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Effective writing style transfer via combinatorial
paraphrasing
Abstract: Stylometry can be used to profile or
deanonymize authors against their will based on writ-
ing style. Style transfer provides a defence. Current
techniques typically use either encoder-decoder archi-
tectures or rule-based algorithms. Crucially, style trans-
fer must reliably retain original semantic content to be
actually deployable. We conduct a multifaceted eval-
uation of three state-of-the-art encoder-decoder style
transfer techniques, and show that all fail at semantic
retainment. In particular, they do not produce appro-
priate paraphrases, but only retain original content in
the trivial case of exactly reproducing the text. To mit-
igate this problem we propose ParChoice: a technique
based on the combinatorial application of multiple para-
phrasing algorithms. ParChoice strongly outperforms
the encoder-decoder baselines in semantic retainment.
Additionally, compared to baselines that achieve non-
negligible semantic retainment, ParChoice has superior
style transfer performance. We also apply ParChoice to
multi-author style imitation (not considered by prior
work), where we achieve up to 75% imitation success
among five authors. Furthermore, when compared to
two state-of-the-art rule-based style transfer techniques,
ParChoice has markedly better semantic retainment.
Combining ParChoice with the best performing rule-
based baseline (Mutant-X [34]) also reaches the highest
style transfer success on the Brennan-Greenstadt and
Extended-Brennan-Greenstadt corpora, with much less
impact on original meaning than when using the rule-
based baseline techniques alone. Finally, we highlight a
critical problem that afflicts all current style transfer
techniques: the adversary can use the same technique
for thwarting style transfer via adversarial training. We
show that adding randomness to style transfer helps to
mitigate the effectiveness of adversarial training.
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1 Introduction
Freedom of speech and privacy are threatened by ad-
vances in artificial intelligence, including natural lan-
guage processing (NLP). In particular, stylometry can
be used to identify or profile anonymous authors based
on writing style [65, 68]. Institutions or individuals can
use stylometry to deanonymize whistle-blowers and dis-
sidents [7, 8, 60]. Deanonymization can put authors in
danger of harassment [3] or even legal repercussions [34].
Accordingly, author deanonymization or profiling con-
stitutes an attack on privacy [7, 24, 47, 51].

As a defence, the author can use style transfer.
This process can consist of several transformations, i.e.
changes applied to the input text. Prevalent approaches
are based on encoder-decoder networks [17, 43, 58, 63,
64, 70, 71, 73], but more traditional rule-based tech-
niques also continue to be used [36, 45, 61]. Importantly,
style transfer is distinguished from mere style-specific
generation [32, 35] by the requirement of semantic re-
tainment: the transformed text should express equiva-
lent content to the original.

Using both automatic and manual metrics, we con-
duct a detailed performance evaluation of three state-
of-the-art style transfer techniques based on encoder-
decoder networks [58, 63, 64] (Sections 5–6). The aim
of these techniques is to produce a style-neutral encod-
ing of the original sentence’s content, and then generate
the same content in the target style. However, they all
fail at producing acceptable paraphrases (Section 6.1.1).
Semantic retainment only succeeds in the trivial case of
reproducing the input.
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Such results motivate a reconsideration of alterna-
tive approaches, in particular automatic paraphrasing.
We propose a novel style transfer technique based on
combinatorial paraphrase generation, and style specific
paraphrase selection. The technique, which we call Par-
Choice, is inspired by prior work in rule-based style
transfer (Section 2) [36–40, 45, 46, 48, 61] but involves
substantial additions to existing techniques. In Section
4 we discuss the paraphrasing algorithms in detail.

We compare ParChoice with the three encoder-
decoder baselines on four author profiling datasets de-
rived from original work presenting the baselines (Sec-
tion 6). ParChoice outperforms them all in semantic re-
tainment, especially clearly in human evaluation (Sec-
tion 6.1.1). In style transfer performance, ParChoice sur-
passes those baselines that achieve non-negligible se-
mantic retainment (Section 6.1.2). Additionally apply-
ing ParChoice to five-author style imitation, we achieve
up to 75% imitation success (Section 6.1.2).

We also compare ParChoice to two rule-based tech-
niques that have demonstrated strong performance in
prior research [36, 45] (Section 6.2). Experimenting
on the Brennan-Greenstadt corpus and the Extended-
Brennan-Greenstadt corpus [7], we demonstrate that
ParChoice exerts less semantic changes than either base-
line. Furthermore, even though one baseline (Mutant-X
[45]) achieves a higher style transfer performance than
ParChoice alone, applying them both in succession sig-
nificantly improves the performance of both. This com-
bined application of ParChoice and Mutant-X also re-
tains semantics better than Mutant-X alone.

Finally, affecting all state-of-the-art style transfer
techniques (including ParChoice) we highlight a serious
general problem. A strong adversary who is aware of the
style transfer technique can employ adversarial train-
ing: using the style transfer technique for adding trans-
formed examples to the training data.

We demonstrate that adversarial training thwarts
all three encoder-decoder baseline techniques [58, 63, 64]
as well as ParChoice, typically with only a minor nega-
tive impact on original profiling accuracy (Section 6.3).
However, adversarial training fails if paraphrase selec-
tion in ParChoice is random, which indicates that the
problem can be partly mitigated by conducting the
transformations randomly instead of using a specific tar-
get style. We discuss the relation between style transfer
and adversarial training, and suggest directions for fu-
ture research on this problem (Sections 6.3–7).

We summarize our contributions below.

– We present ParChoice: a style transfer technique
based on combinatorial paraphrasing (Section 4).

– By comparing ParChoice with three encoder-decoder
baselines [58, 63, 64] and two rule-based baselines
[36, 45], we demonstrate that:
– ParChoice retains semantic information better

than any baseline (Sections 6.1.1, 6.2.1).
– ParChoice’s style transfer performance exceeds

those encoder-decoder baselines that achieve
non-negligible semantic retainment (Section
6.1.2).

– ParChoice significantly outperforms both rule-
based techniques in semantic retainment, while
ParChoice combined with Mutant-X [45] per-
forms the best in style transfer (Section 6.2).

– We demonstrate that the adversary can counter
style transfer by adversarial training, except if para-
phrases are selected randomly (Section 6.3). We dis-
cuss possible reasons for this finding, and propose
ways in which it can be taken into account in future
work on style transfer.

– We make the code for implementing our original
contributions available.1

2 Background
Author attribution via stylometry has traditionally fo-
cused on standard machine learning (ML) algorithms
and feature engineering [1, 22, 33, 56, 68, 74], but deep
learning methods have become more prominent in re-
cent years [4, 9, 19, 67]. While there is no unanimous
agreement on the most effective features [22, 24, 33],
the Writeprints feature set has been widely applied
with success [1–3, 15, 47, 53, 74]. Properties beyond
personal identity have also been detected from writing
style, including gender and age [61, 62]. We denote the
detection of any author attribute as (author) profiling,
deanonymization being a special case. We use the term
(author) profiler for ML classifiers used for profiling.

Mitigating author profiling requires style transfer,
i.e. transforming writing style but not semantic content.
Back-and-forth machine translation provides a simple
but highly limited technique [3, 7, 10, 14, 44], as it
does not allow targeting or avoiding any particular style.
Another classical alternative is rule-based paraphrase
replacement from knowledge bases [12, 36–40, 45, 61],

1 https://gitlab.com/ssg-research/mlsec/parchoice/

https://gitlab.com/ssg-research/mlsec/parchoice/
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Techniques Transformations applied
[40, 46] synonym replacement from WordNet
[45, 61] word embedding neighbour replacement

[38] word replacement from GNU Diction [26],
hand-crafted rules

[12] synonym replacement from FreeLing [54],
hand-crafted rules

[36] synonym/hypernym/definition replacement
from WordNet or PPDB, hand-crafted rules

Table 1. Prior rule-based style transfer techniques.

which we expand on with ParChoice. Table 1 summa-
rizes prior rule-based style transfer techniques.

As opposed to rule-based paraphrasing, recent style
transfer research has heavily concentrated on sequence-
to-sequence mapping via encoder-decoder networks [17,
43, 58, 63, 64, 70, 71, 73]. Such techniques aim at pro-
ducing a style-neutral encoding of the original sentence,
which serves as the input to a style-specific decoder.
Their main differences concern the training algorithms
used to enforce (i) the style-neutrality of the latent en-
coding, (ii) the style-specificity of the decoding, (iii) and
semantic retainment. In Section 6, we evaluate the per-
formance of three state-of-the-art techniques that aim at
reaching (i)–(iii) by different means [58, 63, 64]. As our
results illustrate, none attain all three simultaneously.

