtaining a token. We first justify our choice for
the parameters k. Our analysis shows that an attacker
can break Tandem’s security property by constructing
a key-share token for a blocked user with probability(2k
k

)−1
. Hence, k = 42 gives 80 bits of security, and

k = 66 gives 128 bits security. However, ObtainKeyShare-
Token is an interactive protocol. The success probabil-
ity of an attacker is limited by how often the TS lets
the attacker try to construct a malicious token rather
than by the adversary’s computational power. As the
TS bans users trying to construct malicious tokens, one
can choose a smaller k in practice. In a system with
100 000 users, k = 20 ensures that the probability that
an attacker (corrupting all users) can at least once use
any blocked key is less than 10−6.

3 Code here: https://github.com/spring-epfl/tandem
4 We use a BLS curve over a 381 bits field in RELIC. This setup
ensures 128 bits security, while the group order remains 255 bits.

https://github.com/spring-epfl/tandem


Tandem: Securing Keys by Using a Central Server While Preserving Privacy 341

Fig. 3 shows the computing time (without commu-
nication) for the ObtainKeyShareToken protocol at the
user (black) and server (blue) for different values of the
parameter k. The homomorphic encryption scheme—
creating the ciphertexts (user), and checking a subset
of these (TS)—dominates the computational cost. Our
experiments reveal that the timing variance across ex-
ecutions is negligible. The bandwidth cost is low: users
send and receive 1314k + 405 and 2k + 117 bytes re-
spectively. For a security level of k = 20, the user sends
about 26KiB and receives less than 200 bytes.
Using the key. We first examine the cost of using a
key without the token-revocation check. On the user
side running GenShares is very cheap: less than 5ms
even for k = 60. Users send 594k + 516 bytes to the
server, i.e., 12KiB for k = 20 and 35KiB for k = 60. We
show the server’s computational cost for recovering the
TS key-share from the token in Fig. 3. For a reasonable
security level of k = 20, the server computational over-
head is around 50ms. The sending of the token in the
GenShares protocol can be combined with the request to
start the TCP, resulting in no extra latency on top of
the delay incurred by the Tor network [35] (1–2 s to send
and receive a small amount of data on a fresh circuit5).
Circuit creation and GenShares can be run preemptively,
thereby reducing the user-perceived delay.

Tandem uses standard revocation techniques to re-
voke key-share tokens. Therefore, we did not implement
revocation. Tokens expire automatically, so we would
only need to block tokens from the current epoch. If
the number of blocked users per epoch is small (e.g.,
for short epochs, such as a day), Tandem could use
BLAC [74]. BLAC is simple, but proving that a user’s
tokens are not revoked has linear complexity. Based on
the results by Henry and Goldberg [46], we estimate that
for 100 blocked users a user needs an additional 20ms
to prove non-revocation. The TS needs about 10ms to
check this proof. If the number of revoked users per
epoch is larger, then it is more efficient to use dynamic
accumulators [24], which are more complex, but con-
stant time. We estimate them to have a 10–20ms cost.

Given the above measurements, a modern 4-core
server can participate in approximately 50 TCPs per
second (not counting the cost of the application-
dependent TCP itself), i.e., serve 3 000 users per minute,
requiring about 20 Mbit/s incoming bandwidth.

5 As reported by https://metrics.torproject.org/torperf.html,
visited August 31, 2019.

Table 4. Comparison of computational cost and properties when
running the showing protocol of the BBS+ ABC scheme. We
compare not using a TCP, using a traditional TCP, and using a
TCP with Tandem (k = 20, excluding revocation cost).

No TCP Vanilla TCP TCP + Tandem

Obtain Token
User - - 57ms
Server - - 30ms

Run Protocol
User 5ms 5ms 5 + 4ms
Server - 1ms 1 + 52ms

Key blocking × X X
Rate limiting × X X
Privacy X × X

RegisterUser and BlockShare. These protocols are run
rarely (only upon registration and for blocking) and are
thus not critical for scalability. We estimate the cost
for RegisterUser to be well below a second for both the
user and the TS (given its similarity with the Obtain-
KeyShareToken and GenShares protocols, and that the
cost of the range proof is around 500ms). Users have
no computational cost when running BlockShare. The
server’s cost is less than a few milliseconds when using
BLAC [46] or dynamic accumulators [24].
Comparison. Table 4 compares the computational cost
of creating a single BBS+ showing proof with 5 hid-
den attributes without key protection, using straight-
forward TCP version of the disclosure proof, and using
the Tandem-augmented TCP with k = 20.

Without a TCP, the credential showing is very fast
and, as there is no other party involved in the use of the
key, the showing of the credential is perfectly private.
However, it is not possible to perform key blocking nor
limit the key-usage without changing the credential type
(e.g. [22]) and trusting the SP. The traditional TCP
version, has minimal overhead (1ms at the server) and
provides key blocking and rate limiting, at the cost of
privacy. Tandem provides all three properties. Without
taking into account the ObtainKeyShareToken operation
that happens offline, the user’s overhead is negligible
(4ms), and well below a second (52ms) for the server.
In all cases, the delays due to Tandem’s cryptographic
operations are small compared to Tor’s network delay.

https://metrics.torproject.org/torperf.html


Tandem: Securing Keys by Using a Central Server While Preserving Privacy 342

10 Conclusion
Protecting cryptographic keys is imperative to main-
tain the security of cryptographic protocols. As users’
devices are often insecure, the community has turned to
threshold-cryptographic protocols to strengthen the se-
curity of keys. When run with a central server, however,
these protocols raise privacy concerns. In this paper, we
have proposed Tandem, a provably secure scheme that,
when composed with threshold-cryptographic protocols,
provides privacy-preserving usage of keys. Tandem also
enables users to block their keys and rate-limit their us-
age. Our prototype implementation shows that for rea-
sonable security parameters Tandem’s protocols run in
less than 60ms, showing Tandem’s practicality.

Tandem is particularly suited for privacy-friendly
applications such as eCash and ABCs because it re-
tains their inherent privacy properties. Yet, Tandem
can be used to strengthen a wide variety of primitives,
including signature and encryption schemes, as long
as they can be transformed into linearly-randomizable
threshold protocols. Using attribute-based credentials
we have shown that deriving such a threshold protocol
can be done with standard techniques, and that there-
after adding Tandem is straightforward.

Acknowledgments
This research is partially funded by the NEXTLEAP
project6 within the European Union’s Horizon 2020
Framework Program for Research and Innovation
(H2020-ICT-2015, ICT-10-2015) under grant agreement
688722; the Netherlands Organization for Scientific Re-
search (NWO); and KPN under project ‘Own Your Own
Identity (OYOI)’.

References
[1] Timothy G. Abbott, Katherine J. Lai, Michael R. Lieberman,

and Eric C. Price. 2007. Browser-Based Attacks on Tor. In
PETS 2007.

[2] Tolga Acar, Mira Belenkiy, and Alptekin Küpçü. 2013. Sin-
gle password authentication. Computer Networks 57, 13
(2013).

6 https://nextleap.eu

[3] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen.
2006. Simplified Threshold-RSA with Adaptive and Proac-
tive Security. In EUROCRYPT 2006.

[4] Gergely Alpár, Fabian van den Broek, Brinda Hampiholi,
Bart Jacobs, Wouter Lueks, and Sietse Ringers. 2017.
IRMA: Practical, Decentralized and Privacy-friendly Iden-
tity Management Using Smartphones. In HotPETs 2017.

[5] Android security website. 2017. Developing third party
applications with Trusty TEE. https://source.android.com/
security/trusty/#third-party_trusty_applications. (2017).

[6] D. F. Aranha and C. P. L. Gouvêa. 2020. RELIC is an Ef-
ficient Library for Cryptography. https://github.com/relic-
toolkit/relic. (2020).

[7] Erinn Atwater and Urs Hengartner. 2016. Shatter: Using
Threshold Cryptography to Protect Single Users with Multi-
ple Devices. In WISEC 2016.

[8] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-Size
Dynamic k-TAA. In SCN 2006.

[9] Man Ho Au, Patrick P. Tsang, and Apu Kapadia. 2011.
PEREA: Practical TTP-free Revocation of Repeatedly Mis-
behaving Anonymous Users. TISSEC (2011).

[10] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous
credentials light. In CCS 2013.

[11] Ero Balsa, Carmela Troncoso, and Claudia Díaz. 2012. OB-
PWS: Obfuscation-Based Private Web Search. In S&P
2012.

[12] Manuel Barbosa, Dario Catalano, and Dario Fiore. 2017.
Labeled Homomorphic Encryption: Scalable and Privacy-
Preserving Processing of Outsourced Data. In ESORICS
2017.

[13] Mihir Bellare and Shafi Goldwasser. 1997. Verifiable Partial
Key Escrow. In CCS 1997.

[14] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P.
Smart, and Bogdan Warinschi. 2010. Get Shorty via Group
Signatures without Encryption. In SCN 2010.

