
Proceedings on Privacy Enhancing Technologies ; 2020 (4):355–375

Anders Dalskov*, Daniel Escudero*, and Marcel Keller*

Secure Evaluation of Quantized Neural
Networks
Abstract: We investigate two questions in this paper:
First, we ask to what extent “MPC friendly” models are
already supported by major Machine Learning frame-
works such as TensorFlow or PyTorch. Prior works pro-
vide protocols that only work on fixed-point integers
and specialized activation functions, two aspects that
are not supported by popular Machine Learning frame-
works, and the need for these specialized model repre-
sentations means that it is hard, and often impossible,
to use e.g., TensorFlow to design, train and test models
that later have to be evaluated securely. Second, we ask
to what extent the functionality for evaluating Neural
Networks already exists in general-purpose MPC frame-
works. These frameworks have received more scrutiny,
are better documented and supported on more plat-
forms. Furthermore, they are typically flexible in terms
of the threat model they support. In contrast, most se-
cure evaluation protocols in the literature are targeted
to a specific threat model and their implementations are
only a “proof-of-concept”, making it very hard for their
adoption in practice. We answer both of the above ques-
tions in a positive way: We observe that the quantization
techniques supported by both TensorFlow, PyTorch and
MXNet can provide models in a representation that can
be evaluated securely; and moreover, that this evalua-
tion can be performed by a general purpose MPC frame-
work. We perform extensive benchmarks to understand
the exact trade-offs between different corruption models,
network sizes and efficiency. These experiments provide
an interesting insight into cost between active and pas-
sive security, as well as honest and dishonest majority.
Our work shows then that the separating line between
existing ML frameworks and existing MPC protocols
may be narrower than implicitly suggested by previous
works.

DOI 10.2478/popets-2020-0077
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

*Corresponding Author: Anders Dalskov: Aarhus Uni-
versity, E-mail: anderspkd@cs.au.dk
*Corresponding Author: Daniel Escudero: Aarhus Uni-
versity, E-mail: escudero@cs.au.dk
*Corresponding Author: Marcel Keller: CSIRO’s Data61,
E-mail: mks.keller@gmail.com

Acknowledgements
This work has been supported by the European Re-
search Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO), and the Dan-
ish Independent Research Council under Grant-ID DFF-
6108-00169 (FoCC) and the European Union’s Horizon
2020 research and innovation programme under grant
agreement No 731583 (SODA).

We thank Adrià Gascón for fruitful discussions, as
well as members of NEC and BIU, especially Prof.
Benny Pinkas and Prof. Yehuda Lindell. We thank Assi
Barak (who was previously on this paper) for many help-
ful discussions in the initial phases of this project.

1 Introduction
Machine Learning (ML) models are becoming more rel-
evant in our day-to-day lives due to their ability to per-
form predictions on several types of data. Neural Net-
works (NNs), and in particular Convolutional Neural
Networks (CNNs), have emerged as a promising solu-
tion for many real-life problems such as facial recogni-
tion [46], image and video analysis for self-driving cars
[7] and even for playing games (most readers probably
know of AlphaGo [61] which in 2016 beat one of the top
Go players). CNNs have also found applications within
areas of medicine. [23], for example, demonstrates that
CNNs are as effective as experts at detecting skin can-
cers from images, and [21] investigated using CNNs to
examine chest x-rays.

Many applications that use Machine Learning to in-
fer something about a piece of data, does so on data
of sensitive nature, such as in the two examples cited
above. In such cases the ideal would be to allow the in-
put data to remain private. Conversely, and since model
training is by far the most expensive part of deploying
a model in practice,1 preserving model privacy may be
desirable as well.

1 The network by Yang et al. [64] costs between $61 000 and
$250 000 to train according to https://syncedreview.com/2019/
06/27/the-staggering-cost-of-training-sota-ai-models/.

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

Secure Evaluation of Quantized Neural Networks 356

In order to break this apparent contradiction (per-
forming computation on data that is ought to be kept
secret) tools like secure multiparty computation (MPC)
can be used. Using such tools, image classification can
be performed so that it discloses neither the image to the
model owner, nor the model to the input owner. In the
client-server model this is achieved by letting the data
owner and the model owner secret-share their input to-
wards a set of servers, who then run the computation
over these shares.

1.1 Towards Deploying Secure Inference.

Research in the area of secure evaluation of CNNs has
been rich during the last couple of years [27, 39, 45, 48,
51, 57–59, 63]. The main goal of this prior research has
been to reduce the performance gap between evaluating
a CNN in the clear and doing it securely. Current state
of the art solutions rely on for example Garbled Circuits
[57] or MPC [45]. Both of these works manage to evalu-
ate large ImageNet type models (tens of layers and 1000
classes) with reasonable efficiency. Moreover, the CrypT-
Flow framework [45] also support secure inference with
malicious security albeit by relying on a secure hardware
assumption. Several solutions have also been developed
by researchers closer to the industry side, such as TF-
Encrypted [16] or CrypTen [25], which suggests that se-
cure prediction has value beyond the academic point of
view—an important factor for accelerating wide adop-
tion of these techniques.

These advances mean that secure evaluation of large
models (tens of layers, millions of parameters) can now
be performed in the order of seconds which, while too
slow for real-time classification, is acceptable for many
privacy critical tasks like the ones described in [21, 23].
Medical tests typically take hours if not days or weeks,
so running an additional test that takes a few seconds
or minutes will not matter.

Given the intense interest in secure inference in re-
cent years, one might ask: what obstacles are preventing
the use of secure inference in practice?. Most of the focus
on the research literature has been on improving perfor-
mance, but this is far from being the only challenge in
this direction.

Challenges, the ML perspective.
Setting aside the privacy requirement for a minute, de-
ploying a Machine Learning solution in practice is al-
ready a long and strenuous process. Data has to be ac-

quired and then processed; a model has to be designed,
its parameters have to be tuned and finally the model
needs to be trained. Moreover, the process is often re-
peated totally or in parts whenever new data is acquired
or a better model design is found.

It is not surprising that a significant amount of ef-
fort is being spent on designing feature-rich and well doc-
umented frameworks for developing these models, for
training them and for testing them. Frameworks such as
TensorFlow [24], PyTorch [54] and MXNet [12] are all
seeing significant use and are being actively developed
by major companies (Google for TensorFlow, Facebook
for PyTorch and Apache for MXNet).

Ideally, it should be possible to design a model using
these widely used frameworks and then simply alter the
way it is used at the very end when the model is used
to perform predictions on user provided inputs. How-
ever, most existing solutions for secure inference throws
a wrench into this process as they rely either on models
that use specialized activation functions, such as Cryp-
toNets [27] or require a specialized training process, such
as XONN [57]. For these reasons, a part that is often of
the least concern when developing a Machine Learning
solution (using the final model for prediction) thus be-
comes an aspect that has to be considered at virtually
all steps of the design process.

It is worth noting here that it is not enough
for a framework to simply support conversion from a
trained model into a representation that can be used.
Such conversions typically involve steps like moving
from a floating point representation to a fixed point
one, or exchanging certain activation functions with
“approximations”—all of which impact accuracy and
thus the expressiveness of the model.

These issues were also identified by the authors of
CrypTFlow [45] and a third of their work is spent detail-
ing a customized application that converts TensorFlow
code into a representation which can be run securely
by their framework, without substantially compromis-
ing on accuracy.

Our work takes a different approach to this problem.
Namely, we investigate whether, and to what extent, ex-
isting frameworks such as TensorFlow support training
and designing models that can be securely evaluated.

Challenges, the MPC perspective.
In spite of notable progress in general-purpose MPC,
most of the existing MPC-based secure inference works
rely on customized subprotocols that are highly opti-
mized for particular activation functions. Moreover, and

Secure Evaluation of Quantized Neural Networks 357

as remarked on above, these activation functions are of-
ten themselves novel in the sense that they rarely see
use outside of secure inference.

Such a tight coupling between what can be evalu-
ated and how its evaluated also implies that often only
a single threat model is supported. In particular, if a
specific threat model is desired, then often this directly
determines what kind of network that can be run. For
example, if one requires a dishonest majority solution,
such as a 2-party protocol, then XONN is the current
most efficient solution. But XONN only works on bina-
rized networks and only works with Sign as the activa-
tion function.

At the other end, if one is fine with honest majority
(typically 3 parties, as that is the most efficient setting)
but require active security, then only CrypTFlow fits
the bill; but CrypTFlow relies on secure hardware for
active security.

Ideally, the MPC that is used should be “oblivious”
to the network being evaluated, as that would allow a
user to more freely choose which threat model is best
suited for them without having to think about the struc-
ture of the network, or specialized hardware. This is the
approach we take. That is, we investigate how appli-
cable general purpose MPC frameworks such as MP-
SPDZ [41] or SCALE-MAMBA [1] are to evaluate Con-
volutional Neural Networks.

Using general-purpose MPC frameworks is not only
convenient when it comes to the threat model. Another
important factor is that, given their flexibility, this type
of protocols tend to receive more scrutiny from part of
the community [33], they are much better understood
from a practical point of view and they have more refer-
ence implementations.2 These considerations are impor-
tant for an area like MPC, which is today in a stage in
which many applications are within the practical realm,
but no standardization of implementation practices (like
the ones found e.g. in symmetric-key cryptography) are
set yet.

2 Although MPC protocols, general-purpose or not, are accom-
panied with security proofs, this does not mean that their “level
of security” is the same. Details that appear only at imple-
mentation time, like instantiations of random oracles, make it
important to have an end-to-end understanding of the security.
Having reference implementations that are as close to industry-
grade as possible is important, and the panorama in this regard
for general-purpose protocols is much more promising than for
special-purpose MPC.

1.2 Our Contribution

Our work addresses the challenges identified in the pre-
vious section, and to this end it focuses on the following
two questions that, while simple in nature, have so far
not been treated in research on secure inference.

1. To what extent can “MPC friendly” models be ob-
tained from existing frameworks such as TensorFlow
or PyTorch, without requiring a customized conver-
sion protocol? More precisely, is it possible to design
a model using these standard frameworks, which can
then be efficiently evaluated by a secure protocol,
without at all tampering with the model?

2. To what extent does existing MPC frameworks sup-
port running models “out-of-the-box”? That is, can
we securely evaluate Machine Learning models (of
the kind described above) using general-purpose
MPC frameworks?

These questions provide a minimal baseline that one
should keep in mind before moving on to specialized pro-
tocols or resorting to specialized models that improve
efficiency. In this work we explore these questions thor-
oughly, which results in the following contributions:

Quantization. We identify the quantization tech-
niques used in both TensorFlow, PyTorch and
MXNet and described in [38] as particularly well
suited for MPC. This type of quantization results
in models for which each output of each convolu-
tional layer can be expressed as a single dot-product
followed by a truncation.

MPC. We describe how to implement these types mod-
els in a black-box way; that is, without resorting to
special properties of the underlying MPC.

Optimizations. In settings where dot-products can be
securely computed with high efficiency, the main
bottleneck is truncation (or bitwise right-shift). As
optimizations, we therefore present an optimized
truncation protocol for some threat models which
further improves efficiency.

