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Abstract: We describe the design, analysis, implemen-

tation, and evaluation of PIRSONA, a digital content

delivery system that realizes collaborative-filtering rec-

ommendations atop private information retrieval (PIR).

This combination of seemingly antithetical primitives

makes possible—for the first time—the construction of

practically efficient e-commerce and digital media deliv-

ery systems that can provide personalized content rec-

ommendations based on their users’ historical consump-

tion patterns while simultaneously keeping said con-

sumption patterns private. In designing PIRSONA, we

have opted for the most performant primitives available

(at the expense of rather strong non-collusion assump-

tions); namely, we use the recent computationally 1-

private PIR protocol of Hafiz and Henry (PETS 2019.4)

together with a carefully optimized 4PC Boolean matrix

factorization.
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1 Introduction

Over the last two decades, we have witnessed a surge in

electronic commerce and digital media streaming, with

ubiquitous video streaming services like Netflix, Hulu,
YouTube, and Amazon Instant Video overtaking cable and

DVDs as the de facto source for television shows and

films; audio streaming services like Spotify, Apple Music,
Last.fm, and Pandora supplanting CDs and radio as the

de facto choice for music and commentary; app stores

like Google Play, Apple’s App Store, the Microsoft Store,
and the Amazon Appstore becoming the de facto way
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to download software; and e-book marketplaces like the

Amazon Kindle Store, Google eBooks, and Barnes and No-

ble’s Nook Store replacing brick-and-mortar bookstores

as the de facto way to buy books.

With this shift to the digital, on-demand distribu-

tion of media comes increased convenience and cost sav-

ings for consumers—and an unprecedented capacity for

content distributors to amass enormous quantities of

fine-grain consumption-pattern data. And there’s the

rub: While content distributors can (and do) leverage

the novel insights gleaned from such data to fuel rec-

ommendation engines and inform content creators in

ways that benefit consumers, they also can (and do) sell

or otherwise exploit said data for uses that are decid-

edly not in the consumers’ best interests. Indeed, such

data is invaluable to unscrupulous marketers and iden-

tity thieves seeking to defraud, law enforcement officers

seeking to implicate or entrap, and hostile foreign agents

seeking to manipulate and sow discord in democratic

processes.

Given this tension between the utility of

consumption-patterns on one hand and the sensitiv-

ity of consumption-patterns on the other, we ask the

following question:

Is it possible to construct scalable, practically effi-

cient digital content-distribution services that pro-

vide personalized content recommendations based

on users’ consumption patterns, all the while keep-

ing those consumption patterns private?

In this paper, we answer the preceding question in

the affirmative by constructing PIRSONA, a novel system

that uses (semi-honest) secure 4-party computation to

implement collaborative-filtering recommendations atop

a private information retrieval (PIR) protocol. This is no

trivial task, as the privacy guarantees of PIR—allowing

users to fetch items from a remote database while hiding

from the data holder(s) which items they fetch—appear

to be at fundamental odds with the goal of collabora-

tive filtering—making automatic predictions about the

interests and preferences of a user based on the interests

and preferences of other like-minded users.
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1.1 System overview

At a high level, our construction works as follows. Sev-

eral content distributors hold identical copies of some

database of fetchable records. To maintain their privacy,

the users fetch records of interest using a fast, “com-

putationally 1-private” multiserver PIR protocol (i.e.,

PIR that protects against a single malicious server).

In addition to servicing the users’ fetch requests, the

servers store per-user, secret-shared consumption histo-

ries, which they extract directly from the users’ incom-

ing PIR queries. Periodically, the servers transform these

consumption histories into (still secret-shared) collabo-

rative filtering item and user profiles using a bespoke

4PC realization of Boolean matrix factorization. The

latter secret-shared profiles are thenceforth used to ren-

der oblivious, yet personalized content recommendations

for PIRSONA users.

1.2 Contributions

Our main contribution is the design, analysis, imple-

mentation, and evaluation of PIRSONA, a novel sys-

tem that realizes collaborative filtering recommenda-

tions atop multiserver PIR. PIRSONA is the first system

enabling untrusted content distributors to serve users

obliviously while maintaining the distributors’ ability to

train recommender engines with which to provide obliv-

ious, yet personalized content recommendations. Un-

like in prior work on privacy-preserving machine learn-

ing [36, 37] or targeted advertising [29, 30, 42], users of

PIRSONA need not maintain any local state, nor must

they disclose any personal information to third par-

ties or actively participate in the training of models;

thus, PIRSONA delivers a user experience akin to now-

ubiquitous non-private content distribution services—

only with strong, provable privacy guarantees for its

users. Toward realizing PIRSONA, we introduce some new

primitives of independent interest, including (i) 4PC

fixed-selection wire multiplexers (MUXs) and demulti-

plexers (DeMUXs), (ii) fast 3PC vector normalization

for secret-shared fixed-point vectors, (iii) 4PC well–

formedness tests for (2, 2)-distributed point functions,

and (iv) one-round 3PC integer comparison.

2 Preliminaries

We begin our technical discussion by introduc-

ing the basic technologies underlying our construc-

tion: Hafiz-Henry computationally 1-private PIR [24],

Boolean matrix factorization-based collaborative filter-

ing, and Du-Atallah 3-party multiplication [18]. Addi-

tionally, we give a bird’s-eye overview of how PIRSONA

uses the latter MPC to “glue” the first two (seem-

ingly antithetical) primitives into a seamless, privacy-

preserving content distribution platform.

2.1 Private information retrieval

PIR is a cryptographic primitive using which users

can fetch items from remote and untrusted database

servers without disclosing to the servers which items

they fetch. We focus on a specific class of PIR pro-

tocols—the so-called “1-private” multiserver scheme of

Hafiz and Henry [24]—which provide extremely low

download and server-side computation costs. These pro-

tocols provide the best-available mix of efficiency and

expressiveness for the media delivery applications we

target with PIRSONA. Here “expressiveness” refers to

the ability of users to request content using human-

memorable identifiers (i.e., titles or keywords) instead

of physical addresses (i.e., row numbers) as required by

most PIR. The remainder of this subsection briefly ex-

plains the Hafiz-Henry scheme.

Consider a database D modelled as an r -by-s matrix

over a binary field GF(2w ). Here each of the r rows com-

prising D is a distinct record (e.g., a video, an e-book, or

an app) composed of s-many w -bit words, for some suit-

ably chosen bitlength w . A complete replica of D resides

at each of s + 1 pairwise non-colluding database servers

(i.e., privacy requires that no two servers collude). We

denote the servers by P0, . . . , Ps .
1

2.1.1 Hafiz-Henry “perfectly 1-private”PIR

A user wishing to fetch D⃗j , the j th record in D, con-

structs a query template by sampling a length-r vector

q⃗ ∈R [0 . .s]r uniformly at random subject to q⃗[j] = 0.
Here and throughout, [0 . .s] refers to the set of integers

between 0 and s (inclusive), while q⃗[j] ∈ [0 . .s] refers

to the j th component of the vector q⃗. Next, the user

selects a permutation σ : [0 . .s] → [0 . .s] uniformly at

1 One should think of the number of available servers (s + 1)
and record size as together dictating both the number of words

per record (s) and the bit length of each word (w)—not the

converse.
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random and then, for each k ∈ [0 . .s], it computes and

sends to Pk the vector queryk := q⃗ + σ(k) · e⃗j , where

e⃗j := ⟨ 0 0 · · · 1 · · · 0 ⟩ ∈ Zr
denotes the j th length-r

standard basis vector. The permutation σ forces inde-

pendence between the j th component of queryk and the

index k.

Upon receiving its vector queryk from the

user, Pk computes and responds with responsek :=
⊕r

i=1 D⃗i(queryk[i]), a scalar in GF(2w ). As above,

queryk[i] refers to the ith component of queryk, whereas

D⃗i(x) := D⃗i[x], the xth word of D⃗i, unless x = 0, in
which case D⃗i(0) := 0w .

Finally, for each k ∈ [1. .s], the user computes the

σ(k)th word of D⃗j from the pair (responsek, response0)
using D⃗j[σ(k)] = responsek ⊕ response0.

Hafiz-Henry perfectly 1-private PIR sharply meets

concrete lower bounds for expected download [7,

Thm2.5] and server-side computation [4, Thm6.4] costs;

its client-side computation costs are likewise extremely

low. This leaves only the upload cost as a target

for optimization. The computationally 1-private vari-

ant reduces the per-server upload cost from Θ(r lg s) to

Θ
(
(lg r)(lg s)

)
, with no effect on the download cost and

with only a nominal increase in the client- and server-

side computation costs.

2.1.2 Hafiz-Henry “computationally 1-private”PIR

The computational variant uses distributed point

functions [20] to compactly represent the vectors

query0, . . . , querys in an otherwise-unmodified instance of

the perfectly 1-private protocol. The scheme is most ef-

ficient (and easiest to state) when s + 1 is a power of 2;
we describe here—and assume throughout—this special

case and refer to Hafiz and Henry’s paper [24, §5.3] for
details on the case where s+1 is not a power of 2.