[15] Dan Boneh, Xuhua Ding, and Gene Tsudik. 2004. Fine-
grained Control of Security Capabilities. TOIT (2004).

[16] Dan Boneh, Xuhua Ding, Gene Tsudik, and Chi-Ming Wong.
2001. A Method for Fast Revocation of Public Key Certifi-
cates and Security Capabilities. In USENIX 2001.

[17] Colin Boyd. 1989. Digital Multisignatures. Cryptography
and Coding (1989).

[18] Stefan A Brands. 2000. Rethinking public key infrastructures
and digital certificates: building in privacy. MIT Press.

[19] Gilles Brassard, David Chaum, and Claude Crépeau. 1988.
Minimum Disclosure Proofs of Knowledge. J. Comput. Syst.
Sci. (1988).

[20] Ahto Buldas, Aivo Jürgenson, Aivo Kalu, and Mart Oruaas.
2017. Server-Supported RSA Signatures for Mobile Devices.
In ESORICS 2017.

[21] Jan Camenisch and Els Van Herreweghen. 2002. Design
and Implementation of the Idemix Anonymous Credential
System. In CCS 2002.

[22] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss,
Anna Lysyanskaya, and Mira Meyerovich. 2006. How to
Win the Clone Wars: Efficient Periodic n-times Anonymous
Authentication. In CCS 2006.

[23] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
2005. Compact E-Cash. In EUROCRYPT 2005.

https://nextleap.eu
https://source.android.com/security/trusty/#third-party_trusty_applications
https://source.android.com/security/trusty/#third-party_trusty_applications
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic


Tandem: Securing Keys by Using a Central Server While Preserving Privacy 343

[24] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente.
2009. An Accumulator Based on Bilinear Maps and Efficient
Revocation for Anonymous Credentials. In PKC 2009.

[25] Jan Camenisch, Anja Lehmann, and Gregory Neven. 2015.
Optimal Distributed Password Verification. In CCS 2015.

[26] Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai
Samelin. 2016. Virtual Smart Cards: How to Sign with a
Password and a Server. In SCN 2016.

[27] Jan Camenisch and Anna Lysyanskaya. 2002. A Signature
Scheme with Efficient Protocols. In SCN 2002.

[28] Jan Camenisch and Anna Lysyanskaya. 2004. Signature
Schemes and Anonymous Credentials from Bilinear Maps. In
CRYPTO 2004.

[29] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen.
2003. Relaxing Chosen-Ciphertext Security. In CRYPTO
2003.

[30] David Chaum, Amos Fiat, and Moni Naor. Untraceable
Electronic Cash. In CRYPTO ’88.

[31] Richard Chow and Philippe Golle. 2009. Faking Contextual
Data for Fun, Profit, and Privacy. In WPES 2009.

[32] Sanchari Das, Andrew Dingman, and L Jean Camp. 2018.
Why Johnny Doesn’t Use Two Factor A Two-Phase Usability
Study of the FIDO U2FSecurity Key. In FC 2018.

[33] Yvo Desmedt. 1987. Society and Group Oriented Cryptogra-
phy: A New Concept. In CRYPTO ’87.

[34] Yvo Desmedt and Yair Frankel. 1991. Shared Generation
of Authenticators and Signatures (Extended Abstract). In
CRYPTO ’91.

[35] Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. 2004. Tor: The Second-Generation Onion Router. In
USENIX 2004.

[36] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat.
2018. Secure Two-party Threshold ECDSA from ECDSA
Assumptions. In S&P 2018.

[37] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. 2014. The
Untapped Potential of Trusted Execution Environments on
Mobile Devices. In S&P 2014.

[38] Taher ElGamal. 1984. A Public Key Cryptosystem and
a Signature Scheme Based on Discrete Logarithms. In
CRYPTO ’84.

[39] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari
Juels, and Thomas Ristenpart. 2015. The Pythia PRF Ser-
vice. In USENIX 2015.

[40] Rosario Gennaro and Steven Goldfeder. 2018. Fast Multi-
party Threshold ECDSA with Fast Trustless Setup. In CCS
2018.

[41] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan.
2016. Threshold-Optimal DSA/ECDSA Signatures and an
Application to Bitcoin Wallet Security. In ACNS 2016.

[42] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and
Tal Rabin. 2007. Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems. J. Cryptology (2007).

[43] Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo
Krawczyk. 2000. Robust and Efficient Sharing of RSA Func-
tions. J. of Cryptology (2000).

[44] Steven Goldfeder, Harry A. Kalodner, Dillon Reisman, and
Arvind Narayanan. 2018. When the cookie meets the
blockchain: Privacy risks of web payments via cryptocur-
rencies. PoPETs (2018).

[45] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and
Tomas Toft. 2012. Efficient RSA Key Generation and
Threshold Paillier in the Two-Party Setting. In CT-RSA
2012.

[46] Ryan Henry and Ian Goldberg. 2013. Thinking inside the
BLAC box: smarter protocols for faster anonymous blacklist-
ing. In WPES 2013. 71–82.

[47] Alex Hern. 2015. Stagefright: new Android vulnerability
dubbed ‘heartbleed for mobile’. The Guardian (2015).
https://www.theguardian.com/technology/2015/jul/28/
stagefright-android-vulnerability-heartbleed-mobile

[48] Devriş İşler and Alptekin Küpçü. 2017. Threshold Single
Password Authentication. In DPM 2017.

[49] Husam Al Jawaheri, Mashael Al Sabah, Yazan Boshmaf, and
Aiman Erbad. 2018. When A Small Leak Sinks A Great
Ship: Deanonymizing Tor Hidden Service Users Through
Bitcoin Transactions Analysis. (2018). arXiv:1801.07501

[50] Marc Joye and Benoît Libert. 2013. Efficient Cryptosystems
from 2k -th Power Residue Symbols. In EUROCRYPT 2013.

[51] Marcel Keller, Gert Læssøe Mikkelsen, and Andy Rupp.
2012. Efficient Threshold Zero-Knowledge with Applica-
tions to User-Centric Protocols. In ICITS 2012.

[52] Kim Zetter, WIRED magazine. 2016. How the top 5 PC
makers open your laptop to hackers. https://www.wired.
com/2016/05/2036876/. (2016).

[53] Junzuo Lai, Robert H. Deng, Changshe Ma, Kouichi Saku-
rai, and Jian Weng. 2016. CCA-Secure Keyed-Fully Homo-
morphic Encryption. In PKC 2016.

[54] Benoît Libert and Jean-Jacques Quisquater. 2003. Efficient
Revocation and Threshold Pairing-based Cryptosystems. In
PODC 2003.

[55] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. 2018. Meltdown: Reading Kernel Memory
from User Space. In USENIX 2018. 973–990.

[56] Philip D. MacKenzie and Michael K. Reiter. 2001. Net-
worked Cryptographic Devices Resilient to Capture. In S&P
2001.

[57] Philip D. MacKenzie and Michael K. Reiter. 2004. Two-
party Generation of DSA Signatures. Int. J. Inf. Sec.
(2004).

[58] Claudio Marforio, Nikolaos Karapanos, Claudio Soriente,
Kari Kostiainen, and Srdjan Capkun. 2013. Secure Enroll-
ment and Practical Migration for Mobile Trusted Execution
Environments. In SPSM’13.

[59] Brian McGillion, Tanel Dettenborn, Thomas Nyman, and
N. Asokan. 2015. Open-TEE - An Open Virtual Trusted
Execution Environment. In TrustCom 2015.

[60] Ian Miers, Christina Garman, Matthew Green, and Aviel D.
Rubin. 2013. Zerocoin: Anonymous Distributed E-Cash from
Bitcoin. In S&P 2013.

[61] Lasse Øverlier and Paul F. Syverson. 2006. Locating Hidden
Servers. In S&P 2006.

[62] Pascal Paillier. 1999. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. In EUROCRYPT
’99.

[63] Torben P. Pedersen. 1991. A Threshold Cryptosystem with-
out a Trusted Party (Extended Abstract). In EUROCRYPT
’91.

https://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
https://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
https://www.wired.com/2016/05/2036876/
https://www.wired.com/2016/05/2036876/


Tandem: Securing Keys by Using a Central Server While Preserving Privacy 344

[64] Torben P. Pedersen. 1991. Non-Interactive and Information-
Theoretic Secure Verifiable Secret Sharing. In CRYPTO
’91.

[65] Roel Peeters, Svetla Nikova, and Bart Preneel. 2008. Practi-
cal RSA threshold decryption for things that think. In WIS-
Sec 2008.

[66] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian
Meiser, and George Danezis. 2017. The Loopix Anonymity
System. In USENIX 2017.

[67] Manoj Prabhakaran and Mike Rosulek. 2008. Homomorphic
Encryption with CCA Security. In ICALP 2008.

[68] Tal Rabin. 1998. A Simplified Approach to Threshold and
Proactive RSA. In CRYPTO ’98.