3 Problem statement
The entities involved in style transfer are the author and
the adversary. The author belongs to a class C1, which
is a set of authors. A special case of such a class is author
identity, which is a singleton set containing only the au-
thor. The adversary has an author profiler P , which is
a ML classifier used to profile texts by author class. We
denote the predicted class of a text T as P (T ). If the au-
thor has written T , profiling succeeds when P (T ) = C1
and fails otherwise. As a defence, the author produces
a transformed text T ∗. She2 succeeds in style transfer
if P (T ∗) 6= C1, and succeeds in imitating another class
C2 6= C1 if P (T ∗) = C2. Style transfer and imitation are
thus assimilated in two-class settings.
Adversary models: The adversary can access labeled
profiler training data, which he uses to train the author

2 For notational convenience, we denote the author as “she”
and the adversary as “he”.

Architecture Training data
Same Different

Same Query access Architecture access
Different Data access Surrogate access

Table 2. Author types based on how the author’s surrogate pro-
filer relates to the adversary’s author profiler.

profiler P . The labels include the author’s true class
C1. The adversary also accesses a text written by the
author; this being originally unknown to the adversary.
He profiles the text with P and receives P ’s prediction of
the text’s author class. In the baseline scenario the text
is T , i.e. the original unmodified text. In style transfer
scenarios it is T ∗, i.e. T transformed by the author.

We distinguish between two adversary types. The
weak adversary has no access to the author’s style trans-
fer technique, and trusts the profiling result. The strong
adversary knows the particular style transfer technique
used by the author, and can use the same technique to
transform any other text he accesses. To thwart style
transfer he can use adversarial training, i.e. re-training
the author profiler with transformed training data.
Assumptions: The author can either perform random
transformations, or select transformations to avoid or
target a specific style. For the latter, she needs a sur-
rogate profiler, which is a ML classifier trained on sur-
rogate training data. We distinguish between different
author types by the surrogate profiler’s relation to the
adversary’s profiler P .

If the surrogate profiler is the same as P , the au-
thor has query access. Alternatively, the surrogate pro-
filer can differ from P in model architecture or training
data, giving her data access or architecture access, re-
spectively. Finally, the weakest author only has access
to a surrogate profiler that is distinct from P in both ar-
chitecture and training data. This surrogate access rep-
resents the most realistic use scenario. We summarize
the different access variants in Table 2.

4 Design of ParChoice
Figure 1 shows an overview of the ParChoice pipeline. It
consists of two stages: (i) paraphrase generation, which
takes an input document and generates a set of para-
phrase candidates (4.1); and (ii) paraphrase selection,
which selects the candidate closest to the target writing
style (4.2). In this section, we explain each stage.
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Fig. 1. ParChoice pipeline

4.1 Paraphrase generation

Our paraphrase generation stage consists of four mod-
ules, which we discuss in 4.1.1–4.1.3. We generate the
Cartesian product of all transformations, with the aim
of producing maximally varied paraphrases. We call this
approach combinatorial paraphrasing.

4.1.1 Grammatical transformations

Grammar is a crucial aspect of writing style, and espe-
cially important for maintaining content-neutrality in
stylometry [29, 30]. Yet, prior style transfer approaches
have not systematically applied grammatical transfor-
mations (Section 2). A possible reason for this has been
the lack of available techniques.

We used a recent tool developed by Gröndahl and
Asokan, obtaining the same model used in the origi-
nal work presenting it [23]. This technique is based on
three tasks: (i) generating an abstract representation of

Sentence
(category)

Transformations
(category)

John saw Mary.
(active)

Mary was seen by John.
(passive)

John didn’t see Mary.
(negated, active)

Mary wasn’t seen by John.
(negative, passive)
I don’t think (that) John saw
Mary. (affirmed, active)
I don’t think (that) Mary was
seen by John. (affirmed, passive)

Did John see Mary?
(question, active)

Was Mary seen by John?
(question, passive)
Is it (true) that John saw Mary?
(declarative, active)
Is it (true) that Mary was seen
by John? (declarative, passive)

Table 3. Examples of grammatical transformations
(added prefixes in italics).

the sentence (“EAT”) derived from its dependency parse
[69]; (ii) transforming EAT according to targeted gram-
matical features; and (iii) generating an English sen-
tence from the transformed EAT via a NMT network.
The NMT network consists of an encoder and a decoder,
both of which are LSTMs. It has been trained to trans-
late EATs to English on a large corpus, consisting of 8.5
million sentences derived from multiple open-source cor-
pora. For further details, we refer to the original paper
[23]. All our transformations target only the main verb
of the sentence. We explain the transformations below,
and Table 3 shows examples.
Voice:We produced both active and passive variants of
transitive verbs, which take both a subject and a direct
object in the active voice. The direct object of an active
clause is expressed as the subject in a passive clause,
and the subject of an active clause is expressed in the
passive via the preposition by.
Negation: In addition to using the negative particle
not/n’t, an affirmative sentence can be negated by em-
bedding it in a clause that states its falsity. We produced
the affirmed version of an originally negated sentence,
and wrapped it in the context: I don’t think (that) (...).
The non-contracted variant I do not think (that) (...)
was later automatically produced in the paraphrase re-
placement stage (Section 4.1.2).
Questions: To paraphrase a polar (yes-no) question,
we first transformed it to a declarative variant, which
we then appended to the prefix Is it (true) that (...).
For negative questions, we additionally generated the
affirmed declarative variant embedded in Is is not (true)
that (...) and Isn’t it (true) that (...).

4.1.2 Paraphrase replacement

After grammatical transformations we applied para-
phrase replacement using simple rules and two external
paraphrase corpora: PPDB [18] and WordNet [50]. We
used the order simple → PPDB → WordNet → simple.
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The first application of simple rules increased the range
of inputs for PPDB, and their re-application at the end
further expanded the range of paraphrases considered
for selection. PPDB was applied before WordNet since
it retained semantics better (Section 6.1.1), and thus
this order was less likely to propagate errors.
Simple rules: We manually programmed a small set
of rules to produce simple transformations. First, we
take the presence or absence of commas as having only
a marginal effect on interpretation, and hence allowed
commas to be optionally removed.

Second, we treated the following as paraphrases:3

{not,n’t}{am, ’m}{are, ’re}{have, ’ve}
{nobody,no-one}{anybody, anyone}
{somebody, someone}

Third, we replaced equivalent modal auxiliaries.
However, some are only equivalent in either an affirmed
or a negated context, but not both. The context is
negated if the auxiliary precedes a negation (not/n’t),
and affirmed otherwise. We therefore distinguished be-
tween equivalent modal auxiliary groups in affirmed and
negated contexts. We additionally appended ought with
the preposition to (following the negation in negated
contexts), and conversely removed to if ought was re-
placed with another auxiliary. The following sets display
the equivalent modal auxiliary groups we used:

Affirmed context
{might, may, could, can} {should, ought, must}
{will, shall}
Negated context
{can, could} {should, ought, must} {will, shall}

PPDB: The Paraphrase Database (PPDB) is a par-
allel corpus of paraphrases, annotated with additional
semantic and syntactic information [18, 55]. PPDB-
paraphrases have been used for author profiling [59],
indicating that they are relevant for writing style. How-
ever, they have been less prevalent in rule-based style
transfer than WordNet (Table 1). This may be due to
difficulties in their direct application, which we discuss
below and help overcome in ParChoice.

3 We only produced the contraction ’ve after a pronoun in {I,
you, we, they}, and the contracted negation n’t after an auxiliary
in {is, are, was, were, have, has, had, wo (variant of will), must,
should, need, ought, could, can, do, does, did}.

Syntactic context Phrase Paraphrase
[NN] restriction constraint
[VB] co-operate collaborate

[S/VP] i am sorry to have to i regret to
[S/S] i am sorry i regret

Table 4. Example PPDB entries.
(NN: noun, VB: verb, S: sentence, VP: verb phrase)

We restricted our use of PPDB to the equivalent
class, comprising 245691 paraphrase pairs. We derived
these from the “PPDB-TLDR” version.4 However, sim-
ply replacing a phrase with a random PPDB-paraphrase
easily leads to ungrammaticality due to context effects.
We remedied this problem with a grammatical filter that
only allowed entries that fit the syntactic context spec-
ified in the PPDB-entry.

Examples of PPDB-entries are shown in Table
4. Single-word paraphrases include the part-of-speech
(POS) tag, and multi-word paraphrases contain the syn-
tactic context in the format [X/Y]. X describes the orig-
inal phrase, and Y the phrase immediately following it
in the original context. Phrases are higher-level syntac-
tic objects than words, and receive their grammatical
status from their head word [11]. For example, the fi-
nal row of Table 4 is interpreted as i am sorry being
paraphrasable as i regret, when followed by a sentence.

We obtained the POS-tags and phrase structure
of the original sentence with the Spacy parser [31].5

For each word n-gram in the sentence, we detected the
largest phrase immediately following it, and used this to
restrict paraphrase replacement. For single-word para-
phrases we used the POS tag instead. This grammati-
cal filtering algorithm drastically reduced ungrammat-
ical paraphrases produced via PPDB-replacement, and
we believe it to be useful in future work on automatic
paraphrasing extending beyond style transfer.
WordNet: As a manually built knowledge base of word
senses, WordNet [50] represents possible word meanings
along with multiple semantic properties, including syn-
onyms. Word senses are stored as uninflected lemmas.
While WordNet has commonly been used in rule-based
style transfer [36, 40, 45, 46, 48], the lemma format is a
major limitation in its direct application.

