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Foundations of Ring Sampling
Abstract: A ring signature scheme allows the signer to
sign on behalf of an ad hoc set of users, called a ring.
The verifier can be convinced that a ring member signs,
but cannot point to the exact signer. Ring signatures
have become increasingly important today with their de-
ployment in anonymous cryptocurrencies. Convention-
ally, it is implicitly assumed that all ring members are
equally likely to be the signer. This assumption is gen-
erally false in reality, leading to various practical and
devastating deanonymizing attacks in Monero, one of
the largest anonymous cryptocurrencies. These attacks
highlight the unsatisfactory situation that how a ring
should be chosen is poorly understood.
We propose an analytical model of ring samplers to-
wards a deeper understanding of them through system-
atic studies. Our model helps to describe how anony-
mous a ring sampler is with respect to a given signer
distribution as an information-theoretic measure. We
show that this measure is robust – it only varies slightly
when the signer distribution varies slightly. We then an-
alyze three natural samplers – uniform, mimicking, and
partitioning – under our model with respect to a family
of signer distributions modeled after empirical Bitcoin
data. We hope that our work paves the way towards
researching ring samplers from a theoretical point of
view.
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1 Introduction
A ring signature scheme [16] allows the signer to sign
on behalf of an ad hoc chosen set of users, called a
ring. The verifier can be convinced that a ring member
signed, but cannot tell who it was exactly. Initially mo-
tivated by anonymous disclosure of secrets, the concept
of ring signatures has subsequently been studied exten-
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sively, and has been extended to many variants such
as linkable [10] and accountable [24] ring signatures. A
notable extension of linkable ring signatures, known as
ring confidential transactions (RingCT) [14], is the foun-
dation of some privacy-preserving cryptocurrencies such
as Monero. An overall market capitalization of more
than two billion USD1 makes Monero a high-value tar-
get of deanonymization attacks. Understanding the con-
crete anonymity of RingCT, or ring signatures in gen-
eral, is thus unprecedentedly important.

In most applications of ring signatures and its exten-
sions, it is implicitly assumed that all honest members of
a ring are equally likely to be the actual signer(s). This
assumption could be justified in applications of ring sig-
natures where there is a natural choice of ring from the
context. For example, if a high-rank member of an or-
ganization wishes to disclose a secret, a natural choice
of the ring consists of all high-rank members of the or-
ganization. In other applications, such as in anonymous
cryptocurrencies where ring members are picked from
a universe of seemingly indifferent anonymous accounts,
the signer distribution is not at all obvious. For exam-
ple, it is shown that the signer distribution of (an old
version of) Monero is highly correlated with the “age”
distribution of the signers [12].

Picking a ring whose members have highly un-
even signing probabilities could provide a false sense of
anonymity. To illustrate the problem with a simple ex-
ample, consider that Alice chooses to form a ring with
Bob and Charlie and issues a ring signature. Suppose
that an adversary somehow knows that Bob and Char-
lie (e.g., by social engineering) are very unlikely to is-
sue such a signature, then Alice would not have much
anonymity despite using a ring signature.

In practice, imperfect rings were exploited by the
devastating attacks against Monero (see Section 2.1),
which sometimes completely deanonymized the signers.
Although countermeasures were proposed, to the best of
our knowledge, all proposals are based on the intuition
derived from known exploits and are tailored to solve
those specific issues.

1 https://coinmarketcap.com/currencies/monero/ 28 Nov. 2020

https://coinmarketcap.com/currencies/monero/
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1.1 Problem Statement

As of today, no analytical model is proposed for ring
samplers, which prohibits a systematic study. For exam-
ple, without such a model, it is difficult to make sense of
the following questions, not to mention answering them:
Is ring sampler Π better than Π′? Can we provably say
that Π is good? Is Alice more anonymous than Bob
when using Π?2 These questions call for a framework
for quantifying and hence comparing the anonymity of
(users of) ring samplers.

1.2 Our Methodology

Unlike existing bottom-up (concrete, attack-driven) ap-
proaches, we use a top-down (abstract) approach to-
wards understanding the anonymity of ring samplers.

1.2.1 Model of Ring Samplers

In Section 4 we model ring samplers as an oracle
machine Π which optionally gets oracle access to an
(estimated) signer distribution, inputs the identifiers
of the signers and outputs a ring. We then propose
an information-theoretic measure of the anonymity of
a ring sampler with respect to a signer distribution.
More concretely, given a random variable S following
a signer distribution S, we define the anonymity α[S,Π]
of the ring sampler Π to be the conditional min-entropy
H∞(S|Π(S)). In the presence of a side-channel Λ, the
anonymity is defined as

α[S,Π,Λ] := H∞(S|Π(S),Λ(S)).

We discuss potential extensions, and the difficulty
thereof, to capture anonymity “over time” in Sec-
tion 4.2.3.

Furthermore, in Section 5 we show that the defini-
tion is robust, in the sense that the anonymity changes
only slightly when the signer distribution changes
slightly. In particular, if a ring sampler is shown to be
good with respect to a close estimate Ŝ of the real signer
distribution S, then it should also be good with respect
to the real signer distribution S.

2 Section 4.2.3 discusses the difficulty of formalizing this.

1.2.2 Attacks against Ring Samplers

Our definition covers all (possibly computationally un-
bounded) deanonymization attacks against ring sam-
plers in which the goal of the attacker is to guess the
real signer. Such attacks could be classified in two or-
thogonal dimensions: passive v.s. active and direct v.s.
side-channel.
Passive and Active Attacks Passive adversaries have
no influence on the signer distribution S or the execu-
tion of the ring sampler Π. This captures a wide range
of “after-the-fact” attacks which rely on publicly avail-
able information such as transaction times, transaction
graphs, account correlations, etc.

Active adversaries influence or specify the signer dis-
tribution S, or subvert the ring sampler Π, e.g., by ma-
nipulating the input randomness or its implementation.
This captures attacks which are powerful but rely on
stronger setup assumptions.
Direct and Side-Channel Attacks In a direct attack,
the only information available to the adversary about
the signer distribution S is a sample from Π(S) output
by the ring sampler. In a sense, the adversary is attempt-
ing to deanonymize the signer by directly attacking the
ring sampler. In case more side-channel information is
be available to the adversary, this extra information is
abstracted as Λ(S), where Λ is some leakage function.

1.2.3 Signer Distributions for Comparison

To understand the anonymity of different samplers, we
analyze them with respect to various distributions, with
a focus on the cryptocurrency context due to its high
real-world impact.

A cryptocurrency consists of a history of transac-
tions each encoding a set of spenders and a set of
receivers (possibly in a hidden manner). Each set of
spenders can be thought of as a sample of the real signer
distribution at that particular point in time. The real
signer distributions at different points in time could be
correlated arbitrarily.

Due to the anonymous nature of anonymous cryp-
tocurrencies, it is (supposedly) infeasible to learn the
real signer distributions. Möser et al. [12] empirically
analyzed the transaction graph of Monero in the pre-
RingCT (i.e., non-anonymous) era, and “heuristically
determined” that the signer distribution of Monero
matches a gamma distribution over the logarithm of the
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age3 of accounts, which we simply call the log-gamma
distribution hereinafter. While their heuristic lacks a
physical interpretation, the distribution is nevertheless
later used in the ring sampler of Monero [12], which can
be seen as an instantiation of the mimicking sampler
that we introduce in Section 6.2. As the graph analy-
sis tools and results of [12] are not publicly available,
we could not replicate their procedures of identifying
the log-gamma distribution. We remark that there is no
guarantee that the Monero distributions in the pre- and
post-RingCT (i.e., current) eras are similar.

Another reference is the signer distribution of a
non-anonymous cryptocurrency such as Bitcoin, despite
the potential differences in spending behavior in a non-
anonymous cryptocurrency compared to anonymous
ones. To this end, we analyze the 300,000 to 400,000-
th block of Bitcoin as in [12], and found that the age
of a transaction output matches a (shifted) Pareto dis-
tribution. We thus propose to use the (shifted) Pareto
distributions as a baseline for evaluating ring samplers.

For the appropriate parameters, the probability den-
sity functions (PDFs) of the (shifted) Pareto distribu-
tion and the log-gamma distribution have very similar
asymptotic behavior. Indeed, their PDFs only differ by
a poly-logarithmic factor. In terms of physical interpre-
tation, we found the modeling by the (shifted) Pareto
distribution more convincing as it is classically used
to model a wide range of human-related phenomenon,
whereas the log-gamma distribution seems somewhat ar-
bitrary. We emphasize, however, that the proposed base-
line distribution, or any other non-application-specific
ones, should only be treated as reference points. Even if
a ring sampler is good with respect to the baseline dis-
tribution, it does not necessarily mean that it is good
for a particular anonymous cryptocurrency, since the
signer distributions of anonymous and non-anonymous
cryptocurrencies could be very different.

1.2.4 Analysis of Natural Samplers

We analyze the anonymity of three natural families of
samplers – uniform, mimicking, and partitioning – with
respect to general (possibly adversarially influenced)
signer distribution S, assuming that the samplers are
not subverted.

3 The difference between spent and creation time.

Uniform Samplers The uniform sampler samples uni-
formly random rings. It is shown to be bad with respect
to signer distributions which are far from uniform, such
as the (shifted) Pareto distributions. The fact that the
uniform sampler is generally bad is expected. In a signer
distribution which is very far away from uniform, the
majority of users are unlikely to be the signer. There-
fore the real signer would end up with a ring in which
most members other than himself are unlikely to be the
signer, and thus stand out from the crowd.
Mimicking Samplers The Ŝ-mimicking sampler is an
abstraction of the (current) Monero sampler. It is given
oracle access to some signer distribution Ŝ, which sup-
posedly estimates the real distribution S, and aims to
output rings which “mimic” Ŝ in some sense. For the
special case where Ŝ = S, which we call the mimicking
sampler, we prove that its anonymity is lower bounded
by half of the optimal value. The tightness of the lower
bound is limited by the use of an intermediate distri-
bution, which has lower conditional min-entropy but is
easier to analyze, and the available bounding techniques.
We believe that the exact anonymity should be consid-
erably closer to the optimal value. Suppose that is the
case, due to robustness, the Ŝ-mimicking sampler is also
good when Ŝ ≈ S. This can be seen as a theoretical con-
firmation of the approach used in Monero, albeit condi-
tioned on the strong assumption that Monero chose a
good Ŝ.

The major drawback of the Ŝ-mimicking sampler is
the requirement of the knowledge of an estimation Ŝ
of S. Indeed, as S could depend on the economic sit-
uation and the free will of signers, it is arguably un-
knowable and inapproximable. Even if an estimation Ŝ
is known, the description of an Ŝ-mimicking sampler
could be quite complicated depending on the descrip-
tion of the distribution Ŝ, and its anonymity depends
on how well Ŝ estimates S. It could also be difficult to
write down its exact anonymity if Ŝ lacks a close form.
Partitioning Samplers Partitioning samplers are
based on another natural strategy of grouping users with
similar signing probabilities together. More concretely,
a partitioning sampler is defined by a distribution over
a public family of partitions and optionally a ring size
n. A ring is sampled by sampling a partition from the
distribution, and then, if the ring size n is given, out-
putting a uniformly random n-subset of the chunk (an
element of the partition) which contains the signer. If
n is not given, the sampler simply outputs the unique
chunk containing the signer. A special case of the parti-
tioning sampler was also suggested in [25].