[69] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and
John C. Mitchell. 2005. Stronger Password Authentication
Using Browser Extensions. In USENIX 2005.

[70] Ravi S. Sandhu and Xinwen Zhang. 2005. Peer-to-peer
access control architecture using trusted computing technol-
ogy. In SACMAT 2005.

[71] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe
Persiano. 2000. Necessary and Sufficient Assumptions for
Non-iterative Zero-Knowledge Proofs of Knowledge for All
NP Relations. In ICALP 2000.

[72] Victor Shoup. 2000. Practical Threshold Signatures. In
EUROCRYPT 2000.

[73] Victor Shoup and Rosario Gennaro. 2002. Securing Thresh-
old Cryptosystems against Chosen Ciphertext Attack. J.
Cryptology (2002).

[74] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W.
Smith. 2010. BLAC: Revoking Repeatedly Misbehaving
Anonymous Users without Relying on TTPs. TISSEC
(2010).

[75] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert
Bos, Kaveh Razavi, and Cristiano Giuffrida. 2016. Drammer:
Deterministic Rowhammer Attacks on Mobile Platforms. In
CCS 2016.

[76] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017.
Authenticated Garbling and Efficient Maliciously Secure
Two-Party Computation. In SIGSAC 2017.

[77] Andrew Chi-Chih Yao. 1986. How to Generate and Ex-
change Secrets (Extended Abstract). In FOCS ’86.

A Tandem Details and Extensions

A.1 The Joye-Libert Encryption Scheme

For completeness, we summarize here the Joye and Lib-
ert additively homomorphic encryption scheme [50] that
Tandem uses. These definitions are reproduced from the
original paper [50].

Definition 3 ([50]). Let q be an odd prime and let n ≥
2 such that n|(q − 1). Then we define the n-th power

residue symbol modulo q,
(
a
q

)
n
, as the smallest (in terms

of absolute number) representation of a
q−1
n mod q.

Definition 4 ([50]). The Joye-Libert additively homo-
morphic encryption scheme is given by the following al-
gorithms.
– HE.Keygen+(1`, β). The key generation algorithm

takes as input a security parameter ` and an in-
teger β ≥ 1 indicating the bit-size of the message
space. Generate primes r, s ≡ 1 (mod 2β), and set
the modulus n = rs. Finally, pick y ∈R Jn \ QRn,
i.e., a number whose Jacobi symbol is 1, but that
is not a quadratic residue. Return the public key
pk = (n, y, β) and the private key sk = r. The mes-
sage space will be {0, . . . , 2β − 1}

– E+
pk(m). To encrypt a message m ∈ {0, . . . , 2β − 1}

against public key pk = (n, y, β) pick a random r ∈
Z∗n and return the ciphertext c = ymr2β mod n.

– D+
sk(c). Given a ciphertext c and a private key sk =

r, return the message m ∈ {0, . . . , 2β − 1} such that[(
y

r

)
2β

]m
=
(
c

r

)
2β

(mod r).

See Joye and Libert [50] for an efficient algorithm
to finding m.

A.2 Using More Than One Tandem Server

So far we described Tandem for use with a single Tan-
dem server (TS). In this appendix we show how we can
extend Tandem to support multiple TSs at the same
time. Depending on the configuration, using more than
one TS provides robustness against TSs that are off-line
or deny service to the user, and protects the user against
TSs that violate the security assumptions by colluding
with an attacker.

The idea is to use a t-out-of-n Shamir secret-sharing
of the server’s secret xS and to give each TS one secret-
share of xS . Now, the user needs to cooperate with t

TSs to use her key. Note that the user’s secret xU is
still needed, so no coalition of TSs can, by themselves,
collude to use the user’s key. An attacker that corrupts
the user’s device, and thus learns xU , needs to addition-
ally collude with t TSs to use the user’s key. Therefore,
using t > 1 strengthens key security if the security as-
sumption for TSs cannot be fully guaranteed. If t < n

some of the TSs need not participate when the user
wants to use her key, giving the user robustness against
denial of service by at most n− t non-cooperating TSs.



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 345

The threshold-cryptographic protocols that we have
considered in this paper, i.e., Schnorr signatures, ElGa-
mal encryption and credential schemes, can be extended
to allow Shamir secret sharing of the TSs keys.

When using multiple TSs, users must decide which
ones compute the TCP correctly. The user can directly
verify the zero-knowledge proofs in for example Schnorr
signatures and the credential protocols (see next sec-
tion) to check that the TS behaved correctly. The El-
Gamal encryption scheme can be extended so the TS
proves correct behavior.

We now show how to modify the Tandem protocols
to support multiple TSs. During RegisterUser the user
registers with each of the n TSs. However, in step 2,
the n TSs jointly compute a t-out-of-n Shamir secret-
sharing polynomial f(X) = a0 + a1X + . . . + at−1X

t−1

with ai ∈ Zp, for example using Pedersen’s verifi-
able secret-sharing protocol [63]. The server’s secret xS
shared by the n TSs then equals a0. Tandem server i
stores xiS = f(i) and sends the corresponding ciphertext
xiS to the user together with the range proof. Each TS
uses its own key-pair for the additively homomorphic
encryption scheme.

To obtain a one-time-use key-share token the user
runs ObtainKeyShareToken with each of the TSs in par-
allel. To support multiple TSs, the user changes how it
chooses value of δi that it uses for the ith TS in step 7.
The user creates a new, random, secret-sharing polyno-
mial f ′(X) = δ + b1X + . . . + bt−1X

t−1 for δ, bi ∈R Zp.
Then, the user picks δi ∈R [2`µ , 2`µ+1) subject to the
constraint that δi = f ′(i) (mod p). Thereafter, the user
continues as before.

To use her key, she picks t tokens, and runs Gen-
Shares with each of the corresponding TSs. By choice of
the δi and xiS the TSs operate on the t-out-of-n shared
secret xS +δ (mod p). The user then uses xU−δ (mod p)
so that the resulting secret still is x = xU + xS .

B Attribute-Based Credentials
In this section we specify the TCP protocols used for
issuance and showing of BBS+ credentials. Next, we
prove that they satisfy the TCP security and privacy
conditions required for Tandem.

B.1 The Full TCP Protocols

In the body of the paper we argued that the following
proof of knowledge

PK{(x, s′) : U = Bs
′
Bx

0}.

in the BBS+ issuance protocol can be converted to a
threshold-cryptographic version following the ideas of
the threshold Schnorr protocol in Fig. 2. We show the
full, non-interactive version of this protocol in Fig. 4.
The issuer creates a nonce nonce to ensure freshness. In
these protocols H : {0, 1} → Zp is a cryptographic hash
function which we will later model as a random oracle.

To enable BBS+ issuance and verification, the TS
must participate in two protocols, one for issuance,
shown in Fig. 4, and one very similar protocol for show-
ing credentials. We summarize the TS’s side of these
protocols.

Protocol 6. The TCP.TS protocol run by the TS for
BBS+ schemes is as follows. The TS takes as input the
randomized secret share x̃S . First the user indicates to
the TS whether she wants the TS to participate in an
issuance protocol or a showing protocol. We assume that
the group order p and the description of the relevant
groups are known to the TS.
Issuance. If the user indicates an issuance protocol,
they proceed as follows.
1. The user sends to the TS the generator B0, the con-

text ctx = U ‖ B ‖ B0, a nonce nonce, and the
partial commitment Ũ ′.

2. The TS picks tS ∈R Zp, and computes the final com-
mitment Ũ = Ũ ′BtS0 . Next, the TS computes the
challenge c = H(Ũ ‖ ctx ‖ nonce) and computes its
response rS = tS + c · x̃S . The TS sends Ũ and rS
to the user.

Showing. If the user instead indicates a showing proto-
col, they proceed as follows. Let E1 ∈ G1, E2 ∈ G1, E3 ∈
GT represent the commitments in the zero-knowledge
proof corresponding to the three respective conjuncts.
And let E′3 be the partial commitment without the TS’s
contribution.
1. The user sends to the TS the generator ê(B0, h), the

context ctx representing the bases and the full proof
statement, a nonce nonce, the commitments E1, E2
and the partial commitment Ẽ3

′.
2. The TS picks tS ∈R Zp, and computes the final com-

mitment E3 = E′3ê(B0, h)tS . Next, the TS computes
the challenge c = H(E1 ‖ E2 ‖ E3 ‖ ctx ‖ nonce)
and computes its response rS = tS + c · x̃S . The TS
sends E3 and rS to the user.