Experiments. Finally, we evaluate the efficiency of a
large class of quantized models in a variety of dif-
ferent threat models. More precisely, we evaluate 16
different models of varying size, each in 16 different
settings.

We elaborate on each contribution below.
First, the fact that we identify a widely used quan-

tization scheme as being particularly well suited for se-

Secure Evaluation of Quantized Neural Networks 358

cure inference, provides a very promising area of study
for both researchers and practitioners. For researchers,
it provides a fixed target for secure protocol design. For
practitioners, it shows that one does not have to aban-
don widely used Machine Learning frameworks in order
to design models for practical use that can evaluated
securely.

Secondly, showing that these techniques are com-
patible with the arithmetic black-box model (that is,
only secure additions and multiplications are required)
allows us to lower the requirements that an MPC pro-
tocol should satisfy in order to be suitable for secure
inference. This in effect allows us to extend the amount
of protocols supported. However, this does not mean
that these protocols cannot be optimized, which in fact
takes us to our third contribution: We present optimized
primitives for the case of truncation over the ring Z2k ,
which is not as well studied as the correponding problem
over fields and constitutes the main bottleneck when se-
curely evaluating our quantized neural networks.

Finally, to illustrate the advantages of our approach
with respect to constructing ad-hoc MPC protocols that
are only suitable to certain type of models, we perform
a large amount of experiments with a wider range of
models and different MPC protocols. More precisely, we
securely evaluate 16 models that are part of the Ima-
geNet family3 using MPC protocols that vary with re-
spect to several dimensions: Corruption threshold (hon-
est vs. dishonest majority), corruption model (passive
vs. active security) algebraic structure (integers modulo
2k or modulo prime p) and whether or not truncation is
exact or probabilistic.

Our experiments let us conclude several things:

1. Corruption threshold has a very large impact on ef-
ficiency for general-purpose MPC. Indeed, a dishon-
est majority evaluation takes orders of magnitude
longer than honest majority.

2. On the other hand, corruption model has a compar-
atively smaller impact on efficiency. For example, an
actively secure evaluation with an honest majority
protocol over a prime field is only about 4 times
slower than if the evaluation was done with the cor-
responding passive protocol.

3 The choice of evaluating these models is only because of con-
venience, as they can be found as part of the Tensorflow Lite
model repository. As discussed in Section 4, any model trained
with Tensorflow can be evaluated using our framework without
the need of introducing extra tools.

3. For passive protocols we find that modulo a power
of 2 is between 4 and 10 as efficient as the corre-
sponding protocol modulo a prime power. This re-
sult further supports all the recent work that has
gone into designing fast protocols that work over a
ring [15, 17] (as this ring is typically taken to be
integers modulo a power of 2).

4. Finally, by running our experiments for both exact
truncation (meaning we evaluate the model exactly
as would be done in the clear) and probabilistic trun-
cation (meaning the evaluation may suffer some un-
known loss in accuracy) we can quantify the exact
gain in efficiency by relying on specialized protocols.

1.3 Related Work

The following review is focused the different types of
quantization (if any) that prior works has used; addi-
tionally, we look at frameworks for secure inference that
prior works have developed. A broader review can be
found in Appendix A.

1.3.1 Quantization in prior work

Whether implicitly or explicitly, most prior work already
uses some form of quantization. For instance, replacing
floating-point by fixed-point numbers can be seen as a
form of quantization. More often than not, however, this
conversion is done in a very naive manner where the pri-
mary goal has been to fit the model parameters to the se-
cure framework without further consideration about any
potential impact it might have on the model’s accuracy.
Relatively little work has made explicit use of quantiza-
tion in the context of securely evaluating Machine Learn-
ing models. One example is the recent work by Bourse et
al. [8], where the authors use a quantization technique
that is similar to the one described by Courbariaux and
Bengio [13]. Sanyal et al. [60] use the same techniques.
Nevertheless, their work lies in the FHE domain, which
differs from multiparty computation. For instance, the
fact that the weights are kept in the clear by the model
owner changes the way the computation is performed,
and allows them to use only additions and subtractions.
XONN [57], which is based on Garbled Circuits, uses
a quantization scheme which converts weights into bits
[35]. For this to work, the authors need to increase the
number of neurons of the network and a large part of
their work is dedicated to describing how this scaling
can be performed. CrypTFlow [45] employ what can

Secure Evaluation of Quantized Neural Networks 359

be seen as a custom fixed-point-to-floating-point conver-
sion protocol (called Athos) that automatically converts
the floating point weights of a Tensorflow model into a
fixed points representation, where the parameters are
chosen so as to not compromise on the models original
accuracy.

1.3.2 Frameworks for secure evaluation

Several previous works provide what can be viewed as
a more complete framework for secure evaluation. The
first of these is MiniONN [48] which provides techniques
for converting existing models into models that can be
evaluated securely. The authors demonstrate this frame-
work by converting and running several models for in-
teresting problem domains, such as Language modeling,
as well as more standard problems such as hand writing
recognition (MNIST) and image recognition (CIFAR10).
CrypTFlow [45] also provides more complete framework.
As already mentioned above, the first step in their frame-
work is a protocol for converting an Tensorflow trained
model into a model that can later be evaluated securely
using a protocol based on SecureNN [63].

1.4 Outline of the Document

In Section 2 we give a brief introduction to Neural Net-
works after which we describe the quantization scheme
we will be using. In Section 3 we provide a self-contained
description of our protocol for secure inference, describ-
ing the basic building blocks. We discuss implementa-
tion details and present benchmarks in Section 4, and
conclude in Section 5.

2 Deep Learning and
Quantization

Deep learning models are at the core of many real-world
tasks like computer vision, natural language processing
and speech recognition. However, in spite of their high
accuracy for many such tasks, their usage on devices like
mobile phones, which have tight resource constraints,
becomes restricted by the large amount of storage re-
quired to store the model and the high amount of en-
ergy consumption when carrying out the computations
that are typically done over floating-point numbers. To
this end, researchers in the machine learning commu-

nity have developed techniques that allow weights to be
represented by low-width integers instead of the usual
32-bit floating-point numbers, and quantization is rec-
ognized to be the most effective such technique when
the storage/accuracy ratio is taken into account.

Quantization allows the representation of the
weights and activations to be as low as 8 bits, or even
1 bit in some cases [13, 55].This is a long-standing re-
search area, with initial works already dating back to
the 1990s [5, 26, 49, 62], and this extensive research
body have enabled modern quantized neural networks to
have essentially the same accuracy as their full-precision
counterparts [14, 29, 32, 53, 65].

2.1 Notation

For a value x ∈ RN1×N2×N3 we use x[i, j, c] ∈ R to de-
note taking i’th value across the first dimension, the j’th
value across the second dimension and the c’th value
across the last dimension. In a similar way, we might
write x[·, ·, c] ∈ RN1×N2 to denote the matrix obtained
by fixing a specific value for the last dimension. A real
value interval is denoted by [a, b] and a discrete interval
by [a, b]Z. We define clamping of a value x ∈ R to the
interval [a, b], denoted by clampa,b(x), by setting x← a

if x < a, x← b if x > b and otherwise x← x. (Clamping
to a discrete interval is similarly defined.) We denote by
N` the set {1, . . . , `}.

2.2 Deep Learning

A Convolutional Neural Network (CNN) is an ordered
series of non-linear functions (f1, . . . , fn) where fi :
Di−1 7→ Di is called a layer, and where each Di ∈
RN1×···×Nmn is a space of tensors. In practice, and for
the networks we consider (ImageNet networks) D0 ∈
R128×128×3 indicating that inputs are 128 by 128 pixel
RGB images, and Dn ∈ R1000 indicates that there is
1000 output classes.

We are concerned mainly with the case where fi

is a convolution, followed by a Rectified Linear Unit
(ReLU). More precisely, fi can be expressed as fi(x) =
max(xW + b, 0) where W and b are tensors (weights and
bias, respectively), and where max is applied entrywise.

Downsampling, i.e., making the height and width
of the output of a layer smaller, can be achieved by ap-
plying pooling operations. Average pooling, for example,
goes over windows of some size w × h in each channel
of the input and outputs the average; that is the output

Secure Evaluation of Quantized Neural Networks 360

y[i, j, c] will be the average of a w × h window centered
around x[i, j, c], where x is the input tensor.

Finally, batch normalization [37] is often employed
to speed up training. The idea is to normalize the inputs
to each activation: instead of computing g(x) for input
x and activation function g, we instead compute g(y)
where

y = γ

(
x− µB√
σ2

B + ε

)
+ β, (1)

where γ, β are parameters learned during training, and
µB , σ2

B is the mean and variance, respectively, of a batch
B of which x is a member. Consider an input y = xW+b
to g. During inference, we can “fold” the batch normal-
ization parameters into the weights, which is done by
using W ′ and b′ defined as

W ′ = γW

σ
, b′ = γ

(
b− µ
σ

)
+ β.

It is straight forward to verify that using y′ = xW ′ + b′

yields the expression in Eq. (1).

2.3 Quantization of [38]

The goal of this section is to provide an overview of the
quantization technique of Jacob et al. [38] (see also [44])
that we will be relying on to get efficient secure infer-
ence. While this particular quantization scheme might
not be state of the art, or even the best for all choices
of secure inference (e.g., XONN [57] relies on a different
scheme to get efficient inference) we choose this partic-
ular scheme for the following reasons: It is implemented
in Tensorflow (more precisely, TFLite [30]) and as such
we get a user friendly, widely available and well docu-
mented way of training models that can be securely eval-
uated. The fact that Tensorflow can be used to directly
train models for our framework is very handy indeed as
it removes the need to develop custom tooling that has
little to do with the secure framework itself. Moreover,
Tensorflow provides several pre-trained ImageNet mod-
els which provides a very good point of reference for not
only our benchmarks, but for future works that wish to
compare against us. Indeed, few if any previous work on
secure inference provide pretrained models which makes
an accuracy oriented comparison very hard.4 Our focus
here is a particular quantization scheme; for a broader
survey, we refer the reader to Guo [31].

4 This is especially the case if it is not clear exactly how the
model was trained and which training and test data was used.

We note that this scheme is beneficial for MPC since
it simplifies the activations and the arithmetic needed
to evaluate a CNN. However, the original goal of Jacob
et al. was to reduce the size of the models, rather than
simplifying the arithmetic or the activations. Unfortu-
nately, we do not get the benefits in the size reduction
since, even if the network can be stored using 8-bit inte-
gers, arithmetic must be done modulo 232 and even 264

in some cases.

2.3.1 Quantization and De-Quantization

The scheme comes in two variants, one for 8-bit integers
and another one for 16-bit integers. In this work we focus
in the former, and we provide our description only in
that setting.