Foundations of Ring Sampling 268

We show that the anonymity of a partitioning sam-
pler is at most lg ε away from the optimal value, where
ε measures the non-uniformity of signing probabilities
within chunks of the partitions. For the variant where n
is given, if the partitions are chosen in such a way that
the signing probabilities are constant within each chunk
(which can be done naturally for the baseline distribu-
tions), the partitioning sampler is optimal.

Partitioning samplers are easy to describe and
preferable in practice. Depending on how partitions are
chosen, they could also have other nice properties which
are not captured by our model. We refer to Section 6.3
for details.

1.2.5 Implication to Ring Signatures

To help grasp the meaning of our work more concretely,
in Appendix B we define a generalized notion of ring sig-
natures which captures extended variants such as link-
able ring signatures. We also define a simulation-based
notion of anonymity which, although being equivalent to
the usual indistinguishability-based notion, synergizes
better with our anonymity notion of ring samplers. Fi-
nally, we define the concrete anonymity of the compo-
sition of ring signatures and ring samplers, and relate
the anonymity of the composed system to those of the
components.

2 Related Work

To better position our work in the literature, we
overview the existing attacks against Monero, other ring
sampler formalizations, and the formalizations of other
anonymous systems.

2.1 Attacks against Monero

Our formal study of ring samplers is motivated by
the deanonymization attacks against Monero. To under-
stand them, we first explain how ring samplers are in-
volved.

In Monero, a spender can spend funds from possibly
multiple source accounts to possibly multiple receivers
as follows. First, the spender samples a ring of potential
source accounts which is a superset of the actual source
accounts. It then creates a proof that it knows the secret

keys of the actual source accounts and that it wishes to
transfer funds to some specified target accounts. Such a
proof can be seen as a generalization of a ring signature.

While ring signatures provably guarantee
anonymity, the concrete anonymity of signers can
only be as high as what is offered from the sampled
ring. In the following we overview existing deanonymiza-
tion attacks against Monero which are mostly based on
ill-chosen rings.

2.1.1 Passive Direct Attacks

Passive direct attacks against Monero exploit public
information available after the target transaction is
made. These attacks are particularly well-captured by
our anonymity definition and the analysis of the natural
samplers. They also constitute the majority of existing
attacks, and are more realistic due to the minimal as-
sumption on the attacker.
Exploiting Transaction Times The age of an ac-
count influences the likelihood of it being an actual
source of a transaction [12]: Old accounts become in-
creasingly less likely to still be unspent and therefore
be an actual source account of a transaction. On the
other hand, freshly created target accounts are highly
likely to be used as source accounts in transactions soon.
Using the above observation, the ring sampling strategy
which selects accounts uniformly at random over the set
of all accounts is not a good idea, as younger accounts
are less likely to function as decoys in the ring. These
attacks have been deployed in [9, 12].

In particular, for over 95% of existing transactions
in an older pre-RingCT version of Monero, the newest
account in the ring is the signer [9]. This makes the
simple attack of guessing the newest account to be the
signer devastating (with 95% success rate), highlighting
the importance of using a good ring sampler.
Exploiting Graph Structures When rings selected
for different transactions overlap, by analyzing the
graph induced by the relation between the rings, one can
infer non-trivial information about the actual source ac-

4 But already has many ideas of permanent-based metrics
5 In the form of information gain
6 Global is mentioned but considered infeasible
7 A metric measuring the loss of anonymity computed from the
conditional distributions of the observable events
8 In the form of relative entropy
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Work Venue Domain Metric Scope Remarks
[5, 17] PETS’02 Communication Shannon-Entropy Local (Co-)introduced information-theoretic metrics
[13] PETS’03 Communication Shannon-Entropy4 Global Extended information-theoretic metrics to global scope
[4] FAST’06 Communication Shannon-Entropy5 Local Integration with process calculi
[7] ISI’07 Communication Permanent Global Permanent-based metric to better capture global scope
[20] PETS’04 Mixnet Posterior Probability Local6 Handles cover traffic
[8] PETS’13 Tor Shannon-Entropy Local Evaluating performance trade-offs using the metrics
[2] PETS’13 Tor “Impact”7 Local Evaluating real-world attacks
[18, 19] PETS, SP’11 Location Shannon-Entropy8 Both New metric & tool applicable to location privacy
[25] CSF’19 Ring Sampling Permanent Global Formal analysis of ring sampling, orthogonal work
Ours Ring Sampling Min-Entropy Global Introduced information-theoretic metrics to ring sampling
Table 1. Comparison of Entropy/Probability-Based Anonymity Metrics

counts of a transaction (e.g., [9, 12]). In the extreme
case, which is considered in the “zero-mixin attack”,
some transactions use rings of size one. If such a zero-
mixin account is used in other rings, it does not add any
anonymity as an observer can clearly rule out this ac-
count as a possible source (c.f., the illustrative example
in Section 1).
Exploiting Correlated Accounts Transactions with
multiple source accounts expose an additional prob-
lem [9]. For example, let more than one target account
be the output of the same previous transaction. If these
accounts are included in a ring of a subsequent trans-
action with multiple inputs, then it is quite likely that
they are the actual source of the subsequent transac-
tion. This attack is based on the implicit assumption
that output accounts in one transaction have a signif-
icant chance to belong to the same receiver and that
both output accounts being chosen as decoys is low.

2.1.2 Active Direct Attacks

The best known attack of this kind against Monero is
the so called “black marble attack”, proposed in [11, 15,
23], of which there are two variants.

In the first variant, the attacker compromises ex-
isting accounts or spawns new accounts in the system,
and hopes that some of them (the black marbles) will be
included in future rings. This can be modelled by con-
sidering an adversarially influenced signer distribution
S. If it happens that a ring chosen by the victim consists
of mostly black marbles, then the anonymity of the vic-
tim is severely limited. While this attack seems reason-
able in theory, its practicality is unclear. Even for the
provably bad uniform sampler, the probability of ran-
domly picking a black marble as a ring member is low,
assuming the universe of signers is large. To increase this

probability, the attacker could spawn an overwhelming
number of accounts, which however requires substantial
transaction fees.

In the second variant, the attacker subverts the vic-
tim’s ring sampler, so that black marbles are injected
into the rings chosen by the signer. While this attack
is in no doubt devastating, the assumption on the at-
tacker’s ability to subvert ring samplers is very strong.
Indeed, if subversion is allowed, the attacker might as
well directly embed the signer’s identity in the chosen
ring in an undetectable manner9, without going through
all the trouble of spawning black marbles. No ring sam-
pler could defend against this.

We remark that although our analysis of the par-
titioning sampler does not consider subversion attacks,
the fact that its output must be a subset of a chunk of a
publicly defined partition limits the flexibility of the at-
tacker in planting black marbles.10 The signer could eas-
ily detect the subversion if the sampled ring is “illegal”
(e.g., if it contains black marbles chosen from chunks
where the signer does not belong to).

2.1.3 Side-Channel Attacks

In existing implementations of Monero, a client consists
of two parts known as the node and the wallet, which
may or may not be co-located in the same device. Some

9 The subverted ring sampler could for example only output
rings whose hash value equals to a one-time pad of the i-th bit of
the signer’s identity or secret key. From a steganographic point
of view [26], this is provably undetectable. If the setting allows
to repeat the procedure many times for different i, the attacker
could recover the exact identity of the signer.
10 Depending on the choice of the partition(s), the subset and
the chunk that the signer belongs to could even be unique.
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side-channel attacks (e.g., [21]) exploit the communica-
tion patterns between the two parts, and/or the reac-
tion of the client to inbound communication, to deduce
whether the client is the intended receiver of a transac-
tion. Such attacks are purely side-channel and are in-
dependent of the ring sampler. Moreover they aim to
deanonymize the receiver but not the signer, which is
out of the scope of our model.

2.2 Other Formalization Attempts

Yu, Au, and Esteves-Verissimo [25] analyzed ring
samplers from another perspective: They studied the
anonymity of a group of signers after all of them have
chosen particular instances of rings, while implicitly
assuming that the signer distribution is uniform. The
core technique of their study is modelling signer iden-
tities using graphs to rule out impossible signers. This
can be seen as an instantiation of the work by Edman,
Sivrikaya, and Yener [7] who studied matrix permanents
to understand potential message flows in an anonymous
communication system.

In contrast, we model ring samplers as probabilis-
tic algorithms, and focus on analyzing the (loss of)
anonymity of signers when given individual rings. The
two approaches are orthogonal and complementary [7]
since they give different insights about the anonymity
of ring samplers. We envision the unification of them
towards a more comprehensive theory of ring samplers.

Although the approach taken by Yu, Au, and
Esteves-Verissimo [25] is very different, they arrived at
a similar conclusion to ours that a partitioning sampler
(using our terminology) is optimal (in both our and their
sense). Indeed, their partitioning sampler can be seen as
a specific instantiation of our generic one. Furthermore,
we analyzed the robustness of our definition, and the
anonymity of the uniform and the mimicking samplers.
Similar results were not in [25].

2.3 Other Anonymous Systems

It is common to quantify the anonymity of anonymous
systems, in particular anonymous communication sys-
tems. Proposed metrics include information-theoretic
measures, permanents (of induced bipartite graphs), or
other metrics derived from probabilities. Table 1 pro-
vides an overview of these quantification efforts, but due

to the volume of the literature it is necessarily incom-
plete. For a comprehensive survey, see [22].

Historically it is not uncommon that concrete tasks
are guided by anonymity metrics after the latter are
sufficiently well studied. These include for example the
analysis of performance tradeoffs [8] and attacks [2]
against the Tor system. It has also been noted that
other areas like location privacy [18] profit from the
guidance of information-theoretic measures. However
a information-theoretic treatment of ring (or generally
speaking, decoy) selection is, thus far, missing in litera-
ture.

Unique to ring samplers is the use of decoys (ring
members), which means that the set of parties whose
anonymity is to be preserved is always a (proper) sub-
set of the the observed ring – a property that we will use
repeatedly in proofs. This aspect makes ring samplers
different from, e.g., mixnet-style anonymous communi-
cation where all inputs to a mixer are “real”.

3 Preliminaries

Denote by λ the security parameter. For M,N ∈
N, we denote [N ] := {1, . . . , N } and [M : N ] :=
{M,M + 1, . . . , N }. Logarithms are either with base 2,
denoted by lg, or natural, denoted by ln. The sets of
polynomials and negligible functions in λ are denoted
by poly(λ) and negl(λ) respectively. Probabilistic poly-
nomial time is abbreviated as PPT. If A is a PPT algo-
rithm, y ← A(x) means assigning the result of running
A on x (with implicit randomness) to y. Sets are denoted
by capital letters. For a finite set S, x←$S means that
a random x is chosen uniformly from S. An algorithm A
with oracle access to a subroutine R is written as AR.