In contrast to prior studies, we inflected the Word-
Net lemmas, significantly increasing their range of ap-

4 http://paraphrase.org/#/download.
5 https://spacy.io/

http://paraphrase.org/#/download
https://spacy.io/
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plication. We created a dictionary from lemmas to their
surface manifestations with different POS and inflec-
tion tags, deriving these from a large text corpus.6 We
then inflected synonyms of the original word based on
its POS and inflection tag, and produced paraphrase
candidates with each inflected synonym. For word sense
disambiguation [52], we used the simple Lesk algorithm
from Python’s WSD library.7

4.1.3 Typos

Typographical errors have demonstrated success at
evading text classification [25, 42]. However, given the
vast number of possible misspellings and their varying
effects on readability, introducing them randomly is not
justifiable. We used a simple typo algorithm of option-
ally removing an apostrophe, as in you’re→youre. Ad-
ditionally, we introduced typos that appear in the tar-
get corpus of the surrogate training data. For obtaining
these we used the Python port of SymSpell,8 applying it
to the target corpus and storing a dictionary from cor-
rect spellings to possible misspellings. We additionally
spell-checked the original sentence and included origi-
nal typos to this typo dictionary. This allowed either
retaining original typos or correcting them, depending
on their effects on paraphrase selection.

Unlike other paraphrasing mechanisms, typos are
reversible via spell-checking. The full paraphrase gener-
ation pipeline is not reversible: since a paraphrase could
correspond to a very large number of possible inputs, it
is practically impossible to find the correct input from
the paraphrase alone. However, as typos are an impor-
tant aspect of stylistic variation [1, 7, 27], removing
them at pre-processing can potentially reduce the accu-
racy of author profiling. Our empirical results (Section
6.1.2) indicate that their effectiveness at style transfer
varies across datasets, but is usually not the most im-
portant factor.

6 We used the POS tagger of NLTK [6]. We obtained the in-
flected lemmas from the same corpus of 8.5 million sentences
that was used for training the NMT network used for grammat-
ical transformations [23] (Section 4.1.1). As the inflected variant
of a lemma, we chose the most common surface form associated
with a lemma-tag combination in the tagged corpus.
7 https://github.com/alvations/pywsd
8 https://github.com/wolfgarbe/SymSpell

4.2 Paraphrase selection

We selected the paraphrase candidate by a surrogate
profiler, which is a local author profiler trained on sur-
rogate training data (Section 3, Table 2).

In sentence-level experiments (Section 6.1), we
chose the candidate that was assigned the highest differ-
ence between target and source class probabilities by the
surrogate profiler. While this metric assimilates to the
lowest source-class probability (or the highest target-
class probability) in two-class settings, in multi-class
settings these probabilities come apart. This allows us
to perform imitation instead of mere style transfer (Sec-
tions 3, 6.1.2).

In document-level experiments (Section 6.2) we
replicated a genetic algorithm -based paraphrase selec-
tion method from our best-performing rule-based base-
line technique: Mutant-X [45]. This selection performs
only style transfer instead of imitation. We first pro-
duced a set of candidates by paraphrasing a random
sentence in the document. Following Mutant-X, we then
ranked the candidates based on the probability of mis-
classification (using query access to the author profiler),
and METEOR score with the original document. The
best-performing candidates were then used as inputs for
further iterations of the same process. Sections 5.3.2 and
5.3.3 further discuss the parameters used for Mutant-X
and the document-based ParChoice variant.

5 Experiments
In this section we describe the datasets (5.1), evalu-
ation setup (5.2), and style transfer techniques (5.3)
used in our experiments. We compared ParChoice with
three encoder-decoder baseline techniques on four two-
class sentence-level datasets. We additionally applied
ParChoice to multi-author imitation on a five-class
sentence-level dataset. Finally, we compared ParChoice
with two rule-based baseline techniques on four multi-
class document-level datasets.

5.1 Datasets

The encoder-decoder baseline techniques [58, 63, 64] use
sentences as inputs, and are only applicable to two-class
data. The rule-based baselines [36, 45] are tailored for
multi-author datasets of multi-sentence documents. We
used datasets specifically tailored for the baselines. Par-

https://github.com/alvations/pywsd
https://github.com/wolfgarbe/SymSpell
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Dataset Classes Training set size Test set
Profiler Surrogate size

YG female, male 2577862 386678 10000
BA adult, teen 2637850 395676 10000
AB Alice, Bob 25319 3797 1176
TO Trump, Obama 20860 3128 4668

Table 5. Sentence-based datasets (size: number of sentences).

Choice is applicable to all of them, which illustrates its
flexibility across different use cases.

5.1.1 Sentence-based datasets

We used four two-class corpora, one labeled by gender,
one by age, and two by author identity. In the gen-
der and age experiments, we replicated the setups of
two encoder-decoder baselines [58, 64]. We divided each
dataset to a larger profiler training set, a smaller surro-
gate training set (15% of profiler training set size), and a
test set. The original datasets are available on GitHub.9

Size-related information is presented in Table 5.
Yelp Gender (YG): This dataset consists of restau-
rant reviews labeled by gender [61]. It contains two
training sets, which results in partially divergent
data/architecture access between the baselines. We dis-
cuss this in more detail in Section 5.3.1.
Blog Age (BA): The blog dataset [62] contains blog
posts labeled by authorship, gender, and age. We exper-
imented on age profiling.10

Alice-Bob (AB): We extracted two authors from BA:
a female in the age range 13− 19, and a male in the age
range 23−40. We call them Alice and Bob, respectively.
Trump-Obama (TO): This dataset includes speeches
by Barack Obama and Donald Trump [64]. We were able
to improve profiling accuracy markedly by truncating

9 YG: https://github.com/shrimai/Style-Transfer-Through-
Back-Translation
BA/AB/TO: https://github.com/rakshithShetty/A4NT-
author-masking/blob/master/README.md
10 While we also experimented with gender, classification was
heavily biased toward the female class on original data, not
achieving > 40% accuracy on the male class with any of our
three classifiers. Since the same classifiers worked much better
with other datasets, this problem seemed to be due to the data
itself rather than classifier architectures. These results are in line
with those of Shetty et al. [64] who also received much lower clas-
sification accuracy on gender than on age in the blog dataset.
We therefore focused on age in our experiments.

the larger class (Obama) to the same size as the smaller.
We used this balanced variant in our experiments.
Multi-class:We created a five-class dataset by append-
ing AB with three additional authors from BA, intro-
ducing 7899+7270+6766 additional training sentences.

5.1.2 Document-based datasets

For document-level experiments, we used the Brennan-
Greenstadt corpus (BG) and the Extended-Brennan-
Greenstadt corpus (EBG) [7]. These corpora have been
manufactured specifically for the purposes of stylom-
etry, and contain multiple documents by different au-
thors. BG contains 12 authors and EBG 45 authors.
We used the full BG, and replicated the test settings of
Mahmood et al. [45] by using subsets of 5 and 10 authors
from EBG. We additionally experimented on the whole
EBG, giving us four datasets altogether: BG, EBG5,
EBG10, and EBG45. Following Mahmood et al. [45], we
used 12 documents from each author for training the
profiler, and the rest for testing.

5.2 Evaluation setup

We measured the effectiveness of each technique on two
fronts: semantic retainment and style transfer.

5.2.1 Semantic retainment evaluation

We measured semantic retainment using both auto-
matic and manual metrics, and conducted a user study
with independent evaluators for comparing ParChoice to
the encoder-decoder baselines.
Automatic evaluation: We calculated the METEOR
score [5] between the original and transformed test sets.
METEOR is based on n-gram overlap, and addition-
ally considers synonyms and paraphrases. We used the
METEOR implementation of the nlg-eval11 package.
Manual evaluation: We manually examined a sub-
set of test set transformations, assessing whether they
constituted acceptable paraphrases or had errors. For
sentence-based data, we evaluated 100 random sen-
tences from each two-class dataset (50 from each di-
rection). For document-based data, we manually evalu-
ated those sentences that were transformed by all the

11 https://github.com/Maluuba/nlg-eval

https://github.com/shrimai/Style-Transfer-Through-Back-Translation
https://github.com/shrimai/Style-Transfer-Through-Back-Translation
https://github.com/rakshithShetty/A4NT-author-masking/blob/master/README.md
https://github.com/rakshithShetty/A4NT-author-masking/blob/master/README.md
https://github.com/Maluuba/nlg-eval
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techniques compared (81 altogether), and combined this
evaluation with the rate of transformed sentences per
document for each technique. This yields an estimation
of how likely the techniques are to retain the original
meaning of a sentence in a document, by not transform-
ing it or by generating an appropriate paraphrase.
User study: We conducted a user study on 20 par-
ticipants to evaluate transformations by ParChoice and
the encoder-decoder baselines. Of the participants, 25%
were native English speakers. 55% were female and 45%
male. 60% were 20 − 30 years old, and 40% were 30 or
older. 90% had a university degree, most often on the
Master’s level (65%). In an online questionnaire, each
participant was allocated a set of 20 sentences drawn
from the YG dataset. They were shown the original sen-
tence along with transformed versions by all four imi-
tation techniques (in a random order). All users were
given different sentences to increase variation, resulting
in 20 × 20 × 4 = 1600 evaluations altogether. To en-
sure the relevance of the evaluation, we only used imita-
tions that were non-identical with the original sentence,
i.e. not exact reproductions. Participants compared each
variant to the original sentence, and rated it on a 0− 5
scale based on similarity of meaning.