Let m ∈ R and z ∈ [0, 28)Z and consider the func-
tion dequantm,z : [0, 28)Z → R given by dequantm,z(x) =
m · (x−z). This function transforms the interval [0, 28)Z
injectively into the interval I = [−m · z,m · (28 − 1− z))
and as such it admits and inverse quantm,z mapping ele-
ments in the image of dequantm.z into [0, 28)Z. We define
the quantization of a number α ∈ I to be quantm,z(α′),
where α′ is closest number to α such that α′ is in the
image of dequantm,z.

The constants m, z above are the parameters of the
quantization, and are known as the scale and the zero-
point, respectively. This quantization method will be ap-
plied on a per-tensor basis, i.e. each individual tensor α
has a single pair m, z associated to it. These parameters
are determined at training time by recording the ranges
on which the entries of a given tensor lie, and comput-
ing m, z such that the interval [−m · z,m · (28 − 1− z))
is large enough to hold these values. See Figure 1 for a
visualization of this quantization method, and see Jacob
et al. [38] for details.

0 z 28 − 1
Z

αmin 0 αmax
R

Fig. 1. Visualization of the Quantization Scheme by Jacob et al.
[38]. The continuous interval on top is mapped to the discrete
interval below, and multiple numbers may map to the same
integer due to the rounding.

Secure Evaluation of Quantized Neural Networks 361

2.3.2 Dot Products

Computing dot products is a core arithmetic operation
in any CNN. In this section we discuss how to do this
with the quantization method described above.

Let α = (α1, . . . , αN) and β = (β1, . . . , βN) be
two vectors of numbers with quantization parameters
(m1, z1) and (m2, z2), respectively. Let γ =

∑N
i=1 αi · βi,

and suppose that γ is part of a tensor whose quanti-
zation parameters are (m3, z3). Let c = quantm3,z3(γ),
ai = quantm1,z1(αi) and bi = quantm2,z2(βi). It turns out
we can compute c from all the ai, bi by using integer-only
arithmetic and fixed-point multiplication, as shown in
the following.

Since γ ≈ m3 · (c − z3), αi ≈ m1(ai − z1) and βi ≈
m2(bi − z2), it holds that

m3·(c−z3) ≈ γ =
N∑

i=1
αi·βi ≈

N∑
i=1

m1·(ai−z1)·m2·(bi−z3).

Hence, we can approximate c as

c = z3 + m1 ·m2
m3

·
N∑

i=1
(ai − z1) · (bi − z2) (2)

The summation s =
∑N

i=1(ai−z1) ·(bi−z2) involves
integer-only arithmetic and it is guaranteed to fit in
16 + logN bits, since each summand, being the product
of two 8-bit integers, fits in 16 bits. However, since m =
(m1m2)/m3 is a real, the product m · s cannot be done
with integer-only arithmetic. This product is handled in
TFLite by essentially transforming m into a fixed-point
number and then performing fixed-point multiplication,
rounding to the nearest integer. More precisely,m is first
normalized as m = 2−nm′′ where m′′ ∈ [0.5, 1),5 and
then m′′ is approximated as m′′ ≈ 2−31m′, where m′ is
a 32-bit integer. This is highly accurate since m′′ ≥ 1/2,
so there are at least 30 bits of relative accuracy.

Thus, given the above, the multiplication m · s is
done by computing the integer product m · s, which fits
in 64 bits since both m and s use at most 32 bits (if
N ≤ 216), and then multiplying by 2−n−31 followed by
a rounding-to-nearest operation. Finally, addition with
z3 is done as simple integer addition.

If the quantization parameters for γ were computed
correctly, it should be the case, by construction, that the

5 Jacob et al. [38] find that in practice m ∈ [0, 1), which is the
reason why such normalization is possible. We also confirm this
observation in our experiments, although it is not hard to extend
this to the general case (in fact, TFLite already supports it).

result c lies in the correct interval [0, 28)Z. However, due
to the different rounding errors that can occur above,
this may not be the case. Thus, the result obtained with
the previous steps is clamped into the interval [0, 28)Z.

2.3.3 Addition of bias

In the context of CNNs the dot products above
will come from two-dimensional convolutions. However,
these operations not only involve dot products but also
the addition of a single number, the bias. In order to
handle this in a smooth manner with respect to the dot
product above, the scale for the bias is set as m1m2/m3
and the zero-point it set to 0. This allows the quantized
bias to be placed inside the summation s, involving no
further changes to our description above.

2.3.4 Other layers

Other layers like ReLU, ReLU6 or max pooling, which
involve only comparisons, can be implemented with rel-
ative ease directly on the quantized values, assuming
these share the same quantization parameters. This is
because if α = m(a− z) and β = m(b− z), then α ≤ β if
and only if a ≤ b, so the comparisons can be performed
directly on the quantized values.

In fact, activations like ReLU6 (which is used ex-
tensively in the models we consider in this work) can
be entirely fused into the dot product that precedes it,
as shown in Section 2.4 of [38]. Since ReLU6 is essen-
tially a clamping operation, it is possible, by carefully
picking the quantization parameters, to make the clamp-
ing of the product to the interval [0, 28)Z also take care
of the ReLU6 operation. In short, if the zero-point is
0 and the scale is 6/255, then we are guaranteed that
m(q − z) ∈ [0, 6] for any q ∈ {0, . . . , 28 − 1}.

On the other hand, mathematical functions like sig-
moid must be handled differently. We will not be con-
cerned with this type of functions in this document since
it is the case in practice that ReLU and ReLU6 (or sim-
ilar activation functions) are typically enough.6

6 See [38] for a discussion on quantization of mathematical
functions.

Secure Evaluation of Quantized Neural Networks 362

3 Quantized CNNs in MPC
In the previous section we discussed how quantization
of neural networks works, or, more specifically, we dis-
cussed the quantization scheme by Jacob et al. [38]. Now,
we turn to the discussion about how to implement these
operations using MPC. However, before diving into the
details of the protocols we use in this work, we de-
scribe the setting we consider for the secure evaluation
of CNNs.

3.1 System and Threat Model

Like most previous work on secure inference using MPC,
we consider a setting where both the model owner and
client outsource their model, respectively input to a set
of servers that perform that actual secure inference.

We consider a setting of either two or three servers
P1, P2 and P3 depending on the setting (honest or dis-
honest majority) among which one is allowed to be cor-
rupted. The model and input owner each secret-share
their inputs to the servers at the beginning of the proto-
col execution. This preserves the privacy of this sensitive
information under certain assumptions on the adversar-
ial corruption. Then, the servers execute a secure mul-
tiparty computation protocol to evaluate the quantized
model on the given input, obtaining shares of the output,
which can then be sent to the party that is supposed to
get the classification result.

As we already mentioned previously, our techniques
have the crucial feature that virtually any secret-
sharing-based MPC protocol can be used as the under-
lying computation engine. More precisely, let R be ei-
ther Z2k or Fp, we only assume a secret-sharing scheme
〈·〉 over R for two or three parties (depending on the
setting) withstanding one corruption, allowing local ad-
ditions 〈x+ y〉 ← 〈x〉+ 〈y〉, together with a protocol for
secure multiplication 〈x · y〉 ← 〈x〉 · 〈y〉.7

The general-purpose MPC protocols we use in this
work can be categorized according to three different di-
mensions: corruption threshold, type of corruptions and
underlying algebraic structure. For the first dimension
we distinguish between two cases: honest vs dishonest
majority. In the former, the adversary is allowed to cor-

7 Protocols with these features are typically referred to as
general-purpose MPC protocols, and any construction that only
makes use of these properties is said to be in the arithmetic
black-box model.

Threshold Z2k Fp

t < n
Passive OTSemi2k OTSemiPrime
Active SPDZ2k LowGear

t < n/2 Passive Replicated2k ReplicatedPrime
Active PsReplicated2k PsReplicatedPrime

Table 1. MPC protocols we use, classified depending on their
security level (passive vs. active) and their arithmetic properties
(modulo 2k vs. modulo a prime). Names are from MP-SPDZ.

rupt strictly less than half of the parties. We instantiate
this case with 3 parties and 1 corruption, as that leads
to the most efficient protocols. In the latter case, the
adversary can corrupt any number of parties provided
at least one party remains honest. We instantiate this
setting for 2 parties. While honest majority protocols
impose a stronger security assumption than dishonest
majority, they tend to be simpler in their design and
thus more efficient. We further distinguish between pas-
sive and active corruptions, where the former means the
adversary follows the protocol and the latter allows the
adversary to deviate. Not surprising, actively secure pro-
tocols impose an overhead over passively secure ones.
Finally, the algebraic structure on which the computa-
tion takes place also plays an important role in terms
of efficiency and protocol design, with protocols over Fp

being easier to design and possibly implement, but pro-
tocols over Z2k providing some efficiency improvements
in terms of basic arithmetic and bit-operations [17].

We consider a total of 8 MPC protocols to sup-
port the secure evaluation of the quantized CNNs, corre-
sponding to all the possible combinations of the three di-
mensions mentioned above (active/passive, honest/dis-
honest majority and computation modolu a prime or a
power-of-two). Table 1 contains an overview of which
protocol is used in which security model. We provide
more details on each protocol in Section B in the ap-
pendix.

3.2 Building Blocks

For many applications, the multiplication protocol as-
sumed for 〈·〉 is not enough. In practice, many useful
functionalities cannot be nicely expressed in terms of
additions and multiplications and therefore, more often
than not, researchers end up developing custom proto-
cols for specific applications. As we argued in Section
1.3, this also includes the case of secure evaluation of
Neural Networks.

Secure Evaluation of Quantized Neural Networks 363

In our case, thanks to the quantization scheme by
Jacob et al. [38] most of the operations in the evalu-
ation of a quantized Neural Network become additions
and multiplications, which are already supported by the
MPC protocols we consider here. Furthermore, the mul-
tiplications have a very special structure: they are part
of a dot product operation, which can be computed
more efficiently for the particular case of passive secu-
rity with an honest majority. However, the evaluation
still requires non-arithmetic operations like truncations
and comparisons, which are more expensive and require
specialized subprotocols for their computation. These,
fortunately, can be also implemented in the arithmetic
black-box model, that is, making use only of additions
and multiplications, which preserves our flexibility when
it comes to the underlying MPC protocol. In what fol-
lows we describe the primitives we require in order to
integrate the quantized models from Section 2 into our
secure engine.

3.2.1 Secure comparison

An important primitive involves comparing two secret-
shared values, in order to take certain action depending
on which of the two is larger. However, since revealing
which of the two inputs is larger leaks information about
the inputs themselves (which is not allowed in many ap-
plications), a secure comparison protocol outputs the bit
indicating the result of the comparison in secret-shared
form. More precisely, a secure comparison subprotocol
allows the parties to compute 〈b〉 ← 〈x〉

?
< 〈y〉, that is,

b = 1 if x < y, and b = 0 otherwise.
Just like the case with truncation, this problem is

well motivated and has received enough attention by
the community, with many existing proposals providing
different trade-offs. Given this, we may assume the exis-
tence of a secure comparison subprotocol, which can be
instantiated for example using the constructions from
[9] for the field case, and [17] for the ring case. For the
special case of replicated secret sharing over Z2k , Mo-
hassel and Rindal [50] have proposed a more efficient
approach. Comparison is equivalent to extracting the
most significant bit of the difference between the two
operands. This bit can be computed from the carry bit
of adding the three shares, which in turn is possible
to achieve by a binary circuit on the local bit decom-
position of shares. While this binary circuit has linear
complexity in the bit length, it only takes one bit to
compute an AND gate in this setting.