Let f and g be real-valued functions. If f is propor-
tional to g, i.e., f(x) = k ·g(x) for all x for some constant
k, we write f ∝ g. We use this primarily to express prob-
ability density functions (PDFs) without specify the nor-
malizing constant.

We denote the power set of S by 2S . If A ⊆ B and
|A| = n, we write A ⊆n B. If |A| ≤ n, we write A ⊆≤n B.

3.1 Random Variables and Min-Entropy

(Discrete) random variables are written in sans-serif,
e.g., X, and distributions of random variables are written
in calligraphic, e.g., X . When the connection is obvious
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we only denote the distribution and use the same letter
in sans-serif for the underlying random variable.

The support of X is denoted by Supp(X) :=
{X : Pr [X = X] > 0}. If it is obvious that X has support
S, we write X ∈ S instead of X ∈ Supp(X). When sum-
ming over all X in the support of X, i.e.,

∑
X∈Supp(X),

we usually omit Supp(X) and simply write
∑
X unless

there is an ambiguity. The same holds when taking min-
imum or maximum. For a function f , we write f(X) ≡ Y
if Pr [f(X) = Y ] = 1.

Definition 3.1. The guessing probability of X is

Guess (X) := max
X

Pr [X = X] .

This gives an upper bound on the probability that an
(unbounded) adversary can "guess" the value of the ran-
dom variable X correctly.

Definition 3.2. The (average) conditional guessing
probability of X given Y is defined as

Guess (X|Y) :=
∑
Y

Pr [Y = Y ] max
X

Pr [X = X|Y = Y ] .

This gives an upper bound on the probability that an
(unbounded) adversary "guesses" the value of the ran-
dom variable X correctly when given a sample of Y.

Definition 3.3. The min-entropy of X is defined as

H∞(X) := − lg (Guess (X)) .

The min-entropy of X is in a sense the most pessimistic
measure of information given in X. It has significance in
randomness extraction in the sense that nearly H∞(X)
random bits can be extracted from the source X [6].
Therefore a higher value of H∞(X) is desirable. As is
common in cryptography, in this work we consider only
min-entropy. All definitions however naturally extend to
other measures of entropy.

Definition 3.4. The (average) conditional min-
entropy of X given Y is defined as

H∞(X|Y) := − lg (Guess (X|Y)) .

The conditional min-entropy has similar interpretations
as that of min-entropy. There are several equivalent ex-
pressions of the conditional min-entropy useful for dif-
ferent occasions.

Lemma 3.1. H∞(X|Y) can be expressed as:

H∞(X|Y)

=− lg

(∑
Y

Pr [Y = Y ] max
X

Pr [X = X|Y = Y ]

)

=− lg

(∑
Y

max
X

Pr [Y = Y |X = X] Pr [X = X]

)

=− lg

(∑
Y

max
X

Pr [X = X ∧ Y = Y ]

)
.

The following properties about min-entropy and condi-
tional min-entropy are well-known.

Lemma 3.2 (Non-Negativity, Monotonicity). For any
random variables X and Y,

0 ≤ H∞(X|Y) ≤ H∞(X).

Lemma 3.3 (Data Processing Inequality). Let S,R,X
be random variables where R = f(X) for some function
f . Then H∞(S|R) ≥ H∞(S|X).

Proof. Note that H∞(S|R,X) = H∞(S|X) (trivial) and
H∞(S|R,X) − H∞(S|R) ≤ 0 (monotonicity). Therefore
H∞(S|X) ≤ H∞(S|R).

We recall the Rényi divergence (of ∞-order) to measure
the closeness of two distributions.

Definition 3.5. Let S and S′ be such that Supp(S) ⊆
Supp(S′). Their Rényi divergence of order ∞ is

D∞(S‖S′) := lg max
S∈Supp(S′)

Pr [S = S]
Pr [S′ = S] .

4 Modeling

In this section, we devise a formal model of ring samplers
which in particular includes an information-theoretic
measure of anonymity. We also derive general lower and
upper bounds of anonymity, and discuss its extensions.

4.1 Syntax

Throughout this work, we consider a universe of users
indexed by the set [N ] where a subset S of them wish
to hide themselves among a ring of users.

Definition 4.1 (Signer Distributions). A signer distri-
bution S is a distribution over the set 2[N ] \ {∅}. Let
k ∈ [N ]. S is said to be a k-signer distribution if
Pr [|S| ≤ k] = 1.
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In this work, we focus mostly on 1-signer distribution,
i.e., there is only one signer. Next, we state a minimal-
istic syntax of ring samplers.

Definition 4.2 (Ring Samplers). A ring sampler Π is
a PPT (oracle) machine which inputs a set of signers
S ⊆ [N ] and outputs a ring R satisfying S ⊆ R ⊆ [N ].
Let k ≤ n ∈ [N ]. Π is said to an n-ring sampler if it
always holds that |R| ≤ n. If additionally Π only takes
S with |S| ≤ k as input, then it is a (k, n)-ring sampler.

For concreteness, think of k and n to be small constants,
e.g., k = 1 or 2, and n = 10, and lgN = poly(λ). In such
cases, the input and output of Π can each be represented
by poly(λ) bits, and Π should run in time poly(λ).

4.2 Anonymity

We measure the quality of a ring sampler in terms
of its anonymity, i.e., the difficulty to guess who the
signer(s) are when given a ring. From an adversary’s
point of view, before seeing any information about the
signing/transaction event, e.g., a ring R = Π(S), the
anonymity of all participants is considered to be maxi-
mum, and can be measured by the value H∞(S).

The knowledge of R or other side-channel leakage of
S can only reduce the anonymity from H∞(S) towards
zero. From this viewpoint, let Λ be a leakage function
capturing the side-channel. We define the anonymity of
a ring sampler Π with respect to S in presence of the
side-channel Λ as the min-entropy of S conditioning on
the ring and the leakage.

Definition 4.3 (Anonymity). Let Π be a ring sampler
and Λ : {0, 1}∗ → {0, 1}∗ be a leakage function. The
anonymity of Π with respect to S in presence of Λ is
defined as

α(S,Π,Λ) := H∞(S|Π(S),Λ(S))

where Π(S) is the random variable induced by applying
Π on S with uniform randomness, and Λ(S) is the leaked
side-channel information about S due to Λ. If Λ is a con-
stant function (i.e., there is no leakage), then we simply
write

α(S,Π) := H∞(S|Π(S))

and regard it as the anonymity of Π with respect to S.

4.2.1 Scope and Implications

Our approach of defining anonymity is natural and gen-
eral in the sense that it can be adopted to any anony-
mous system. Abstractly, if S is a distribution over a
set of objects whose anonymity is to be protected by an
anonymous system Π, and Λ is a leakage function cap-
turing any side-channel information leakage external to
Π, then the anonymity of Π with respect to S in pres-
ence of Λ can be measured by H∞(S|Π(S),Λ(S)), exactly
like how we measure the anonymity of a ring sampler.

Our definition captures all deanonymization attacks:
passive, active, direct, and side-channel, by any compu-
tationally unbounded adversary. Given a sample of the
induced ring distribution Π(S) and a sample of the leak-
age Λ(S), the goal of a deanonymizing adversary is to
output a guess of the signer S.

Remark 1. While our definition captures active and
side-channel attacks, it is somewhat unnatural. A more
convenient and expressive way of capturing those is
through security experiments akin to those used in (com-
putational) cryptography, such as the ones defined in Ap-
pendix B for the anonymity of the composition of ring
samplers and ring signatures.

For a more concrete feeling of the definition, we state the
following immediate implication on any deanonymiza-
tion attacks from any computationally unbounded ad-
versaries. The proof is obvious and is omitted.

Theorem 4.4. Let A be any computationally un-
bounded adversary, who inputs a ring Π(S) (where Π is
possibly subverted by A) and some leakage Λ(S), where
S is sampled from the distribution S (possibly influenced
or specified by A), and outputs a guess S′. The probabil-
ity of A correctly guessing the signer S, i.e., S′ = S, is
upper bounded by

Guess (S|Π(S),Λ(S)) = 2−α(S,Π,Λ).

Thus, α directly relates to the probability an adversary
is guessing the actual spender correctly.

4.2.2 Basic Properties

Intuitively, a higher value of α(S,Π) (or α(S,Π,Λ))
means a higher anonymity, or rather, the amount of
anonymity lost due to the use of the ring sampler
(and the leakage) is smaller. Due to monotonicity
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(Lemma 3.2), α(S,Π,Λ) lies between zero and H∞(S)
for any Π and Λ, which aligns with our subtractive view
of anonymity.
General BoundsWhen analyzing the fundamentals of
a ring sampler Π, it is instrumental to focus on the value
α(S,Π) even if there might be some external leakage Λ
which is not the “fault” of the sampler Π. The follow-
ing lemma relates the anonymity definitions with and
without leakage. Its proof follows immediately from the
chain rule and the monotonicity of min-entropy.

Lemma 4.1. For any S, Π, and Λ, it holds that

α(S,Π)− lg |Supp(Λ(S))| ≤ α(S,Π,Λ) ≤ α(S,Π).

Although the above bound is loose (compared to the
Shannon entropy counterpart), it suggests that the
anonymity of the ring sampler without leakage, i.e.,
α(S,Π), is the dominating component of α(S,Π,Λ) when
the max-entropy lg |Supp(Λ(S))| of the leakage is small.
For the typical size leakage where Λ(S) = |S|, where
S is a k-signer distribution and Π is a (k, n)-ring
sampler with k � n, this is indeed the case since
lg |Supp(Λ(S))| = lg k � lgn.

Let ΠAll be the “all sampler” which always out-
puts [N ]. Let ΠId be the “identity sampler” which on
input S outputs S. We first state some trivial bounds of
anonymity, and how they can be achieved. The proof is
obvious and omitted.

Lemma 4.2. For any S, Π, and Λ, it holds that

α(S,ΠId,Λ) = 0 ≤ α(S,Π,Λ) ≤ H∞(S) = α(S,ΠAll).

The upper and lower bounds above are too far apart
to tell us anything useful about α(S,Π,Λ). The main
reason is that the “all sampler” and the “identity sam-
pler” have extreme ring sizes (n = N and k respectively),
while in practice we are interested in n-ring samplers for
(small) fixed n > k. We therefore state another upper
bound of anonymity of n-ring samplers, whose proof can
be found in Appendix C.

Lemma 4.1. For any k-signer distribution S, any n-
ring sampler Π, and any leakage function Λ,

α(S,Π,Λ) ≤ lg
k∑
i=1

(
n

i

)
.

In particular, for k = 1 we have

α(S,Π,Λ) ≤ lgn.