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 346

TS User Issuer
x̃S ∈ Zp, B0, ctx x̃U ∈ Zp, s′, g, B, B0, ctx U, ctx

tS ∈R Zp tU , ŝ
′ ∈R Zp

uS = B
tS
0 uU = B

tU
0

Ũ = Ũ ′uS
Ũ ′, nonce

Ũ ′ = Bŝ
′
uU

nonce nonce ∈R {0, 1}128

c = H(Ũ ‖ ctx ‖ nonce)
rS = tS + c · x̃S

Ũ , rS c = H(Ũ ‖ ctx ‖ nonce)
ss′ = ŝ′ + c · s′

rU = tU + c · x̃U
r = rU + rS

c, ss′ , r Ũ ′′ = U−c ·Bss′ ·Br0
c ?= H(Ũ ′′ ‖ ctx ‖ nonce)

Fig. 4. Full details of the non-interactive proof of knowledge of the user’s commitment U = Bs
′
B

xU
0 B

xS
0 in the BBS+ TCP issuance

protocol, where ctx = U ‖ B ‖ B0 captures the statement to be proven. The Tandem server only knows x̃S and the user knows
x̃U and the randomness s′ (recall x̃S and x̃U are the respective outputs of the GenShares protocol). The TS effectively creates a zero-
knowledge proof of knowing x̃S .

B.2 TCP Security and Privacy

We now prove that the TCP protocol in Protocol 6 is
TCP secure (see Game 7.2). In this case, the SP models
the role of credential issuer and credential verifier. To
win in the challenge phase, the adversary should con-
vince the SP (acting as verifier) that it holds a valid
credential. Of course, this only makes sense if this cre-
dential was issued against a key x = xU + xS protected
by the TS. Therefore, the SP will only accept in the
challenge phase if it can confirm that it issued this cre-
dential on a TS protected key x.

To enable tracking of protected credentials, we as-
sume that the credential includes a random attribute
a1 ∈R Zp known to the issuer. In most instances of
attribute-based credential schemes such an attribute ei-
ther already exists (e.g., a user identifier) or can be
cheaply added. The particular choice of random at-
tribute is not important. What matters is that all pro-
tected credentials have a set of attributes that differen-
tiates them from non-protected credentials.

To track which credentials are protected, the SP and
TS proceed as follows. For every credential that the SP
issues, it checks that the challenge c in the proof of
knowledge of the commitment U was computed by the
TS when running TCP.TS in issuance mode. As a result,
the SP can be sure that the TS-protected keyshare x̃S =
xS + δ is included in U . If this is the case, the SP stores
the (random) attribute a1 ∈R Zp for this credential in
a list.

During the challenge phase of the TCP security
game, the adversary must demonstrate possession of a
TS-protected credential. To this end, the adversary will
reveal the attribute a1 as part of the showing proto-

col. The SP will accept, and the adversary will win, if
attribute a1 matches a protected credential.

Theorem 3. Provided that the discrete logarithm prob-
lem is hard in G1 and BBS+ credentials are unforgeable,
the TCP.TS protocol in Protocol 6 is TCP secure (see
Game 7.2) in the random oracle model for H.

In the proof we show that if the adversary successfully
manages to prove possession of a BBS+ credential with
a key that is shared with the TS, then it must also
be able to break discrete logarithms. To reduce to the
DL problem, the challenger will act as if the (unknown)
discrete logarithm equals xS . Since the TS doesn’t know
xS , we use the random oracle to simulate the proofs in
which the TS is involved.

In the challenge phase, we then extract the secret,
and therefore the discrete logarithm from the successful
prover. Note that the TS does not participate during
the challenge phase, so there are no conflicts with it
simulating the proofs that it then also tries to extract.
As a result, we break the discrete logarithm.

Proof. Suppose that adversary A can convince the SP
that it possesses a credential containing a valid (i.e.,
protected by the TS) attribute a1. Since we assumed
that forging BBS+ credentials is hard, A must have
proven possession of one of the credentials issued by the
TS. We will build an adversary B to break the discrete
logarithm assumption in G1.

Let (G,Z) be a discrete logarithm instance in G1.
The goal of B is to find z such that Z = Gz. To this end,
B sets B0 = G and proceeds as if xS = z. Since B can
no longer complete the zero-knowledge proofs in TCP.TS
when it receives TCP(δ) queries, it simulates them using



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 347

the random oracle. Let Y = ZBδ0 be the randomized
public key corresponding to the TS’s randomized secret
x̃S = xS + δ (recall that B does not know x̃S).

1. For the issuance mode, B proceeds as follows in step
2. It picks c, rS ∈R Zp, sets uS = BrS0 Y −c and com-
putes Ũ = Ũ ′uS . Finally, it updates the random
oracle so that H(Ũ ‖ ctx ‖ nonce) equals c.

2. For the showing mode, B proceeds similarly. In
step 2 it picks c, rS ∈R Zp, and computes E3 =
E′3ê(B

rS
0 Y −c, h). Finally, it updates H such that

H(E1 ‖ E2 ‖ E3 ‖ ctx ‖ nonce) equals c.

In both cases, the probability that patching H fails is
negligible, because the input to H is random from the
perspective of A.

To recover the discrete logarithm of Z we must know
the user’s key xU such that the credential contains x =
xS + xU . In fact, nothing limits the user from using a
different xU for each credential. Therefore, we extract
this user-related part as follows.

During the issuance protocol with the SP, the user
will interact with the TS to create the proof of knowl-
edge (c, ss′ , r) as in Fig. 4 and send it to the SP acting as
issuer. Recall, B controls SP. After receiving the proof,
B will rewind A to the point where it sent Ũ ′, nonce to
the TS. At this point A’s randomizers tU , ŝ′ are fixed.
Then B picks another challenge c′ and proceeds as be-
fore. A will send another proof (c′, s′s′ , r′) to the SP. By
dividing out the factors the TS created by simulating
its proofs, we end up with two traces (Ũ ′, c, ss′ , rU ) and
(Ũ ′, c′, s′s′ , r′U ) from which B extracts the user’s secret
xU . Therefore, the credential must contain the secret
x = xU + xS + δ.

Finally, to extract the discrete logarithm of Z, B
rewinds A in the challenge phase, and extracts the se-
crets, including the secret key x encoded in the creden-
tial. It looks up the corresponding value xU extracted
when issuing this credential and returns the discrete log-
arithm z = x − xU − δ of Z with respect to G.

In the full Tandem security game (Game 7.1) we re-
quire additionally that the protocol is only computable
by U∗ so that the challenger can confirm a win. This
property is trivially satisfied for any protocol that iden-
tifies the user, such as Schnorr’s proof of identification
or signature schemes. In those cases, the SP simply asks
for a new proof of identity or a signature on a new
message; and security relates to the non-impersonation
property and non-forgeability properties of the under-
lying schemes.

When applying Tandem to protocols where the user
is anonymous with respect to the SP, e.g., when show-
ing a credential, this condition requires a little bit more
work to verify. Formally, we require that the protocol
P run by the SP in the challenge phase takes as extra
input the identity of a user U∗. The protocol P will only
accept if the SP can verify the identity of user U∗.

To facilitate this check for the BBS+ protocols
above, we proceed as follows. First, for every issuance
that the adversary participates in, it can choose to re-
veal the token owner’s identity U to the SP. When the
adversary does, the SP links the random attribute a1 to
user U . Two, during the challenge phase, the adversary
reveals the attribute a1. If the SP recorded this attribute
as corresponding to user U∗, the adversary wins.

The TCP privacy property (see Game 7.4) follows
by inspection. First, note that the key x̃S that users send
to the TS (controlled by the adversary) information the-
oretically hides the user’s identity. Next, the values that
the users send in step 1 of the TCP protocol (see Pro-
tocol 6 above) are independent from any user secret.
Therefore if a coalition of SP and TS can distinguish
users, this must be because of what the user sends to
the SP. The theorem follows.

Theorem 4. The TCP.TS protocol in Protocol 6 is
TCP Private (see Game 7.2) against honest SPs. More-
over, provided the issuance and showing runs do not
identify the user to the SP, then these protocols are also
TCP private against colluding SPs.

B.3 Rate-limiting in ABCs

Anonymous users can use the cover of privacy to mis-
behave, negatively impacting the system. ABC systems
are not exempt from such misbehavior. Suppose, for ex-
ample, that a user shares her “I am older than 18” cre-
dential with many under-aged users who do not hold
such a credential. Then, those under-aged users can in-
correctly convince service providers that they are over
18 years of age. If this happens often, service providers
can no longer rely on these credentials to verify that a
user is older than 18.

To limit such misbehavior, ABCs could benefit from
rate-limiting. One method to limit abuse is to rate-limit
credentials by ensuring that credentials can only be used
a limited number of times. For instance, solutions such
as n-times anonymous credentials [22] use custom cryp-
tographic techniques to construct a special type of ABC
that can be used only n times per epoch.



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 348

Tandem can achieve a similar type of rate-limiting
without modifying the underlying cryptographic con-
struction of ABCs. To rate-limit use of a system, the
TS enforces a per-user and per-epoch limit q on the
number of tokens it issues per user and per epoch. As
a result, no credential can be shown more than q times
per epoch. This approach limits all credentials associ-
ated to a user’s key. If desired, Tandem can equally be
applied on a per-credential basis.