3.2.2 Truncation by a public value

As we have already discussed in the introduction, most
existing works in the area of secure inference make use
of fixed-point arithmetic, in which a rational number α
is approximated by the closest integer to α · 2t, where
t is some fixed parameter. To keep the right represen-
tation after multiplying two fixed-point numbers, the
result must be truncated by t bits, which is a non-linear
operation and generates several complexities when done
in MPC.

Many solutions have been developed throughout the
years for computation over both the field Fp and the ring
Z2k . We refer the reader to [9] and [17] for details on
these. For the purpose of our work, we assume the exis-
tence of a subprotocol that computes 〈y〉 ← 〈x〉, where
y =

⌊
x

2m

⌋
, where m is some fixed, public parameter.

It is also useful to consider the concept of probabilis-
tic truncation. In this case, instead of obtaining 〈y〉 from
〈x〉, where y =

⌊
x

2m

⌋
, a protocol for probabilist trunca-

tion computes 〈z〉 where z =
⌊

x
2m

⌋
+ u and u is some

small error. In practice, u ∈ {0, 1}, and u is “biased to-
wards

⌊
x

2m

⌉
”, meaning that u equals 1 with probability

the decimal part of x
2m , which equals (x mod 2m)/2m.

As an example, if x = 7 and m = 2, a protocol for prob-
abilistic truncation would produce either

⌊7
4
⌋

= 1 or⌊7
4
⌋

+ 1 = 2, where the latter happens with probability
.75.

Since neural networks tend to be quite resilient to
small changes in the activations, which as we will see is
the ultimate effect of having probabilistic truncation in-
stead of deterministic (i.e. exact), this approach should
not affect the accuracy of the models substantially, al-
though we do not verify this experimentally. Further-
more, probabilistic truncation protocols tend to perform
much better than deterministic ones, as we show exper-
imentally in Section 4. This is because these protocols
avoid the usage of expensive binary adders and other
similar binary circuits that appear in the deterministic
case. See [9] for some details. In what follows we intro-
duce some novel protocols for the task of probabilistic
truncation over a ring Z2k .

Probabilistic truncation over the ring Z2k .
Truncation over the ring Z2k is considerably more diffi-
cult as truncation over Fp, as the latter relies on the fact
that division by 2m can be done simply by locally mul-
tiplying by the inverse of 2m, which is not possible over
Z2k . The authors in [17] and [50] propose alternative
methods to deal with this issue, but unfortunately their

Secure Evaluation of Quantized Neural Networks 364

methods require either non-constant number of rounds,
or require a large gap between the shares and the secret,
which hurts performance.

Instead, we propose a novel method to perform se-
cure truncation over Z2k , where the shares only need
to be one bit larger than the secrets and the number
of rounds is constant. The result may have an error of
at most 1, but this error is biased towards the nearest
integer to x/2m, where x is the value being truncated.
In our protocol we assume a method to produce random
shared bits, that is, 〈b〉 where b ∈ {0, 1} is uniformly ran-
dom and unknown to the adversary. This can be done
in the dishonest majority setting as proposed in [17], or
more generally, we can let each party Pi propose a bit
〈bi〉 (which can be checked to be a bit indeed by verify-
ing that 〈bi〉 · (1− 〈bi〉) is 0) and then the parties XOR
these bits together to get one single random bit.

Protocol TruncPrZ2k
(〈x〉 ,m)

Pre x with MSB(x) = 0.
Post 〈x/2m〉 rounded according to text

Proceed as follows:

1. Generate k random shared bits 〈ri〉 and com-
pute 〈r〉 ←

∑
i 〈ri〉 · 2i.

2. Open c ← 〈x〉 + 〈r〉 and compute c′ ←
(c/2m) mod 2k−m−1.

3. Compute 〈b〉 ← 〈rk−1〉 ⊕ (c/2k−1).
4. Output c−

∑k−2
i=m 〈ri〉 · 2i−m + 〈b〉 · 2k−m−1.

An improvement for the ring case with three parties,
honest majority and passive security.
By further restricting the setting, more optimizations
can be done. We consider replicated secret sharing over
Z2k with three parties and passive security. Our trunca-
tion protocol emulates the black-box probabilistic trun-
cation in the setting of semi-honest computation over
a power of two with an honest majority. Informally, it
changes from a symmetric three-party protocol to a two-
party protocol where the third party generates corre-
lated randomness used by the the other parties. This
allows to generate random values of any bit length at
once without the need to generate such random values
bit-wise. The latter is the main cost in black-box prob-
abilistic truncation because the communication is inde-
pendent of the number of bits otherwise.

Protocol TruncPrSpZ2k
(〈x〉 ,m)

P3 proceeds as follows:

1. Sample random bits {ri} for i ∈ [0, k − 1].
2. Generate 2-out-of-2 sharings of r =

∑
i ri ·2i,

rk−1, and
∑k−2

i=m ri·2i−m, and send one share
to P1 and P2 each.

3. Generate random y1, y3 ∈ Z2k and send y1
to P1 and y3 to P2.

4. Output (y3, y1).

P1 and P2 proceed as follows:

1. Convert 〈x〉 to a 2-out-of-2 sharing by P1
computing x1 + x2 and P2 proceeding with
x3.

2. Execute TruncPrZ2k
as two-party computa-

tion using the random values received from
P3.

3. Pi: Let y′i denote the share output by
TruncPrZ2k

and ŷi the share received from
P3 (y1 or y3). Send y′i − ŷi to P2−i. Denote
the received value by ỹi.

4. P1 outputs (y1, y
′
1− ŷ1 + ỹ1), and P2 outputs

(y′2 − ŷ2 + ỹ2, y3).

For correctness, we have to establish that the parties
output a correct replicated secret sharing of the result.
To establish the correct replicated secret sharing, con-
sider

y′1 − ŷ1 + ỹ1 = y′1 − ŷ1 + y′2 − ŷ2

= ỹ2 + y′2 − ŷ2.

Furthermore,

y1 + y3 + y′1 − ŷ1 + ỹ1 = y1 + y3 + y′1 − ŷ1 + y′2 − ŷ2

= y1 + y3 + y′1 − y1 + y′2 − y2

= y′1 + y′2,

which equals the result of TruncPrZ2k
by definition.

Since we only aim for semi-honest security with hon-
est majority, we have to show that each party does not
learn any information about x if all parties follow the
protocol. This is trivial for P3 because they do not re-
ceive anything. For P1 and P2, the randomness received
from P3 is independent of x. Furthermore, the security of
the two-party TruncPrZ2k

execution follows by the black-
box definition of it. Finally, ỹi does not reveal informa-
tion because ŷ2−i is uniformly random and unknown to
Pi.

Secure Evaluation of Quantized Neural Networks 365

3.2.3 Truncation by a Secret Value

The truncation protocols we have considered so far as-
sume that the amount of bits to be truncated, m, is
public. This is a natural setting and appears for in-
stance in fixed-point multiplication, where m is equal to
the amount of bits assigned for the decimal part. How-
ever, as we already argued in Section 2, the quantization
scheme we use here differs from traditional fixed-point
arithmetic in that the parameters for the discretization
are adaptively chosen for each particular layer of the
network. As a side effect, these parameters become in-
formation of the model, and therefore they must not be
revealed in the computation. As a result, truncation by
secret amounts become necessary.

In this section we present our protocol for trun-
cation by a secret amount. It takes as input a secret
〈x〉 and a shift m represented by

〈
2M−m

〉
where M is

some public upper bound on m,8 and outputs 〈y〉 where
y =

⌊
x

2m

⌋
.

Protocol TruncPrivR(〈x〉 , 〈m〉)

The parties proceed as follows.

1. Compute
〈
2M−m · x

〉
=
〈
2M−m

〉
· 〈x〉.

2. Return 〈y〉 ← TruncR(
〈
2M−m · x

〉
,M).

Security.
We informally argue that the shift m used in the proto-
col remains hidden. To this end, simply notice that m is
provided as input to the MPC protocol in secret-shared
form 〈m〉. Then, the multiplication

〈
2M−m · x

〉
=〈

2M−m
〉
· 〈x〉 does not leak anything since we assume

the underlying multiplication protocol is secure. Fi-
nally, since we assume the protocol for public truncation
TruncR is secure, the call 〈y〉 ← TruncR(

〈
2M−m · x

〉
,M)

produces correct shares without leaking anything, which
implies that y =

⌊
2M−mx

2M

⌋
=
⌊

x
2m

⌋
. The only require-

ment for this protocol to work is that (M−m)+log2(|x|)
must be smaller than bit-length of the modulus of the

8 We may alternatively assume that m itself is shared. The
conversion 〈m〉 →

〈
2M−m

〉
can be achieved then by first bit-

decomposing M −m as
∑

i
2i · bi, computing shares of each bi

and then outputting
〈

2M−m
〉

=
∏

i
(1+〈bi〉·(22i−1)). However,

since in our setting m is known by the client who has the model,
it is simpler to assume that the client distributes

〈
2M−m

〉
to

begin with.

secret sharing scheme since, in this case, it can be seen
that 2M−m · x does not overflow.

3.3 Putting it all Together

Using the building blocks that we just described, to-
gether with the quantization scheme from Section 2.3,
we can securely evaluate quantized neural networks in
an easy way. As we discussed in Section 2, evaluating
a quantized CNN consists mostly of computing the ex-
pression in Eq. (2), followed by a clamping procedure.
We describe these computations in this section, along
with the other necessary pieces for the evaluation of a
quantized CNN.

Recall from Section 2 that each weight tensor a in
a quantized CNN has a scale m ∈ R and a zero-point
z ∈ Z28 associated to it, such that α ≈ m · (a− z) is the
actual floating-point numbers corresponding to each 8-
bit integer a in the tensor. Also, biases are quantized in a
similar manner but with a 32-bit integer instead, a zero
point equal to 0, and a scale that depends on the inputs
and output to the layer it belongs to, as explained in Sec-
tion 2.3.2. We assume that the model owner, who knows
all this information, distributes shares to the servers us-
ing the scheme described above of the quantized weights
and biases of each layer in the network.9 Also, the zero
points associated to each tensor are shared towards the
parties.

The scales of the model, on the other hand, are han-
dled in a slightly different way. Each dot product in the
quantized network requires a fixed-point multiplication
by a factor m = (m1 ·m2)/m3, borrowing the notation
from Section 2.3.2. Recall that this product was handled
by writing m = 2−n−31 ·m′, where m′ is a 32-bit integer.

