
Joel Reardon
CVEs from CNN (extended abstract)
Introduction
In 2019 a method to find side and covert channels in
mobile apps was presented along with some vulnerabil-
ities it discovered [6]. Here we present two new vulner-
abilities found using the same method and one of the
earlier side channels being used again. In this abstract
we explain how the vulnerabilities work and give further
findings from our analysis of the libraries responsible for
the exploits.

The method itself is as follows. First, apps are run in
a dynamic analysis testbed where their network trans-
missions are collected; this is done at scale, in our case,
tens of thousands. Data types that are protected by the
permission system, such as location, connected router
SSID, IMEI, etc., are sought in the network traffic. Find-
ings of transmissions of such protected data are flagged
for further analysis when the app does not have the
corresponding permission. For example, an app sending
the router’s SSID without a location permission, or any
user-space app sending the device’s MAC address.

CNN hacks SSID
The app “CNN Breaking US & World News” is the flag-
ship app for the Cable News Network, which is an Amer-
ican news-based television channel. This app included a
third-party library from Vizbee, which claims to have
patented “mobile-to-TV deep-linking technology [that]
transforms existing mobile marketing channels into di-
rect response paths” [9]. In a network transmission that
it sent to metrics.clasptws.tv, it included the router’s
SSID under the key WIFI_SSID.

This transmission is noteworthy because the app did
not hold a location permission. A location permission is
required to collect information about the router because
such information functions as a surrogate for location [1,
2, 5]. In the observed transmission, there were also key-
value pairs for GEO_LAT and GEO_LONG, both of which
had the value UNKNOWN, further indicating that location
access was denied.

We traced the variable that set the WIFI_SSID value
in the transmission, and observed that the Android
Java bytecode still used the original, human-meaningful
variable names instead of obfuscating them. Thus we
saw that developers named the variable that stored

Joel Reardon: University of Calgary and AppCensus, Inc.

the SSID hackedSsid and it was used as a specific
workaround for not being permitted to use the stan-
dard API call. The side channel itself was a callback
function onCapabilitiesChanged, which could be reg-
istered to be received through ConnectivityManager’s
NetworkCallback feature. This callback happened to in-
cluded the SSID as an extra data field, which Vizbee
caches and transmits later. This vulnerability is classi-
fied as CVE-2020-0454 [3].

Devtodev libcing the MAC
Devtodev claims to be “a comprehensive solution that
analyzes your apps and games and gives you valuable
insights”. Beyond analyzing the apps, it also transmits
the MAC address of the mobile phone. Unlike router
MAC address and SSID—which acts as a form of loca-
tion data—the phone’s MAC address is an unresetable
hardware serial number. It functions as an indelible su-
percookie to facilitate invasive user tracking that cannot
be escaped. Android has officially disallowed collecting
MAC address since version 6.0 in 2015 [2], though side
channels exploiting this are well known [6, 7].

Devtodev provides another means to get this unre-
setable MAC address. They found that the libc system-
call getifaddrs returned a linked list of information
about the network interfaces, and the device MAC ad-
dress was stored among this information.

Interestingly, Devtodev does not seem satisfied
sending only this unresetable identifier. They further
took an action that we have not previously seen being
done so blatantly. First, they sent the device’s Android
Advertising ID (AAID), which is a resetable identifier
used for the purposes of advertising. Users are able to
reset this value to a new random value; this has the pur-
pose of giving users a new identity unlinked to the old
one. Devtodev, however, observes when users attempt
privacy, and sends both the previous AAID and the new
one in the same network transmission—they even call
the previous value prev in the HTTP query arguments!
This happens after rebooting the device, meaning that
they store the old AAID persistently.

Measurelib Politely Asking
Measurelib is a Panamanian-based Internet measure-
ment company about which details are hard to find.
We observed that large amounts of data was being sent
to mobile.measurelib.com by “Dub Music Player”. It
was nearly 30KiB of gzip-compressed data, the bulk



CVEs from CNN (extended abstract) 2

String g() { return "Mea"; }
String h() { return "sure"; }
String i() { return "Move"; }
String j() { return "NzExOTc0NTE="; }
String k() { return "MTMxNTQxMjA="; }

String decode_string(String in) {
String ret = base64_decode(in);
String password = g() + h();
String salt = g() + h() + i() + g() + h();
int rounds = 10;
int length = 128;
byte[] key = PBKDF(v1, v2, rounds, length);
String iv = base64_decode(j()) + base64_decode(k());
return AES_CBC_128_decrypt(in, key, iv);

}

Fig. 1. Pseudocode representation of Measurement System’s
string decoding. Some variable names are replaced by our inter-
pretation based on their ultimate use. String concatenation from
pieces is faithfully represented from the implementation.

of which consisted of details of every app the user in-
stalled, including the list of permissions they required
and where on the file system they were located.