This rate-limiting strategy requires that all users use
Tandem. However, recall that the SPs (issuers and ver-
ifiers) cannot detect the use of Tandem, allowing users
to forego sharing their keys with the TS, thus avoiding
the rate limit. To enable the TS to enforce a rate-limit
on all credentials, issuers must only issue credentials on
keys that are shared with the TS.

A small change to the threshold-cryptographic ver-
sion of the issuance protocol enables the issuer to con-
firm that users use Tandem. To signal its involvement,
the TS signs the challenge c and sends the signature
σ to the user. The user forwards the challenge to the
issuer. The issuer verifies the signature σ. If the proofs
are correct, then the user’s key was shared with the TS
and the issuer signs the credential.

C Threshold ElGamal Decryption
As a second example, we show how Tandem can be
easily applied to ElGamal decryption. Let x = xU + xS
be the secret-shared private key and h = gx the cor-
responding public key. The ElGamal encryption of a
message m ∈ G is given by (c1, c2) = (gr,m · hr) where
r ∈R Zp is an ephemeral key.

To threshold-decrypt a ciphertext (c1, c2) the user
and the TS proceed as follows. They first run GenShares,
so that the user and the TS hold the respective shares
x̃U and x̃S such that x = x̃U + x̃S . Then the user sends c1
to the TS which computes α = c−x̃S

1 and sends it back
to the user. The user can now recover the message as
m′ = c2αc

−x̃U
1 . Note that the TS never learns the value

of the message. In fact, the user could blind c1 before
sending it, to ensure that the TS cannot recognize the
ciphertext either.

D Proofs of Lemmas
Proof of Lemma 1. Whenever a ciphertext ci is selected
by the TS for opening, the TS checks that it and the

corresponding randomizers κi, µi, ξi, and ri are as in
equation (3) and that µi < 2`µ , and hence as stated in
the theorem.

Since the TS checks k tuples, every adversary needs
to include at least k correct tuples in its set of 2k tuples.
If no index i∗ exists for the remaining tuples, then all k
of them were incorrectly formed. The probability that
none of these k bad tuples were selected during the cut-
and-choose protocol is 1/

(2k
k

)
.

Proof of Lemma 2. From Lemma 1 we know that with
probability 1 − 1/

(2k
k

)
there exists i∗ and µ∗, xS such

that

D+
sk(ci∗) = xS + µ∗

Let c = E+
pk(α). From equation (4) we know that:

c = ci∗ ·E+
pk(γi∗ ;κi∗)

By decrypting we find that α = xS +µ∗+ γi∗ (mod N).
Moreover, µ∗ < 2`µ (by Lemma 1), xS < p < 2`µ (by
construction) and γi∗ < 2`µ+1 as checked by the TS.
Since `µ = dlog pe + ` + log(k + 1) + 2 and N > 2`µ+2,
we have that α = xS + µ∗ + γi∗ as integers, and thus c
is a proper randomization, with randomizer µ∗ + γi∗ <

2`µ+2, of xS as well.

E Constructing Correctness Proof
of xS

In this section we describe the details of the range proof
of D+

sk(xS) in the RegisterUser protocol. The range proof
ensures that the TS cannot recognize anonymous users
by constructing specially crafted versions of xS as ex-
plained earlier. When using a homomorphic encryption
scheme that supports zero-knowledge proofs, such as
Paillier’s encryption scheme, we can use standard tech-
niques, see for example the bitwise technique by Bellare
and Goldwasser [13], to prove that D+

sk(xS) is at most
2` bits (which is a sufficient proxy for p in our schemes).

In our implementation, however, we use Joye and
Libert’s encryption scheme which does not readily ad-
mit zero-knowledge proofs. Therefore, we instantiate the
range proof using a construction that consists of two
parts.

I. The TS constructs a commitment C to xS using
a commitment scheme whose message space is at
least as big as the plaintext space of the encryp-
tion scheme. The TS then uses a traditional zero-



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 349

knowledge proof to show that the value xS commit-
ted in C is smaller than p.

II. Next, the TS uses a cut-and-choose technique to
show that C commits to D+

sk(xS) = xS .

The details are as follows. The user and TS take xS
as input. The TS takes as private input xS and the ran-
domizer κ used to construct xS . Let G be a cyclic group
of order p generated by g such that p > N (recall, N
is the size of the plaintext domain of the homomorphic
encryption scheme). Let h be another generator of G
such that the discrete logarithm of h with respect to g
is unknown. We use this group to create a commitment
scheme with a large message space.

The full protocol has 7 steps. Part I is represented
by step 1, whereas part II is represented by the cut-
and-choose technique in steps 2 – 7. If at any step a
verification fails, the protocol is aborted. The cut-and-
choose technique is very similar to the construction we
use in the ObtainKeyShareToken and GenShares proto-
cols. Let k be the difficulty level of the cut-and-choose
protocol.

1. The TS picks r ∈R Zp, and computes the com-
mitment C = gxSh

r. Next, the TS creates a non-
interactive proof that the commitment C contains
key-share xS of the correct size:

PK{(xS , r) : C = gxSh
r ∧ xS ∈ [0, p)}, (6)

and sends C and this proof to the user. This proof
can be implemented using a standard technique like
the bitwise commitment technique of Bellare and
Goldwasser [13]. The user checks the correctness of
the proof.

2. The user randomly chooses a subset D ⊂ {1, . . . , 2k}
of cardinality k. She commits to D by picking θ ∈R
{0, 1}` and sending ∆ = ExtCommit(D, θ) to the TS.

3. The TS picks randomizers µ1, . . . , µ2k ∈R {0, 1}`µ
and κ1, . . . , κ2k ∈R R to construct ciphertexts, and
r1, . . . , r2k ∈ Zp to create commitments. Then, the
TS sets:

ci = E+
pk(µi;κi)

Ci = gµih
ri

(7)

for i = 1, . . . , 2k. Finally, the TS sends the ci-
phertexts c1, . . . , c2k and commitments C1, . . . , C2k
to the user. The commitments are computationally
binding and information theoretically hiding. (Con-
trary to the ObtainKeyShareToken protocol, the TS
can safely send the ciphertexts, because the user
cannot decrypt them.)

4. The user sends the subset D and the commitment
randomizer θ to the TS.

5. If ∆ = ExtCommit(D, θ), then the TS sends
(µi, κi, ri)i∈D to the user (otherwise, it aborts). The
user verifies that the values ci, Ci for i ∈ D sat-
isfy equation (7). Moreover, the user checks that
µi < 2`µ for i ∈ D.

6. Next, the TS computes

γi = µi − xS , ρi = ri − r, νi = κiκ
−1

for i 6∈ D, and sends them to the user.
7. Finally, the user checks that

ci = xS ·E+
pk(γi; νi)

Ci = C · gγihρi
(8)

and that 0 ≤ γi < 2`µ for i 6∈ D, and accepts the
proof if all verifications are correct.

Lemma 3. If the user does not reject in the above
protocol, then with probability 1 − 1/

(2k
k

)
we have that

D+
sk(xS) ∈ [0, p) as required.

Proof. From the zero-knowledge proof in step 1, we
know that the TS knows an opening α′, r′ of C = gα

′
h
r′

such that 0 ≤ α′ < p. We complete the proof by showing
that α′ = D+

sk(xS).
We continue as per Lemma 1 and Lemma 2. We

restate them here for completeness. First, along the lines
of Lemma 1, with probability 1− 1/

(2k
k

)
there exists an

index i∗ such that the TS knows an opening µ∗, r∗ such
that:

µ∗ = D+
sk(ci∗) < 2`µ

Ci∗ = gµ
∗
h
r∗

.
(9)

The user checks that the TS knows an opening for the
k pairs that are opened by the TS in step 4. So, the TS
must include at least k pairs for which it knows a cor-
rect opening. Suppose, for contradiction, that the index
i∗ does not exist, i.e., that the remaining k pairs are
incorrect or cannot be opened by the TS. Since the pro-
tocol completed, the user did not detect foul play. This
situation can only occur if the TS correctly guesses the
set D in advance. Since the TS does not learn anything
about D before step 3, the probability that none of the
remaining pairs is correct is 1/

(2k
k

)
, as required.

Assume now that this index i∗ as required above
exists. We use this to show that C commits to D+

sk(c),
i.e., that α′ = D+

sk(c). From equation (8) we know that:

Ci∗ = C · gγi∗hρi∗



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 350

so, by using equation (9) and equating exponents, we
find that µ∗ = α′ + γi∗ (mod p). We know from the
zero-knowledge proof that α′ < p and by direct inspec-
tion that γ < 2`µ therefore, the equality holds over the
integers as well, and we have

µ∗ = α′ + γi∗ < 2`µ+1 < N. (10)

From equation (8) we also know that:

ci∗ = xS ·E+
pk(γi∗ ; νi∗)

By decrypting and using equation (9) we find that:

µ∗ = D+
sk(xS ·E+

pk(γi∗ ; νi∗)) = D+
sk(xS)+γi∗ (mod N).