5.2.2 Style transfer evaluation

For sentence-level datasets, we trained three author pro-
filers that represent the state-of-the-art in stylometry
(Section 2). In document-level tests we used the best-
performing profiler setup from Mahmood et al. [45].
Profilers: We adopted the most commonly used deep
learning text classification techniques: long short-term
memory networks (LSTM) [28] and convolutional neu-
ral networks (CNN) [41]. We used implementations from
Shetty et al. [64] (LSTM) and Prabhumoye et al. [58]
(CNN), which also form parts of our baseline style trans-
fer techniques (Section 5.3.1). Both use words as input
features. The source codes are available on GitHub.12

Writeprints features have exhibited strong perfor-
mance in stylometry (Section 2) [1–3, 15, 47, 53, 74].
For our third sentence-based author profiler, we col-
lected static Writeprints features [74] and trained a
multilayer perceptron (MLP) profiler that we call WP.

12 https://github.com/shrimai/Style-Transfer-Through-Back-
Translation
https://github.com/rakshithShetty/A4NT-author-masking/
blob/master/README.md

Static features apply to any user and are thus more gen-
eral than dynamic features, which include user-specific
information. We used the following features: number
of words, average word length, number of short words
(≤ 3), number of characters, digit percentage, upper-
case character percentage, spacial character percentage,
number of letters, number of digits, common charac-
ter bigram/trigram percentages, number of hapax- and
dislegomena, number of function words, number of POS
tags, and number of punctuation markers. Based on a
comparative evaluation between five ML architectures
(MLP, logistic regression, naive Bayes, decision trees,
and support vector machines), MLP fared the best on
our datasets with the static Writeprints features. WP
has a single hidden layer of 100 nodes.

For document-based datasets, we replicated the test
settings of Mahmood et al. [45], who used a random for-
est classifier trained on static Writeprints-features. This
profiler had the highest performance in their compara-
tive evaluation with other architectures.
Proofreading: From 100 sentences of YG, we manu-
ally produced additional proofread transformations. The
purpose of the proofreading was to ensure semantic re-
tainment while changing as little of the transformation
as possible. All corrections were made to the direction
of the original sentence; i.e. we did not produce any
novel paraphrases. This test evaluates how well the style
transfer techniques are able to perform if the author
secures semantic retainment by correcting the output.
It thus resembles semi-automatic style transfer frame-
works like Anonymouth [47] or AuthorWebs [14].
Adversarial training We tested the effectiveness of
thwarting style transfer via adversarial training on the
AB and five-class datasets, with the LSTM profiler.
With each style transfer technique, we appended trans-
formed variants to the original training set, and re-
trained the LSTM with this adversarial training set. We
then measured profiling accuracy on both the original
(non-transformed) test set and the transformations per-
formed by the technique used for adversarial training.

5.3 Style transfer techniques

We review the technical details of the baseline tech-
niques (5.3.1–5.3.2) and ParChoice-variants (5.3.3).

https://github.com/shrimai/Style-Transfer-Through-Back-Translation
https://github.com/shrimai/Style-Transfer-Through-Back-Translation
https://github.com/rakshithShetty/A4NT-author-masking/blob/master/README.md
https://github.com/rakshithShetty/A4NT-author-masking/blob/master/README.md
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Name Architecture access Data access
CAE - BA/AB/TO
BT CNN YG/BA/AB/TO

A4NT LSTM BA/AB/TO
ParChoice-CNN CNN YG/BA/AB/TO
ParChoice-LSTM LSTM BA/AB/TO
ParChoice-WP WP YG/BA/AB/TO
ParChoice-LRd - YG/BA/AB/TO
ParChoice-LRs - -

ParChoice-random - -

Table 6. Architecture/data access of sentence-based techniques.

5.3.1 Encoder-decoder Baselines

The main idea behind the encoder-decoder baseline
techniques is to generate a style-neutral encoding of
the original sentence, which functions as the input to a
style-specific decoder. Some models are available as pre-
trained, and the rest we trained ourselves. Pre-trained
models and the code for training the baselines are avail-
able on the respective projects’ GitHub pages (linked
below). The baselines partly differ in their access as-
sumptions (cf. Table 2), as summarized in Table 6.
Cross-aligned autoencoder (CAE): The CAE tech-
nique is a style-specific autoencoder that uses a method
called cross-alignment for calibrating encoding distribu-
tions [63]. The encoder produces a latent content vari-
able from the input sentence, and the decoder generates
the target sentence from this content variable together
with a target style feature. CAE does not have query
access to any of our author profilers, but has data ac-
cess to every dataset except YG (explanation below).
We trained CAE for every dataset, using the project’s
code from GitHub.13

Back-translation (BT): As an alternative to cross-
alignment, BT produces the latent content variable with
a pre-trained MT system [58]. The original English sen-
tence is first translated to French, which is then en-
coded with the French-English encoder. An English de-
coder then produces the target sentence from the encod-
ing, and separate decoders are trained to target specific
styles. Style-specificity is enforced by a CNN, which we
also use as one of our author profilers (Section 5.2.2).

BT trained on YG is provided on the project’s
GitHub page.14 It has been trained with two separate

13 https://github.com/shentianxiao/language-style-transfer
14 https://github.com/shrimai/Style-Transfer-Through-Back-
Translation

datasets: one for the classifier and another for the de-
coder (Section 5.1). We used the decoder training set to
train the other baselines, and the classifier training set
for training the profilers. Therefore BT has data access
to YG, but CAE and A4NT do not. With other datasets
we trained BT using the same training data for both the
classifier and the generator.
A4NT: Adversarial Author Attribute Anonymity Neu-
ral Translation (A4NT) [64] is a style transfer technique
based on generative adversarial networks (GANs). A
GAN consists of two neural networks, where one (the
classifier) is trained to classify outputs generated by
the other (the generator), which in turn is trained to de-
ceive the classifier [21]. The A4NT-generator is trained
to produce sentences classified as the target style by an
LSTM, which we also use as one of our author profilers
(Section 5.2.2). During training, semantic retainment is
regulated by the reconstruction probability of the origi-
nal sentence via a reverse transformation.

We used pre-trained A4NT-models for BA and
TO,15 and trained A4NT ourselves for YG and AB.
While we always used the full dataset for training the
initial classifier and generator, hardware limitations re-
quired us to truncate YG during the GAN-training
phrase. We used a subset of 100000 sentences for this.

5.3.2 Rule-based baselines

We used two rule-based baselines for the document-level
tests. The first [36] exhibited leading performance on the
PAN2016 Author Obfuscation task [57], and the second
[45] achieved state-of-the-art results on the EBG corpus
(Section 5.1.2). Following Mahmood et al [45], we call
these PAN2016 and Mutant-X. We implemented both
with code from the original projects (links below).
PAN2016:16 This technique [36] uses multiple hand-
crafted rules along with word replacement from Word-
Net and PPDB. Unlike ParChoice, PAN2016 does not
conduct either inflection or grammatical filtering to in-
crease the readability of the output. In addition to
synonyms, WordNet-replacement also uses hypernyms
and definitions. Additional hand-crafted rules include
e.g. replacing or injecting stopwords, replacing or re-
moving punctuation, and expanding contracted forms.

15 https://github.com/rakshithShetty/A4NT-author-
masking/blob/master/README.md
16 https://bitbucket.org/pan2016authorobfuscation/
authorobfuscation/src/master/

https://github.com/shentianxiao/language-style-transfer
https://github.com/shrimai/Style-Transfer-Through-Back-Translation
https://github.com/shrimai/Style-Transfer-Through-Back-Translation
https://github.com/rakshithShetty/A4NT-author-masking/blob/master/README.md
https://github.com/rakshithShetty/A4NT-author-masking/blob/master/README.md
https://bitbucket.org/pan2016authorobfuscation/authorobfuscation/src/master/
https://bitbucket.org/pan2016authorobfuscation/authorobfuscation/src/master/


Effective writing style transfer via combinatorial paraphrasing 184

PAN2016 contains its own stylometric feature set (sim-
ilar to Writeprints), and calculates the average of these
features from the training corpus. It then alters the test
document to shift its features closer to this average.
Hence, it relies on data access to the original training
set, but does not require query access to the profiler.
Mutant-X:17 This technique [45] replaces original
words with their word embedding neighbours obtained
from a pre-trained Word2Vec [49] model. The neighbour
order is further modified to shift words of opposite sen-
timent (e.g. good and bad) away from each other [72].
Mutant-X repeats random word replacement multiple
times, applying a genetic algorithm [20] to keep the best
performing variants after each iteration. Performance is
measured as the weighted combined effect of METEOR
score and how much original class probability is taken
down. For calculating the latter, Mutant-X uses query
access to the author profiler. We used the same hyper-
parameters as Mahmood et al. [45]: maximally 5% of
document words changed per run; 100 runs per itera-
tion; maximally 25 iterations; and 0.25/0.75 weights for
METEOR and class probability, respectively.