Distributed point functions. Let G be an additive group

and λ ∈ N a security parameter. Intuitively, a 2-out-

of-2 distributed point function scheme ((2, 2)-DPF ) is

an ordered pair (Gen,Eval) such that (seed0, seed1) ←
Gen(1λ, r ; x, y) and Eval define a (2, 2)-additive sharing of
the point function with domain [1. . r ] and point (x, y) ∈
[1. . r ]×G. In particular, such triplets (Eval; seed0, seed1)
provide

1. (perfect) correctness: if i ∈ [1. . r ], then

Eval(seed0, i)− Eval(seed1, i) = y if i = x and 0 oth-

erwise; and

2. (computational) hiding: given only one of seed0
or seed1, no PPT algorithm can distinguish a (2, 2)-
DPF with point (x, y) from a (2, 2)-DPF with some

other point (x′
, y

′) ∈ [0 . . r ]×G, except with a prob-

ability negligible in λ.

Hafiz-Henry uses an efficient (2, 2)-DPF of Boyle,

Gilboa, and Ishai [9, Fig. 1] with 1-bit outputs, which

is instantiable using any length-doubling pseudorandom

generator (PRG). That construction benefits from the

existence of a fast full-domain evaluation algorithm [9,

§3.2.1], which efficiently expands seedb into the length-r

vector

EvalFull(seedb) := ⟨Eval(seedb, 1), . . . ,Eval(seedb, r)⟩ .

In the sequel, we write [[(x, y)]] as shorthand for a seed

pair encoding point (x, y) and [[(x, y)]]b for the seed held

by Pb for b = 0, 1. (In contexts where the y-coordinate

is immaterial, we sometimes write [[(x, ·)]] using ‘·’ as a

placeholder.)

Construction for s+1 a power of 2. Suppose s+1 = 2L
for

some integer L ≥ 2. A user seeking D⃗j , the j th record in

D, first samples an L-fold sequence of (2, 2)-DPF seed

pairs, [[(j, 1)]](L−1)
, . . . , [[(j, 1)]](0)

, each with domain [1. . r ]
and point (j, 1) ∈ [0 . . r ] × GF(2). Next, for each k ∈
[0 . .s], it sends the L-tuple

seedk := ([[(j, 1)]](L−1)
kL−1

, . . . , [[(j, 1)]](1)
k1

, [[(j, 1)]](0)
k0

) (1)

to Pk . Here (kL−1 · · · k1 k0)2 is the 0-padded L-bit

binary representation of Pk ’s index k; i.e., k =∑L−1
i=0 ki 2i

.

Upon receiving its L-tuple seedk from the user, Pk

invokes EvalFull to expand each of the L seeds into a

length-r vector of bits, and then it constructs queryk as

the componentwise concatenation of the resulting bit

vectors; that is, for each i ∈ [1. . r ], it sets

queryk[i] := Eval([[(j, 1)]](L−1)
kL−1

, i)∥ · · · ∥Eval([[(j, 1)]](0)
kL−1

, i) .

From here, the protocol proceeds identically to its per-

fectly 1-private counterpart.

2.2 Collaborative filtering

Collaborative filtering is among the most widely de-

ployed recommender engines. Broadly speaking, collab-

orative filtering renders predictions about the interests

and preferences of a user using observations about the

interests and preferences of many other users, based
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(very roughly) on the assumption that users who ex-

hibit similar preferences about some things will likely

exhibit similar preferences about other related things.

PIRSONA leverages a well-known latent-factor collabora-

tive filtering algorithm based on Boolean matrix factor-

ization [33]. Latent-factor collaborative filtering charac-

terizes observed preferences with respect to some (pa-

rameterized) number of latent features; similarities with

respect to these latent features form the basis for predic-

tions about users’ as-yet-unobserved preferences. Here

the qualifier “latent” references the fact that the fea-

tures are not necessarily tangible attributes like artist

or genre.

Collaborative filtering via matrix factorization. Consider

a system in which there are m distinct users fetching

items from a database comprising r distinct records and

let M ∈ {0, 1}m×r
denote the (0, 1)-matrix having one

row per user and one column per record and having

M ij = 1 if and only if the ith user has fetched the

j th record.

Given M , the goal of the recommender system is

to recommend (i, j) pairs for which M ij = 0 and yet

the ith user “should” enjoy the j th record. Toward this

goal, consider a user-profile matrix U :=
[
u⃗1; · · · ; u⃗m

]
∈

Rm×d
and item-profile matrix V :=

[⃗
v1; · · · ; v⃗r

]
∈ Rr×d

,

respectively associating a profile from (R ∩ [0, 1])d to

each of the m users and to each of the r records re-

flected in M . Here d ∈ N is a dimensionality parameter

indicating the number of latent features needed to effec-

tively capture preferences in the system. Initially, both

U and V are selected uniformly subject to ∥u⃗i∥2 = 1
and ∥v⃗j∥2 = 1 for all i ∈ [1. .m] and j ∈ [1. . r ]; the goal

is then to “evolve”U and V until UV
⊺ ∈ (R∩ [0, 1])m×r

is a “reasonable approximation” to M , and then to use

the differences between UV
⊺
and M as the basis for

making recommendations.

To this end, we seek an approximate solution to the

minimization problem

argmin
U ,V

{ 1
∥M∥1

∑
Mij =1

(
1− ⟨u⃗i, v⃗j⟩

)2

+µu

m∑
i=1
∥u⃗i∥

2
2 + µv

r∑
j=1
∥v⃗j∥

2
2

}
,

for some convergence parameters µu, µv ∈ R+
.

There are several known methods for solving

such minimization problems. Perhaps the best-known

method—and the method employed by PIRSONA—is

gradient descent, a first-order iterative algorithm for ap-

proximating (local) minima of any differentiable func-

tion. Each gradient-descent iteration produces progres-

sively “better” approximations (by normalizing the vec-

tors obtained) via the adaptation rules

u⃗i ← µ̂uu⃗i + γ
∑

Mij =1
v⃗j

(
1− ⟨u⃗i, v⃗j⟩

)
(2)

and

v⃗j ← µ̂v v⃗j + γ
∑

Mij =1
u⃗i

(
1− ⟨u⃗i, v⃗j⟩

)
, (3)

for µ̂u = 2µu − 1, µ̂v = 2µv − 1, and step size γ.

After several gradient-descent iterations, the result-

ing U and V are used to render recommendations for

the ith user as follows: Compute the length-r vector

R⃗i := u⃗iV
⊺ − M⃗ i, where M⃗ i denotes the ith row of

M ; the largest components of R⃗i are the “top” recom-

mendations for the ith user.

2.3 Du-Atallah 3-party multiplication

In principle, any secure MPC could serve as the sub-

strate through which PIRSONA performs collaborative fil-

tering over PIR queries. However, as our design already

uses 1-private PIR among 2L
pairwise non-colluding

servers, we focus our attention on 4PC protocols secure

when all parties are semi-honest. This special subclass of

MPC admits computations that are highly efficient rel-

ative to, e.g., 2PC from garbled circuits or general MPC

secure against threshold collusion or Byzantine compu-

tation parties. In the following and throughout, we use

[x] to denote a (2, 2)-additive sharing of x and [x]b to

denote the portion of [x] held by Pb for b = 0, 1.
We employ Du-Atallah multiplication [18], an effi-

cient 1-private 3-party variant of Beaver triples [3] that

introduces a semi-trusted third party to eliminate ex-

pensive oblivious transfers (OTs)—the bottleneck in

traditional 2PC from Beaver triples—without increas-

ing other costs. Let R be a finite ring and suppose that

P0 and P1 hold a (2, 2)-additive sharing ([x], [y]) of the

pair (x, y) ∈ R × R; the goal is for them to compute a

sharing [z] of the product z = xy. A semi-trusted third

party, P2, facilitates this computation. At a high level,

the idea is for P0 and P1 to exchange blinded copies of

their respective shares so that both parties effectively

hold (x, y), albeit with additional machinery to main-

tain secrecy. P2 chooses blinding factors and cancella-

tion terms to help P0 and P1 arrive at the final product;

specifically, P2 samples X0, X1, Y0, Y1, α ∈R R, and then

it sends (X0, Y0, X0Y1 + α) to P0 and (X1, Y1, X1Y0 − α)
to P1.
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P1 then sends ([x]1 +X1, [y]1 +Y1) to P0, who outputs

[z]0 :=[x]0
(
[y]0 +([y]1 +Y1)

)
−Y0([x]1 +X1)+(X0Y1 + α),

while P0 sends ([x]0 + X0, [y]0 + Y0) to P1, who outputs

[z]1 :=[x]1
(
[y]1 +([y]0 +Y0)

)
−Y1([x]0 +X0)+(X1Y0−α).

It is easy to verify that Du-Atallah multiplication

is correct—i.e., [z]0 + [z]1 = ([x]0 + [x]1)([y]0 + [y]1) =
xy—and that the view of each party to the computation

is simulatable. Also notice that all contributions of P2
can be computed offline before P0 and P1 ever receive

their private shares. Finally, we remark that Du-Atallah

generalizes naturally to inner products [17] and efficient

scalar-vector multiplication.

2.4 Secure 4PC as “garbled glue”

Whenever the ith user submits a PIR query over the

database, some designated subset of the servers stores a

tuple (i, [[(j, 1)]]b), where [[(j, 1)]]b is one of the L seeds con-

stituting that query. Periodically, the designated servers

perform a 4-party computation that takes as input

(i) these (i, [[(j, 1)]]b) pairs and (ii) the previously com-

puted user- and item-profile shares, and then outputs

updated user- and item-profile shares. The updated pro-

file shares can be multiplied to produce a personal-

ized content recommendation vector upon which to base

user-specific recommendations.

3 Threat model

As PIRSONA composes computationally 1-private PIR

with MPC secure against a single passive corrup-

tion, three assumptions are immediate and unavoidable;

namely, that

1. the adversary is computationally bounded,

2. the adversary is honest-but-curious, and

3. the adversary controls at most one (of 2L
) servers.