Substituting µ∗ from equation (10) and substracting γi∗
shows that α′ = D+

sk(xS) (mod N), and therefore, by
size of α′ and D+

sk(xS) < N , that α′ = D+
sk(xS) as

required.

In the security proof, we replace xS with the encryp-
tion of 0, so that the adversary who has corrupted a
user learns nothing about xS (except what is revealed
as a result of the threshold-cryptographic protocol). The
following lemma states that we can do so, without the
adversary detecting this change.

Lemma 4. TS can simulate the correctness proof given
above such that xS = E+

pk(0), provided that the encryp-
tion scheme is CPA secure and the commitment scheme
ExtCommit(·, ·) is extractable. This simulation does not
require any knowledge of how xS was created.

This proof uses a sequence of games that interpolates
between the situation where the RegisterUser protocol
is executed normally, and the situation, where xS is an
encryption of 0. This game is as in the security game:
the adversary can make RegisterUser, ObtainKeyShare-
Token, GenShares, and BlockShare queries. It’s task is to
determine if xS is as in the original protocol, or xS =
E+
pk(0). In particular:

– Game 0. In Game 0, xS is constructed as per the
protocol.

– Game 1. We proceed as in Game 0, but simulate the
cut-and-choose proof in steps 2 – 7 by extracting D.

– Game 2. As in Game 1, but simulate the zero-
knowledge proof in step 1 of the protocol.

– Game 3. As in Game 2, but replace the commitment
C by a random commitment.

– Game 4. As in Game 3, but replace xS with an
encryption of 0.

We show that each pair of consecutive games is indis-
tinguishable to a polynomial-time adversary. Hence, no
adversary can distinguish Game 0 from Game 4, thus
proving the lemma.

Proof of Lemma 4. We first show how to simulate the
cut-and-choose proof in steps 2 – 7. The adverary sends
a commitment ∆ to the TS in step 1. We use the ex-
tractability of ExtCommit(·, ·) to recover D from ∆ (for
example, using the random oracle model if it is imple-
mented using a hash-function).

We change how TS acts in step 3. Let D ⊂
{1, . . . , 2k} be the subset of cardinality k extracted from
∆. For all i ∈ D the TS sets ci and Ci as per equa-
tion (7). For other elements, i.e., for i ∈ {1, . . . , 2k} \D,
the TS generates γ ∈R {0, . . . , 2`µ −1}, ρ ∈R Zp, ν ∈R R
and sets ci and Ci as per equation (8).

In step 4, the adversary reveals D and θ. If ∆ =
ExtCommit(D, θ) then with overwhelming probability,
we correctly extracted D. If we correctly extracted D,
the TS can open the tuples for i ∈ D in step 5 and
return γi, ρi, νi for the other elements. Both satisfy the
adversary’s checks in steps 5 and 7.

Game 0 is indistinguishable from Game 1. The sim-
ulated proof can go wrong for two reasons. One, we can
fail to extract the disclose set D, but this can only hap-
pen with negligible probability. Second, the distribution
of γis for i 6∈ D is not completely correct, however, the
size of µ ensures that this difference is statistically hid-
den from the adversary. So, from the point of view of
the adversary, Games 0 and 1 are indistinguishable.

In Game 2 we simulate the zero-knowledge proof in
step 1. By construction of the simulator of this proof,
the adversary cannot detect this change.

As a result of the changes we made in Game 1,
the answers of TS do not depend on the opening of C.
So, in Game 3 the TS can generate a random commit-
ment C ∈R G. Since Pedersen’s commitment scheme is
information-theoretically hiding, the adversary cannot
detect this change.

In Game 4, the TS sends xS = E+
pk(0) to the user

instead of an encryption of the key-share xS . As a result
of the changes we made in Game 1, the TS can still
complete the remaining part of the protocol.

We claim that the adversary A cannot distinguish
Games 3 and 4. Suppose to the contrary that A can
distinguish Games 3 and 4. We then show that A can
break the CPA security of the homomorphic encryption
scheme.

To do so, we build an adversary B against the CPA
security of the encryption scheme. Recall that B can



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 351

make a challenge query on two messages m0 and m1. In
our case, B picks m0 = xS and m1 = 0. Then, its chal-
lenger returns a ciphertext c∗ = E+

pk(pk,mb) for some
bit b ∈R {0, 1}. Adversary B needs to guess b.

In RegisterUser queries for the challenge user U∗,
adversary B (which acts as a challenger to A) uses xS =
c∗. Clearly, if b = 0, then B perfectly simulates Game
3. If b = 1, it perfectly simulates Game 4. Therefore, if
A can distinguish between Games 3 and 4, it can break
the CPA security of the encryption scheme.

F Security Proof
In the security proof, the challenger controls the TS and
the adversary tries to attack a user. The security proof
is a sequence of games. In the final game, the challenger
simulates the game using only the TCP oracle of the
TCP security game, without knowing the correspond-
ing TS’ key share xS . As a result, any adversary that
manages to use the blocked key of that user (or uses
that key more often than the rate-limit allows in this
epoch) must therefore break the security of the under-
lying threshold-cryptographic protocol.

We use the following sequence of games:

– Game 0: We play the game as described in the Tan-
dem Security game, see page 336.

– Game 1: We change the definition of GenShares. The
challenger simulates the workings of TS but does
not decrypt any ciphertext. Instead, the TS uses
the extractability of ExtCommit(·, ·) and the ∆is
(from the corresponding ObtainKeyShareToken pro-
tocol) to compute the plaintext corresponding to c
(without decrypting), which it uses as x̃S . The TS
constructs the range proof of xS in the RegisterUser
protocol as before.

– Game 2: We guess the challenge user U∗ and we
change the definition of RegisterUser for this user:
we replace xS = E+

pk(xS) by xS = E+
pk(0).

– Game 3: For all non-challenge users we answer
GenShares queries as in the previous game. For U∗

the TS simulates the TCP following GenShares us-
ing the TCP security oracle (without knowing xS of
U∗).

We then prove the following:

– The adversary cannot distinguish Game 0 from
Game 1. We prove that as long as one of the pairs

(ci,∆i) is as it should be—and Lemma 1 shows that
this is the case with high probability—then we cor-
rectly recover the plaintext of c and thus the TS
extracts the correct x̃S , and therefore the TCP is
correct as well.

– The adversary cannot distinguish Game 1 from
Game 2. We no longer decrypt ciphertexts. Hence,
we can use the CPA security of the encryption
scheme to show that the adversary cannot distin-
guish Game 1 from Game 2. More formally, we build
a distinguisher that interpolates between Games 1
and 2. The distinguisher makes a query for m0 = xS
and m1 = 0 to its CPA challenger, and uses the
answer as xS . Lemma 4 shows the adversary can-
not detect this change to RegisterUser. If the CPA
challenger returned an encryption of xS then the
distinguisher perfectly simulates Game 1, otherwise
it simulates Game 2. We can still answer GenShares
queries correctly, since we no longer need to decrypt
any ciphertexts.

– The adversary cannot distinguish Game 2 from
Game 3 because the TCP oracle simulates the same
protocol.

– Finally, if we have an adversary that can win Game
3, then it breaks the security of the TCP because
by construction the challenger has no unrevoked re-
spectively unused tokens in the challenge phase for
the challenge user U∗ because the user is blocked
respectively rate-limited.

Proof of Theorem 1. This proof follows the sequence of
games highlighted above. Let U∗ be the challenge user.
We guess this user. If the guess turns out to be incorrect,
we repeat the reduction with a new guess.

In Game 1 we change how the TS responds to
RunTCP queries, in particular, we change GenShares for
the challenge user U∗. The TS (controlled by the chal-
lenger) no longer decrypts the ciphertext c revealed in a
token, but instead directly recovers the plaintext using
the ∆i and γi values. The TS then continues as before.

To enable the TS to answer RunTCP queries
without decrypting, the TS stores some extra values
whenever A runs the ObtainKeyShareToken protocol.
Whenever the TS issues a credential cred, it ex-
tracts the attributes (ε, skU , H(c), H(c1), . . . ,H(ck))
(normally, the TS cannot learn these values). The
challenger uses the extractability of ExtCommit(·, ·)
to find inputs µ′i1 , . . . , µ

′
im

and κ′i1 , . . . , κ
′
im

used to
create the unopened commitments ∆i1 , . . . ,∆im . (The
adversary might cheat so that not all ∆is are true
commitments.) By Lemma 1, m ≥ 1, and there exists



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 352

i∗ such that the extracted inputs are correct, i.e.,
µ′i∗ = µi∗ and κ′i∗ = κi∗ . The challenger records the tu-
ple (U, (i1, H(ci1), µ′i1 , κ

′
i1

), . . . , (im, H(cim), µ′im , κ
′
im

))
for later use.