Optimality Our definition of anonymity in a sense de-
scribes the anonymity of the system employing the ring
sampler as a whole. In other words, the (conditional)
signing probabilities of individual signers are collapsed
into a single value. In Lemma 4.1, we showed that the
anonymity of a ring sampler with ring size n for a 1-
signer distribution is at most lgn, which is also the en-
tropy of the uniform distribution over a set of size n.
If the anonymity is (significantly) below lgn, then not
much about the individual signing probabilities can be
inferred. However, if the anonymity reaches lgn, then
the signing probability of each signer in the ring is ex-
actly 1/n. The optimality of the anonymity is in this
sense informative. Interestingly, in the formulation of
[25] optimal global anonymity also implies optimal lo-
cal anonymity.

Later in this work, we will show that for 1-signer
distributions S the optimal anonymity is always almost
achievable. More concretely, in Section 6.2 we show
that there exists a “mimicking” sampler ΠMimic which
achieves anonymity α(S,ΠMimic) ' 1

2 lgn, which is only
a constant fraction away from the optimum, assuming
minimally that S has at least lgn bits of min-entropy.

Although the mimicking sampler achieves near-
optimal anonymity, it is mostly theoretical as it requires
the knowledge of the distribution S. More realistically,
with a mild assumption that the support of S can be
partitioned into chunks of size at least n, such that the
signing probabilities of the signers within a chunk are
similar, then the partitioning sampler presented in Sec-
tion 6.3 also achieves near-optimal anonymity.

4.2.3 Extensions

In the following we discuss natural extensions of our
anonymity definition, and why we decide not to incor-
porate them into our main definition.
“Local” Anonymity In some sense, the value
α[S,Π,Λ] = H∞(S|Π(S),Λ(S)) captures the “global”
anonymity of all participants as a whole. To cap-
ture the “local” anonymity of a certain subset I ⊆
[N ] of users, one might want to consider the value
H∞(SI |Π(S),Λ(S)), where SI := S ∩ I. We argue that
however the value H∞(SI |Π(S),Λ(S)) does not capture
the intuitive anonymity enjoyed by the subset I of users.

For a counter-argument, it suffices to consider the
case where Λ is constant, |S| ≡ 1 and I = {i} for some
i ∈ [N ]. Note that SI is a Boolean random variable (with
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support {∅,{i}}). Recall that

H∞(SI |Π(S),Λ(S)) = H∞(SI |Π(S))

=− lg

(∑
R

Pr [Π(S) = R] max
SI

Pr [SI = SI |Π(S) = R]

)
.

Note that for any R 63 i, which are the majority,

Pr [SI = ∅|Π(S) = R] = 1,

and therefore

max
SI

Pr [SI = SI |Π(S) = R] = 1.

Therefore, intuitively, the expected value of
maxSI Pr [SI = SI |Π(S)] is close to 1, which means
the conditional min-entropy H∞(SI |Π(S)) is close to 0,
even for the “best” samplers.

The above issue was due to the fact that user i is
almost always not in the ring, and therefore an adver-
sary could be successful by always guessing that user i
is not a signer, i.e., SI = ∅. An attempt to avoid this
issue is to consider the entropy of SI conditioning on RI ,
where the latter is distributed as Π(S) conditioned on
that I ⊆ Π(S). We examine the value

H∞(SI |RI)

=− lg

(∑
R

Pr [RI = R] max
SI

Pr [SI = SI |RI = R]

)
for a hypothetical “best” sampler with a fixed ring size
n, where for every ring R ∈ Supp(R) such that S ⊆ R, it
holds that Pr [S = S|Π(S) = R] = 1/n (note that we are
assuming that |S| ≡ 1).

One would have hoped that the value is close to
or exactly 1, which is the highest (min-)entropy that a
Boolean random variable can have. However, note that
in particular Pr [S = {i} |Π(S) = R] = 1/n in the case
I = {i} ⊆ R, and hence Pr [SI = {i} |RI = R] = 1

n for
any R ∈ Supp(RI). We therefore have

max
SI

Pr [SI = SI |RI = R] = Pr [SI = ∅|RI = R] = n− 1
n

for all R ∈ Supp(RI), and hence H∞(SI |RI) = lgn −
lg(n−1) (≈ 0 for large n), which is still counter-intuitive.
Anonymity “Over Time” Our main definition cap-
tures the remaining anonymity of the users in the view
of an adversary after seeing a single ring. In reality, how-
ever, multiple rings would be sampled throughout the
lifetime of the system, possibly even via different ring
samplers, which might collectively leak more informa-
tion about the signers (behind each ring) than any sin-
gle ring does. For the ease of exposition we omit the
leakage Λ in the discussion below.

Formally, suppose the system has been run for t
time steps, i.e., t rings have been sampled. For time
step i ∈ [t], let Ni ∈ N be the universe size, Si
be the signer distribution over the universe [Ni], Πi
be the ring sampler, and Ri = Πi(Si) be the ran-
dom variable denoting the sampled ring. Then, for any
subset {i1, . . . , i`} ⊆ [t], we might want to consider
the value H∞(Si1 , . . . , Si` |R1, . . . ,Rt) which captures the
anonymity of the signers at time steps i ∈ {i1, . . . , i`},
after seeing the rings from all time steps.11 In partic-
ular, the extreme values H∞(S1, . . . ,St|R1, . . . ,Rt) and
H∞(Sj |R1, . . . ,Rt) for j ∈ [t] might be of interest.

It is not difficult to show that

max
j∈[t]

H∞(Sj |R1, . . . ,Rt) ≤ H∞(S1, . . . ,St|R1, . . . ,Rt)

≤
∑
j∈[t]

H∞(Sj |R1, . . . ,Rt)

≤
∑
j∈[t]

H∞(Sj |Rj),

which relates the aforementioned extreme values with
our definition of anonymity. Unfortunately, not much
more can be said about these values in general since, for
any i 6= j, (Si,Πi) and (Sj ,Πj) can be arbitrarily corre-
lated depending on the application and user behavior.

For example, if (Si,Πi) and (Sj ,Πj) are indepen-
dent for all i 6= j, then t ·maxj∈[t]H∞(Sj |R1, . . . ,Rt) =
H∞(S1, . . . ,St|R1, . . . ,Rt), and the last two inequalities
become equalities. On the other extreme, if (Si,Πi)
and (Sj ,Πj) are identical and dependent for all i, j,
then the first inequality becomes an equality, while
t ·H∞(S1, . . . , St|R1, . . . ,Rt) =

∑
j∈[t]H∞(Sj |R1, . . . ,Rt).

In summary, the values H∞(Si1 , . . . ,Si` |R1, . . . ,Rt)
are extremely sensitive to the correlations between
(Si,Πi) and (Sj ,Πj) for i 6= j, which highly depend
on the real-world application and user behavior. There-
fore, in a general theory about ring samplers where mini-
mal assumptions about the signer distributions and user
behavior are made, not much can be said about the
“anonymity over time” meaningfully.

11 To account for leakages, we further condition the min-entropy
on Λ1(S1), . . . ,Λt(St) for possibly different leakage functions
Λ1, . . . ,Λt.
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5 Robustness

We show that our anonymity definition is robust in the
sense that, if the source distributions S and S ′ are close
(in Rényi divergence), then the anonymity of a ring sam-
pler with respect to S is close to that with respect to
S′. This allows us to analyze ring samplers with respect
to some distribution S which is easier to deal with, and
get a guarantee of the anonymity of the sampler with
respect to the real distribution S ′ assuming that it is
close enough to S.

Robustness also allows us to reason about the
anonymity of a ring sampler against active attackers
who attempt to perturb the signer distribution from S
to S ′. Suppose we have deduced that the anonymity
of a ring sampler with respect to S (against a passive
adversary) is high. Assuming that no adversary could
influence S too much, i.e., S ′ is not too far away from
S, then by robustness the anonymity of the ring sampler
with respect to S ′ is also high. Such an assumption could
be realistic, e.g., in the cryptocurrency setting where we
anyway assume that the majority of the users are honest
for the consensus protocol to function.

Theorem 5.1 (Robustness). For any S and S′ with
Supp(S) ⊆ Supp(S′), any Π and Λ, and any ε ≥ 0, if
D∞(S‖S′) ≤ ε, then

α(S,Π,Λ) ≥ α(S′,Π,Λ)− ε.

6 Analysis of Natural Samplers

We formalize the the uniform, mimicking, and parti-
tioning samplers, and analyze their anonymity. To un-
derstand the fundamental strengths and weaknesses of
the samplers, we focus on 1-signer distributions, as-
sume that the ring samplers are not subverted, and
that no side-channel leakage is present. In cases where a
close form of anonymity is unavailable, we provide lower
bounds.

6.1 Uniform Samplers

A natural (yet generally bad) way to select rings is to
just sample them uniformly at random. Formally, for
each 1 ≤ k ≤ n ≤ N , we define the uniform sampler
ΠRand,k,n as follows:

ΠRand,k,n(S ⊆≤k [N ]): Sample R ⊆n [N ] uniformly at
random subject to S ⊆ R.

Theorem 6.1 (Uniform Sampler). Let S be a 1-signer
distribution, Ei be the i-th most probable event in S and

ρi =

{
Pr [Ei] i ∈ [|Supp(S)|]
0 i ∈ [N ] \ [|Supp(S)|].

Then

α(S,ΠRand,1,n) = − lg

(∑N−1
i=n−1

(
i

n−1
)
ρN−i(

N−1
n−1

) )
. (1)

Let us say a few words about the uniform sampler. Sup-
pose S is the uniform distribution over [N ], we have
ρi = 1/N for all i ∈ [N ]. Then by the “hockey-stick”
identity, we have α(S,ΠRand,1,n) = lgn which is opti-
mal. This aligns with our expectation that when S is
uniform the best way to sample a ring is to just sample
uniformly.

Next we examine the scenario where S is far from
uniform. For example, suppose that ρi = 2ρi−1 for all
i. In this case,

∑N−1
i=n−1

(
i

n−1
)
ρN−i is dominated by the

first few terms as ρi diminishes exponentially as i de-
creases. We can therefore expect that α(S,ΠRand,1,n) is
far from lgn.

6.2 Mimicking Samplers

Another natural strategy of ring sampling is to mimic
the true source distribution S. Suppose that Ŝ is an
estimate of the true source distribution and is effi-
ciently sampleable. We formalize this strategy as the Ŝ-
mimicking sampler ΠŜMimic,k,n with size parameter (k, n)
as follows:

ΠŜMimic,k,n(S ⊆k [N ]): Let S1 := S. For i ∈ [n] \{1}, sample
Si ←$ Ŝ. Output R :=

⋃
i∈[n] Si.

Note that ΠŜMimic,k,n is a (k, kn)-ring sampler. In case
Ŝ = S and S is a k-signer distribution, we write
ΠSMimic,k,n as ΠMimic,k,n and call it the mimicking sam-
pler.

We remark that ΠŜMimic,k,n is defined as above for
easier analysis. It does not always produce a ring of size
kn due to collisions from sampling with replacement,
i.e., it might happen that Si∩Sj 6= ∅ for i 6= j. Therefore
the anonymity of ΠŜMimic,k,n cannot be optimal among all
kn-ring samplers. The anonymity can only increase by
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padding the ring to contain kn users with any strategy
independent of S. In the special case where k = 1, one
can continue to populate the ring with samples from Ŝ,
until the ring size reaches n.