PIRSONA’s reliance on computational assumptions fol-

lows from its use of (2, 2)-DPFs that are instantiable

from any length-doubling PRG; thus, beyond the (ad-

mittedly quite strong) assumption of non-collusion,

PIRSONA relies only on rather conservative “minicrypt”

assumptions [28]. For instance, our implementation as-

sumes only that AES-128 is hard to distinguish from an

ideal random permutation.

PIRSONA employs a novel 4PC sanity-check protocol

for the DPFs to ensure that users cannot corrupt the

user- and item-profile shares by submitting malformed

queries; thus, we can safely assume that the adversary

controls—in addition to one server—an arbitrary num-

ber of Byzantine users. This is an important aspect of

the model, as contributing strategically chosen queries

may enable the adversary to influence the collaborative

filtering profiles in a way that causes the model to leak

information about the consumption histories of honest

users [10]. We stress that PIRSONA does not attempt to

limit such collaborative filtering model leakage (though

doing so would be an interesting direction for future

work); rather, we merely insist that the only source of

information leakage is that which is inherent to the col-

laborative filtering recommendations.

Finally, we assume that all user-server and

server-server communication occurs over point-to-point

confidential and mutually authenticated channels. We

do not concern ourselves with how these channels are

realized. (Our implementation uses TLS; a real deploy-

ment would presumably couple this with password- or

key-based authentication.)

Appendix D presents a formal definition and analy-

sis in the ideal-/real-world simulation paradigm. In the

ideal world, all PIRSONA users hand their requests di-

rectly to a benevolent trusted party who provides an-

swers and updates profiles in response to incoming re-

quests. In the real world, we replace the trusted party

with the MPC protocols described in the sequel. The

adversary A seeks to draw inferences about the con-

sumption patterns of non-corrupted users. Informally,

we prove that operating in the real world provides A
with no tangible advantage over operating in the ideal

world, where all inferences about non-corrupted users

necessarily result from model leakage inherent to the un-

derlying collaborative filtering recommendations—not

from the MPC components PIRSONA uses to realize those

recommendations.

4 Overview of the 4PC for

gradient descent

We now describe, at a high level, the 4PC protocol

PIRSONA uses to evaluate Equations (2) and (3), the

so-called adaptation rules for gradient descent-based

Boolean matrix factorization. Given an incoming query

from user i for item j, a designated subset of servers

must cooperatively

1. locate the user profile u⃗i and item profile v⃗j ;
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2. compute ∆ui
:= v⃗j(1 − ⟨u⃗i, v⃗j⟩) and ∆vj := u⃗i(1 −

⟨u⃗i, v⃗j⟩);
3. update u⃗i with ∆vj and v⃗j with ∆ui

; and, ultimately,

4. normalize the resulting updated profiles.

In the following, we elaborate on each step in

turn.

Step 1a: Locating the user profile. This step is made

trivial by virtue of all user-server communication oc-

curring over mutually authenticated channels; that is,

because each server knows with which user it is com-

municating, it can easily retrieve the correct entry from

its list of user-profile shares.

Step 1b: Locating the item profile. Recall that users

fetch items via Hafiz-Henry computationally 1-private

PIR. In that protocol, the user submits an L-fold

sequence ([[(j, 1)]](L−1)
, . . . , [[(j, 1)]](1)

, [[(j, 1)]](0)) of DPF

seeds to each server (see §2.1.2). Assume, without loss

of generality, that servers P0 and P2 receive [[(j, 1)]](0)
0

while P1 and P3 receive [[(j, 1)]](0)
1 . The four parties use

their respective seeds to fetch shares of v⃗j using the

4-party MUX construction detailed in Section 6.2.2.

For technical reasons (explained in Section 6.2), the

4-party MUX ultimately results in P0 and P1 holding

(2, 2)-additive shares of ((−1)bv⃗j , (−1)b), where b is a

uniformly distributed sign bit.

Step 2: Computing ∆ui
and ∆vj . The computation of

∆ui
and ∆vj proceeds via a 4-move 3PC proto-

col comprising three sequential rounds of generalized

Du-Atallah multiplications (see §2.3). Note that af-

ter Step 1, P0 and P1 hold a (2, 2)-additive sharing

([⃗ui], [(−1)bv⃗j], [(−1)b]). P2 makes the first move, send-

ing a sequence of Du-Atallah blinding factors and can-

cellation terms for P0 and P1 to use in the subsequent

moves. In the second move, P0 and P1 use ([⃗ui], [(−1)bv⃗j])
to compute [(−1)b(1− ⟨u⃗i, v⃗j⟩)]. In the third move, P0
and P1 use ([(−1)b], [(−1)b(1− ⟨u⃗i, v⃗j⟩)]) to compute

[1− ⟨u⃗i, v⃗j⟩]. In the fourth and final move, P0 and P1 use

([(−1)bv⃗j], [(−1)b(1− ⟨u⃗i, v⃗j⟩)]) to compute [∆ui
], and

they use ([⃗ui], [1− ⟨u⃗i, v⃗j⟩]) to compute [∆vj].

Step 3a: Updating u⃗i with ∆vj . Analogous to Step 1a,

this step is made trivial by virtue of all user-server

communication occurring over mutually authenticated

channels.

Step 3b: Updating v⃗j with ∆ui
. This step is roughly

converse to Step 2b; thus, whereas Step 2b used seeds

from the user’s query to instantiate a 4-party MUX,

this step uses them to instantiate a 4-party DeMUX,

as detailed in §6.3.

Step 4: Normalizing the updated profiles. At this point,

P0 and P1 hold (2, 2)-additive shares of the updated

(but non-normalized) user profile u⃗i and item-profile

matrix V ; their goal is to normalize each of the shared

profiles. We describe here only the normalization of u⃗i;

normalization of the profiles comprising V is similar.

The idea is for P0 and P1 (with help from P2) to use

Du-Atallah to compute a sharing of ∥u⃗i∥
2
2 = ⟨u⃗i, u⃗i⟩,

and then to enlist the help of P2 to convert these into

a sharing of 1/∥u⃗i∥2. At a high level, the three parties

do this by running a modified PIR protocol to jointly

fetch shares of the coefficients for a high-fidelity linear

approximation to the inverse square-root function.

Section 6 presents complete details and analyses of

the 4-party MUX used in Step 1b (§6.2), the 4-party

DeMUX used in Step 3b (§6.3), and the 3-party vector-

normalization protocol used in Step 4 (§6.4). Follow-

ing that, Section 7 describes one potential way to use

the resulting item and user profiles—an efficient 3PC

that takes as input (i) a uniformly sampled number

u ∈ ([0, 1]∩R) and (ii) shares of the resulting user profile

u⃗i and item-profile matrix V , and outputs a personal-

ized recommendation for user i.

5 System architecture

Before presenting the details of our MPC, we elaborate

on the high-level PIRSONA architecture sketched out in

the preceding sections. Recall that the system comprises

s + 1 = 2L
pairwise non-colluding servers, P0, . . . , Ps , for

some L ≥ 2. Of these, only four are involved in col-

laborative filtering profile updation. Specifically, P0 and

P1 play a central role in all aspects of collaborative fil-

tering, while P2 participates in all 3PC sub-protocols

and P3 joins only for the occasional 4PC sub-protocol.

Any additional servers merely respond to users’ PIR

queries.
2
In particular, P0 and P1 hold (2, 2)-additive

sharings ([U], [V ]) of the user- and item-profile matri-

ces; P2 and P3 hold [V ]1 and [V ]0 in common with P0
and P1, respectively. Upon receiving a query from user

i, P0 and P2 store the pair (i, [[(j, 1)]](0)
0 ) consisting of the

user’s identity and the “least-significant-bit” DPF seed

2 The best-possible download cost and (per-server) computa-

tion costs of PIR are each decreasing functions of the number

of servers. Being sharply optimal in both metrics, Hafiz-Henry

grows increasingly efficient as the number of servers is allowed

to grow large. This potential for higher efficiency is why we en-

tertain the possibility of setting L > 2.
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from her query (see Equation (1)); likewise, P1 and P3
store the pair (i, [[(j, 1)]](0)

1 ). Periodically, the four parties

input these shares to a 4PC to update the collaborative

filtering profiles (see §4).

5.1 Query representation

By default, Hafiz-Henry assumes users fetch records via

positional queries [23]; that is, via their row numbers

within D. We remark that (i) the DPFs naturally sup-

port keyword-based queries [12] as a more user-friendly

alternative and (ii) this extension “plays well” with

Hafiz-Henry queries. Beyond the preceding remark, we

do not concern ourselves with how users specify which

records they seek (though we do consider a candidate

user interface in Section 9); however, we do prescribe one

minor change to Hafiz-Henry query generation in sup-

port of PIRSONA functionality: The DeMUX assumes a

so-called leafless seed for the “least-significant-bit”DPF

(see §6.3) and, consequently, that the servers substitute

the bit vector flags([[(j, ·)]](0)
b ), as defined in §6.1, in lieu

of EvalFull([[(j, 1)]](0)
b ) when constructing queryk.

5.2 Profile representation

Recall that collaborative filtering user and item profiles

are length-d unit vectors of positive reals (see §2.2),
whereas Du-Atallah multiplication works over an ar-

bitrary finite ring R (see §2.3). For concreteness—and

to facilitate efficient implementation on 64-bit comput-

ers—PIRSONA fixes R as the ring of integers modulo

264
; profiles are then vectors of 64-bit unsigned integers

representing fixed-point approximations to reals. Specif-

ically, the fixed-point approximation to x is ⌊x2p⌋, where
p ∈ N is a fractional precision parameter indicating how

many bits are used to represent the fractional part of x.