5.3.3 ParChoice

We implemented ParChoice in Python 3.
Sentence-based variants: To provide a maximally
close comparison to the encoder-decoder baselines, we
replicated the data/architecture access of BT and A4NT
by using the CNN and LSTM profilers for paraphrase
selection, respectively (ParChoice-CNN and ParChoice-
LSTM). We also experimented with black-box access
to the WP profiler (ParChoice-WP). As a separate sur-
rogate profiler, we used a logistic regression classifier
with word unigrams as input features. We trained two
versions of the surrogate profiler: one with data ac-
cess to the targeted profiler’s training data (ParChoice-
LRd), and another trained on separate surrogate train-
ing data (ParChoice-LRs). For consistency across ex-
periments, we always used 15% of the author profiler
training data size as the surrogate training data size
(Section 5.1; Table 5).18 Finally, we also experimented

17 https://github.com/asad1996172/Mutant-X/
18 In ParChoice-LRs we also used the surrogate training data
for obtaining typos (Section 4.1.3). To maintain consistency in
surrogate data sizes across all experiments, we used a different
YG surrogate dataset for ParChoice-LRs than the decoder train-
ing set used by A4NT and CAE, even though both are distinct
from the classifier training set (Section 5.3.1, Table 6). The Par-

on random paraphrase selection without any surrogate
profiler (ParChoice-random). Rows 4 − 9 of Table 6
summarize sentence-based ParChoice variants and their
data/architecture access.
Genetic algorithm: On document-level data, we used
the same genetic algorithm as Mutant-X (Section 5.3.2),
except that instead of changing random words in the
document, each run randomly paraphrased one sentence
in the document. With the hyperparameters used, this
meant that for 25 iterations, 100 new candidates of the
document were produced by paraphrasing a single ran-
dom sentence. The best candidates were then selected
for further iterations, as in Mutant-X. We replicated
Mutant-X’s paraphrase selection using a combination of
METEOR and query access to the targeted author pro-
filer, with 0.25/0.75 weights, respectively (Section 5.3.2).
ParChoice + Mutant-X: We additionally combined
the two best-performing rule-based techniques: Par-
Choice and Mutant-X. We first ran ParChoice, and then
applied Mutant-X only to those documents that had not
yet succeeded in style transfer. This combination thus
maximized the use of ParChoice, and applied Mutant-X
when ParChoice alone was insufficient.
Hyperparameters: Initial manual evaluation indi-
cated that most semantic problems occurred in long sen-
tences with multiple transformations. This motivated
an upper limit to transformations per sentence. A limit
based on sentence length is problematic for short sen-
tences, where even minor transformations are percentu-
ally large. Instead, we used a constant edit distance
limit of 10, which allows large changes in short sentences
but limits them in long sentences. For computational
efficiency, we also limited the number of PPDB- and
WordNet replacements to 1000 per sentence. Compari-
son with larger values indicated that further increasing
this number had little to no effect on performance.

6 Evaluation results
We present the results on experiments on the sentence-
level (6.1) and document-level (6.2). Raw data and ex-
ample transformations are provided in Appendix A.

Choice-LSTM variant was trained on the decoder training set,
as it replicates the access properties of A4NT (Table 6).

https://github.com/asad1996172/Mutant-X/
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Technique YG BA AB TO
CAE 19.63 21.49 6.81 4.40
BT 20.88 17.91 5.64 4.62
A4NT 44.95 48.98 22.98 19.81
ParChoice-CNN 46.09 50.70 48.61 51.20
ParChoice-LSTM 45.33 48.94 41.44 48.86
ParChoice-WP 45.20 48.72 41.06 49.84
ParChoice-LRd 46.00 48.59 43.02 49.17
ParChoice-LRs 45.89 48.83 45.82 50.27

Table 7. METEOR scores between original and transformed sen-
tences with all sentence-based style transfer techniques.

6.1 Sentence-level experiments

ParChoice exhibits a higher semantic retainment than
any encoder-decoder baseline (6.1.1). Its style trans-
fer performance is higher than that of A4NT, which
is the only encoder-decoder baseline that achieves non-
negligible semantic retainment (6.1.2).

6.1.1 Semantic retainment

METEOR and manual evaluation scores are presented
in Tables 7–8, and user study results in Table 9.
METEOR: ParChoice and A4NT always clearly out-
performed CAE and BT in METEOR. Especially on the
smaller datasets (AB, TO), CAE and BT attained very
poor scores (< 10) that imply almost no semantic over-
lap with the original sentences. A4NT performed com-
parably to ParChoice in the large datasets (YG, BA),
but never exceeded ParChoice-CNN, which was the high-
est performing ParChoice-variant. However, in the small
datasets (AB, TO) A4NT’s scores dropped sharply. Dif-
ferent ParChoice-variants performed comparably.19 Un-
like A4NT, ParChoice achieved high scores (∼ 50) on
both large and small datasets.

We also compared METEOR scores with each Par-
Choice-module applied alone in the ParChoice-LSTM
variant. All achieved scores between 50 and 67. Sim-
ple rules remained the highest, as expected due to the
small extent of paraphrases they produce. Typos had
the largest range of variation (50 − 67), which demon-
strates their dependency on the extent to which possible

19 ParChoice-random performed the best overall, but we ex-
clude it here because of its lack of targeted paraphrase selection.
The METEOR scores of ParChoice-random were 46.43 (YG),
49.72 (BA), 50.54 (AB), and 49.88 (TO).

Technique YG BA AB TO
CAE 2% 15% 1% 0%
BT 3% 3% 0% 0%
A4NT 31% 44% 16% 6%
ParChoice-LRs 54% 59% 60% 61%

Table 8. Manual evaluation: rate of acceptable paraphrases from
100 sentences in each dataset (50 to both directions), trans-
formed with each sentence-based technique.

Technique Mean Median ≥ 4 5
CAE 0.8 0 5% 2%
BT 0.9 0 8% 3%
A4NT 1.7 1 20% 9%
ParChoice-LRs 2.7 3 41% 24%

Table 9. User study results: grade statistics from human evalu-
ations of meaning similarity from 400 sentences from YG, trans-
formed with each sentence-based technique (grade scale 0− 5).

typos are available in the target class training data (Sec-
tion 4.1.3). Grammatical transformations, PPDB, and
WordNet performed similarly (in the range 55 − 63),
WordNet being systematically slightly higher than the
rest. A likely reason for this is METEOR’s bias toward
WordNet synonyms as opposed to the kinds of para-
phrases produced with grammatical transformations or
PPDB. In contrast, in manual evaluation PPDB fared
better than WordNet.
Manual evaluation: Table 8 presents our manual eval-
uation on 100 sentences from each two-class dataset.
For practical reasons we limited our manual ParChoice-
evaluation to only one variant. We chose ParChoice-LRs
for two reasons. First, compared to other variants, it
had neither the highest nor lowest overall METEOR
score (Table 7), which indicates that the manual eval-
uations are not likely to either over- or underestimate
the general performance of ParChoice. Second, it imple-
ments the most realistic access assumptions out of all
(non-random) ParChoice-variants (Section 3, Table 6).

CAE and BT produced practically no acceptable
paraphrases. This was especially true in the small
datasets (AB, TO), where imitations bore no resem-
blance to the original sentence and simply repeated cer-
tain words prevalent in the target corpus.

With A4NT, sentence reproduction was much more
common than anywhere else, but actual paraphrases
remained rare. For example, A4NT’s acceptable para-
phrase rate in BA decreases from 44% to only 2% when
reproductions are excluded. A4NT also generated a
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Technique YG BA AB TO
LSTM CNN WP LSTM CNN WP LSTM CNN WP LSTM CNN WP

CAE 0.31 0.30 0.21 0.15 0.16 0.13 0.74 0.77 0.55 0.34 0.20 0.28
BT 0.33 0.34 0.20 0.15 0.17 0.09 0.77 0.84 0.59 0.49 0.33 0.27
A4NT 0.16 0.17 0.10 0.10 0.11 0.05 0.19 0.22 0.14 0.53 0.07 0.33
ParChoice-CNN 0.39 0.49 0.19 0.21 0.35 0.08 0.26 0.39 0.16 0.13 0.21 0.12
ParChoice-LSTM 0.44 0.40 0.22 0.37 0.27 0.11 0.47 0.32 0.33 0.47 0.09 0.17
ParChoice-WP 0.26 0.23 0.48 0.16 0.17 0.34 0.21 0.22 0.60 0.15 0.06 0.59
ParChoice-LRd 0.39 0.40 0.16 0.28 0.29 0.11 0.26 0.25 0.29 0.32 0.09 0.17
ParChoice-LRs 0.36 0.36 0.15 0.22 0.21 0.09 0.21 0.22 0.20 0.23 0.07 0.14
ParChoice-random 0.12 0.12 0.08 0.04 0.05 0.01 0.10 0.11 0.09 0.09 0.03 0.09

Table 10. Author profiler accuracy decrease in sentence-based datasets, best (highest) scores framed.

large number of omissions, reproducing only part of the
original sentence without any changes or additions. Such
pure omissions were rare with other techniques. These
characteristics are likely due to A4NT’s training func-
tion, which includes a reconstruction loss [64] (Section
5.3.1). In the small datasets (AB, TO) A4NT’s semantic
retainment starkly declined to almost non-existent.