Now, to compute securely the expression in Eq. (2),
recall that the parties have shares of the zero points
z1, z2, z3, the quantized inputs ai, bi for i = 1, . . . , N ,
the integer scale m′ and the power 2L−`, where ` =
n + 31 with 2−n−31 · m′ ≈ m = (m1 · m2)/m3, and
L is an upper bound on `.10 To compute Eq. (2), the
parties begin by computing the dot product 〈s〉 =

9 Notice that these values are only 8-bit long in the clear, but
the shares are 64-bit long. The reason is that, although the values
are small, the computation must be carried without overflow.
Therefore we cannot use a modulus that is smaller than the
maximum possible intermediate value.
10 Since n ≤ 32 it suffices to take M = 63. In this case, given that
m ≥ 31, it follows that 2M−m ≤ 232. According to Section 3.2.3,
this imposes the restriction that the modulus for the computation

Secure Evaluation of Quantized Neural Networks 366

∑N
i=1(〈ai〉 − 〈z1〉) · (〈bi〉 − 〈z2〉). Then, an additional se-

cure multiplication is used in order to compute 〈m · s〉 =
〈m〉 · 〈s〉. Next, shares of

⌊
2−n−31 · (m · s)

⌉
are com-

puted from
〈
2L−`

〉
and 〈m · s〉 using Protocol TruncPriv

from Section 3.2.3, together with the observation that⌊
2−m · x

⌉
=
⌊
2−m · x+ 0.5

⌋
=
⌊
2−m · (x+ 2m−1)

⌋
for

breaking a tie by rounding up.
Finally, addition with 〈z3〉 is local, and it is followed

by the clamping the result 〈x〉 to the interval [0, 28).
This is done by comparing 〈x〉 to the limits (0 and 255)
using a secure comparison protocol (see Section 3.2.1),
followed by an oblivious selection: If s ∈ {0, 1}, it holds
trivially that as = s · (a1 − a0) + a0 for arbitrary a0, a1.

Other layers.
Average pooling involves computing 〈y〉 from
〈x1〉 , . . . , 〈xn〉, where y =

⌊ 1
n ·
∑n

i=1 xi

⌉
. This can be

achieved using Goldschmidt’s algorithm [28], a widely
used iterative algorithm for division. For its usage in the
context of secure multiparty computation, see for ex-
ample Catrina and Saxena [10]. It uses basic arithmetic
as well as truncation, both of which we have already
discussed.

On the other hand, max pooling requires implement-
ing the max function securely, which can be easily done
by making use of a secure comparison protocol [9].

Finally, once shares of the output vector are ob-
tained (raw output, before applying Softmax), several
options can be considered. The parties could open the
vector itself towards the input owner and/or data owner
so that they compute the Softmax function and there-
fore learn the probabilities for each label. However, this
would reveal all the prediction vector, which could be un-
desirable in some scenarios. Thus, we propose instead to
securely compute the argmax of the output array, and
return this index, which returns the most likely label
since exponentiation is a monotone increasing function.
Previous work, such as SecureML [51], replace the ex-
ponentiation in the Softmax function with ReLU oper-
ations, i.e. by computing ReLU(x) instead of ex. More
MPC friendly solutions exist, such as the spherical Soft-
max [19], which replaces ex with x2.

must be at least 32 + 64 = 96. In practice n is smaller than 32
and this bound can be improved.

65 70 75 80 85 90

0

20

40

60

80

100

120

Accuracy (top-5)

T
im

e
(s
)

passive, Z2k

passive, Fp

active, Z2k

active, Fp

Fig. 2. Evaluation times for honest majority protocols. x-axis
generally correspond to evaluating larger models.

4 Implementation and
Benchmarking

This section discusses our implementation and our per-
formance results.

4.1 MobileNets

Our benchmarks are all performed by evaluating net-
works of the MobileNets type architecture [34]. A Mo-
bileNets network consists of 28 layers with 1000 output
classes and are trained on the ImageNet data set [36].
Layers are alternating (with few exceptions at the start
and end) pointwise convolutions and depthwise convolu-
tions. A pointwise convolution is a regular convolution
with a 1 × 1 filter, while a depthwise convolution can
be viewed as a convolution where no summation across
output channels occurs. The size of the network can be
adjusted by two hyper parameters: a width multiplier α
and a resolution multiplier ρ. α scales input and output
channels, while ρ scales the dimensions of the input im-
age. Thus α reduces both the model size (as there will be
fewer parameters with a smaller α) and number of oper-
ations, while ρ only scales the number of operations. In
the following we denote a particular model as “V1 α_S”
where S is the height and width of the input image
(thus dependent on ρ). We evaluate the pretrained mod-

Secure Evaluation of Quantized Neural Networks 367

sum-of-products mod 2k mod p mod p (active security)

Runtime (s) Comm. (gb) Runtime (s) Comm. (gb) Runtime (s) Comm. (gb)

50 000 0.25 0.15 1.6 0.54 8.8 4.3
100 000 0.41 0.31 2.5 1.07 15.6 8.5
150 000 0.57 0.46 3.6 1.59 22.5 12.8
200 000 0.73 0.62 4.5 2.12 29.2 17.0

of terms

256 0.27 0.31 1.9 1.1 9.4 5.7
512 0.30 0.31 2.0 1.1 13.9 8.5
768 0.33 0.31 2.3 1.1 18.5 11.4
1024 0.36 0.31 2.4 1.1 22.9 14.3

Table 2. Top: running a variable number of sum-of-products of constant length ` = 512. Bottom: Running n = 100.000 sum-of-
products with variable length.

65 70 75 80 85 90

0

0.5

1

1.5

2

·104

Accuracy (top-5)

T
im

e
(s
)

passive, Z2k

passive, Fp

active, Z2k

active, Fp

Fig. 3. Evaluation times for dishonest majority protocols. x-axis
generally correspond to evaluating larger models.

els which are available on the Tensorflow repository,11

and we use their accuracy values.

Quantizing arbitrary tensorflow models.
We choose to evaluate the MobileNet models for two rea-
sons: First, they can be considered realistic in the sense
that they are expressive enough to solve a wide variety of
image related classification tasks. Thus, the evaluation
times we report in this section will correspond to run-
ning evaluations of similarly expressive models in prac-
tice. Second, the models are hosted in pre-trained form

11 See https://www.tensorflow.org/lite/guide/hosted_models

online which in principle makes our results reproducible
(prior work, while sometimes describing the architecture
of the models they evaluate, very rarely describe the
training process).

However, our technique is by no means limited to
running only MobileNet networks. A quantized model is
obtained either by performing quantization aware train-
ing12 or by post-quantizing an already trained model13.
We stress that both these models are implemented
entirely by TensorFlow, so no external conversion is
needed.

4.2 Implementation

We implement secure inference in the MP-SPDZ frame-
work, which allows us to get timings for all the protocols
described in Section B. These protocols run over either
a prime p or a ring Z2k . The prime is 128 bits while the
k we use for the ring is 72 bits. As described in Section
3.3, these arise because we need some extra space in or-
der for the truncation by a secret shift to be correct. We
arrive at k = 72 experimentally by computing the sizes
of the shift and dot-products needed in the models we
evaluate.

We ran all our benchmarks on colocated c5.9xlarge
AWS machines, each of which has 36 cores, 72gb of mem-
ory, a 10gpbs link between them and sub-millisecond la-
tency. Throughout this section, communication is mea-

12 See https://github.com/tensorflow/tensorflow/tree/r1.13/
tensorflow/contrib/quantize
13 See https://www.tensorflow.org/lite/performance/post_
training_quantization

https://www.tensorflow.org/lite/guide/hosted_models
https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/quantize
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization

Secure Evaluation of Quantized Neural Networks 368

Variant Accuracy Trunc.

Passive Security Active Security

Dishonest Maj. Honest Maj. Dishonest Maj. Honest Maj.

Top-1 Top-5 Z2k Fp Z2k Fp Z2k Fp Z2k Fp

V1 0.25_128 39.5% 64.4% Prob. 139.5 129.1 0.2 3.3 1264.9 1377.8 5.3 9.0
Exact 203.2 155.0 1.0 3.8 1864.9 1592.0 6.8 10.5

V1 0.25_160 42.8% 68.1% Prob. 214.5 201.1 0.3 5.2 1997.4 2070.4 8.1 14.3
Exact 317.7 241.2 1.4 6.1 2916.1 2432.8 10.6 16.9

V1 0.25_192 45.7% 70.8% Prob. 305.1 288.5 0.4 7.3 2827.8 2875.0 11.8 20.3
Exact 460.6 343.1 2.0 8.7 4173.9 3389.8 15.3 24.1

V1 0.25_224 48.2% 72.8% Prob. 417.6 383.3 0.5 10.0 3825.6 3855.3 16.1 27.3
Exact 614.1 460.8 2.9 11.8 5629.6 4574.0 20.6 32.5

V1 0.5_128 54.9% 78.1% Prob. 305.4 267.0 0.4 6.5 2731.5 2760.4 10.9 18.5
Exact 430.1 316.3 1.8 7.7 3950.3 3183.4 14.0 21.8

V1 0.5_160 57.2% 80.5% Prob. 472.6 418.3 0.6 10.4 4331.5 4277.2 17.7 29.8
Exact 672.1 496.5 2.9 12.5 6177.5 5006.9 22.3 34.7

V1 0.5_192 59.9% 82.1% Prob. 676.1 593.1 0.9 15.2 6194.6 6026.6 25.5 42.7
Exact 978.0 706.3 4.3 17.9 8924.5 7025.4 32.6 50.9

V1 0.5_224 61.2% 83.2% Prob. 915.6 802.2 1.1 20.5 8446.5 8112.9 33.7 57.7
Exact 1320.6 955.6 5.8 24.4 11962.2 9143.3 43.7 68.2

V1 0.75_128 55.9% 79.1% Prob. 485.4 421.2 0.6 9.9 4440.8 4152.6 17.4 29.3
Exact 697.3 494.5 2.8 11.9 6203.2 4754.5 21.9 34.4

V1 0.75_160 62.4% 83.7% Prob. 775.7 662.2 1.1 15.9 7018.5 6502.8 28.3 46.9
Exact 1075.8 779.5 4.6 19.0 9780.5 7491.2 36.1 55.1

V1 0.75_192 66.1% 86.2% Prob. 1101.1 943.0 1.6 23.3 10053.3 9145.2 40.5 68.0
Exact 1536.9 1114.8 6.7 27.3 13991.2 10696.1 50.8 78.5

V1 0.75_224 66.9% 86.9% Prob. 1487.2 1276.8 2.2 31.4 13634.5 12367.3 54.4 91.9
Exact 2135.5 1505.8 9.6 37.4 18962.2 14370.4 69.3 107.7

V1 1.0_128 63.3% 84.1% Prob. 709.4 587.1 1.0 13.5 6381.8 5733.0 24.9 40.9
Exact 968.5 694.1 4.0 16.3 8797.0 6624.6 31.1 48.1

V1 1.0_160 66.9% 86.7% Prob. 1101.8 928.4 1.8 21.7 10142.0 9006.3 39.9 65.3
Exact 1528.0 1084.0 6.5 25.9 13780.4 10357.2 49.6 76.8

V1 1.0_192 69.1% 88.1% Prob. 1581.6 1323.9 2.6 31.5 14471.8 12778.3 57.0 95.3
Exact 2214.8 1549.0 9.5 37.0 19725.0 14770.0 71.4 110.0

V1 1.0_224 70.0% 89.0% Prob. 2147.3 1792.2 3.5 42.5 19691.6 17211.3 76.9 129.0
Exact 2943.3 2101.4 13.1 50.4 26714.3 19910.4 96.2 151.3

Table 3. Running time, in seconds, of securely evaluating some of the networks in the MobileNets family, in a LAN network. The first
number in variant is the width multiplier and the second is the resolution multiplier. Top-1 accuracy measures when the truth label is
predicted correctly by the model whereas Top-5 measures when the truth label is among the first 5 outputs of the model. Prob. and
Exact refer to probabilistic truncation and nearest rounding, respectively.

sured per party and all timings include preprocessing.
Our code has been published as part of MP-SPDZ [18].