Since profile components are non-negative and bounded

above by 1, we require high-fidelity fractional approxi-

mations. Yet setting p too large can cause intermediate

values to overflow, as the product of fixed-point num-

bers with fractional precisions p1 and p2 has fractional

precision p1 + p2 (and summing n such numbers grows

the integer part by up to lg n bits).

When u⃗i and v⃗j are represented by vectors of fixed-

point numbers with fractional precision p, the gradient-

descent adaptation rules yield vectors ∆ui
= v⃗j(1 −

⟨u⃗i, v⃗j⟩) and ∆vj = u⃗i(1 − ⟨u⃗i, v⃗j⟩) with fractional pre-

cision 3p. For technical reasons (see §6.4.1), we must

ensure that the most-significant bit is unset in every

vector component; hence, we set p = 64 − 3p − N − 1
with N := ⌈(lg (n + 1))/(1 + ϵ)⌉, where n is a tuning

parameter determining the number of adaptation values

the servers can accumulate without risk of overflows and

ϵ ≥ 0 captures the worst-case approximation error in our

3-party vector normalization protocol (see §6.4).
We emphasize that our MPC protocols are agnostic

to the fixed-point representation up until the normaliza-

tion step (see §6.4), which includes precision-reduction

substeps (§6.4.1) to “reset” the fractional precision as

needed.

6 Primitives for gradient descent

We begin with an overview of the Boyle-Gilboa-Ishai

(2, 2)-DPF construction [9, Fig. 1], which serves as the

scaffolding around which we construct our 4PC gradient

descent.

6.1 Boyle-Gilboa-Ishai (2,2)-DPFs

The presentation herein attempts to strike a bal-

ance between focusing on the intuition behind the

Boyle-Gilboa-Ishai construction and clearly articulat-

ing specific low-level details upon which our MUXs and

DeMUXs rely.

The Goldreich–Goldwasser–Micali PRF. At its core, Boyle

et al.’s construction is a clever generalization of the cel-

ebrated Goldreich-Goldwasser-Micali (GGM) construc-

tion [21] of a pseudorandom function (PRF) from any

length-doubling PRG. The GGM construction repre-

sents a PRF taking h-bit inputs by a height-h binary

tree in which (i) the root node is labelled by the λ-bit

PRF key K (i.e., a PRG seed); and (ii) the left and right

children of each non-leaf node are respectively labelled

by the left and right halves of the image of the PRG

applied to the label on the parent. Notice that there is a

natural bijection between the set of h-bit binary strings

and the leaves of a tree so defined, with the sequence of

left (meaning the next bit is 0) or right (meaning the

next bit is 1) traversals from the root to any leaf associ-

ating that leaf with a specific h-bit input string. GGM

defines the image FK(i) of the PRF keyed by K ∈ {0, 1}λ

and evaluated at i ∈ {0, 1}h as the label on the leaf node

associated with i when this natural bijection is applied

to the height-h tree with root labelled K.
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([v], [b])← Fmux

(
([V ]0, [[(j, ·)]]0); ([V ]1, [[(j, 1)]]1); ([V ]1, [[(j, ·)]]0); ([V ]0, [[(j, ·)]]1)

)
Guarantee: [v]0 + [v]1 = ([b]0 + [b]1)⃗vj

P2 : ([̂v]1, [b]0)← 2PC-MUX([[(j, ·)]]0, [V ]1) P3 : ([̂v]0, [b]1)← 2PC-MUX([[(j, ·)]]1, [V ]0)

P0 : ([̃v]0, [b]0)← 2PC-MUX([[(j, ·)]]0, [V ]0)
Output: ([v]0, [b]0) := ([̂v]0 + ([̃v]1 + α1)− α0, [b]0)

P1 : ([̃v]1, [b]1)← 2PC-MUX([[(j, ·)]]1, [V ]1)
Output: ([v]1, [b]1) := ([̂v]1 + ([̃v]0 + α0)− α1, [b]1)

α1[̃v]1 + α1 [̃v]0 + α0α0

Fig. 1. 4-party fixed–selection wire MUX with secret-shared input wires, as described in Section 6.2.2.

(2,2)-DPFs from pairs of GGM-like trees. Boyle et al.’s

construction maintains the basic structure of GGM,

while adding some additional machinery in the form of

so-called correction words (CWs); that is, traversing the

“DPF tree share” for a given input follows the same ba-

sic process as in GGM: Begin at the root and repeatedly

traverse either left or right, depending on successive bits

of the input, until arriving at a leaf node. The main dif-

ference is in how DPF-tree traversal incorporates the

CWs into the computation of labels. At a high level,

the strategy is to single out the path from the root to

a specific target leaf node (the x-coordinate of the point

function’s “point”), and then to specially craft the CWs

to force the labels on all other paths in a given pair

of GGM-like trees to converge, thereby assigning identi-

cal labels to all non-target leaves. To this end, the con-

struction associates with each layer of the tree shares

one λ-bit CW, the two least-significant bits of which

are special toggle bits that help the evaluator decide to

which nodes it should “apply” the CW. The precise de-

tails of how to generate and apply CWs (and toggle bits)

goes beyond what is needed to understand our MUX

and DeMUX constructions; for brevity, we omit those

details here and direct interested readers to Gilboa and

Ishai [20] and Boyle et al. [9]. For our purposes, it suffices

to know that

1. each node (in each tree share) is associated with its

own flag bit that is determined by a combination

of the toggle bits and node labels produced by the

PRG output together with the CW for the preceding

layer;

2. the distribution of flag bits within each tree share

is pseudorandom (and independent of the target leaf

node); and

3. the flag bits in corresponding nodes of the two DPF

tree shares are pairwise identical—except along the

path to the target leaf, where they are pairwise com-

plementary.

In the following, we denote by flags([[(x, y)]]0) and

flags([[(x, y)]]1) the vectors of leaf-layer flag bits for the

trees induced by [[(x, y)]].
Taken together, the preceding facts yield the next

observation, upon which we base our MUX construc-

tions.

Observation 1. If [[(x, y)]] ← Gen(1λ, r; x, y), then the

vectors flags([[(x, y)]]0) and flags([[(x, y)]]1) define a com-

putationally private (2, 2)-additive sharing of the xth

standard basis vector of length r over GF(2); i.e.,

flags([[(x, y)]]0)⊕ flags([[(x, y)]]1) = e⃗x.

6.2 DPFs as fixed-selection wire MUXs

An r -to-1 multiplexer (MUX) is a combinational logic

circuit that, based on the signal it receives on a selec-

tion wire, forwards the value from one input wire (out

of r) to a single output wire. That 2-party MUXs are

instantiable from (2, 2)-DPFs is hardly surprising: Pri-

vately selecting one-out-of-r input wires is substantially

equivalent to 2-server PIR over r items—the veritable

“bread and butter” of (2, 2)-DPFs.

The above-noted parallel between MUXs and PIR

notwithstanding, two important caveats differentiate

DPFs in our MPC setting from their use in the more fa-

miliar PIR setting; specifically, existing DPF-based PIR

protocols

1. operate on the leaf-node labels—indeed, the ubiqui-

tous early-termination optimization [9, §3.2.3] packs
an output into each bit of each leaf-node label, ef-

fectively lopping ⌊lgλ⌋ layers off the DPF trees; and

they

2. operate in a binary field, using the DPF outputs

only to decide which records to include in a big

exclusive-OR.
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Notably, working in the characteristic-2 setting of bi-

nary fields eliminates the notion of positive and nega-

tive signs. Even in settings where the characteristic is

greater than 2, the querier can typically (i) flip the sign

at reconstruction time or (ii) induce the desired sign via

the leaf-layer CW.

In our setting, the MUX outputs (2, 2)-additive
shares in Z264 , which are input to some larger 4PC pro-

tocol; thus, signs matter. Yet, jumping ahead, we reserve

the leaf-layer labels for use in demultiplexing (see §6.3)
and use only the leaf-layer flag bits for multiplexing.

(The alternative would be two DPFs—one for multi-

plexing and one for demultiplexing—plus a consistency

check to ensure they share a target input; we opt to use

one DPF for efficiency: It halves storage cost and calls

to EvalFull while obviating the need for an additional

consistency check.) Using the flag bits precludes induc-

ing the desired sign via the leaf-layer CW; instead, our

MUX outputs (shares of) the sign bit so that subsequent

MPC can flip the sign as needed.

6.2.1 2-party MUX with public input wires

The 2-party MUX is fast and simple, but it requires

cleartext values on all input wires;
3
the 4-party MUX

adds support for secret-shared input wires.

Suppose P0 and P1 hold [[(j, ·)]] and V =
[⃗
v1; · · · ; v⃗r

]
;

the goal is for P0 and P1 to compute ([(−1)bv⃗j], [(−1)b]).
To this end, P0 computes and outputs

([v]0,[b]0) :=
(∑

flags([[(j,·)]]0)[i]=1
v⃗i, ∥flags([[(j, ·)]]0)∥1

)
while P1 computes and outputs

([v]1,[b]1) :=
(
−
∑

flags([[(j,·)]]1)[i]=1
v⃗i,−∥flags([[(j, ·)]]1)∥1

)
.

Correctness of the above 2-party MUX construc-

tion follows immediately from Observation 1. We write

([(−1)bv⃗j], [(−1)b])← 2PC-MUX([[(j, ·)]], V ).