ParChoice clearly stood out by producing many
acceptable paraphrases. In contrast to the baselines,
ParChoice’s performance was similar across all four
datasets. The most prevalent ParChoice-transformation
was paraphrase replacement from PPDB or WordNet,
most commonly targeting a single word. Typos and
grammatical transformations were rare in the manu-
ally evaluated test sets, but some were encountered.
When PPDB- and WordNet-replacement could be dis-
tinguished, PPDB-replacement fared better in seman-
tic retainment. Most ParChoice-errors were caused by
contextually unsuitable WordNet synonym choice (e.g.
man→mankind). Such errors are due to faulty word
sense disambiguation (Section 4.1.2), improving which
is an important challenge for future research.
User study: Table 9 presents the user study results.
ParChoice clearly outperformed all baselines. As ex-
pected, CAE and BT performed especially poorly. The
majority of ParChoice-imitations were on the upper half
of the six-point scale (3−5), whereas the majority of all
baseline imitations had the lowest grades (0− 1).

6.1.2 Style transfer

We present style transfer results on two-class settings
and multi-class author imitation.
Two-class tests: To evaluate style transfer success, we
measured accuracy decrease: i.e. how much original ac-
curacy dropped after style transfer. Table 10 provides

Profiler YG BA AB TO
LSTM 0.83 0.62 0.91 0.82
CNN 0.82 0.63 0.93 0.64
WP 0.75 0.59 0.82 0.74

Table 11. Original author profiling accuracies.

these results. Table 11 shows profiling accuracies on
original test sets with the three profilers (Section 5.2.2).

A4NT’s performance was the weakest everywhere
except TO. CAE and BT achieved almost full imitation
in AB and the Obama→Trump direction of TO. This
was unsurprising since they simply repeated words un-
related to the original (Section 6.1.1). However, both
showed a clear bias toward the Trump class, and failed
in the Trump→Obama direction.

In large datasets (YG, BA), all (non-random) vari-
ants of ParChoice outperformed all baselines. This hap-
pened even under the weakest access assumptions, i.e.
ParChoice-LRs. In small datasets (AB, TO), ParChoice
retained similar performance but baselines increased
theirs. ParChoice-LRd achieved 5% better average ac-
curacy decrease than ParChoice-LRs, and query access
to the author profiler (CNN or LSTM) increased it
10%−20%. Query access to WP allowed effective black-
box evasion of WP, but did not reach the performance
of other variants with other profilers. ParChoice-random
expectedly took accuracy down the least.

We additionally applied each ParChoice module sep-
arately on the ParChoice-LSTM variant, and compared
accuracy decrease (Table 12) and prediction overlap
(Table 13) between the modules on the LSTM profiler.
All techniques had at least a minor impact. PPDB and
WordNet were the most effective overall and had simi-
lar success (13% − 20%). Grammatical transformations
outperformed them in AB, but were less successful oth-
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Technique YG BA AB TO Avg.
Grammatical 0.12 0.07 0.14 0.08 0.10
Simple rules 0.01 0.04 0.03 0.05 0.03
PPDB 0.19 0.18 0.13 0.25 0.19
WordNet 0.15 0.20 0.13 0.23 0.18
Typos 0.02 0.10 0.15 0.08 0.09
All 0.44 0.37 0.47 0.47 0.46

Table 12. Profiler accuracy decrease with ParChoice modules
individually and together (LSTM profiler, ParChoice-LSTM vari-
ant).

Gram. Simple PPDB WordNet Typos
Gram. 100% 93% 80% 80% 89%
Simple 93% 100% 83% 84% 95%
PPDB 80% 83% 100% 81% 82%
WordNet 80% 84% 81% 100% 83%
Typos 89% 95% 82% 83% 100%

Table 13. Prediction overlap between ParChoice modules (com-
bined from all datasets, LSTM profiler, ParChoice-LSTM variant).

erwise. Typos had the largest variation, ranging from
almost nonexistent in YG (2%) to being the most ef-
fective in AB (15%). Simple rules were expectedly the
least effective when applied alone (1%− 5%). The most
effective techniques (PPDB and WordNet) were also the
most diverse, having the least prediction overlap with
other techniques (80%− 84%) and each other (81%).
Proofreading: To emulate a scenario where the au-
thor manually checks the results of style transfer, we
proofread 50 transformed sentences from both the male
and female test sets of YG. For CAE and BT proof-
reading often required reproducing the original sentence
due to very poor semantic retainment (Section 6.1.1).
Proofreading negatively impacted style transfer with all
techniques, but markedly less with ParChoice than the
baselines (Table 14).
Multi-class tests: We evaluated five-class author imi-
tation to every direction on a blog author dataset (Sec-
tion 5.1). Since ParChoice-CNN and ParChoice-LSTM
had the best overall performance in two-class settings,

Profiler CAE BT A4NT ParChoice-LRs

LSTM 0.11 0.14 0.09 0.31
CNN 0.12 0.11 0.09 0.26
WP 0.09 0.09 0.08 0.10

Table 14. Profiler accuracy decrease on a YG-subset after manual
proofreading; best (highest) scores framed.

Technique Profiler Source
decrease

Target
increase Imitation

ParChoice-LSTM LSTM 0.39 0.29 15/20
CNN 0.28 0.20 1/20

ParChoice-CNN LSTM 0.21 0.13 0/20
CNN 0.40 0.27 7/20

Table 15. Five-class author imitation in the blog author dataset
with ParChoice (query access to LSTM/CNN): average source
class accuracy decrease, target class accuracy increase, and imi-
tation success (imitation threshold: majority of source class docu-
ments assigned to target class).

we experimented on these variants on the CNN and
LSTM profilers. We discarded WP here because it failed
to achieve high profiling accuracies on the original five-
class test sets. On each author’s test set, we considered
both the accuracy decrease of the original class, and
the accuracy increase of the target class. Additionally, if
the majority of the source author test sentences was as-
signed to the target author, we considered imitation to
succeed for that source-target pair. Table 15 summarizes
the results from all 20 imitation directions. ParChoice-
LSTM’s overall performance was superior to ParChoice-
CNN’s. ParChoice-LSTM reached the threshold 75% of
the time on the LSTM profiler.

6.2 Document-level experiments

We compare ParChoice to the rule-based PAN2016 [36]
and Mutant-X [45] baselines (Section 5.3.2) in semantic
retainment (6.2.1) and style transfer (6.2.2). ParChoice
is markedly better in semantic retainment than either
baseline, but Mutant-X remains stronger in style trans-
fer. A combination of ParChoice and Mutant-X outper-
forms prior rule-based schemes in both style transfer
and semantic retainment.

6.2.1 Semantic retainment

We use three measures of document-level semantic re-
tainment: (i) METEOR score, (ii) rate of sentences
transformed per document, and (iii) manual evaluation
of paraphrases in transformed sentences. Originally mis-
classified documents were discarded from the evalua-
tion, since they were left unchanged.
METEOR: All techniques achieved relatively high
METEOR scores (Table 16), with ParChoice outper-
forming PAN2016 (by 19 − 34 points) and Mutant-X
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Technique METEOR
BG EBG5 EBG10 EBG45

PAN2016 43.17 45.93 46.96 47.15
Mutant-X 56.71 57.23 53.46 56.75
ParChoice 77.40 65.41 66.26 69.34
ParChoice+Mutant-X 61.61 60.25 62.31 65.86

Table 16. METEOR scores between original and transformed
documents from rule-based techniques (originally misclassified
documents discarded).

Technique Transformed sentences
BG EBG5 EBG10 EBG45

PAN2016 98% 98% 98% 96%
Mutant-X 71% 72% 79% 73%
ParChoice 6% 25% 11% 7%
ParChoice+Mutant-X 43% 41% 22% 14%

Table 17. Average transformed sentence rates per document
(originally misclassified documents discarded).

(by 8 − 21 points). Combining ParChoice with Mutant-
X also always retained a higher score than Mutant-X
alone (by 9− 3 points).
Transformed sentence rates: PAN2016 transformed
almost all sentences per document, Mutant-X a clear
majority (> 70%), and ParChoice only 6%− 25% (Table
17). This is a major divergence among the techniques,
as it makes ParChoice much more likely to retain se-
mantics by focusing transformations only on a minority
of sentences. While the transformed sentence rate in-
creased when Mutant-X was applied after ParChoice, it
remained significantly lower than with Mutant-X alone.
Manual evaluation: To ensure fair comparison, we
manually evaluated each technique on the same sen-
tences. Across all four datasets there were 81 sentences
that all techniques had made changes to. Table 18 shows
manual evaluation results on these sentences.