Despite the above suboptimality, in the case N � n,
sampling with replacement is a reasonable approxima-
tion of sampling without replacement. It is therefore
reasonable to expect that if the mimicking sampler has
access to the true source distribution S, its anonymity
should be close to optimal. In the following, we give an
evidence that this is the case.

To facilitate the analysis of ΠMimic,k,n, we define a
very similar algorithm ΠMimic,k,n which treats the Si’s
as multisets (sets with possibly repeated elements) and
replaces the union operation with multiset sum12:

ΠMimic,k,n(S ⊆≤k [N ]): Let S1 := S. For i ∈ [n]\{1}, sample
Si ←$S. Output X :=

∑
i∈[n] Si.

Clearly, ΠMimic,k,n is a function of ΠMimic,k,n (which re-
moves all duplicated elements from the latter). Further-
more, let ~x ∈ NN0 be the characteristic vector ofX. Then,
if S is a 1-signer distribution, then the characteristic vec-
tors ~x of ΠMimic,k,n(S) have a multinomial distribution
with weights given by S.

Theorem 6.2 (Mimicking Sampler). Let S be a 1-
signer distribution. Let ~x = (xi)Ni=1 be the characteristic
vector of ΠMimic,1,n(S).

α(S,ΠMimic,1,n) ≥ lgn− lgE[max
i

xi]. (2)

Furthermore, assuming that H∞(S) ≥ lgn, we have

α(S,ΠMimic,1,n) ≥ lg(
√
n− 1) ≈ lgn

2 . (3)

Our proof of the theorem in Appendix C uses a
bound of Aven [1], which is loose in some cases as it does
not take into account the correlations between random
variables. Nevertheless, we are able to show a non-trivial
lower bound of (roughly) 1

2 lgn, which is only a constant
fraction away from optimal.

We emphasize that although Theorem 6.2 shows
that the optimal anonymity is always almost achievable
up to a constant factor, the result is mostly of theo-
retical interest, because it requires the knowledge of an
estimation Ŝ of the signer distribution S. Even if it is
possible to obtain a reasonable estimation Ŝ of S, a ques-
tionable assumption, S may change over time, e.g., due

12 For example, {a, a, b, c}+{b, c, c} = {a, a, b, b, c, c, c}.

to economic bubbles and recessions, and depends on the
free will of users. For a good and practical sampler we
recommend the partitioning sampler in Section 6.3.

Remark 2. Attentive readers might observe the follow-
ing peculiar phenomenon: Suppose the real signer hap-
pens to be Alice who has very low signing probability
according to S. It is likely that the mimicking sampler
produces a ring in which all members except Alice have
high signing probabilities, making Alice stand out. This
is paradoxical since the mimicking sampler is close to
optimal.

The answer to the riddle is that the sampled ring
could be, with similar probability (not the same due to
potential collision), the result of someone else in the ring
being the real signer, and picking Alice as a ring mem-
ber.

With the same reasoning, the mimicking sampler
naturally resists timing attacks described in Section 2.1,
which assumes that the signing probability of a signer
depends on its age (c.f. Section 7.1). Indeed, the event
that a young signer ending up in the ring could be with
similar (high) probabilities the result of him being the
signer or him being chosen by another signer.

6.3 Partitioning Samplers

Another natural idea for ring sampling is to put signers
with similar signing probabilities into the same ring. We
first abstract this idea as the family of partitioning sam-
plers. We then propose a practical partitioning strategy
which also provides other security features.

6.3.1 Abstract Description

A set P of sets (called chunks) is said to be a partition
of [N ] if

⋃
C∈P C = [N ], C ∩ C′ = ∅ for all C,C′ ∈ P

with C 6= C′, and C 6= ∅ for all C ∈ P . Fix a size param-
eter n ∈ [N ]. Let P be a distribution over the partitions
of the set of signers [N ] where each chunk is of size at
least n. Intuitively, the partitions P chosen by a par-
titioning sampler should have support containing only
partitions where signers in each chunk have similar sign-
ing probabilities. We will only use this assumption in
the anonymity analysis but not in the construction: The
construction works for all distributions of partitions.

Given any distribution P of partitions, size param-
eters k and (optionally) n, we define the partitioning
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sampler ΠPart,P,k,n (ΠPart,P,k if n is not given) as fol-
lows:

ΠPart,P,k,n(S ⊆≤k [N ]): Let P ←$P be a partition of [N ].
For each s ∈ S, let Cs ∈ P be the unique chunk such that
s ∈ Cs. Sample Rs ⊆n Cs uniformly subject to s ∈ Rs.
(Note that we assumed |C| ≥ n for all C ∈ P for all P ∈
Supp(P).) Output R :=

⋃
s∈S Rs.

ΠPart,P,k(S ⊆≤k [N ]): Let P ←$P be a partition of [N ].
For each s ∈ S, let Cs ∈ P be the unique chunk such that
s ∈ Cs. Output R :=

⋃
s∈S Cs.

Clearly ΠPart,P,k,n is a (k, kn)-ring sampler. Due to the
potential collision of chunks, i.e., there exist distinct
s, s′ ∈ S such that s, s′ ∈ C for some C ∈ P , the par-
titioning sampler cannot be optimal with respect to k-
signer distributions where k > 1. Although collisions can
be made rare if the partition is fine-grained and random
enough, the anonymity can only increase by padding the
ring to size kn, similar to our suggestion for the mim-
icking sampler.

We analyze the anonymity of ΠPart,P,1,n and
ΠPart,P,1 with respect to any 1-signer distribution S. We
start with the simple case where the support of P is a
singleton, i.e., P ≡ P for some partition P of [N ].

Theorem 6.3 (Partitioning Sampler). Let S be a 1-
signer distribution. Let n ∈ [N ]. Let P ≡ P for some par-
tition P of [N ] such that |C| ≥ n for all C ∈ P . For each
C ∈ P , let µC be the mean of Pr [S = {s}] over all s ∈ C,
i.e., µC := |C|−1∑

s∈C Pr [S = {s}]. Suppose that for all
C ∈ P , all s ∈ C, it holds that |Pr [S = {s}]− µC | ≤ εC
for some εC ≥ 0. Let εP :=

∑
C∈P |C|εC . Then

α(S,ΠPart,P,1,n) ≥ lgn− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lgn− lg(εP + 1).

We next show that the anonymity can only be better
with a larger support of P, condition on that all parti-
tions in the support of P satisfy the above constraints.

Corollary 6.1. Let S be a 1-signer distribution and
n ∈ [N ]. Suppose for each partition P in the sup-
port of P, for all C ∈ P , all s ∈ C, it holds that
|Pr [S = {s}]− µC | ≤ εC for some εC ≥ 0, and |C| ≥ n.
Let εP :=

∑
C∈P |C|εC and let εP :=

∑
P Pr [P = P ] εP .

Then
α(S,ΠPart,P,1,n) ≥ lgn− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lgn− lg(εP + 1).

If the size parameter n is given, we observe that if
all signers in a chunk have identical signing probabilities,
then εP = 0 and the anonymity is optimal, i.e., lgn.

6.3.2 Suggested Instantiations

We suggest concrete strategies for partitioning the uni-
verse of signers in a realistic cryptocurrency setting.

In the simple case where the signers can be clustered
into chunks according to signing probabilities, such that
each chunk is of size ≥ n and consists of signers with the
same signing probability, the collection of these chunks
form a natural partition P which satisfies the conditions
in Theorem 6.3 with εP = 0. The partitioning sampler
ΠPart,P,1,n (with n given) therefore achieves optimal
anonymity. The above requirements can be met, e.g.,
when we assume that the signing probability depends
only on the “age” of the signer, and there are enough
signers of the same age.13 For a more detailed discussion
about age, we refer to Section 7.

The above requires to partition the universe such
that each chunk is of size ≥ n. In reality it could happen
that some chunks are of size < n. Taking Monero as an
example, if we consider all output accounts in the same
(blockchain) block to have the same age, and assume
that the signing probability depends on the age, then
there are on average around 13 accounts 14 in one such
chunk, which is insufficient for a ring size of n > 13.
To resolve this issue, a natural approach (Approach 1)
is to group several chunks into a bigger chunk, such
that the latter is of size ≥ n. Assuming that the signing
probability of signers in consecutive chunks are similar,
the resulting value of εP would still be quite close to
0, and hence the partitioning sampler is still close to
optimal.

Another issue is about the anonymity of the parti-
tioning sampler after several rings sampled by signers in
the same chunk are observed. In the ideal case, where
each chunk is of size exactly n (as in the suggested ring
sampler of [25]), no extra information about the signers
can be extracted even after seeing multiple rings – the

13 Depending on the coarseness of the definition of “age”, signers
(e.g., accounts in a cryptocurrency) of the same age might not
spawn simultaneously. In such case the ring sampler should treat
as if the youngest signers are not in the universe until all of them
have spawned. Also, the youngest signers should wait until all
their fellows have spawned before signing.
14 See Table 3 for detailed numbers



Foundations of Ring Sampling 278

signers are essentially running the “all sampler” treating
the chunk as the universe. In reality however where the
chunk size is often greater than n, graph analysis can
potentially be performed to extract non-trivial informa-
tion about the signers, especially when the sampler is
supplied with bad randomness or even subverted (as in
the black marble attacks described in Section 2.1).

To avoid the potential risk of graph analysis, an idea
is to enforce the chunk size of n. Assuming that the uni-
verse size N = ` ·T for some ` which is a multiple of n,15

and assuming signers that are close in age have similar
signing probabilities, we partition [N ] in the following
recursive manner (Approach 2). Let N ′ = `(T − 1). Sup-
pose that the subset [N ′] of signers were already par-
titioned. Immediately after the universe size advances
from N ′ to N = N ′ + `, we partition the ` new signers
into chunks each of size n uniformly at random using
public randomness (e.g., derived by hashing the state
of the blockchain up to current time). Unioning these
chunks with the original partition of [N ′] gives a parti-
tion of [N ]. Once the partition is sampled and fixed, the
ring sampler is deterministic. The case ` = n coincides
with the sampler suggested in [25].

Below, we highlight some interesting properties of
our instantiation, the first two of which are outside our
model for anonymity.
Obliviousness to Signer Distribution Unlike the
mimicking sampler, the partitioning sampler is oblivi-
ous to the real signer distribution and does not require
knowledge of a close estimate of it. This provides an
easy way to create partitions for any universe as long as
the assumptions about similar probabilities are met, i.e.
we always can set ` to the next multiple of n greater or
equal the mean block size.
Trade-off between Waiting Time and Anonymity
Both suggested approaches above require the younger
signers to wait until enough of them have spawned to be
able to use the sampler. The waiting time increases with
the ring size n and hence with anonymity. For reference,
in Table 3 we report the average waiting time until `
accounts have spawned in Monero for some values of `.
Security against Deanonymization Attacks Hav-
ing near-optimal anonymity (with respect to reasonable
signer distributions), our partitioning sampler instantia-
tion is more secure against the deanonymization attacks

15 If not, then as before we treat the youngest signers as if they
were not part of the universe, until there are enough of them to
make the universe size a multiple of n.

mentioned in Section 2.1, e.g., than the uniform sampler,
according to Theorem 4.4.