6.2.2 4-party MUX with secret-shared input wires

The 4-party MUX is a 2-move protocol that supports

(2, 2)-additively shared input wires. It follows a simple

mix-and-match pattern that we will see again in the

3 For PIRSONA, this would require P0 and P1 to hold cleartext

item profiles, thus leaking information beyond what is inherently

leaked by collaborative filtering.

context of DPF sanity checks for our 4-party DeMUX

(§6.3).
Let [V ] be a (2, 2)-additive sharing of V =[⃗

v1; · · · ; v⃗r
]
. Suppose P0 and P2 both hold [[(j, ·)]]0, while

P1 and P3 both hold [[(j, ·)]]1; likewise, suppose that P0
and P3 both hold [V ]0, while P1 and P2 both hold

[V ]1. As in the 2-party MUX, the goal is to compute

([(−1)bv⃗j], [(−1)b]). For the first move:

1a) P2 selects an output-wire blinding factor α1, com-

putes ([̂v]1, [b]0)← 2PC-MUX([[(j, ·)]]0, [V ]1), and then

it sends α1 to P1 and [̂v]1 + α1 to P0; meanwhile,

1b) P3 selects an output-wire blinding factor α0, com-

putes ([̂v]0, [b]1)← 2PC-MUX([[(j, ·)]]1, [V ]0), and then

sends α0 to P0 and [̂v]0 + α0 to P1.

For the second move:

2a) P0 computes ([̃v]0, [b]0) ← 2PC-MUX([[(j, ·)]]0, [V ]0)
and [v]0 := [̃v]0 + ([̂v]1 + α1) − α0, and then it out-

puts ([v]0, [b]0); meanwhile,

2b) P1 computes ([̃v]1, [b]1) ← 2PC-MUX([[(j, ·)]]1, [V ]1)
and [v]1 := [̃v]1 + ([̂v]0 + α0) − α1, and then it out-

puts ([v]1, [b]1).
An easy derivation confirms that [v]0+[v]1 = ([b]0+[b]1)⃗vj ,

as desired. Figure 1 illustrates the above 4-party MUX

construction and its “mix-and-match” structure.

6.3 DPFs as fixed-selection wire DeMUXs

A 1-to-r demultiplexer (DeMUX) is a logic circuit that

implements the converse of an r -to-1 MUX; that is,

based on the signal it receives on a selection wire, it for-

wards the value from a single input wire to one output

wire (out of r). Oblivious demultiplexing bears a strik-

ing resemblance to so-called PIR-Writing [40], a task for

which DPFs have been fruitfully deployed in the con-

texts of, e.g., oblivious RAM [16, 35] and anonymous

messaging [14].

Yet one crucial aspect of our DeMUXs differentiates

them from standard PIR-Writing: in PIR-Writing, the

user fixes values on both the selection wire and the input

wire, whereas our DeMUX effectively unfixes the input

wire, enabling the servers—as opposed to the user—

to forward any (secret-shared) value of their choosing

to an output wire determined by the (still fixed by the

user) selection wire. All other output wires receive (2, 2)-
additive sharings of zero. We remark that Kushilevitz

and Mour propose a superficially similar DPF-based 4-

party PIR-Writing construction in the context of obliv-

ious RAM [35, Figure 1]; however, unlike with our De-

MUXs, the user in Kushilevitz-Mour must choose the
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value for the input wire (and it must do so at DPF

generation time). This distinction makes our DeMUXs

significantly more powerful and is essential for PIRSONA

functionality, where the DPF generator (i.e., a PIRSONA

user) is not privy to the value (i.e., a scalar multiple of

∆vj ) to appear on the input wire.

Leafless DPF seeds. The “input-wire” of a

Boyle-Gilboa-Ishai DPF is determined by the leaf-layer

CW; thus, we “unfix” the input-wire value by deferring

selection of this CW. To this end, we provide a modi-

fied Gen that emits (2, 2)-additive shares of a leaf-layer

CW for the target point (j, 0) ∈ [1. . r ] × R. With the

latter shares, P0 and P1 can compute a leaf-layer CW

corresponding to any (2, 2)-additively shared input wire

value from R.

While DPF seeds without a leaf-layer CW are effec-

tively inevaluable, the missing CW presents no obstacle

to generating the interior of the DPF tree, up to and

including the leaf-layer flag bits—it is only the (labels

on) the leaf nodes that are not yet determined. Thus,

such “defoliated” DPFs remain suitable for use in our

2- or 4-party MUXs (see §6.2). In a nod to arboricul-

ture, we call the eventual computation of the leaf-layer

CW for such leafless seeds vernalization. The modified

seed-generation algorithm, G en, uses the default Gen as

a black box; specifically, on input (1λ, r ; j), it
1. samples [[(j, 0)]]← Gen(1λ, r ; j, 0);
2. parses each [[(j, 0)]]b as (Kb; cw0∥ · · · ∥cwh−1∥cwh),

with cwh being the leaf-layer CW; and then

3. outputs [[(j,⋆)]]0 := (K0; cw0∥ · · · ∥cwh−1) and

[[(j,⋆)]]1 := (K1; cw0∥ · · · ∥cwh−1) and [cwh].

Vernalization is a 2-party interaction comprising a

single move. Let y ∈ R be a secret and suppose P0 and

P1 hold sharings ([[(j,⋆)]], [cwh], [y]). P0 and P1 compute

[cwh] := [cwh]+ [y] and then reconstruct to the leaf-layer

CW

cwh := [cwh]0 + [cwh]1
= ([cwh]0 + [y]0) + ([cwh]1 + [y]1)
= ([cwh]0 + [cwh]1) + ([y]0 + [y]1)
= cwh + y .

Finally, P0 outputs [[(j, y)]]0 := (K0; cw0∥ · · · ∥cwh−1∥cwh)
and P1 outputs [[(j, y)]]1 := (K1; cw0∥ · · · ∥cwh−1∥cwh).

6.3.1 2-party DeMUX construction

Suppose P0 and P1 hold sharings ([[(j,⋆)]], [cwh], [y]);
the goal is for them to compute [y · e⃗j]. To this

end, (i) P0 and P1 use 2-party vernalization to con-

vert ([[(j,⋆)]], [cwh], [y]) into [[(j, y)]], and then (ii) they

respectively output [y · e⃗j]0 ← EvalFull([[(j, y)]]0) and

[y · e⃗j]1 ← EvalFull([[(j, y)]]1).

6.4 3PC fixed-point vector normalization

Recall that user profiles u⃗i and item profiles v⃗j are

length-d unit vectors of fixed-point numbers with frac-

tional precision p; thus, the adaptation values ∆ui
=

v⃗j(1−⟨u⃗i, v⃗j⟩) and ∆vj = u⃗j(1−⟨u⃗i, v⃗j⟩) are themselves

at-most-unit magnitude vectors
4
having fractional pre-

cision 3p. Profile updation consists of summing one or

more such adaptation values into a given profile. As de-

tailed in Section 5.2, we choose p to maximize fixed-

point approximation accuracy subject to an “overflow

quota”allowing the accumulation of some tuneable num-

ber of adaptation values without risk of overflowing into

the most-significant bits of profile components.

For user-profile updation, the servers know precisely

how many adaptation values are accumulated; for item-

profile updation, the DeMUX hides this number and we

must count every adaptation value against the overflow

quota of all item profiles. In both cases, upon hitting

the overflow quota, the servers must perform a preci-

sion reduction, as described in Section 6.4.1, to allocate

additional bits for the integer parts of the profile com-

ponents.

6.4.1 3-party precision reduction

Suppose P0 and P1 hold a (2, 2)-additive sharing [x] of a
fixed-point number x with precision p. We now describe

a protocol using which P0 and P1 (with some help from

P2) can produce shares of the largest fixed-point num-

ber less than or equal to x having precision p− s, where

s ∈ [1. .p] is a parameter. If x were given in cleartext,

such a precision reduction would be trivially realized by

an arithmetic shift to the right by s bits; in the (2, 2)-
additive sharing setting, by contrast, we must account

for any implicit reductions that arise when reconstruct-

ing x = [x]0 + [x]1 using 64-bit integer arithmetic.

Our approach insists that the most-significant bit of

x is always 0, and then it examines the most-significant

bits of [x]0 and [x]1 to identify three cases:

4 That both ∥∆ui
∥2 ≤ 1 and ∥∆vj ∥2 ≤ 1 follows by the

Cauchy-Schwarz inequality.
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[Ū]← Fisqrt

(
([U]0, coeffs); ([U]1, coeffs); ε

)
Guarantee: [U]0 + [U]1 < 215 =⇒ [Ū]0 + [Ū]1 ≈ ([U]0 + [U]1)−1/2

P2 : [[(α, 1)]]← Gen(1λ, 216; α, 1)
sign := Eval([[(α, 1)]]0, α)− Eval([[(α, 1)]]1, α)

P0 : [shift]0 ← [U]0 − [α]0
shift← [shift]0 + [shift]1(

[m]0, [b]0
)

:=
〈
EvalFull([[(α, 1)]]0) ≫ shift, coeffs

〉
Output: [Ū]0 := [sign · (m · U + b)]0

P1 : [shift]0 ← [U]1 − [α]1
shift← [shift]0 + [shift]1(

[m]1, [b]1
)

:=
〈
EvalFull([[(α, 1)]]1) ≫ shift, coeffs

〉
Output: [Ū]1 := [sign · (m · U + b)]1

[[(α
,1)]] 0

, [α
] 0

, [s
ign
] 0

[[(α,1)]]1 , [α]1 , [sign]1

[shift]0

[shift]1

Fig. 2. 3-party inverse square-root protocol, as described in Section 6.4.2. In the diagram, ‘≫’ is the cyclic right shift
operator. P0 and P1 compute [Ū] from ([sign], [m], [b]) using Du-Atallah multiplication; the diagram omits the Du-Atallah
steps for clarity.