We now show how to answer RunTCP queries with-
out needing to decrypt the ciphertexts. The TS initially
follows the GenShares protocol. At the start of the proto-
col, A proves possession of a fresh, unrevoked signature
on the values (ε,H(c), H(c1), . . . ,H(ck)) to the TS (run
by the challenger). Moreover, A provides γ1, . . . , γk and
ν1, . . . , νk. The TS then checks that these values are cor-
rect. If not, it aborts. So far, the challenger follows the
protocol.

Now, we deviate from the protocol. By the unforge-
ability of the blind signatures, this signature must have
been obtained by running ObtainKeyShareToken. Hence,
the challenger can look up the corresponding tuple (U,
(i1, H(ci1), µ′i1 , κ

′
i1

), . . . , (im, H(cim), µ′im , κ
′
im

)) from to-
kens it signed by matching on the hashed ciphertexts.
Let xS be the encrypted key share for this user. We use
the values µ′i1 , . . . , µ

′
im

and κ′i1 , . . . , κ
′
im

to find the plain-
text of one of ci1 , . . . , cim and then use this to compute
the plaintext of c.

For i ∈ i1, . . . , im test if:

ci = xS ·E+
pk(µ′i, κ′i)

Let (i∗, µ′i∗ , κ′i∗) be the tuple that satisfies this equation.
By Lemma 1 we know that there must exist an index i∗

such that:

ci∗ = xS ·E+
pk(µi∗ , κi∗),

∆i∗ = ExtCommit((µi∗ , κi∗), ξ∗),

so this procedure does indeed find such a tuple
(i∗, µ′i∗ , κ′i∗). The plaintext of ci∗ thus is xS + µ′i∗ .
Therefore, the plaintext of c is xS + µ′i∗ + γi∗ because
c = ci∗ · E+

pk(γi∗ , νi∗). Therefore x̃S = xS + µ′i∗ + γi∗

(mod p).
Now that the challenger has derived x̃S it contin-

ues with the TCP as normal. This shows how we can
answer RunTCP queries without needing to decrypt the
ciphertexts.

Games 0 and 1 cannot be distinguished by the ad-
versary. During ObtainKeyShareToken queries, the TS
extracts attributes using rewinding, so this is not de-
tected by the adversary. By Lemma 1 the index i∗ ex-
ists with overwhelming probability, so the responses of
the TS are completely identical for the RunTCP queries
made by the adversary.

Let x∗S be the TS’ key-share for the challenge user
U∗. In Game 2, we do not send xS = E+

pk(x∗S) to the

adversary when it makes RegisterUser queries for the
challenge user U∗. Instead, we send xS = E+

pk(0). Dur-
ing RunTCP queries, we first extract the plaintext of c as
above, and then add x∗S . The fact that the TS does not
need to decrypt c to answer RunTCP queries together
with Lemma 4 shows that the adversary cannot detect
this change.

In Game 3, we again change how we answer RunTCP
queries for the challenge user U∗. In particular, we will
answer this query without using the corresponding key-
share x∗S . Instead, we use the challenge oracle for the
TCP security in the query phase. We proceed as before,
to find the plaintext δ of c when running GenShares.
However, now we use the TCP challenge oracle to run
the TCP by making a TCP(δ mod p) query. The Tan-
dem security challenger relays the messages to the ad-
versary A. After the selection phase, we advance the
TCP security challenger to the challenge phase. More-
over, the challenge user U∗ cannot obtain new tokens
(because U∗ is either blocked or rate-limited), and all
old tokens have been revoked or used, so we no longer
need access to the TCP oracle to answer queries. Fi-
nally, in the challenge phase, we relay the messages to
the TCP challenger. Then, if adversary A wins Game 3,
it breaks the TCP security of the underlying TCP. Since
we assumed this cannot happen, the Tandem scheme
is secure as well. The only difference between Game 2
and Game 3 is that we use the TCP oracle to run the
TCP. However, since the TCP oracle uses to correct
randomized key, this change is indistinguishable to the
adversary.

G Privacy Proof
In our privacy proof, we reduce an attacker against pri-
vacy to an attacker on the blind singing property of the
blind signature scheme. We use the following version
based on the one by Baldimtsi and Lysyanskaya [10].

Game G.1. The blind signature game is between a
challenger controlling an honest user U and an adver-
sary controlling the issuer and the verifier.
Setup At the start of the game, A publishes the public
key pkσ of the signer and outputs all other necessary
public parameters.
Challenge At some point, the adversary outputs two
tuples of attributes m0 and m1 on which it wants to be
challenged. The challenger picks a bit b ∈R {0, 1} and



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 353

randomizers r0, r1, and computes two commitments

C0 = Commit(m0, r0)
C1 = Commit(m1, r1)

and proceeds as follows. First, it runs the
BSA.BlindSign(pkσ, Cb) protocol with private input
mb, rb for the user to obtain a signature (σb, C̃b, r̃b)
on mb. Next, it runs the BSA.BlindSign(pkσ, C1−b)
protocol with private input m1−b, r1−b for the user to
obtain a signature (σ1−b, C̃1−b, r̃1−b) on m1−b. If both
protocols are successful, the challenger sends (σ0, C̃0)
and (σ1, C̃1) to the adversary. Otherwise, it sends
nothing.
Guess Finally, the adversary outputs a guess b′ of b.
The adversary wins if b′ = b.

If no adversary can win this game then the signer cannot
recognize the signatures it helped produce.

The computationally hiding commitments in the
ObtainKeyShareToken protocol ensure that the TS learns
nothing about the unrevealed ciphertexts c and witness
ciphertexts ci which it blindly signs. So, when the user
runs GenShares and thereby reveals these ciphertexts,
they cannot be directly correlated to a corresponding
run of ObtainKeyShareToken. Moreover, the plaintext
corresponding to the ciphertexts ci are fully random-
ized, so that these too do not reveal anything about the
user with which the TS is currently interacting.

The privacy proof folows a sequence of games.
Throughout we use a guess i0, i1 for the challenge to-
kens. If this guess turns out to be incorrect when
the adversary makes it challenge query, we abort and
try again. We first use a sequence of games to show
that we can remove identifying information from the
ObtainKeyShareToken protocol.

– Game 0 is the Tandem privacy game, see page 337.
– In Game 1, we extract the TS key-shares x0,S and
x1,S for users U0 and U1 from the TS’ proof of
knowledge in step I of the RegisterUser protocol, see
Appendix E.

– In Game 2, we forge the user’s zero-knowledge proof
of correct construction of C, the commitment to the
epoch, the user’s private key skU , and the random-
ized ciphertexts, at the end of ObtainKeyShareToken
protocol.

– In Game 3, we use the extractability of
ExtCommit(·, ·) to forge the user’s cut-and-
choose proof in the ObtainKeyShareToken protocol,
and send random commitments Ci,∆i for i 6∈ D.

However, we honestly construct C as per the
protocol.

– In Game 4, for user Ui and the challenge token, we
set c = E+

pk(xi,S + δ, κ) and ci = E+
pk(xi,S + µi, κi)

for i 6∈ D rather than using xS . We commit to ci
for i 6∈ D as usual. Lemma 3 shows that with high
probability we still follow the protocol correctly.

– In Game 5, we omit xi,S altogether in the construc-
tion of the unrevealed ci, that is, we set:

ci = E+
pk(µi, κi) (11)

for all i 6∈ D. Similarly, we set c = E+
pk(δ, κ), and

use these values to construct C. When answering
RunTCP queries, user i adds xi,S , which we extract
during the RegisterUser protocol, to its long-term
secret-share xU to compensate for this change. The
size of the randomizers µi and δ ensures that the
TS cannot detect this change.

– In Game 6, we replace the user’s private key skU
in the commitment C by the value 0. Because of
the hiding property of the Pedersen commitment C
(and the fact that we simulate the proof of correct
generation of C) ensure the adversary cannot detect
this change.

– Finally, in Game 7, we simulate the correct opening
of the commitment C̃ in the first step of the Gen-
Shares protocol without knowing the randomizer r̃.
Note that C̃ itself still commits to the same values
as in Game 6. Because we simulate the proof, the
adversary does not notice this change.

We are now in the situation where the tokens held
by user 0 and 1 are exchangeable. We use this to show
that no adversary can distinguish situations b = 0 and
b = 1. We use a sequence of games to interpolate be-
tween the two situations. We start from Game 7.

– In Game A, the challenger uses b = 0 but otherwise
proceeds as in Game 7.

– In Game B, the challenger swaps the signatures of
the challenge tokens of users U0 and U1. By the
blind signature game, the adversary cannot detect
this change.

– In Game C, the challenger also swaps the users U0
and U1 in the challenge phase. As a result, it per-
fectly simulates b = 1 in Game 7. The privacy prop-
erty of the threshold cryptographic protocol (with
colluding respectively honest SP) ensures that the
adversary cannot detect this change.