4.3 Microbenchmarks

The main gain in efficiency is obtained by virtue of dot-
products, or sums-of-products, being essentially free in
some of the protocols we evaluate. We illustrate the ef-
ficiency of this optimization in Table 2.

Our micro-benchmarks are focused first and fore-
most on measuring the cost, in terms of time and com-
munication, of the core operation of any CNN: the sum-

of-product operation (in the MobileNets models, essen-
tially all computations are convolutions). The top table
in Table 2 shows the result of running a variable num-
ber of dot products each of a fixed length, and the bot-
tom table in Table 2 shows the result of running a fixed
number of dot products with variable length. We choose
numbers that reflect realistic sizes for the convolutions,
for example, the largest convolution in the smallest Mo-
bileNetsV1 network contains some 60K dot products.

Unsurprisingly, we see a noticeable slowdown for
protocols where the communication cost of dot-products
depend on the number of terms. For example, the active
security modulo p protocol has a runtime increase of

Secure Evaluation of Quantized Neural Networks 369

roughly ×2.4, when the number of terms is quadrupled,
whereas the passive modulo 2k only sees a ×1.3 increase
in cost.

4.4 Full model evaluation

We evaluate 16 pre-trained V1 MobileNet models of
varying sizes. Each model is evaluated across four dif-
ferent dimensions:

1. Corruption threshold: We evaluate with both honest
and dishonest majority, where the former uses three
parties and the latter two.

2. Corruption model: Passive vs. active security.
3. Algebraic structure: We consider protocols over

rings and protocols over fields, with parameters as
outlined above.

4. Probabilistic vs. exact truncation.

Full end-to-end (i.e., with pre-processing) evalua-
tion times for all models in all settings are shown in
Table 3.

Discussion.
For the following discussion, we will mainly rely on the
two graphs in Figure 2 and Figure 3. Both graphs use
the 8 models from Table 3 with S ∈ {128, 192}. Figure 2
are evaluation times for protocols with honest majority
while Figure 3 are protocols with dishonest majority.

As a first thing, we observe that corruption thresh-
old is the most influential factor in terms of evaluation
times. Indeed, just comparing the y-axis of Figure 2 with
the y-axis of 3 shows that there is a huge difference. The
overhead with respect to moving from honest majority
to dishonest majority is as high as 200 times for cer-
tain configurations places (active security for Z2k for
V1 1.0_192, for example). This large difference would
be attributed to the expensive pre-processing that is
needed in the dishonest majority case.

On the other hand, moving between different cor-
ruption models is relatively cheap. In this regard, the
overhead is in fact more or less the same regardless of
the threshold. I.e., moving from passive to active secu-
rity only increases the inference time by a factor of be-
tween 3 and 30.

We also observe that the choice of algebraic
structure—field vs. ring—provides a performance boost
in some cases. The ring-based protocols mostly outper-
form the field-based protocols in the passive case, while

the reverse is true for active security. This is because we
use homomorphic encryption with fields in this case but
oblivious transfer with rings, which has a higher commu-
nication requirement. Otherwise, we attribute the differ-
ence to the fact that the ring we use is smaller than the
field for security requirements. In particular, operations
over Z272 can be performed by operating on only 72-bits
(in particular, support for 128-bit wide types which exist
in e.g., GCC can be used), while operating over Fp for
p ≈ 2128 require multiplication of two 128-bit integers
without overflow even when using Montgomery repre-
sentation. Furthermore, we use the faster comparison
proposed by Mohassel and Rindal [50] in the honest-
majority setting with rings.

Finally, we observe, not surprisingly, that inference
can be sped up by relying on a less precise method of
truncation. For example, if we consider the first row
(model V1 0.25_128) in Table 3 we see that probabilistic
truncation speeds up inference by between 80% and 15%.
However, this increase in efficiency comes at the cost of
a (possible) decrease in accuracy. We do not expect that
this boost in efficiency will become more pronounced for
deeper models, since the exact truncation protocol only
depends on the size of the integers being truncated.

Scaling.
For protocols that support more than three parties, Ta-
ble 4 shows how the simplest network scales with up to
five parties. Note we do not use Shamir of replicated se-
cret sharing here for honest-majority computation. This
explains why there is no ring-based protocol and the dis-
crepancy between the results here and in Table 3. The
number of corrupted parties is set to the maximum in
the respective protocols, that is, 2, 3, 4 for dishonest
majority, and 1, 1, 2 for honest majority.

4.5 Special Truncation

In order to evaluate the benefit of our special trunca-
tion, we have benchmarked our implementation with
and without it against CrypTFlow [45] using the Se-
cureNN Networks A–D [63] as well as the CIFAR10
SqueezeNet examples in the CrypTFLow codebase [56].
Networks A–D are simple networks consisting of up to
about ten layers using only matrix multiplication, con-
volution, ReLU, and max-pooling while the CIFAR10
SqueezeNet involves more than ten of each convolutions
and ReLU. Table 5 shows our results using the same
network setup as previously described. Special trunca-

Secure Evaluation of Quantized Neural Networks 370

Passive Security Active Security

Dishonest Maj. Honest Maj. Dishonest Maj. Honest Maj.

parties Z2k Fp Fp Z2k Fp Fp

Time (s)
3 401.1 320.9 5.5 2456.8 2255.0 24.8
4 799.6 597.4 7.4 3632.8 3063.7 36.0
5 1332.9 959.5 15.8 4814.3 3921.0 54.7

Comm. (GB)
3 594.8 114.8 7.3 3513.8 515.2 31.8
4 1183.0 232.2 8.2 5266.5 766.4 35.8
5 1965.1 389.2 20.7 7018.7 1016.7 68.6

Table 4. Time and communication per party for computing V1 0.25_128 with probabilistic truncation.

A B C D SN

Time
CrypTFlow 16 57 90 24 622
Ours w/o TruncPrSp 23 67 122 22 2099
Ours w/ TruncPrSp 13 18 49 15 484

Comm
CrypTFlow 1.9 6.2 15.3 2.2 187
Ours w/o TruncPrSp 2.3 28.1 44.3 3.9 512
Ours w/ TruncPrSp 1.1 2.6 7.0 1.1 59

Table 5. Time (in ms) and total communication (in MB) for
SecureNN A–D and CIFAR10 SqueezeNet networks.

tion consistently improves over CrypTFlow whereas the
results without are sometimes considerably worse. The
improvement is noticeable because truncation in CrypT-
Flow simply consists of local operations whereas we use
a protocol for this. The protocol has the advantage that
it does not pose restrictions on the secret value whereas
the method in CrypTFlow requires that the most signif-
icant s bits of the secret are zero for a statistical security
parameter s. Without special truncation, we rely on a
protocol that requires k random bits to mask a k-bit
value. The generation of random bits in turn requires at
least k bit in communication, which makes the overall
communication quadratic in k. Special truncation how-
ever has communication cost linear in k. Note also that
we use comparisons as in ABY3 [50], which is compara-
ble to the approach in CrypTFlow in that the protocol
is very specific to the security model and computation
domain.

We have also implemented CrypTFlow’s ImageNet
examples with and without special truncation. The re-
sults can be found in Table 6. Note the results were
obtained with the optimal number of threads for both
frameworks, which is 32 for MP-SPDZ and 8 for CrypT-
Flow.

SN RN-50 DN-121

Time
CrypTFlow 10.9 26.9 37.2
Ours w/o TruncPrSp 2.5 18.9 19.8
Ours w/ TruncPrSp 0.6 4.7 3.7

Comm
CrypTFlow 2.6 6.9 10.5
Ours w/o TruncPrSp 7.4 53.0 60.3
Ours w/ TruncPrSp 0.8 3.8 4.6

Table 6. Time (in s) and total communication (in GB) for
SqueezeNet, ResNet-50, and DenseNet-121 classification for
ImageNet.

5 Conclusions
We show that it is possible to securely evaluate large and
realistic networks, so called ImageNet networks, using
more-or-less existing MPC protocols. Moreover, the net-
works we evaluate are unmodified and can be trained us-
ing standard Tensorflow or any other framework which
supports the type of quantization discussed (which cur-
rently includes both PyTorch and MXNet). This work
thus provides a very appealing approach to secure evalu-
ation from an end-users perspective: First, because stan-
dard MPC suffices, it is possible to choose from a wider
array of threat models than previous works allow. While
the passive security honest majority setting is by far the
most efficient, our benchmarks still provide an interest-
ing insight into the exact trade-off one wants secure in-
ference against dishonest majority. Second, the fact that
models directly output by Tensorflow can be evaluated
without modification, means that model designers can
remain oblivious to the secure framework. However, we
also saw that choices of more specialized protocols, such
as our special probabilistic truncation, can be beneficial
if one wants a trade-off in terms of prediction accuracy
and speed.

Secure Evaluation of Quantized Neural Networks 371

References
[1] Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dra-

gos Rotaru, Peter Scholl, Nigel P Smart, and Tim Wood.
Scale–mamba v1. 3: Documentation. Technical report,
Technical Report, 2019.

[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof,
and Kazuma Ohara. High-throughput semi-honest secure
three-party computation with an honest majority. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016:
23rd Conference on Computer and Communications Security,
pages 805–817, Vienna, Austria, October 24–28, 2016. ACM
Press.

[3] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and
Nichole Schimanski. Garbled neural networks are practical.
Cryptology ePrint Archive, Report 2019/338, 2019. https:
//eprint.iacr.org/2019/338.

[4] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling
gadgets for boolean and arithmetic circuits. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016:
23rd Conference on Computer and Communications Security,
pages 565–577, Vienna, Austria, October 24–28, 2016. ACM
Press.

[5] Wolfgang Balzer, Masanobu Takahashi, Jun Ohta, and
Kazuo Kyuma. Weight quantization in boltzmann machines.
Neural Networks, 4(3):405–409, 1991.

[6] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A
privacy-preserving protocol for neural-network-based compu-
tation. In Proceedings of the 8th workshop on Multimedia
and security, pages 146–151. ACM, 2006.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. End to end learning for
self-driving cars. CoRR, abs/1604.07316, 2016.