1. msb([x]0) = msb([x]1) = 0 so that x = [x]0 + [x]1 over

Z, in which case no implicit reduction occurs and no

corrective action is needed;

2. msb([x]0) ̸= msb([x]1) so that x = [x]0 + [x]1 + 264

over Z, in which case the arithmetic shifts of [x]0
and [x]1 preserve a carry chain that results in the

desired implicit reduction and, again, no corrective

action is needed; and

3. msb([x]0) = msb([x]1) = 1 so that x = [x]0 +[x]1−264

over Z, in which case the arithmetic shifts recon-

struct to a secret having its s most-significant bits

(incorrectly) set.

Given these three cases, it suffices to add [264−s] to
the arithmetic shifts of [x] if and only if msb([x]0) =
msb([x]1) = 1, a procedure we can implement obliviously

by computing the product of msb([x]0) and msb([x]1) us-
ing a 1-bit Du-Atallah multiplication and the help of P2,

and then scaling the resulting shares by 264−s
.

6.4.2 Normalizing the precision-reduced vectors

Suppose P0 and P1 hold a (2, 2)-additive sharing [⃗ui
′] of

an updated, but not-yet-normalized profile with frac-

tional precision p. Their goal is to arrive at a sharing

[⃗ui
′′], where u⃗i

′′ ≈ u⃗i
′
/∥u⃗i

′∥2. To do this, they enlist the

help of P2 in a 3-party protocol. All three parties hold

in common an associative array coeffs mapping ranges

of possible values of ∥u⃗i
′∥22 to coefficients for a good lin-

ear approximation to inverse (reciprocal) square roots

within that range. (Our implementation employs a sim-

ple greedy algorithm to find ranges and coefficients ex-

hibiting low approximation errors.)

At the outset, P0 and P1 compute [∥u⃗i
′∥22] from [⃗ui

′]
using generalized Du-Atallah (and help from P2). From

here, the three parties employ a modified PIR protocol

to fetch suitable coefficients from coeffs, as illustrated

in Figure 2: P2 samples α and shares [α] and [[(α, 1)]]
among P0 and P1, who use [∥u⃗i

′∥22] and [α] to reconstruct

∥u⃗i
′∥22−α. Next, P0 and P1 cyclically shift the full-domain

evaluation of [[(α, 1)]] by ∥u⃗i
′∥22−α, effectively moving the

target point of the DPF from (α, 1) to (∥u⃗i
′∥22, 1). Finally,

both parties use their shifted full-domain evaluations

as CGKS-like queries against coeffs, yielding shares of

±(m, b) such that m∥u⃗i
′∥22 + b is a good linear approxi-

mation for 1/∥u⃗i
′∥2.

5

To improve efficiency of the DPF steps (at the cost

of a nominal loss of accuracy), our implementation trun-

cates low-order bits from [∥u⃗i
′∥22] to yield shares having

just 6 bits of fractional precision (and we support at

most 9 bits for the integer part), yielding shares over

Z216 for use in choosing the liner approximation; we still

compute [m][∥u⃗i
′∥22]+ [b] using all 64 bits of [∥u⃗i

′∥22]. Even
with this truncate-to-16-bits optimization, we can al-

ways approximate inverse square roots with relative er-

ror less than 10−5
.

5 Astute readers might notice a similarity between this tech-

nique and the works of Krips and Willemson [34] and Kerik,

Laud, and Randmets [31]. Those works also approximate ele-

mentary functions via piecewise-linear approximations; however,

they rely on expensive, multi-round bit-decomposition protocols

that are significantly more costly than our DPF-based approach.
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[c]← Fgeq

(
([a]0, [b]0, MSB ); ([a]1, [b]1, MSB ); ε

)
Guarantee: msb

(
([a]0 + [a]1) − ([b]0 + [b]1)

)
= 1 − ([c]0 + [c]1)

P2 : [[(α, 1)]]← Gen(1λ, |R|; α, 1)

P0 : [shift]0 ← ([a]0 − [b]0)− [α]0
shift← [shift]0 + [shift]1

Output: [c]0 :=
〈
EvalFull([[(α, 1)]]0) ≫ shift, MSB

〉
P1 : [shift]1 ← ([a]1 − [b]1)− [α]1

shift← [shift]0 + [shift]1
Output: [c]1 :=

〈
EvalFull([[(α, 1)]]1) ≫ shift, MSB

〉

[[(α, 1)]]0, [α
]0 [[(α, 1)]]1 , [α]1

[shift]0

[shift]1

Fig. 3. 3-party comparison protocol, as described in Section 7.1. In the diagram, ‘≫’ is the cyclic right shift operator.

7 Providing recommendations

We now describe our 3PC for providing recommenda-

tions based on user profile u⃗i and item-profile matrix

V =
[⃗
v1; · · · ; v⃗r

]
. The strategy, at a high level, is to

sample recommendations via the discrete probability

distribution whose probability mass function is given by

(normalizing) the vector pmfi := ⟨pi,1, . . . , pi,r ⟩ in which

each pi,j ∈ [0, 1] is the inner product between u⃗i and

v⃗j .

To this end, P0 and P1 enlist the help of P2 to com-

pute a sharing [pmfi] using r parallel generalized Du-

Atallah invocations. Next, they non-interactively trans-

form [pmfi] into shares of a (scaled) cumulative distribu-

tion function by taking partial sums; that is, they com-

pute shares of

cdfi :=
〈
pi,1, pi,1 + pi,2, . . . ,

∑r

j=1 pi,j

〉
.

To sample from the distribution, it now suffices for the

user to choose and submit a uniform random u ∈R [0, 1]∩
R to P0 and P1 (in cleartext). P0 and P1 scale the given

u by
∑r

j=1 pi,j , and then they run a 3-party protocol

to find and return the index j of the smallest number

in cdfi that is greater than or equal to this scaled u.

For this last step, they employ a novel 3PC method to

evaluate the greater-than-or-equal-to operator (over Z)
on (2, 2)-additive shares.

7.1 3-party integer comparison

The task of MPC-based integer comparison has re-

ceived considerable attention. Most prior works (e.g.,

[8, 15, 22, 38]) implement comparison using (inherently

costly) bit decomposition as a subroutine. One notable

exception is the constant-round construction of Nishide

and Ohta [38]; however, their construction is specific to

secret sharing over odd-order rings and is, consequently,

not applicable to our setting.

Our new 3PC comparison protocol is reminiscent

of our 3-party fixed-point vector normalization protocol

(§6.4.2). Specifically, our method checks whether a ≥ b

over Z by using a modified PIR protocol to map the

difference a − b to its most-significant bit, which will

equal 1 if and only if a − b overflows (which happens if

and only if a < b).

Suppose P0 and P1 hold (2, 2)-additive sharings [a]
and [b]; the goal is for P0 and P1 to output [1] if a ≥ b

and [0] otherwise. To this end, consider the “database”

MSB = 1|R|/2∥0|R|/2 ∈ GF(2)|R|
mapping each possible

value of a − b ∈ R to 1 − msb(a − b). From here, the

three parties employ a modified PIR protocol to fetch

the answer from MSB , as illustrated in Figure 3: P2 sam-

ples α ∈R R and shares [α] and [[(α, 1)]] among P0 and P1.

Next, P0 and P1 use their respective shares to reconstruct

the value shift := (a− b)− α.

Finally, P0 and P1 compute the full-domain evalu-

ations of [[(α, 1)]]0 and [[(α, 1)]]1, cyclically shift them by

shift, and then output their respective inner products

with MSB . Similar to the normalization protocol, the

cyclic shift effectively moves the DPF target from α to

a − b, while the inner product maps the result to 1 if

the most-significant bit of this new target is 0, and to 0
otherwise.

7.2 Avoiding duplicate recommendations

Using the above strategy, PIRSONA will frequently rec-

ommend “duplicate” items—that is, items that the user

has previously fetched. To avoid such unhelpful recom-

mendations, PIRSONA servers can “zero out” the jth el-

ement of pmfi for each item j previously downloaded

by user i. The procedure is as follows: P0 and P1 hold

(i) a (2, 2)-additive sharing [pmfi], and (ii) a running sum

e⃗ ∈
(
GF(2)

)r
of flag vectors derived from the queries of

user i. They use Du-Atallah to compute the product of

each component of pmfi with the corresponding compo-

nent of ⟨1, 1, . . . , 1⟩ − e⃗. This effectively “zeros out” the
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components of pmf i corresponding to elements that user

i has previously fetched, while leaving all other compo-

nents unchanged. The resulting vector is then used to

compute cdfi and render recommendations as described

above.

8 Implementation & evaluation

In order to validate the practicality of PIRSONA, we

wrote a proof-of-concept implementation in C++ using

the open-source library dpf++ [27] for (2, 2)-DPFs and

Asio for asynchronous TLS communication [32].
6

Experimental setup. We ran PIRSONA on Amazon EC2

servers running in four geographically distant regions;

namely, we ran P0 in the us-west-2 region (Oregon), P1
in the us-east-1 region (North Virgina), P2 in the eu-

west-1 region (Ireland), and P3 in the us-east-2 region

(Ohio). Each party ran on its own m5.2xlarge instance

(8 vCPUs and 32GiB of RAM) running the standard

Ubuntu 18.04 LTS AMI.