We provide an error analysis, categorizing errors to
four types based on decreasing severity:

– Antonym: opposite meaning
– Word: non-antonym but different meaning
– Context: possible paraphrase but wrong context
– Grammar: correct paraphrase but wrong grammar

Mutant-X produced 19 antonyms across all 81 sentences,
including e.g. more→less and easier→harder. While
Mutant-X uses sentiment-based neighbour ranking [72]
to avoid antonyms (Section 5.3.2), sentiment is only one
possible source of antonymity. In contrast, antonyms

Technique
Acceptable
Paraphrases

Error count
A W C G

PAN2016 44% 0 32 12 1
Mutant-X 32% 19 62 7 4
ParChoice 60% 1 20 12 2
ParChoice+Mutant-X 53% 2 40 16 1

Table 18. Manual evaluation results from rule-based techniques
(calculated from 81 sentences transformed by all techniques).
Error types: A=antonym; W=word; C=context; G=grammar.

Technique Corpus
BG EBG5 EBG10 EBG45

PAN2016 50% 13% 32% 76%
Mutant-X 82% 60% 87% 96%
ParChoice 36% 47% 84% 91%
ParChoice+Mutant-X 82% 77% 97% 100%

Table 19. Successful style transfer rates of rule-based techniques
(originally misclassified documents discarded).

were absent in PAN2016, and only one was found in Par-
Choice: defended→opposed. The most likely source for
this error was PPDB. Other word errors were the most
common in all techniques, but much rarer in ParChoice
than elsewhere. In ParChoice the rate of context errors
was the same as in PAN2016, but their percentage of all
errors larger. These included e.g. issue→number, which
would be correct in a magazine-related context but not
otherwise. All techniques produced a few (1− 4) purely
grammatical errors, mostly due to inflection.

Overall, Mutant-X made markedly more semantic
errors than either PAN2016 or ParChoice. This result
seems to contrast PAN2016 having a lower METEOR
score. This may be due to PAN2016 adding words (such
as Additionally) before sentences, which usually does
not negatively impact semantics but brings n-gram over-
lap (and hence METEOR) down. Applying ParChoice
before Mutant-X significantly reduced the most fatal
errors (antonym or word error) produced by Mutant-X.

6.2.2 Style transfer

Table 19 summarizes document-level style transfer per-
formance. We define the successful style transfer rate as
the frequency at which an originally correctly classified
document was incorrectly classified after style trans-
fer. Mutant-X had superior performance to PAN2016
and ParChoice across all datasets, although the differ-
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Technique
Original
profiler

New
profiler

PAN2016 13% 20%
Mutant-X 60% 17%
ParChoice 47% 20%

Table 20. Style transfer success rates on EBG5 with the original
(queried) profiler and a new re-trained random forest profiler.

ence to ParChoice was only minor in EBG5 and EBG10
(3%− 5%). However, when Mutant-X was applied after
ParChoice, we reached the highest result on all datasets.
Given that this combination also achieved significantly
higher semantic retainment than Mutant-X alone (Sec-
tion 6.2.1), it constitutes the state-of-the-art solution to
document-level style transfer on these datasets.

However, we note a problem in assuming query ac-
cess to the adversary’s random forest profiler. The pro-
filer involves randomness in training, and re-training
it on the same training data mostly undoes the effect
of style transfer on query-access techniques. Table 20
shows this effect on EBG5. As PAN2016 does not use
query access, it is not vulnerable to this problem. Query
access can thus result in highly profiler-specific transfor-
mations, which are non-transferable across profilers.

Problematically, most style transfer research has so
far relied on query access. In particular, with the excep-
tion of PAN2016 [36], all our baseline techniques were
originally applied in query access settings [45, 58, 63,
64]. Since query access is not a realistic requirement for
the author (Section 3), and given its lack of transferabil-
ity to different profilers, we recommend moving beyond
query access in style transfer research. While we were
able to do so successfully on sentence-based data (Sec-
tion 6.1), on the document-level it remains a challenge
for future work.

6.3 Thwarting style transfer via
adversarial training

To test the effectiveness of adversarial training for coun-
tering style transfer, we applied it to every technique on
the AB dataset with the LSTM profiler. We chose this
setting because it achieved a high original test set ac-
curacy as well as the highest overall accuracy change
(Section 6.1.2, Table 10). Table 21 presents the results.

Profiling accuracies on original test sets remained
high, but were taken down in all cases except two (A4NT
and ParChoice-LSTM in the Alice→Bob direction, which

Technique Direction Original Transformed

CAE A→B 0.88→ 0.78 0.18→ 0.90
B→A 0.94→ 0.79 0.16→ 0.87

BT A→B 0.88→ 0.85 0.18→ 0.78
B→A 0.94→ 0.88 0.11→ 0.64

A4NT A→B 0.88→ 0.90 0.74→ 0.86
B→A 0.94→ 0.85 0.70→ 0.64

ParChoice-LSTM A→B 0.88→ 0.90 0.36→ 0.88
B→A 0.94→ 0.88 0.52→ 0.92

ParChoice-random A→B 0.88→ 0.79 0.74→ 0.47
B→A 0.94→ 0.72 0.89→ 0.38

Table 21. LSTM author profiler accuracy without→with adversar-
ial training, on both original and transformed test sets of AB.

increased by 2%). Accuracy on the transformed test set
increased drastically with most techniques, and mostly
undid the effect of style transfer.20 The important ex-
ception was ParChoice-random, which we discuss below.

Our results illustrate a major problem in style trans-
fer techniques that rely on the author having query
access to the adversary’s profiler, or a surrogate pro-
filer that accurately approximates its performance. Cru-
cially, such access assumptions go both ways: if the
author can access/approximate the adversary’s pro-
filer locally, the adversary can also access/approximate
the author’s local profiler for adversarial training. This
problem is fundamental to all of our techniques except
ParChoice-random, which performs paraphrase selection
independently of the profiler.

In striking contrast to other techniques, adversarial
training with ParChoice-random reduced profiling accu-
racy on both original and transformed sentences. Hence,
while ParChoice-random expectedly performed the least
effectively in style transfer (Section 6.1.2), it was the
only technique that could effectively resist adversarial
training as a counter-measure. One possible reason for
this is the large range of stylistic variants produced by
ParChoice’s paraphrase generation stage, which results
in author-specific stylistic markers becoming less promi-
nent in the adversarial training set.

Adversarial training is also expected to be more
challenging when the number of classes is increased.

20 Apart from ParChoice-random (discussed separately), the
only exception was A4NT in the Bob→Alice direction, where
profiling accuracy decreased by 6% in transformed sentences.
Since A4NT’s original performance was not strong on AB to be-
gin with, and original profiling accuracy also decreased in the
Bob→Alice direction (by 9%), we do not take this exception to
affect the overall conclusion.
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Author Original Transformed
A1 0.75→ 0.73 0.27→ 0.61
A2 0.81→ 0.76 0.44→ 0.71
A3 0.64→ 0.60 0.26→ 0.50
A4 0.71→ 0.74 0.29→ 0.66
A5 0.64→ 0.72 0.35→ 0.65

Table 22. LSTM author profiler accuracy without→with adversar-
ial training, on both original and transformed five-class test sets
with randomized target authors on ParChoice-LSTM.

We produced ParChoice-LSTM imitations with random
target classes from the five-class training set, and ap-
pended them to the original five-class training data. We
trained the LSTM profiler on this adversarial training
data, and tested it against ParChoice-LSTM imitations
with randomly selected targets. Results are shown in
Table 22. As predicted, the effectiveness of adversar-
ial training was reduced, although still clearly present.
However, the adversary could adopt a two-step profiling
procedure of first detecting the imitation target by clas-
sifying the transformed document, and then producing
the adversarial training set using this target.

On the document-level, the effect of adversarial
training is difficult to evaluate due to the techniques’
brittleness to re-training the profiler. While we were
able to bring style transfer performance down on the
EBG5 dataset via adversarial training, this also hap-
pened with regular re-training (Table 20). As discussed
in Section 6.2.2, we believe this is due to the high
profiler-specificity of techniques relying on query ac-
cess on the document-level, which remains an important
problem for future research.

7 Conclusions and future work
We presented ParChoice: a novel style transfer tech-
nique based on combinatorial paraphrase generation
and style-specific paraphrase selection. ParChoice con-
siderably improves on the state-of-the-art in retaining
semantic content. In sentence-level experiments, it out-
performed the only encoder-decoder baseline technique
with competitive semantic retainment (A4NT). On the
document-level, combining ParChoice with the best-
performing rule-based baseline (Mutant-X) increased
state-of-the-art performance in both style transfer and
semantic retainment. We thus endorse ParChoice as the
most viable style transfer technique overall. On data

where ParChoice has limited coverage, we recommend
combining it with word embedding -based replacement.

An important extension of the present work is ap-
plying style transfer to more complex profiling schemes.
In particular, abstaining classifiers [13, 16] can be used
to detect whether the probability of any target class is
too low for prediction to be justified. They could be used
to filter potential cases of style transfer, as these are less
likely to give clear target class predictions. These data-
points could then be subjected to further scrutiny. Ab-
staining classifiers have been demonstrated to be bene-
ficial for stylometry, and for detecting manually trans-
formed documents [66]. Their effectiveness against au-
tomatic techniques remains to be studied.