[8] Florian Bourse, Michele Minelli, Matthias Minihold, and Pas-
cal Paillier. Fast homomorphic evaluation of deep discretized
neural networks. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part III,
volume 10993 of Lecture Notes in Computer Science, pages
483–512, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany.

[9] Octavian Catrina and Sebastiaan de Hoogh. Improved prim-
itives for secure multiparty integer computation. In Juan A.
Garay and Roberto De Prisco, editors, SCN 10: 7th Interna-
tional Conference on Security in Communication Networks,
volume 6280 of Lecture Notes in Computer Science, pages
182–199, Amalfi, Italy, September 13–15, 2010. Springer,
Heidelberg, Germany.

[10] Octavian Catrina and Amitabh Saxena. Secure computation
with fixed-point numbers. In Radu Sion, editor, FC 2010:
14th International Conference on Financial Cryptography
and Data Security, volume 6052 of Lecture Notes in Com-
puter Science, pages 35–50, Tenerife, Canary Islands, Spain,
January 25–28, 2010. Springer, Heidelberg, Germany.

[11] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram,
Constance Morel, and Emmanuel Prouff. Privacy-preserving

classification on deep neural network. Cryptology ePrint
Archive, Report 2017/035, 2017. http://eprint.iacr.org/2017/
035.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

[13] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Train-
ing deep neural networks with weights and activations con-
strained to +1 or -1. CoRR, abs/1602.02830, 2016.

[14] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

[15] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. SPD Z2k : Efficient MPC
mod 2k for dishonest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 769–798, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

[16] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste,
Morgan Giraud, Ian Livingstone, Justin Patriquin, and Gavin
Uhma. Private machine learning in tensorflow using secure
computation. CoRR, abs/1810.08130, 2018.

[17] I. Damgård, D. Escudero, T. Frederiksen, M. Keller,
P. Scholl, and N. Volgushev. New primitives for actively-
secure mpc over rings with applications to private machine
learning. In 2019 2019 IEEE Symposium on Security and
Privacy (SP), pages 1325–1343, Los Alamitos, CA, USA,
may 2019. IEEE Computer Society.

[18] Data61. MP-SPDZ - versatile framework for multi-party
computation. https://github.com/data61/MP-SPDZ.

[19] Alexandre de Brébisson and Pascal Vincent. An exploration
of softmax alternatives belonging to the spherical loss family.
arXiv preprint arXiv:1511.05042, 2015.

[20] Daniel Demmler, Thomas Schneider, and Michael Zohner.
ABY - A framework for efficient mixed-protocol secure two-
party computation. In ISOC Network and Distributed System
Security Symposium – NDSS 2015, San Diego, CA, USA,
February 8–11, 2015. The Internet Society.

[21] Jared A Dunnmon, Darvin Yi, Curtis P Langlotz, Christo-
pher Ré, Daniel L Rubin, and Matthew P Lungren. As-
sessment of convolutional neural networks for automated
classification of chest radiographs. Radiology, 290(2):537–
544, 2018.

[22] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille
Pullonen, Joonas Puura, and Mark Simkin. Use your brain!
Arithmetic 3PC for any modulus with active security. In 1st
Conference on Information-Theoretic Cryptography (ITC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

[23] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko,
Susan M Swetter, Helen M Blau, and Sebastian Thrun.
Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 542(7639):115, 2017.

[24] Martín Abadi et al. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from
tensorflow.org.

https://eprint.iacr.org/2019/338
https://eprint.iacr.org/2019/338
http://eprint.iacr.org/2017/035
http://eprint.iacr.org/2017/035
https://github.com/data61/MP-SPDZ

Secure Evaluation of Quantized Neural Networks 372

[25] Facebook. CrypTen: a framework for privacy preserving
machine learning. https://github.com/facebookresearch/
CrypTen.

[26] Emile Fiesler, Amar Choudry, and H John Caulfield. Weight
discretization paradigm for optical neural networks. In Optical
interconnections and networks, volume 1281, pages 164–174.
International Society for Optics and Photonics, 1990.

[27] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E.
Lauter, Michael Naehrig, and John Wernsing. Cryptonets: Ap-
plying neural networks to encrypted data with high through-
put and accuracy. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 201–210.
JMLR.org, 2016.

[28] Robert E. Goldschmidt. Applications of division by conver-
gence. Master’s thesis, MIT, 1964.

[29] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bour-
dev. Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014.

[30] Google. Tensorflow lite. https://www.tensorflow.org/lite/,
2019.

[31] Yunhui Guo. A survey on methods and theories of quantized
neural networks. arXiv preprint arXiv:1808.04752, 2018.

[32] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[33] Marcella Hastings, Brett Hemenway, Daniel Noble, and
Steve Zdancewic. Sok: General purpose compilers for secure
multi-party computation. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1220–1237. IEEE, 2019.

[34] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[35] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. In
Advances in neural information processing systems, pages
4107–4115, 2016.

[36] ImageNet. Citations and publications. http://image-net.org/
about-publication.

[37] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pages 448–456, 2015.

[38] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. CoRR,
abs/1712.05877, 2017.

[39] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for secure neu-
ral network inference. In William Enck and Adrienne Porter
Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018,
pages 1651–1669. USENIX Association, 2018.

[40] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for secure neu-
ral network inference. In William Enck and Adrienne Porter
Felt, editors, USENIX Security 2018: 27th USENIX Secu-
rity Symposium, pages 1651–1669, Baltimore, MD, USA,
August 15–17, 2018. USENIX Association.

[41] Marcel Keller. MP-SPDZ: A versatile framework for multi-
party computation. Cryptology ePrint Archive, Report
2020/521, 2020. https://eprint.iacr.org/2020/521.

[42] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MAS-
COT: Faster malicious arithmetic secure computation with
oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 830–842, Vienna, Austria,
October 24–28, 2016. ACM Press.

[43] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: Making SPDZ great again. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 158–189, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[44] Raghuraman Krishnamoorthi. Quantizing deep convolutional
networks for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

[45] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow: Secure
tensorflow inference. Cryptology ePrint Archive, Report
2019/1049, 2019. https://eprint.iacr.org/2019/1049.

[46] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew
Back. Face recognition: A convolutional neural network
approach. Neural Networks, IEEE Transactions on, 8:98 –
113, 02 1997.

[47] Yehuda Lindell and Ariel Nof. A framework for constructing
fast MPC over arithmetic circuits with malicious adversaries
and an honest-majority. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017: 24th Conference on Computer and Communications
Security, pages 259–276, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press.

[48] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
neural network predictions via MiniONN transformations. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017: 24th Conference on
Computer and Communications Security, pages 619–631,
Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press.

[49] Michele Marchesi, Gianni Orlandi, Francesco Piazza, and
Aurelio Uncini. Fast neural networks without multipliers.
IEEE transactions on Neural Networks, 4(1):53–62, 1993.

[50] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol
framework for machine learning. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018: 25th Conference on Computer and Com-
munications Security, pages 35–52, Toronto, ON, Canada,
October 15–19, 2018. ACM Press.

[51] Payman Mohassel and Yupeng Zhang. SecureML: A system
for scalable privacy-preserving machine learning. In 2017
IEEE Symposium on Security and Privacy, pages 19–38, San
Jose, CA, USA, May 22–26, 2017. IEEE Computer Society

https://github.com/facebookresearch/CrypTen
https://github.com/facebookresearch/CrypTen
https://www.tensorflow.org/lite/
http://image-net.org/about-publication
http://image-net.org/about-publication
https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2019/1049

Secure Evaluation of Quantized Neural Networks 373

Press.
[52] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious

neural network computing via homomorphic encryption.
EURASIP Journal on Information Security, 2007(1):037343,
2007.

[53] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-
entropy-based quantization for deep neural networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7197–7205. IEEE, 2017.

[54] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[55] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using
binary convolutional neural networks. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vi-
sion - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part
IV, volume 9908 of Lecture Notes in Computer Science,
pages 525–542. Springer, 2016.

[56] Microsoft Research. CrypTFlow: An end-to-end system for
secure TensorFlow inference, 2020. https://github.com/mpc-
msri/EzPC.

[57] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim
Laine, Kristin Lauter, and Farinaz Koushanfar. Xonn: Xnor-
based oblivious deep neural network inference. In USENIX
Security, August 2019.

[58] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M. Songhori, Thomas Schneider, and Farinaz
Koushanfar. Chameleon: A hybrid secure computation
framework for machine learning applications. In Jong Kim,
Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López,
and Taesoo Kim, editors, ASIACCS 18: 13th ACM Sympo-
sium on Information, Computer and Communications Secu-
rity, pages 707–721, Incheon, Republic of Korea, April 2–6,
2018. ACM Press.

[59] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz
Koushanfar. Deepsecure: scalable provably-secure deep
learning. In Proceedings of the 55th Annual Design Automa-
tion Conference, DAC 2018, San Francisco, CA, USA, June
24-29, 2018, pages 2:1–2:6. ACM, 2018.

[60] Amartya Sanyal, Matt J Kusner, Adrià Gascón, and Varun
Kanade. Tapas: Tricks to accelerate (encrypted) prediction as
a service. arXiv preprint arXiv:1806.03461, 2018.

[61] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[62] Chuan Zhang Tang and Hon Keung Kwan. Multilayer feedfor-
ward neural networks with single powers-of-two weights. IEEE
Transactions on Signal Processing, 41(8):2724–2727, 1993.

[63] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network train-
ing. PoPETs, 2019(3):26–49, 2019.

[64] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell,
Ruslan Salakhutdinov, and Quoc V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019.

[65] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

A Related work on secure
inference

Secure evaluation of Neural Networks can be traced
back to at least the work by Orlandi et al. [6, 52] which
present a solution based on HE techniques. Several later
works rely on HE techniques either in full or in part.
CryptoNets [27] use Leveled Homomorphic Encryption
(LHE), which necessitates bounding the number of op-
erations a priori. In addition, HE only permits evalua-
tion of polynomials and as such cannot compute e.g.,
the Rectified Linear activation functions (the function
x 7→ max(0, x)) and the authors therefor rely on the
approximation x 7→ x2. However, and as pointed out by
Gilad-Bachrach et al. [27], such an approximation makes
training difficult for larger networks, the issue being
that the derivative of x2 is unbounded. Chabanne et al.
[11] improve upon CryptoNets by evaluating networks
with 6 hidden layers (as opposed to only 2 as in Gilad-
Bachrach et al.). More recently, Bourse et al. [8] obtain
faster evaluation albeit for a smaller network (one and
two hidden layers) by combining FHE and Discretized
Neural Networks (i.e., networks where weights are in
{1,−1}).

One of the downsides of HE based solutions are their
inefficiency and inability to handle common activation
functions. Gazelle [40] combines garbled circuits (GC)
with additive HE (AHE) in order to obtain a more effi-
cient system. The boost in efficiency is attributed to an
efficient method of switching between the AHE scheme
and a GC, where the former is used to compute convolu-
tions and fully connected layers, while the latter is used
to compute the network’s activation functions.