Most experiments use MovieLens [25], a standard

dataset collection used as a benchmark by the col-

laborative filtering research community. Specifically, we

used two datasets from MovieLens, each consisting of

q = 100000 queries:

1. ML-100K with m = 943 users and r = 1700 items;

and

2. ML-Latest with m = 610 users and r = 9000 items.

The first dataset is the same one used by Niko-

laenko, Ioannidis, Weinsberg, Joye, Taft, and Boneh [36]

in the context of garbled circuit-based collaborative fil-

tering, which is perhaps the most closely related work

to PIRSONA in the literature. The second dataset is sim-

ilar, but it includes over a factor 5× more items, which

greatly affects the performance of our DPF-based MUX

and DeMUX constructions
7
. We remark that data in

the MovieLens datasets contain explicit numerical rat-

ings; however, as we deal exclusively with collaborative

filtering based on Boolean matrix factorization, we re-

place all numeric ratings with the value 1. To measure

how PIRSONA scales with a varying number of queries,

profile dimensions, or items in the database, we also ran

6 Our GPLv3-licensed source code is available via https://pr.

iva.cy/git/pirsona
7 Note that PIRSONA’s performance is agnostic to the actual

data and is only dependent on the number of items and the

dimensions of the profiles.

Table 1. Communication cost (in bytes) for q queries and
x normalizations when profiles have dimension d .

Receiver

P0 P1 P2 P3

S
en

d
er

P0 — q(24d+24)+29
λx 2x 8q+29

λx

P1
q(24d + 24)

+29
λx

— 29
λx 8q + 2x

P2
2λ + q(32d +

24) + 16x
4λ + q(16d +

24) + 16x
— —

P3 4λ +16x λ + 16qd + 16x — —

a handful of experiments over synthetic (random) data

of varying sizes.

Each of our experiments measures the (wall-clock)

training times for a given dataset, which includes both

processing time and network latency. We repeated all ex-

periments for 100 trials and our plots and tables report

the sample mean running timings across those 100 trials,

with error bars indicating one standard deviation from

the sample mean. In tables and when discussing selected

statistics in the text, we report all figures to one digit

of precision in the sample standard deviation. Except

where otherwise specified, all experiments were run with

p = 18 bits of precision for the fractional part of user-

and item-profile components, leaving 64− 3 ·18− 1 = 9
bits for integer parts when accumulating adaptation val-

ues.

8.1 Bandwidth consumption

Before presenting the results of our running-time exper-

iments, we briefly analyze the bandwidth consumption

of PIRSONA. Recall that P2 sends mostly random blind-

ing factors and cancellation terms to P0 and P1; as the

DPFs already assume the existence of PRGs, PIRSONA

reduces the communication cost by having P2 send λ-

bit PRG seeds to P0 and P1 so that they can generate

blinding factors locally. The total server-to-server band-

width consumption, accounting for this optimization, is

summarized in Table 1.

8.2 Scalability microbenchmarks

Our first running-time experiments measure the train-

ing time of PIRSONA over synthetic (random) data, with

the goal of isolating the effect of varying a single param-

eter when all others are fixed. To this end, we ran three

sets of experiments respectively measuring the impact

https://pr.iva.cy/git/pirsona
https://pr.iva.cy/git/pirsona
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Fig. 4. Wall-clock training time and recommendation rate for scalability microbenchmarks. Error bars show ± one stan-
dard deviation; the shaded bands are 95% confidence intervals (z = 1.96). Notice that the x-axes of Figures 4a, 4b, and 4d
use a log scale with base 2.

on training time of varying (i) the number of queries be-

ing trained on, (ii) the number of items r in the database,

and (iii) the dimension d of the profiles. We also mea-

sured the rate at which PIRSONA can render recommen-

dations while varying the number of items r .

Varying the number of queries. Figure 4a plots the (wall-

clock) training time for m = 943 users, r = 212
items,

and profiles of dimension d = 8 as the number of

queries ranges from q = 210
up to 216

. As expected, the

measured training times scale linearly (linear regression

gives R
2 = 0.9972) from about 2.3 ± 0.1s for q = 210

queries up to 21 ± 3s for q = 216
queries (an effective

rate of about 3500 queries/s).

Varying the number of items. Figure 4b plots the (wall-

clock) training time for q = 214
queries, m = 943

users, and profiles of dimension d = 8 as the number

of items ranges from r = 28
up to 214

. Again we ob-

serve the expected linear scaling (linear regression gives

R
2 = 0.9889) from about 8±1s for r = 28

items through

28 ± 3s for r = 214
items (≈ 1s slowdown per 1000

items).

Varying the profile dimensions. Figure 4c plots the (wall-

clock) training time for q = 216
queries, m = 943 users,

and r = 210
items as the dimension of user and item pro-

files ranges from d = 4 up to 32. Again, the measured

training times (after d = 8) scale linearly (linear regres-

sion gives R
2 = 0.9978) from about 20 ± 3s for d = 8

up to 41 ± 3s for d = 32 (≈ 0.9s slowdown per profile

component). The initially steeper slope between d = 4
and 8 results from the former profiles occupying a single

256-bit AVX2 register and the latter spanning multiple

such registers.

Recommendation rate. Figure 4d plots the number of rec-

ommendations rendered per second for profiles of di-

mension d = 8 as the number of items ranges from

r = 210
up to 216

. We observe slightly superlin-

ear scaling as the number of items grows from about

320 ± 20 recommendations/s for r = 210
items down to

5.1± 0.2 recommendations/s for r = 216
items.

8.3 MovieLens experiments

Table 2 displays the training and recommendation times

for PIRSONA on the two MovieLens datasets. Recall that

both datasets include 100000 queries; thus, even the

slowest experiment (ML-Latest with profiles of dimen-

sion d = 8) had mean training throughput exceeding

1400 queries/s. We also compared the training time of

PIRSONA against that of our own (lightly optimized)

non-private collaborative filtering implementation and

found that PIRSONA ran around 150× slower. We forgo

a detailed comparison because significant speedups to

the non-private code are surely possible.

The rightmost column in Table 2 displays the mean

time for providing one recommendation to each user, of

which there are m = 943 in ML-100K and m = 610
in ML-Latest. For the ML-100K dataset, this works

out to 84± 4 recommendations/s when profiles have di-

mension d = 4 and 71±5 recommendations/s when they

have dimension d = 8; for theML-Latest dataset, these

rates decrease to 32±4 recommendations/s when profiles

have dimension d = 4 and 31 ± 5 recommendations/s
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when they have dimension d = 8, due to the com-

paratively large number of items (r = 9000 versus

r = 1700).
Recall from Section 8.2 that the time to do gradi-

ent descent scales linearly with the profile dimension.

Therefore, although we report our results only for d = 4
and d = 8, one can reliably extrapolate to any required

dimension. The recommended number of the dimension

is dependent on the complexity of the domain.
8

Mean squared error. PIRSONA’s use of fixed-point arith-

metic introduces approximation errors relative to a

non-private collaborative filtering implementation us-

ing floating-point arithmetic. To quantify the effects

of fixed-point approximations, we compared the mean

squared error between the user and item profiles pro-

duced by PIRSONA on the ML-100K dataset relative to

those produced by our non-private collaborative filter-

ing implementation, which uses IEEE double-precision

floating-point arithmetic. A similar metric was used to

measure fixed-point approximation errors in the related

literature [36, 37]. We also measured what effect vary-

ing the fractional precision had on training times, since

higher fractional precision necessitates more frequent

precision reductions; fortunately, this difference was sta-

tistically insignificant with only p = 18 exhibiting a

slightly higher sample mean. The mean squared error

was minuscule with p = 14 or more bits (whereas below

p = 14 bits, it rapidly approached 1).

Table 2. Wall-clock running times for MovieLens. The
rightmost column is time to make one recommendation per
user.

Profile Grad. User prof. Item prof. Recomm.

Data Set dims. descent normalize normalize m items

ML-100K
4 22 ± 4s 0.7 ± 0.4 s 1.8 ± 0.1s 11 ± 4s

8 32 ± 6s 0.95 ± 0.09s 2.0 ± 0.2s 13 ± 3s

ML-Latest
4 49 ± 4s 0.53 ± 0.08s 3.5 ± 0.4s 21 ± 3s

8 65 ± 6s 0.7 ± 0.1 s 4.2 ± 0.7s 22 ± 4s

8 For reference, Bell and Koren [5] showed good results for di-

mension d = 20 in their winning Netflix Prize Challenge sub-

mission.

Table 3. Mean squared error and training time for select
fractional precisions on the ML-100K dataset with profile
dimension d = 8.

Fractional Running User prof. Item prof.

precision time MSE MSE

18 35 ± 8s 4 × 10−5 4.1 × 10−5

16 32 ± 6s 2 × 10−5 1.8 × 10−5

14 32 ± 6s 1.5 × 10−4 1.7 × 10−4

12 32 ± 6s 1.4 × 10−2 1.5 × 10−2

8.4 Comparison with garbled circuits

The most closely related prior work is detailed in a

manuscript by Nikolaenko, Ioannidis, Weinsberg, Joye,

Taft, and Boneh [36]. They use garbled circuits to train

similar collaborative filtering models as PIRSONA. Fun-

damental model differences render an apples-to-apples

comparison impossible, yet it is instructive to note that

Nikolaenko et al. report 2.9 hours to train on a subset

of 14683 queries (out of 100000) from the ML-100K

dataset—a full five orders of magnitude slower than

PIRSONA.