Noteworthy for our purposes, however, was that it
includes the router’s MAC address despite not holding
a location permission. Studying this was difficult, how-
ever, because string constant from the network traffic
such as JSON keys and hostnames, were not seen any-
where in the decompiled code. By collecting a small set
of apps that all communicated with the same domain,
we found that they shared an obscure third-party library
identified in Java as coelib.c.couluslibrary. With ef-
fort we found a developer’s website detailing integration
intructions [8], though searches directly for the code it-
self gives few results.

Examining the strings inside their library revealed
the mechanism that was being used to obscure them.
Each string was algorithmically decrypted at runtime
by constructing an AES key through a password-based
key derivation protocol. This derivation is done from
scratch—for every string every time it is needed; thank-
fully, they only use ten rounds for the password-based
key derivation. They also made the common mistake of
using a fixed IV for AES in CBC mode [4]—though most
of the strings they encrypted were smaller than a single
AES block. Figure 1 gives a pseudocode representation
of their string decryption routine.

After finding this library, we were able to confirm
that it contains and execute code to perform a uni-
versal plug-and-play discovery on the local network. It
issues a M-SEARCH * to 239.255.255.250:1900 stating
ssdp:discover. We saw that our router eagerly pro-

vided its MAC address formatted as the 48-bit node id
of an OSF UUID in its reply.

Discussion
All three of these findings show how basic assumptions
and decisions can have long term security and privacy
costs. Device MAC addresses were never meant to be-
come an unresetable supercookie. Bluetooth MAC ad-
dresses must now be randomized to avoid being able to
track people’s location history. Router MAC addresses
and SSIDs were never designed as surrogates for loca-
tion, yet databases of router information and location
are curated by third-party libraries running inside many
popular apps.

The final example shows how the apps that we run
on our mobile devices are running code from arbitrary
places, in some cases from companies that are difficult to
learn more details. These apps, and all the ads and ana-
lytics code therein, are running on the trusted side of the
home or office router. The safeguards are off for this net-
work traffic because the primary defense—a firewall—
only protects against threats from outside, not from the
worst SDK in the worst app that happens to be running
on someone’s phone that has access to your network.

References
[1] Jagdish Prasad Achara, Mathieu Cunche, Vincent Roca, and

Aurélien Francillon. Short paper: Wifileaks: underestimated
privacy implications of the access_wifi_state Android
permission. In ACM conference on Security and privacy in
wireless & mobile networks, 2014.

[2] Android 6.0 changes. https://developer.android.com/
about/versions/marshmallow/android-6.0-changes#behavior-
hardware-id, 2015.

[3] CVE-2020-0454. Available from MITRE, 2020.
[4] Manuel Egele, David Brumley, Yanick Fratantonio, and

Christopher Kruegel. An empirical study of cryptographic mis-
use in android applications. In ACM Conference on Computer
and Communications Security (CCS), pages 73–84, 2013.

[5] United States of America. United States of America, Plaintiff
v. InMobi Pte Ltd., Defendant; Case No.: 3:16-cv-3474, 2016.

[6] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge Egel-
man. 50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system. In 28th
USENIX Security Symposium, pages 603–620, 2019.

[7] StackOverflow. Getting mac address in android 6.0. https://
stackoverflow.com/questions/33159224/getting-mac-address-
in-android-6-0, 2016.

[8] Measurement Systems. Developer incentive program. https:
//measurementsys.com/program.php, 2021.

[9] Vizbee. https://www.vizbee.tv/.

https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://stackoverflow.com/questions/33159224/getting-mac-address-in-android-6-0
https://stackoverflow.com/questions/33159224/getting-mac-address-in-android-6-0
https://stackoverflow.com/questions/33159224/getting-mac-address-in-android-6-0
https://measurementsys.com/program.php
https://measurementsys.com/program.php
https://www.vizbee.tv/

	CVEs from CNN (extended abstract)