The passive security can be seen intuitively. Ex-
ploitation of transaction times is prevented as the ring is
fixed as soon as the whole chunk of accounts is available.
Graph structure analysis is confined as the induced bi-
partite graph now consists of disconnected subgraphs,
each corresponding to a chunk. In the extreme case
where each chunk is of size n (as suggested in [25]), each
subgraph is balanced and complete, hence no informa-
tion can be inferred from graph analysis. Correlation
between output accounts of the same transaction is not
useful, since the number of signer is restricted to 1.

For active security (of the signer-distribution-
influencing kind), e.g., against black marble attacks,
Theorem 5.1 guarantees that the partitioning sampler
is near optimal with respect to a slightly tempered
signer distribution. We remark however that the near-
optimality is in a global sense (c.f., Section 4.2.3). Lo-
cally, a targetted black marble attack in which the
attacker introduces a large number of black marbles
within a single chunk of a partition may cause rings
sampled from that chunk to contain mostly black mar-
bles, hence provide little anonymity. A simple mitigation
strategy is to enforce a large chunk size, so an effective
attack becomes expensive. Another idea is to use a hy-
brid between the mimicking and partitioning sampler
– first sample a subring using the mimicking sampler,
and then run the partitioning sampler on each member
of the subring.

7 Empirical Evaluation

We study empirically the anonymity of the uniform and
mimicking samplers with respect to several signer dis-
tributions. We skip the partitioning sampler as it is op-
timal for all distributions that we consider (with the
appropriate parameters).

7.1 Signer Distributions

Uniform Distribution As a reference, we first con-
sider the uniform distribution U[N ] over [N ]. U[N ] is the
easiest to build a good ring sampler for, in the sense
that the simple uniform sampler is optimal for U[N ].
While U[N ] is unrealistic in the cryptocurrency context,
it might decently model the reality in “one-shot” ap-



Foundations of Ring Sampling 279

plications of ring samplers, e.g., secret disclosure, espe-
cially when not much side-channel information is known
about the potential signers by the adversary.
Monero Distribution To obtain more realistic distri-
butions, Möser et al. [12] analyzed the empirical distri-
bution of the age of transaction outputs/accounts. The
age here refers to the difference between the spent time
and the creation time of a transaction output/account
(measured in blocks). While this information is sup-
posedly hidden in a privacy-preserving cryptocurrency
such as Monero, Möser et al. [12] analyzed the transac-
tion graph of Monero in the pre-RingCT era, and suc-
cessfully deanonymized a lot of transactions. For these
deanonymized transactions, Möser et al. [12] “heuristi-
cally determined” that the logarithm of the age of ac-
counts matches a gamma distribution. In our terminol-
ogy, we call such an age distribution the “log-gamma”
distribution, which has the PDF

Pr [age = t] ∝ (ln t)a−1t−b

for some shape parameter a > 0 and rate parameter b >
0, and has support Supp(age) = (0,∞). The parameters
of the log-gamma distribution fitted by Möser et al. [12]
are a = 19.28 and b = 1.61 respectively.

Subsequently, the log-gamma distribution is used in
the ring sampler of Monero in the following way. First,
an age is sampled from the log-gamma distribution. Re-
jection sampling is employed so that age ≤ 10 blocks
are rejected. Then, an account is chosen uniformly at
random from all accounts having the sampled age. This
process is repeated until the ring is populated to a de-
sired size. This can be viewed as an S-mimicking sam-
pler, where the age of S has log-gamma distribution, and
signers of the same age have equal signing probability.

Fig. 1. Empirical Bitcoin age distribution in blocks and fitted
PDFs

Baseline Distribution Modeled after Bitcoin
Since the graph analysis tools used by Möser et al.

[12] are not publicly available, we could not replicate
their results for Monero. Nevertheless, we re-examine
the age distribution of Bitcoin transaction outputs cre-
ated within the 300,000-400,000 block period. In Fig-
ure 1 is a log-log plot of the probability density func-
tions (PDFs) of the empirical age distribution of Bit-
coin, a fitted log-normal distribution, a fitted (shifted)
Pareto distribution, and two fitted log-gamma distribu-
tions. Pale and dark vertical lines mark days and weeks
respectively.

The log-normal and Pareto distributions are chosen
because the log-log plot of the age distribution looks
almost like a straight line. The log-gamma distribution
is include since it was the distribution of choice of Möser
et al. [12]. The log-normal distribution has the PDF

Pr [age = t] ∝ t−( ln t−2µ
2σ2 +1)

for some parameters µ, σ > 0. For a fixed shift of 1 (to
shift the support from [1,∞) to [0,∞)), the (shifted)
Pareto distribution has the PDF

Pr [age = t] ∝ (t+ 1)−(a+1)

for some shape parameter a > 0.
In Table 2 we summarize the fitting range, parame-

ters, and the root-mean-square error (RMSE) of the fit-
ted distributions. We emphasize that only the (shifted)
Pareto distribution has the correct support, i.e., [0,∞),
while the support of log-normal and log-gamma is (1,∞).
For this reason, although the log-gamma distribution fit-
ted to the range [10 : 197394] has the lowest RMSE, it
is not necessarily better than the others since the mag-
nitude of the probability decreases rapidly in t.

Distribution Fitting Range Parameters RMSE
Log-normal [1 : 197394] (µ, σ) = (3.000, 3.610) 2.271× 10−5

(Shifted) Pareto [1 : 197394] a = 0.172 1.987× 10−5

Log-gamma [2 : 197394] (a, b) = (0.062, 0.585) 4.580× 10−5

Log-gamma [10 : 197394] (a, b) = (0.151, 0.860) 4.542× 10−6

Table 2. Parameters of fitted distributions

While irrelevant to this work, the periodicity of the
Bitcoin distribution is interesting – the local maxima
align with the daily marks. This phenomenon is even
clearer when the age is measured in minutes (Figure 4)
or seconds, where unfortunately some transaction out-
puts appear to have negative age due to the variation of
system time in different machines. It seems difficult to
de-noise the data and fitting distributions to noisy data
seems less meaningful.
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Based on the observation on Bitcoin data, we pro-
pose to use the discretization of (shifted) Pareto distri-
butions, i.e., (shifted) zeta distributions, as a baseline
for signer distributions. More precisely, our baseline fam-
ily is parameterized by (`, T, a) ∈ N2× (0,∞), where ` is
the number of signers of the same age, T is the size of the
age range, and a is the parameter of the (shifted) zeta
distribution. The universe size is N = `T . For i ∈ [N ],
Pr [S = {i}] ∝ (t + 1)−(a+1) where t =

⌊
i−1
`

⌋
is the age

of the signer.

7.2 Evaluation Results

Uniform Sampler Figure 2 plots the anonymity of
the uniform sampler (Equation (1)) with respect to the
uniform distribution U[42198964] (blue) and the baseline
distributions, with a = 0.172, ` = 1024 and different
values of T , against ring size in linear-log scale. We also
plotted the upper bound lgn (orange). We observed that
the anonymity for the uniform distribution is indepen-
dent of the actual universe size. For the baseline distri-
bution, the anonymity is independent of `. As shown by
the overlapping blue and orange lines in Figure 2, the
uniform sampler is optimal for the uniform distribution.
The anonymity with respect to the baseline distribu-
tions drifts away from the optimum as T increases.
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Fig. 2. Selected results for anonymity of the uniform sampler, full
data is available in Table 4

Mimicking Sampler Figure 3 plots the lower bound
of the anonymity of the mimicking sampler (Inequal-
ity (2)) with respect to the uniform distributions U[N ],
where N ∈ {160, 6400, 10240000}, and the baseline dis-
tributions, with a = 0.172 and (`, T ) ∈ {16, 64, 1024} ×
{100, 10000}, against ring size in linear-log scale. We
also plotted the upper bound lgn and the global lower
bound lg(

√
n−1) (Inequality (3)). To evaluate the term

E[maxi xi] in Inequality (2), we have implemented the
algorithm in [3].
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Fig. 3. Selected results for anonymity of the mimicking sampler.
Full data is available in Tables 5 and 7

Figure 3 shows that for a uniform distribution the
mimicking sampler is nearly optimal while getting even
closer for larger N . For the baseline (with a = 0.172)
and Monero distributions, the anonymity approaches to
the optimum as ` and T increases, with the effect of `
being much more significant.
Partitioning Sampler We remind that the partition-
ing sampler achieves the optimal anonymity of lgn as
long as each chunk in each possible partition has size
at least n and contains users with equal signing prob-
ability. Both assumptions are satisfied by the uniform
distribution and the baseline distribution for ` ≥ n.
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A Waiting Time in Monero

We perform an empirical analysis of the waiting time in
Monero and report the findings in Table 3. Monero cre-
ates a new block every two minutes. For this evaluation
we considered a transaction log from Monero starting
on February 21st 2019 16 and collected 36,000 blocks.

16 Corresponding to Blockhash
5aa57a67dbc9e1a14c5b0eb4180200197d1024a26fbfd8590d34d56488bb1da4

Currently, the blocked time that a user has to wait in
Monero in order to spend from its account is around 20
minutes.

Fig. 4. Empirical Bitcoin age distribution in minutes

B Implication to Ring Signatures

We define a generalized version of ring signatures which
aim to capture its different variants. We also define a
simulation-based notion of anonymity, which is equiva-
lent to the classic indistinguishability-based notion, but
synergizes better with the notion of ring samplers.

Definition B.1 (Ring Signatures). A ring signature
scheme Σ is a tuple of PPT algorithms (KGen,Sig,Vf)
with the following syntax:
(pk, sk)← KGen(1λ): The key generation algorithm gen-
erates a public verification key pk and a secret signing
key sk.
σ ← Sig

(
{pki}

n
i=1 ,{ski}i∈I ,m

)
: The sign algorithm in-

puts a set of public keys {pki}
n
i=1 called the ring, a set

of secret keys {ski}i∈I corresponding to pki for i ∈ I for
some I ⊆ [n], and a message m ∈ M for some message
space M. It outputs a signature σ.
b← Vf

(
{pki}

n
i=1 ,m, σ

)
: The verify algorithm inputs a

ring {pki}
n
i=1, a message m, and a signature σ. It out-

puts a bit b deciding if σ is a valid signature of m with
respect to the ring.