Another major conclusion we draw is that style
transfer needs to properly address possible counter-
measures. The main challenge is achieving strong style
transfer performance whilst preventing the adversary
from replicating it by adversarial training. We demon-
strated this to be a realistic concern, but propose that its
effectiveness can partly be hindered via increased ran-
domization in paraphrasing. We will continue to explore
this issue in future work.
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A Raw results
In this appendix we include the raw results from our
sentence-based experiments, as well as example trans-
formations by ParChoice and all baseline techniques.
Two-class experiments: Table 23 displays two-class
results for the original test sets and each style transfer
direction on every style transfer technique, measured
with all three author profilers (LSTM, CNN, WP). Ta-
ble 24 shows corresponding results for each ParChoice
module applied separately, using the ParChoice-LSTM
variant and the LSTM profiler.
Five-class experiments: Imitation results for each of
the 20 author pairs from the five-class experiments are
collected in Table 25. Successful target author imitation
results are written in bold (higher target author accu-
racy than source author accuracy).
Example transformations: Table 26 shows exam-
ple transformations by ParChoice, the encoder-decoder
baselines (rows 1−20) and the rule-based baselines (rows
21− 25).
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Data Direction Author profiler
Profiler accuracy for source author

Original CAE BT A4NT ParChoice
CNN LSTM WP LRd LRs random

YG

f→m
LSTM 0.83 0.55 0.54 0.64 0.41 0.35 0.54 0.43 0.46 0.69
CNN 0.75 0.44 0.43 0.57 0.21 0.28 0.46 0.28 0.32 0.57
WP 0.71 0.50 0.55 0.57 0.49 0.44 0.21 0.54 0.54 0.60

m→f
LSTM 0.82 0.48 0.45 0.70 0.46 0.43 0.59 0.45 0.48 0.72
CNN 0.88 0.59 0.53 0.73 0.45 0.56 0.71 0.56 0.59 0.82
WP 0.78 0.56 0.54 0.72 0.61 0.60 0.32 0.64 0.65 0.74

BA

a→t
LSTM 0.54 0.26 0.28 0.35 0.38 0.16 0.37 0.26 0.33 0.52
CNN 0.57 0.38 0.32 0.40 0.19 0.25 0.35 0.24 0.33 0.49
WP 0.45 0.35 0.40 0.38 0.42 0.36 0.16 0.40 0.41 0.48

t→a
LSTM 0.70 0.69 0.66 0.69 0.45 0.34 0.55 0.42 0.48 0.65
CNN 0.68 0.56 0.60 0.64 0.36 0.46 0.56 0.44 0.51 0.66
WP 0.73 0.58 0.61 0.70 0.61 0.59 0.35 0.57 0.59 0.68

AB

A→B
LSTM 0.88 0.18 0.18 0.74 0.54 0.36 0.63 0.56 0.62 0.74
CNN 0.92 0.22 0.16 0.80 0.46 0.50 0.58 0.56 0.64 0.76
WP 0.73 0.45 0.26 0.67 0.50 0.30 0.12 0.37 0.45 0.60

B→A
LSTM 0.94 0.16 0.11 0.70 0.76 0.52 0.78 0.75 0.78 0.89
CNN 0.93 0.10 0.01 0.61 0.62 0.72 0.84 0.80 0.78 0.87
WP 0.90 0.09 0.19 0.68 0.81 0.68 0.31 0.68 0.78 0.85

TO

T→O
LSTM 0.86 0.95 0.64 0.34 0.76 0.43 0.76 0.59 0.66 0.81
CNN 0.60 0.88 0.60 0.46 0.36 0.52 0.57 0.53 0.55 0.58
WP 0.75 0.61 0.85 0.46 0.63 0.58 0.14 0.58 0.60 0.67

O→T
LSTM 0.77 0.00 0.01 0.23 0.61 0.27 0.58 0.40 0.51 0.65
CNN 0.67 0.00 0.01 0.68 0.50 0.57 0.58 0.57 0.58 0.63
WP 0.73 0.31 0.09 0.36 0.62 0.57 0.16 0.56 0.61 0.64

Table 23. Author profiling accuracies in two-class sentence-based datasets: best (lowest) results framed.

Technique Direction YG BA AB TO
Original
(no transformations)

0→ 1 0.83 0.54 0.88 0.86
1→ 0 0.82 0.70 0.94 0.77

Grammatical
transformations

0→ 1 0.72 0.48 0.69 0.80
1→ 0 0.70 0.62 0.85 0.68

Simple rules 0→ 1 0.81 0.51 0.85 0.82
1→ 0 0.82 0.66 0.91 0.72

PPDB 0→ 1 0.65 0.37 0.73 0.64
1→ 0 0.62 0.51 0.84 0.50

WordNet 0→ 1 0.65 0.36 0.77 0.65
1→ 0 0.70 0.48 0.80 0.52

Typos 0→ 1 0.79 0.39 0.79 0.82
1→ 0 0.82 0.65 0.74 0.65

Table 24. Author profiling accuracies with individual ParChoice modules (LSTM profiler, ParChoice-LSTM variant).
Class 0: {female, adult, Alice, Trump}; Class 1: {male, teen, Bob, Obama}
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Source author Technique Author
profiler

Target author; profiler accuracies with imitated test sets
A1 A2 A3 A4 A5

s t s t s t s t s t

A1
ParChoice-LSTM LSTM (0.75) − 0.27 0.51 0.28 0.35 0.26 0.32 0.27 0.30

CNN (0.82) − 0.51 0.28 0.52 0.25 0.45 0.26 0.52 0.21

ParChoice-CNN LSTM (0.75) − 0.43 0.32 0.43 0.22 0.42 0.14 0.43 0.14
CNN (0.82) − 0.37 0.39 0.37 0.35 0.38 0.19 0.37 0.33

A2
ParChoice-LSTM LSTM 0.42 0.40 (0.81) − 0.47 0.21 0.41 0.31 0.44 0.15

CNN 0.53 0.33 (0.82) − 0.59 0.13 0.48 0.28 0.59 0.12

ParChoice-CNN LSTM 0.61 0.18 (0.81) − 0.62 0.12 0.61 0.13 0.62 0.07
CNN 0.46 0.29 (0.82) − 0.46 0.26 0.46 0.19 0.46 0.25

A3
ParChoice-LSTM LSTM 0.25 0.57 0.24 0.51 (0.64) − 0.24 0.37 0.25 0.27

CNN 0.30 0.48 0.39 0.30 (0.76) − 0.36 0.32 0.38 0.24

ParChoice-CNN LSTM 0.38 0.30 0.36 0.28 (0.64) − 0.43 0.15 0.43 0.14
CNN 0.28 0.43 0.29 0.42 (0.76) − 0.30 0.27 0.28 0.41

A4
ParChoice-LSTM LSTM 0.30 0.47 0.28 0.44 0.30 0.29 (0.71) − 0.28 0.32

CNN 0.50 0.35 0.52 0.23 0.53 0.11 (0.79) − 0.46 0.24

ParChoice-CNN LSTM 0.55 0.18 0.52 0.23 0.57 0.16 (0.71) − 0.55 0.12
CNN 0.31 0.29 0.31 0.34 0.31 0.33 (0.79) − 0.31 0.42

A5
ParChoice-LSTM LSTM 0.36 0.42 0.35 0.36 0.35 0.36 0.33 0.41 (0.64) −

CNN 0.57 0.30 0.63 0.15 0.71 0.12 0.56 0.26 (0.75) −

ParChoice-CNN LSTM 0.52 0.21 0.51 0.20 0.51 0.14 0.51 0.14 (0.64) −
CNN 0.45 0.34 0.48 0.27 0.45 0.27 0.46 0.21 (0.75) −

Table 25. Five-class author imitation results (s = source author accuracy, t = target author accuracy).
Successful imitation in bold (target author accuracy > source author accuracy).

YG
(female→male)

Original the dinner portions are huge .
CAE the drinks are $ 00 .
BT the rooms are great .
A4NT the dinner portions are ultra .
ParChoice the supper shares are tremendous .

BA
(adult→teen)

Original you feel like killing them but then again they are protected .
CAE you feel like then you are them .
BT eddy you want to see them , but now they are protégés .
A4NT you feel like killing them but then again they are .
ParChoice you feel like popping them but then again theyre been safeguarded .

AB
(Alice→Bob)

Original we are so useless when it comes to bugs- its ridiculous !
CAE so yeah we went to <unk> it ’s <unk> ... .
BT i was fattoria nous , , and de ... ..
A4NT we are so far when it comes to me !
ParChoice were so ineffectual when it is about microbes its farcical .

TO
(Obama→Trump)

Original i can tell you .
CAE we ’re going .
BT i ’s n’t .
A4NT i can you disagree
ParChoice you might well be told by me .

EBG5

Original They also tend to be somewhat adapted to fire of varying frequencies.
PAN2016 They also tended to be somewhat tailor to fire of varying frequencies.
Mutant-X They also tend to be somewhat adapted to fireball of aforementioned frequencies.
ParChoice they also tend to be somewhat adjusted to a fire of differing frequencies .
ParChoice+Mutant-X they also tend to continue somewhat adjusted to a fire of differing frequencies .

Table 26. Style transfer examples (ParChoice variant in YG/BA/AB/TO: ParChoice-LRs).
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