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 354

Since these steps are indistinguishable, no adversary can
distinguish the situations b = 0 and b = 1 in Game 7,
and by indistinguishability again, neither can any adver-
sary distinguish these two in the original privacy game.

Proof of Theorem 2. Throughout this proof, we use a
guess for the challenge tokens i0 and i1 of users U0 and
U1 respectively. If this guess turns out to be wrong in
the challenge step, we abort and try again.

In Game 1, the challenger extracts x0,S and x1,S for
users U0 and U1. In particular, the challenger runs the
knowledge extractor on the proof of knowledge of the
RegisterUser protocol, see Equation 6, for each of the
users. Since the extractor uses rewinding, the adversary
does not detect this.

In Game 2, the challenger forges the proof of knowl-
edge of correctness of the commitment C at the end of
the ObtainKeyShareToken protocol for the challenge to-
kens i0 and i1 of users U0, U1 respectively. By simulata-
bility, the adversary cannot detect this change.

In Game 3, the challenger extracts the subset D
from the commitment ∆ as soon as it receives it. For
the two challenge tokens, the challenger (acting as the
user) now proceeds as follows. It computes Ci,∆i for
i ∈ D as per the protocol. However, for i 6∈ D it lets
the unrevealed commitments Ci and ∆i commit to ran-
dom values. The proof of knowledge that C commits to
the same values as Ci is already forged since a previous
step. Because the commitment scheme is computation-
ally hiding, the adversary cannot detect this change.
Despite the changes we made, the final token that is
stored by the user is exactly the same as in the original
ObtainKeyShareToken protocol.

In Game 4 we compute the values c and ci for user
Uj and i 6∈ D as

c = E+
pk(xj,S + δ;κ)

ci = E+
pk(xj,S + µi;κi)

(recall, we extracted xj,S in the RegisterUser phase) in-
stead of c = xS · E+

pk(δ;κ) and ci = xS · E+
pk(µi;κi).

Lemma 3 shows that with overwhelming probability
D+
sk(xS) equals the value xj,S we extracted in the

RegisterUser protocol, so this change does not modify
the adversary’s view.

In Game 5 the user omits xj,S in the computation
of c and ci, and instead sets:

c = E+
pk(δ;κ)

ci = E+
pk(µi, κi)

for the challenge tokens. To compensate for the fact that
xj,S is no longer included, the users adds xj,S to xU .

As a result, the threshold cryptographic protocol still
completes as before.

The size of the domain from which the µis and δ are
drawn, ensures that the adversary cannot detect this
change when the users uses the token. More formally,
the user sends c, cis, γis, and νis. However, the last two
sets are redundant, they can be computed directly based
on c and the cis. As a result, we can focus on δ = D+

sk(c)
and µi = D+

sk(ci). By the size of the domain of δ and
the µis and the size of xj,S the tuples (δ, µ1, . . . , µk) and
(xj,S + δ, xj,S +µ1, . . . , xj,S +µk) are statistically indis-
tinguishable. As a result no adversary can distinguish
Games 4 and 5.

In Game 6, the user omits their private key skU
from the commitment C by setting

C = Commit((0, ε,H(c), H(ci1), . . . ,H(cik)), r).

The hiding property of the commitment scheme, the fact
that we simulate the proof of correctness of C, and the
fact that both challenge users are unrevoked, ensures
that the adversary cannot detect this change.

In Game 7, we simulate the proof of knowledge in
step 2 of the GenShares protocol for the challenge users.
Because the simulation is perfect, the adversary does
not notice this change. Note that the commitment C̃
still commits to the correct values.

We now show that no adversary can win Game 7.
We again use a sequence of games, but now interpolate
between Game A, where the challenger uses b = 0 in
Game 7, and Game C, where the challenger uses b = 1 in
Game 7. We construct the intermediate Game B, where
user U0 uses the token i1 of user U1 and vice versa. Since
the challenge tokens in Game 7 (and thus in Games
A, B, and C) do not depend on the user, the TCPs
complete correctly as in Game 7.

We first show that Games A and B are indistin-
guishable. Suppose to the contrary that A can distin-
guish Games A and B. We show that we can use A to
build an adversary B that breaks the blindness property
of the signature scheme. In the blind signature game, B
gets oracle access to two users that request a blind sig-
nature on one message each. Adversary B acts as the
challenger towards A in Game 7. At the start of the
game B generates two messages, corresponding to key-
share tokens, for which users U0 and U1 need a blind
signature. It creates:

m0 = (0, ε,H(c1), . . . ,H(ck))
m1 = (0, ε,H(c′1), . . . ,H(c′k)),

where the values in the tuples are as in Game 7. Adver-
sary B sends m0,m1 to its blind signature challenger.



Tandem: Securing Keys by Using a Central Server While Preserving Privacy 355

During the ObtainKeyShareToken protocols for the
challenge tokens, B simulates its users as follows. When
user U0 is running the blind signature protocol to create
the challenge token τ0, B uses its challenger of the blind
signature game to act as the user. When U1 runs the
blind signature protocol to create token τ1, B again uses
its blind signature game challenger. Finally, the blind
signature challenger outputs two signatures σ0 and σ1
on messages m0 and m1 respectively. Adversary B uses
σ0 to construct the key-share token for user U0, and uses
σ1 to construct the key-share token for user U1. Note
that the blind signature challenger does not output the
randomizers for the commitments C̃0 and C̃1, but this
does not matter as we simulate the proof of knowledge
that requires them.

If b = 0 in the blind-signature game, Bs challenge
user first blindly signed m0, so B perfectly simulates
Game A. If b = 1 in the blind-signature game, then B
perfectly simulates Game B. Hence, any distinguisher
between Games A and B breaks the blindness property
of the blind signature scheme.

We now show that if the TCP scheme is private
(with a colluding respectively honest SP), no adversary
can distinguish between Games B and C. Suppose to the
contrary that adversary A can distinguish Game B from
Game C. We show that we can use A to build an ad-
versary B that breaks the privacy property of the TCP
scheme. Adversary B simulates users U0 and U1 towards
A. The RegisterUser and ObtainKeyShareToken protocols
do not involve the users’ secrets, so B computes them
directly. We now show how to answer RunTCP queries.

Whenever A makes a RunTCP(Ui, j, inU ) query, B
makes a RunTCP(i, inU ) query of its challenger. Distin-
guisher B’s challenger replies with the TS’ key-share x̃S .
Let τ = (σ, C̃, r̃, ε, c, δ, κ, (cl, κl, µl)l=1,...,k) be the jth to-
ken of user Ui. Normally, this token dictates a TS key-
share unequal to x̃S , but we can use the random oracle
and change the token to ensure that the TS will re-
cover x̃S . To do so, the adversary sets δ′ = δ + (x̃S − (δ
mod p)) so that δ′ mod p = x̃S , and then computes
c = E+

pk(δ′;κ). (Note that the size of δ′ is correct with
overwhelming probability). Adversary B updates the
random oracle to ensure that H(c′) = H(c), i.e., the new
ciphertexts has the same hash value as the original pairs.
Next, B uses token τ ′ = (σ, C̃, r̃, c′, δ′, (c′l, κ′l, µ′l)l=1,...,k)
to run GenShares with the TS.

The changes to the random oracle ensure that this
token is valid. Moreover, the changes to the random
oracle succeed with high probability since at no point
in the games does the TS learn the inputs to these hash-
functions. The TS will derive the correct secret share x̃S

from τ ′. So it runs the correct TCP protocol with the
requested user which is simulated by B’s challenger.

To answer A’s challenge queries, B again uses his
challenger and proceeds as above to answer the queries.
If b = 0 in the TCP privacy game, then B’s first run
of RunTCP uses user U0’s key, so B simulates Game B.
Otherwise, if b = 1, then B simulates Game C. So, any
adversary A that can distinguish Games B and C breaks
the privacy property of the TCP scheme. This completes
the privacy proof.


	Tandem: Securing Keys by Using a Central Server While Preserving Privacy
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Tandem at a Glance
	5 Cryptographic Preliminaries
	5.1 Cryptographic Building Blocks
	5.2 Threshold-Cryptographic Protocols

	6 The Full Tandem Construction
	6.1 Alternative Constructions

	7 Security and Privacy of Tandem
	7.1 Security of Tandem
	7.2 Privacy of Tandem

	8 Securing Protocols with Tandem
	8.1 Use Case: Attribute-Based Credentials

	9 Performance Evaluation
	10 Conclusion
	A Tandem Details and Extensions
	A.1 The Joye-Libert Encryption Scheme
	A.2 Using More Than One Tandem Server

	B Attribute-Based Credentials
	B.1 The Full TCP Protocols
	B.2 TCP Security and Privacy
	B.3 Rate-limiting in ABCs

	C Threshold ElGamal Decryption
	D Proofs of Lemmas
	E Constructing Correctness Proof of 
	F Security Proof
	G Privacy Proof