Σ is correct if for any λ,N ∈ N, any J ⊆ I ⊆n
[N ], any (pki, ski) ∈ KGen(1λ) for i ∈ [N ], any m ∈ M,
and any σ ∈ Sig

(
{pki}i∈I ,{ski}i∈J ,m

)
, it holds that

Vf
(
{pki}i∈I ,m, σ

)
= 1.
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size ` 50 100 150 200 250 300 350 400 450 500 550 600

mean 3.83 7.66 11.49 15.32 19.15 22.98 26.81 30.64 34.47 38.30 42.13 45.96
stdev 2.76 4.40 5.80 7.17 8.40 9.55 10.79 11.91 13.06 14.22 15.41 16.16

Table 3. Mean waiting time (in blocks) until ` new accounts have been accumulated

Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Baseline 100 16 7.37 · 10−15 2.15 · 10−1 4.40 · 10−1 6.99 · 10−1 1.01 · 100 1.40 · 100

Baseline 100 64 −4.16 · 10−15 2.15 · 10−1 4.41 · 10−1 7.01 · 10−1 1.01 · 100 1.40 · 100

Baseline 100 256 1.32 · 10−13 2.15 · 10−1 4.41 · 10−1 7.01 · 10−1 1.02 · 100 1.41 · 100

Baseline 100 1,024 −6.54 · 10−13 2.15 · 10−1 4.41 · 10−1 7.01 · 10−1 1.02 · 100 1.41 · 100

Baseline 1,000 16 2.64 · 10−14 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.08 · 10−1

Baseline 1,000 64 −8.33 · 10−15 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.08 · 10−1

Baseline 1,000 256 2.40 · 10−13 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.09 · 10−1

Baseline 1,000 1,024 1.62 · 10−12 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.09 · 10−1

Baseline 10,000 16 9.90 · 10−14 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 10,000 64 1.71 · 10−13 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 10,000 256 −3.24 · 10−13 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 10,000 1,024 −1.28 · 10−12 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 100,000 16 2.44 · 10−13 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Baseline 100,000 64 9.80 · 10−13 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Baseline 100,000 256 −5.27 · 10−12 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Baseline 100,000 1,024 4.29 · 10−12 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Uniform 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Table 4. Anonymity for Uniform Sampler

Let Λ be a (possibly probabilistic and stateful) leak-
age function, and ε = ε(λ) ∈ [0, 1]. Σ is (Λ, ε)-
anonymous if for any N ∈ N and any stateful PPT ad-
versary A, there exists a stateful PPT simulator S, such
that ∣∣∣∣ Pr

[
RealΣ,N,A(1λ) = 1

]
−Pr

[
IdealΣ,Λ,N,A,S(1λ) = 1

]∣∣∣∣ < ε

where the experiments RealΣ,N,A and IdealΣ,Λ,N,A,S are
defined in Figure 5.

Typically, ε is considered to be a negligible function in
λ. It is easy to see that the above simulation-based def-
inition is equivalent to the classical indistinguishability-
based definition. If Σ is simulation-based anonymous,
then the indistinguishability-based anonymity can be
proven by a standard hybrid argument where we
hop from the “0” experiment to the ideal experiment
and then to the “1” experiment. Conversely, if Σ is
indistinguishability-based anonymous, then we can con-
struct a simulator who generates signatures by running
the sign algorithm on an appropriate subset of keys.

The classic ring signatures corresponds to the set-
ting where the number of signers is |I| = n ≡ 1 and there
is no leakage, e.g., Λ always return the empty string. To
capture, for example, linkable ring signatures, the leak-
age function Λ should reveal which members of J have
issued a signature before (due to linkability) and the
carnality of J (due to the number of linkability tags).

We formally capture the concrete anonymity of a
ring signature scheme coupled with a ring sampler with
respect to a signer distribution as follows.

Definition B.2. Let δ > 0. Let Σ be a ring signature
scheme, Π be a ring sampler, and S be a signer distribu-
tion. The compound system (Σ,Π) is said to have con-
crete anonymity δ (the smaller the better) with respect
to S, if for all PPT adversary, it holds that

Pr
[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
≤ δ

where ConcreteAnonΣ,Π,S,A is defined in Figure 6.

In the following theorem, we relate the concrete
anonymity of (Σ,Π) to the anonymity of Σ and Π.
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Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Baseline 100 16 0.00 · 100 9.94 · 10−1 1.96 · 100 2.85 · 100 3.56 · 100 4.19 · 100

Baseline 1,000 16 0.00 · 100 9.96 · 10−1 1.98 · 100 2.90 · 100 3.66 · 100 4.30 · 100

Baseline 10,000 16 0.00 · 100 9.97 · 10−1 1.98 · 100 2.92 · 100 3.72 · 100 4.36 · 100

Baseline 100 64 0.00 · 100 9.98 · 10−1 1.99 · 100 2.96 · 100 3.84 · 100 4.56 · 100

Baseline 1,000 64 0.00 · 100 9.99 · 10−1 1.99 · 100 2.97 · 100 3.89 · 100 4.66 · 100

Baseline 10,000 64 0.00 · 100 9.99 · 10−1 2.00 · 100 2.98 · 100 3.91 · 100 4.71 · 100

Baseline 100 256 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.96 · 100 4.84 · 100

Baseline 1,000 256 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.97 · 100 4.89 · 100

Baseline 10,000 256 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.98 · 100 4.91 · 100

Baseline 100 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.95 · 100

Baseline 1,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.97 · 100

Baseline 10,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.98 · 100

Table 5. Anonymity for Mimicking Sampler and Baseline Distribution

Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Monero 100 16 0.00 · 100 9.99 · 10−1 1.99 · 100 2.96 · 100 3.86 · 100 4.59 · 100

Monero 1,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.96 · 100

Monero 10,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 100 64 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.96 · 100 4.86 · 100

Monero 1,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.99 · 100

Monero 10,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 100 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.96 · 100

Monero 1,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 10,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 100 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.99 · 100

Monero 1,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 10,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Table 6. Anonymity for Mimicking Sampler and Monero Distribution

Theorem B.3. Let Σ be an (Λ, ε)-anonymous ring sig-
nature scheme. Let Π be a ring sampler. Let S be a signer
distribution. Let δ := |Supp(Λ(S))| · 2−α[Π,S] + ε. Then
the system (Σ,Π) has concrete anonymity δ with respect
to S.

Proof. It suffices to prove that

Pr
[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
≤2−H∞(S|Π(S),Λ(S)) + ε.

The theorem then follows immediately from the chain
rule of min-entropy. For the above inequality, we can
rewrite it as

Pr
[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
≤Guess (S|Π(S),Λ(S)) + ε.

Since Σ is (Λ, ε)-anonymous, there exists a PPT sim-
ulator S, such that∣∣∣∣ Pr

[
RealΣ,N,A(1λ) = 1

]
−Pr

[
IdealΣ,Λ,N,A,S(1λ) = 1

]∣∣∣∣ < ε.

We therefore consider a modified experiment
ConcreteAnon′Σ,Π,S,A,S which is almost identical to
ConcreteAnonΣ,Π,S,A, except that the keys pki are pro-
duced by S(1λ), and the signature σ is produced by
S (R,Λ(S),m). Due to the (Λ, ε)-anonymity of Σ, we
have ∣∣∣∣ Pr

[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
−Pr

[
ConcreteAnon′Σ,Π,S,A,S(1λ) = 1

]∣∣∣∣ < ε.

Note that in ConcreteAnon′Σ,Π,S,A,S the only in-
formation about S available to A is R = Π(S) and
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Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Uniform 100 16 0.00 · 100 9.99 · 10−1 2.00 · 100 2.98 · 100 3.93 · 100 4.76 · 100

Uniform 1,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.97 · 100

Uniform 10,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.98 · 100 4.93 · 100

Uniform 1,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.99 · 100

Uniform 10,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.98 · 100

Uniform 1,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 10,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 1,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 10,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Table 7. Anonymity for Mimicking Sampler and Uniform Distribution

RealΣ,N,A(1λ)

(pki, ski)← KGen(1λ)∀ i ∈ [N ]

b← ASigOReal
(
{pki}

N
i=1
)

return b

IdealΣ,Λ,N,A,S(1λ)

{pki}
N
i=1 ← S(1λ)

b← ASigOIdeal
(
{pki}

N
i=1
)

return b

SigOReal(I, J,m)

σ ← Sig
(
{pki}i∈I ,{ski}i∈J ,m

)
return σ

SigOIdeal(I, J,m)

σ ← S (I,Λ(J),m)

return σ

Fig. 5. Anonymity experiments of ring signatures

ConcreteAnonΣ,Π,S,A(1λ)

(pki, ski)← KGen(1λ)∀ i ∈ [N ]

m← A
(
{pki}

N
i=1
)

S ←$ S

R← Π(S)

σ ← Sig
(
{pki}i∈R ,{ski}i∈S ,m

)
S∗ ← A(R, σ)

return (S = S∗)

Fig. 6. Concrete anonymity experiments of ring signatures

L = Λ(S). We therefore have

Pr
[
ConcreteAnon′Σ,Π,S,A,S(1λ) = 1

]
≤Guess (S|Π(S),Λ(S)) .

The claim then follows.

C Proofs

We restate and prove all lemmas and theorems whose
proofs do not fit into the main body.

Lemma 4.1. For any k-signer distribution S, any n-
ring sampler Π, and any leakage function Λ,

α(S,Π,Λ) ≤ lg
k∑
i=1

(
n

i

)
.

In particular, for k = 1 we have

α(S,Π,Λ) ≤ lgn.

Proof. By monotonicity, α(S,Π,Λ) ≤ α(S,Π). It there-
fore suffices to show that, for each R ⊆≤n [N ],

max
S

Pr [S = S|Π(S) = R] ≥
(
n

k

)−1
.

Fix R ⊆≤n [N ]. For all S ∈ Supp(S) and S 6⊆ R, we have
Pr [S = S|Π(S) = R] = 0. Therefore∑

S:S∈Supp(S)∧S⊆R

Pr [S = S|Π(S) = R] = 1.
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Note that

|{S : S ∈ Supp(S) ∧ S ⊆ R} | ≤
k∑
i=1

(
n

i

)
.

The desired result follows from the pigeonhole principle.

Lemma C.1. For any S and S′ with Supp(S) ⊆
Supp(S′), any (probabilistic) function Φ : {0, 1}∗ →
{0, 1}∗, and any ε ≥ 0, if D∞(S‖S′) ≤ ε, then for any
Y ∈ Supp(Φ(S)),

max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )]

≤ 2ε· max
S∈Supp(S′)

Pr
[
(S′,Φ(S′)) = (S, Y )

]
.

Proof. By assumption, we have

lg max
S∈Supp(S′)

Pr [S = S]
Pr [S′ = S] = D∞(S‖S′) ≤ ε

Pr [S = S′]
Pr [S′ = S′] ≤ max

S∈Supp(S′)

Pr [S = S]
Pr [S′ = S] ≤ 2ε

for all S′ ∈ Supp(S′). Fix Y ∈ Supp(Φ(S)). Let S∗ ∈
Supp(S) be such that

Pr [(S,Φ(S)) = (S∗, Y )]
= max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )] .