The idea of using multiple different protocols to
achieve faster predictions have been used before [40].
MiniONN [48] develops a technique for turning a pre-
trained model into an oblivious one, which can be eval-
uated using a mix of HE, additive secret sharing and GC.
Chameleon [58], which is an extension of the ABY frame-
work by Demmler et al. [20], likewise use secret sharing
for matrix operations and GC for activation functions.
More recently, ABY3 by Mohassel and Rindal [50], also
benchmark secure evaluation (albeit the authors do not

https://github.com/mpc-msri/EzPC
https://github.com/mpc-msri/EzPC

Secure Evaluation of Quantized Neural Networks 374

implement full inference) in a framework that relies on a
mix of secret sharing, boolean (i.e., GMW) and garbled
circuits.

Finally, like solutions relying purely on HE have
been considered before, so has solutions that rely purely
on GC or MPC; the latter of which is most relevant to
this work. DeepSecure [59] is perhaps the first work to
take a pure GC based approach for evaluating Neural
Networks. More recently XONN [57] builds a very effi-
cient GC based solution by noting that Binarized Neu-
ral Networks [35] (i.e., networks with weights that are
bits) can be evaluated very efficiently. XONN shows that
evaluating deep networks (> 20 layers) is possible. A
different approach is taken by Ball et al. [3] where the
authors use the arithmetic garbling technique of Ball
et al. [4] to evaluate Neural Networks. Pure MPC based
solutions have been studied in SecureML [51], which em-
ploys a three-party honest majority protocol. A major
performance boost in SecureML can be attributed to
the way fixed point arithmetic is handled, where the
authors show that it is possible to just have parties per-
form the truncation locally. SecureNN [63] can be seen
as an extension of SecureML where both three- and four-
party protocols (both with one corrupted party) are
used. Concurrently to this work, CrypTFlow [45] builds
a system on top of SecureNN that is capable of evalu-
ating very large networks (>100 layers) in reasonable
time. Another very attractive feature of CrypTFlow is
that it provides a more complete framework that accepts
standard Tensorflow trained models as input (hence the
name).

B MPC Protocols

B.1 Dishonest Majority

Protocols in the dishonest majority setting are often
harder to develop and they are also more complex than
honest majority ones. They are typically based in addi-
tive secret sharing and use authentication tags for active
security to ensure that the openings of shared values are
done correctly.
• SPDZ2k: This is the first actively secure protocol over
Z2k in the dishonest majority setting, and it was pro-
posed initially by Cramer et al. [15] and implemented
subsequently by Damgård et al. [17]. This protocol can
be seen as an extension of MASCOT [42] (itself being
an extension of SPDZ, hence the name). Multiplica-
tions in SPDZ2k are handled using multiplication triples,

which are preprocessed using oblivious transfer like in
MASCOT. Authentication is handled like in SPDZ, but
with an addition that allows this method to work over
Z2k which consists of working over the ring Z2k+s and
using the upper s bits for authentication.
• OTSemi2k, OTSemiPrime: These protocols denote cut-
down versions of SPDZ2k and MASCOT, respectively.
In particular, they omit the usage of authentication
tags and the so-called “sacrifice” where two triples are
checked against each other and only of them can subse-
quently used in the protocol. There essentially remains
the generation of multiplication triples using OT.
• LowGear: This is an actively secure protocol for com-
putation modulo a prime. It uses semi-homomorphic en-
cryption based on learning with errors. See Keller et
al. [43] for details.

B.2 Honest Majority

Honest majority protocols are typically developed us-
ing Shamir Secret Sharing (for an arbitrary number of
parties) or Replicated Secret Sharing (for small number
of parties). Since we consider only a small number of
servers we focus on the replicated SS instantiations.
• Replicated2k, ReplicatedPrime: This protocol secret-
shares a value x among three parties P1, P2, P3 by let-
ting each Pi have random pairs (xi, xi+1) (indexes wrap
around modulo 3) subject to x ≡ x1 + x2 + x3 mod M ,
where M = 2k for the ring case and M = p for the field
case. The most efficient passively secure multiplication
protocol to date is the one presented by Araki et al. [2],
where the total communication involves 3 ring elements.
• PsReplicatedPrime: This protocol by Lindell and Nof
[47] extends ReplicatedPrime to active security by pre-
processing potentially incorrect triples and proceeding
to the online phase using these, optimistically, check-
ing their correctness at the end of the execution using
sacrificing techniques.
• PsReplicated2k: This protocol by Eerikson et al. [22]
is an extension of the one by Lindell et al. [47] to the
ring setting. This is achieved by incorporating ideas by
Cramer et al. [15] in order to adapt the post-sacrifice
step by Lindell et al. to the ring Z2k .

Secure Evaluation of Quantized Neural Networks 375

Variant Accuracy Trunc.

Passive Security Active Security

Dishonest Maj. Honest Maj. Dishonest Maj. Honest Maj.

Top-1 Top-5 Z2k Fp Z2k Fp Z2k Fp Z2k Fp

V1 0.25_128 39.5% 64.4% Prob. 199.2 37.1 0.1 3.4 1748.4 282.4 2.5 8.7
Exact 296.3 44.6 1.0 4.0 2578.2 335.3 4.7 10.3

V1 0.25_160 42.8% 68.1% Prob. 311.2 58.0 0.1 5.4 2731.2 423.9 3.8 13.6
Exact 462.8 69.6 1.5 6.2 4027.1 511.9 7.3 16.1

V1 0.25_192 45.7% 70.8% Prob. 447.5 83.4 0.1 7.7 3927.0 600.0 5.4 19.6
Exact 665.6 100.2 2.2 8.9 5792.2 723.3 10.4 23.2

V1 0.25_224 48.2% 72.8% Prob. 608.5 113.3 0.2 10.5 5339.9 811.3 7.3 26.6
Exact 905.3 136.3 3.0 12.2 7877.7 987.2 14.2 31.5

V1 0.5_128 54.9% 78.1% Prob. 438.0 79.1 0.1 6.9 3834.5 581.7 5.8 18.5
Exact 631.8 94.0 1.9 7.9 5492.6 687.4 10.2 21.7

V1 0.5_160 57.2% 80.5% Prob. 684.6 123.4 0.2 10.7 5993.7 899.7 9.0 28.8
Exact 987.4 146.8 3.0 12.4 8583.4 1075.6 15.9 33.8

V1 0.5_192 59.9% 82.1% Prob. 984.8 177.6 0.3 15.5 8621.7 1286.9 12.9 41.5
Exact 1420.7 211.3 4.4 17.9 12349.8 1533.4 22.9 48.7

V1 0.5_224 61.2% 83.2% Prob. 1339.4 241.6 0.3 21.0 11725.6 1744.6 17.5 56.4
Exact 1932.6 287.4 5.9 24.3 16799.2 2079.1 31.2 66.3

V1 0.75_128 55.9% 79.1% Prob. 716.9 125.9 0.2 10.3 6264.3 916.3 10.0 29.2
Exact 1007.6 148.3 2.9 11.9 8750.4 1074.9 16.7 34.1

V1 0.75_160 62.4% 83.7% Prob. 1120.8 196.7 0.3 16.1 9793.1 1428.3 15.6 45.7
Exact 1574.8 231.7 4.6 18.6 13676.4 1692.3 26.1 53.2

V1 0.75_192 66.1% 86.2% Prob. 1612.4 283.0 0.4 23.2 14089.1 2044.4 22.4 65.8
Exact 2266.2 333.5 6.6 26.8 19680.3 2432.0 37.5 76.6

V1 0.75_224 66.9% 86.9% Prob. 2193.2 385.0 0.5 31.5 19163.5 2783.4 30.5 89.5
Exact 3082.9 453.7 8.9 36.5 26773.0 3294.5 51.0 104.2

V1 1.0_128 63.3% 84.1% Prob. 1035.9 177.6 0.2 13.7 9037.9 1286.1 15.2 41.1
Exact 1423.5 207.6 3.9 15.9 12352.1 1514.8 24.2 47.5

V1 1.0_160 66.9% 86.7% Prob. 1619.6 277.6 0.4 21.5 14128.8 2009.9 23.7 64.2
Exact 2224.9 324.4 6.1 24.8 19306.2 2361.8 37.7 74.3

V1 1.0_192 69.1% 88.1% Prob. 2330.3 399.4 0.5 30.9 20328.5 2889.9 34.1 92.4
Exact 3201.9 466.8 8.7 35.7 27782.7 3400.7 54.2 106.9

V1 1.0_224 70.0% 89.0% Prob. 3169.9 543.5 0.7 42.0 27652.5 3928.3 46.4 125.8
Exact 4356.2 635.1 11.9 48.6 37798.3 4615.2 73.7 145.4

Table 7. Communication complexity, in Gigabytes, of securely evaluating some of the networks in the MobileNets family, in a LAN
network. The first number in variant is the width multiplier and the second is the resolution multiplier. Top-1 accuracy measures when
the truth label is predicted correctly by the model whereas Top-5 measures when the truth label is among the first 5 outputs of the
model.

C Extended results
Communication and preprocessing
Table 7, analogous to Table 3, presents the communi-
cation, in Gigabyes, used by the protocols we consider
when evaluating different ImageNet models. As noted in
Section 4, dishonest majority protocols require a great
deal of preprocessing material in order to evaluate a
network, which can be seen by the large differences be-
tween the values in columns corresponding to dishonest
majority, with respect to honest majority. Interestingly,
the protocol over Fp are cheaper with active security

than the protocol over Z2k . This is likely due to the fact
that proprocessing in Fp (with active security) is more
communication efficient, than the protocol over Z2k , as
illustrated in Table 7.

WAN Benchmarks
We have also run the smallest model in a WAN set-
ting where each party is located on a different conti-
nent. For computation over rings with probablistic trun-
cation, the timings range from 110 seconds for passive
honest-majority computation to 28,000 seconds for ac-
tive dishonest-majority computation.

	Secure Evaluation of Quantized Neural Networks
	1 Introduction
	1.1 Towards Deploying Secure Inference.
	1.2 Our Contribution
	1.3 Related Work
	1.3.1 Quantization in prior work
	1.3.2 Frameworks for secure evaluation

	1.4 Outline of the Document

	2 Deep Learning and Quantization
	2.1 Notation
	2.2 Deep Learning
	2.3 Quantization of DBLP:journals/corr/abs-1712-05877
	2.3.1 Quantization and De-Quantization
	2.3.2 Dot Products
	2.3.3 Addition of bias
	2.3.4 Other layers

	3 Quantized CNNs in MPC
	3.1 System and Threat Model
	3.2 Building Blocks
	3.2.1 Secure comparison
	3.2.2 Truncation by a public value
	3.2.3 Truncation by a Secret Value

	3.3 Putting it all Together

	4 Implementation and Benchmarking
	4.1 MobileNets
	4.2 Implementation
	4.3 Microbenchmarks
	4.4 Full model evaluation
	4.5 Special Truncation

	5 Conclusions
	A Related work on secure inference
	B MPC Protocols
	B.1 Dishonest Majority
	B.2 Honest Majority

	C Extended results