We have

max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )]

=Pr [(S,Φ(S)) = (S∗, Y )]
=Pr [(Π(S∗),Λ(S∗)) = Y ] Pr [S = S∗]
≤2εPr [(Π(S∗),Λ(S∗)) = Y ] Pr

[
S′ = S∗

]
=2εPr

[
(S′,Π(S′),Λ(S′)) = (S∗, Y )

]
≤2ε max

S∈Supp(S′)
Pr
[
(S′,Π(S′),Λ(S′)) = (S, Y )

]
.

Theorem 5.1 (Robustness). For any S and S′ with
Supp(S) ⊆ Supp(S′), any Π and Λ, and any ε ≥ 0, if
D∞(S‖S′) ≤ ε, then

α(S,Π,Λ) ≥ α(S′,Π,Λ)− ε.

Proof. By Lemma C.1,

max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )]

≤ 2ε· max
S∈Supp(S′)

Pr
[
(S′,Φ(S′)) = (S, Y )

]
.

for any (probabilistic) function Φ and any Y ∈
Supp(Φ(S)). Therefore

2−H∞(S|Φ(S))

=
∑

Y ∈Supp(Φ(S))

max
S∈Supp(S)

Pr [(S,Π(S)) = (S, Y )]

≤2ε
∑

Y ∈Supp(Φ(S))

max
S∈Supp(S′)

Pr
[
(S′,Π(S′)) = (S, Y )

]
≤2ε

∑
Y ∈Supp(Φ(S′))

max
S∈Supp(S′)

Pr
[
(S′,Π(S′)) = (S, Y )

]
=2−(H∞(S′|Φ(S′))−ε).

Recall that

α(S,Π,Λ) = H∞(S|Π(S),Λ(S)).

By setting Φ = (Π,Λ), we have the desired result.

Theorem 6.1 (Uniform Sampler). Let S be a 1-signer
distribution, Ei be the i-th most probable event in S and

ρi =

{
Pr [Ei] i ∈ [|Supp(S)|]
0 i ∈ [N ] \ [|Supp(S)|].

Then

α(S,ΠRand,1,n) = − lg

(∑N−1
i=n−1

(
i

n−1
)
ρN−i(

N−1
n−1

) )
. (1)

Proof. Let Π = ΠRand,1,n. Recall that

α(S,Π) = H∞(S|Π(S))

=− lg

(∑
R

max
S

Pr [Π(S) = R|S = S] Pr [S = S]

)
.

We examine the value Pr [Π(S) = R|S = S]. Fix R ⊆ [N ].
If S 6⊆ R, we have Pr [Π(S) = R|S = S] = 0. On the other
hand, if S ⊆ R, we have Pr [Π(S) = R|S = S] =

(
N−1
n−1

)−1

since there are
(
N−1
n−1

)
many R ⊇ S.

Note that∑
R

max
S

Pr [Π(S) = R|S = S] Pr [S = S]

=
∑
R

max
S∈Supp(S)∧S⊆R

Pr [Π(S) = R|S = S] Pr [S = S]

=
(
N − 1
n− 1

)−1∑
R

max
S∈Supp(S)∧S⊆R

Pr [S = S]

Consider each term of the sum∑
R

max
S∈Supp(S)∧S⊆R

Pr [S = S] .
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For each i ∈ [|Supp(S)|], let Si be the i-th most
probable event in S (note that |S| ≡ 1). For i ∈
[N ] \ [|Supp(S)|], let Si = ∅. In either case we have
Pr [S = Si] = ρi. For each R, if S1 ⊆ R, then we have
maxS∈Supp(S)∧S⊆R Pr [S = S] = ρ1. Note that there are(
N−1
n−1

)
many such R. Else, if S1 6⊆ R but S2 ⊆ R, then

we have maxS∈Supp(S)∧S⊆R Pr [S = S] = ρ2. Continuing
in this way, we can conclude that∑

R

max
S⊆R

Pr [S = S]

=
(
N − 1
n− 1

)
ρ1 +

(
N − 2
n− 1

)
ρ2 + . . .+

(
n− 1
n− 1

)
ρN−n+1

=
N−1∑
i=n−1

(
i

n− 1

)
ρN−i.

The theorem statement follows.

Theorem 6.2 (Mimicking Sampler). Let S be a 1-
signer distribution. Let ~x = (xi)Ni=1 be the characteristic
vector of ΠMimic,1,n(S).

α(S,ΠMimic,1,n) ≥ lgn− lgE[max
i

xi]. (2)

Furthermore, assuming that H∞(S) ≥ lgn, we have

α(S,ΠMimic,1,n) ≥ lg(
√
n− 1) ≈ lgn

2 . (3)

Proof. For each S and ~x, note that if S 6⊆ X, then
Pr [S = S ∧~x = ~x] = 0. On the other hand, suppose
S ⊆ X. Since S is a 1-signer distribution, S = {i} for
some i ∈ [N ]. We have

Pr [S = S ∧~x = ~x] = xi(n− 1)!
x1! . . . xN !

∏
j∈[N ]

Pr [S = {j}]xj

Since ~x is multinomially distributed,

Pr [~x = ~x] = n!
x1! . . . xN !

∏
j∈[N ]

Pr [S = {j}]xj .

Therefore

Pr [S = S|~x = ~x] =Pr [S = S ∧~x = ~x]
Pr [~x = ~x]

=xi
n

max
S

Pr [S = S|~x = ~x] =maxi xi
n∑

~x

Pr [~x = ~x] max
S

Pr [S = S|~x = ~x] =E[maxi xi]
n

H∞(S|~x) = lgn− lgE[max
i

xi].

Recall that ΠMimic,1,n is a function of ΠMimic,1,n. By a
data processing inequality (Lemma 3.3), we have

α(S,ΠMimic,1,n) =H∞(S|R)
≥H∞(S|~x)
= lgn− lgE[max

i
xi].

Furthermore, assume that H∞(S) ≥ lgn, or in
other words maxS Pr [S = S] ≤ 1/n. We recall the up-
per bound

E[max
i

xi] ≤ max
i
µi +

√
N − 1
N

∑
i

σ2
i

by Aven [1], where µi = E[xi] and σ2
i = Var[xi].

For i ∈ [N ], denote pi := Pr [S = i]. Substituting
µi = npi ≤ n · 1/n = 1 and σ2

i = npi(1− pi), we have

E[max
i

xi] ≤ 1 +
√
N − 1
N

∑
i

npi(1− pi)

= 1 +
√
N − 1
N

· n · (1−
∑
i

p2
i )

≤ 1 +
√
N − 1
N

· n · (1− 1/N)

= 1 + N − 1
N

√
n ≤
√
n+ 1

where in the second inequality we applied the Cauchy-
Schwarz inequality on (p1, . . . , pN ) and (1, . . . , 1).

Consequently, we have

H∞(S|R) ≥ lgn− lg(
√
n+ 1) = lg n− 1 + 1√

n+ 1

= lg(
√
n− 1 + 1√

n+ 1
)

≥ lg(
√
n− 1)

Theorem 6.3 (Partitioning Sampler). Let S be a 1-
signer distribution. Let n ∈ [N ]. Let P ≡ P for some par-
tition P of [N ] such that |C| ≥ n for all C ∈ P . For each
C ∈ P , let µC be the mean of Pr [S = {s}] over all s ∈ C,
i.e., µC := |C|−1∑

s∈C Pr [S = {s}]. Suppose that for all
C ∈ P , all s ∈ C, it holds that |Pr [S = {s}]− µC | ≤ εC
for some εC ≥ 0. Let εP :=

∑
C∈P |C|εC . Then

α(S,ΠPart,P,1,n) ≥ lgn− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lgn− lg(εP + 1).

Proof. In the following, we write Π = ΠPart,P,1,n, Π′ =
ΠPart,P,1, R := Π(S), and R′ := Π′(S). We first analyze
the anonymity of Π.
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For any C ∈ P , and any R we have

Pr [R = R|S = {s}] =

{(|C|−1
n−1

)−1
s ∈ R ⊆n C

0 otherwise.

Since for all C ∈ P , all s ∈ C, |Pr [S = {s}]− µC | ≤
εC , we have maxs∈R Pr [S = {s}] ≤ µC + εC . Therefore

2−α(Π,S) = 2−H∞(S|Π(S))

=
∑
R

max
s

Pr [R = R|S = {s}] Pr [S = {s}]

=
∑
C∈P

∑
R⊆nC

(
|C| − 1
n− 1

)−1
max
s∈R

Pr [S = {s}]

≤
∑
C∈P

∑
R⊆nC

(
|C| − 1
n− 1

)−1
(µC + εC)

=
∑
C∈P

(
|C|
n

)(
|C| − 1
n− 1

)−1
(µC + εC)

=
∑
C∈P

|C|
n

(µC + εC) = εP + 1
n

.

In a similar fashion, we analyze the anonymity of
Π′. For any C ∈ P we have

Pr
[
R′ = B|S = {s}

]
=

{
1 s ∈ C
0 otherwise.

Recall that for all C ∈ P , all s ∈ C, it holds that
|Pr [S = {s}]− µC | ≤ εC . Therefore

2−α(Π′,S) = 2−H∞(S|Π′(S))

=
∑
C∈P

max
s

Pr
[
R′ = B|S = {s}

]
Pr [S = {s}]

=
∑
C∈P

max
s∈C

Pr [S = {s}]

≤
∑
C∈P

µC + εC =
∑
C∈P

|C|
|C|

(µC + εC)

≤
∑
C∈P

|C|
n

(µC + εC) = εP + 1
n

.

Corollary 6.1. Let S be a 1-signer distribution and
n ∈ [N ]. Suppose for each partition P in the sup-
port of P, for all C ∈ P , all s ∈ C, it holds that
|Pr [S = {s}]− µC | ≤ εC for some εC ≥ 0, and |C| ≥ n.
Let εP :=

∑
C∈P |C|εC and let εP :=

∑
P Pr [P = P ] εP .

Then
α(S,ΠPart,P,1,n) ≥ lgn− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lgn− lg(εP + 1).

Proof. We prove the result for ΠPart,P,1,n by direct
calculation. As before, we write Π = ΠPart,P,1,n and
R = Π(S).

2−α(Π,S) = 2−H∞(S|Π(S))

=
∑
R

max
s

Pr [R = R|S = {s}] Pr [S = {s}]

=
∑
R

max
s

∑
P

(
Pr [R = R|S = {s} ∧ P = P ]
·Pr [P = P ] · Pr [S = {s}]

)
=
∑
P

Pr [P = P ]
∑
R

max
s

(
Pr [R = R|S = {s} ∧ P = P ]

·Pr [S = {s}]

)

=
∑
P

Pr [P = P ]
∑
C∈P

∑
R⊆nC

(
|C| − 1
n− 1

)−1
max
s∈R

Pr [S = {s}]

≤
∑
P

Pr [P = P ]
∑
C∈P

∑
R⊆nC

(
|C| − 1
n− 1

)−1
(µC + εC)

=
∑
P

Pr [P = P ]
∑
C∈P

|C|
n

(µC + εC)

=
∑
P

Pr [P = P ] εP + 1
n

= εP + 1
n

.

The analogy for ΠPart,P,1 is similar and is omitted.
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