9 A hypothetical deployment

The evaluation in Section 8 suggests that PIRSONA may

be sufficiently performant to support recommendations

for a large-scale streaming service. This section considers

one hypothetical such deployment modeled after Netflix.

We stress that this paper focuses on training and provid-

ing recommendations from collaborative filtering models

in a PIR-based content-distribution system—not on the

design of a specific content-distribution system. We con-

sider a Netflix-like system because (i) video streaming

is exceedingly popular and is growing more so each day,

and (ii) the bandwidth and latency demands of video

streaming make it an exceedingly ambitious target for

a PIR-based realization. In other words, practicality for

video streaming implies practicality for audio stream-

ing, e-book downloads, software repositories, and other

related services.

When the user launches our hypothetical video

streaming service, their client software (perhaps

browser-based or perhaps a Smart TV app) presents a

landing page that lists all titles available for streaming.

The client software automatically requests a batch of
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recommendations (produced via the machinery devel-

oped in Section 7) to display under a “Based on Your

Viewing History” banner, much like how Netflix cur-

rently provides its recommendations. Upon selecting a

video to stream, the client software automatically sam-

ples a Hafiz-Henry query to fetch that video, and the

content distributor transparently updates the user and

item profiles behind the scenes.

Thus, the user experience with such a service would

be virtually indistinguishable from that of Netflix—

provided the PIR-based video streaming is sufficiently

performant. The bottleneck in Hafiz-Henry PIR is I/O

throughput; thus, for optimal performance, we want the

entire PIR database to fit in physical memory. To rec-

oncile this requirement with the massive size of video

streaming libraries, we consider a “striped” layout in

which the first N1 minutes of each title is served from a

dedicated PIR instance; if the user is still watching when

the N1-minute mark draws near, the first instance hands

the query off to a second dedicated instance serving the

next N2 minutes of each title, and so on.
9

According to Netflix, at the time of writing, HD

video streaming uses “up to 3GB” per hour; thus, we

assume an upper bound of 3GB/60 = 50MB per minute

of video. This means that we could store the first

N1 = 0.5 minutes of each title comprising the ML-

Latest dataset on servers with 225GB of RAM. As-

suming the bit rates and “striping” strategy above, we

performed microbenchmarks to estimate the number of

concurrent viewers that could stream from the ML-

Latest dataset. Specifically, we assume one 4-server

Hafiz-Henry instance running on four geographically

dispersed m5.16xlarge instances (each sporting 64 vC-

PUs and 256GiB of RAM) per 30 second stripe of video.

In order to hide I/O latency, the servers process incom-

ing queries in parallel batches of size 16. With this setup,

we were able to process 58000±1100 queries per minute.

This equates to about 58000/(60 · 16) ≈ 60 batches

per second, suggesting that the PIR adds an expected

delay of only about 17ms beyond normal Internet la-

tency.

9 We note that the “striped” layout allows the servers to infer

approximately how long a user watches a given stream, which

might leak much information about what they were watching.

This seems to be inherent: Either users download something as

long as the longest video—which is wasteful—or they accept

some leakage.

Monetary cost of deployment

We conclude this section with some back-of-the-envelope

calculations to estimate the cost of deployment. Our

calculations assume the measurements above with EC2

pricing (currently US$3.072/hour for an m5.16xlarge in-

stance). For simplicity, we assume that each video is 1

hour (60 minutes) so that a total of 4 ·2 ·60 = 480 servers

suffice for every 58000 viewers that commences stream-

ing a video in any given minute (or up to 3.48million

concurrent viewers). This equates to about US$0.0002

per viewer per hour, giving an upper bound of about

US$0.022 per subscriber per month, assuming all sub-

scribers streams HD video 24 hours a day, 7 days a week.

(A typical Netflix account purportedly streams about 2

hours of video per day, on average.)

10 Concluding remarks

We presented PIRSONA, a digital content delivery system

that realizes collaborative-filtering recommendations

atop private information retrieval (PIR). This combina-

tion of seemingly antithetical primitives makes possible–

for the first time–the construction of e-commerce and

digital media delivery systems that can provide person-

alized content recommendations based on their users’

historical consumption patterns while simultaneously

keeping said consumption patterns private. A series

of experiments in our proof-of-concept implementation

suggest that PIRSONA can easily scale to systems serving

thousands of users per second.

Toward building PIRSONA, we proposed several 4PC

primitives of independent interest, including (i) efficient

2- and 4PC fixed-selection wire multiplexers (MUXs)

and demultiplexers (DeMUXs) from (2, 2)-distributed
point functions, (ii) fast 3PC normalization for se-

cret-shared fixed-point vectors, (iii) 4PC well-formed-

ness tests for (2, 2)-distributed point functions, and

(iv) a novel, constant-round 3PC integer (“less than”)

comparison protocol.
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A Related literature

There does not appear to be any prior work specifically

addressing the problem recommendations in the con-

text of PIR-based systems; however, past efforts have

addressed other related problems. The fundamental dif-

ference between PIRSONA and all the prior work that we

have come across in this area lies in the system design.

The previous work in this area assumes that the system

already has the data on which it runs the recommen-

dation algorithm. Once the system has the data, there

are a host of techniques like Garbled Circuits, MPC on

secret shares, and fully homomorphic encryption that

have been used in the prior work to provide recommen-

dations. PIRSONA, on the other hand, relies only upon

the PIR queries by the users to do the CF. The work

by Nikolaenko, Ioannidis, Weinsberg, Joye, Taft, and

Boneh [36] is the closest to PIRSONA. They also do CF

to provide recommendations. While the underlying al-

gorithm to compute the recommendations is the same,

there are some key differences. Firstly, in their system,

the users submit their encrypted ratings of the items

they have downloaded to the system. Secondly, they use

Garbled circuits on these encrypted ratings to do the

CF. PIRSONA relieves the users of any such responsibility

and does MPC on the repurposed PIR queries to com-

pute the recommendations. This change in the system

design comes with the following benefits: (i) The user

experience in PIRSONA is more akin to a non-private sys-

tem, where they simply download the desired items and

have no additional responsibility, and (ii) Secondly, the

switch from Garbled Circuits to MPC on secret shares

gives a massive speedup.

Nikolaenko, Weinsberg, Ioannidis, Weinsberg, Joye,

Boneh, and Taft also present a Garbled Circuit based

ridge regression [37], which can be used to provide rec-

ommendations. The work by Parameswaran and Blough

[41] uses CF as the underlying algorithm to compute rec-

ommendations. They too assume that the data on which

the CF algorithm needs to be run is available to the sys-

tem. Their main idea is to do a data-obfuscation in such

a manner that, it preserves the clusters and they can do

the CF on the obfuscated data.

Another approach to CF is taken by Canny [11].

They run the CF algorithm on the user side. A group

of users aggregates their data using a Fully Homomor-

phic Encryption scheme to get personalized recommen-

dations.

There is a line of work in recommender systems that

is dependent on trusted hardware. Trusted hardware like
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Intel’s Software Guard eXtensions (SGX) has been used

to build recommender systems; for example, in a series

of papers by Aı̈meur, Brassard, Fernandez [1, 2]. Ohri-

menko, Schuster, Fournet, Mehta, Nowozin, Vaswani,

and Costa [39] perform various machine learning algo-

rithms like support vector machines, neural networks, k-

means clustering using trusted SGX-processors.

B 4-party DeMUX w/ sanity

checks

The 2-party DeMUX assumes that the seeds held by P0
and P1 constitute a well-formed leafless DPF; that is, it

assumes that, flags([[(j,⋆)]]0)⊕ flags([[(j,⋆)]]1) = e⃗j and cwh

is indeed the leaf-layer correction word for [[(j, 0)]]. If not,
the resulting output wires may take on arbitrary values,

corrupting the entire item-profile matrix. The 4-party

DeMUX augments its 2-party counterpart with a prob-

abilistic sanity check consisting of two main components

that respectively check that:

1. ∃j ∈ [1. . r ], flags([[(j,⋆)]]0)⊕ flags([[(j,⋆)]]1) = e⃗j , and

2. the leaf-layer CW sharing [cwh] is well formed.

Both components borrow well-known ideas from batch

testing [6], although the way they implement these ideas

as 4-party interactive protocols appears to be new. The

components of the sanity check run in tandem; however,

for clarity and ease of exposition, we treat each step in

isolation.

B.1 Testing the flag bits

The first component of the sanity check tests if

flags([[(j,⋆)]]0) ⊕ flags([[(j,⋆)]]1) = e⃗j for some j ∈ [1. . r ];
in other words, it checks if [[(j,⋆)]] defines a valid 2-

party MUX (see §6.2.1). Intuitively, the idea is to

have P3 select a vector R⃗ ∈R [0 . .2µ − 1]r , which

it sends to P0 and P1; then, treating R⃗ a “random

database”, P0 and P1 respectively use flags([[(j,⋆)]]0) and

flags([[(j,⋆)]]1) as queries in a 2-server instance of the cel-

ebrated Chor-Gilboa-Kushilevitz-Sudan (CGKS) PIR

protocol [13], forwarding the results for P3 to recon-

struct. If the CGKS responses provided to P3 reconstruct

to a component of R⃗, then P3 instructs P0 and P1 to ac-

cept [[(j,⋆)]] as valid.
The problem with this simplistic protocol is that it

leaks to P3 the index j of the standard basis vector e⃗j . To

prevent this, P0 and P1 enlist the help of P2, who selects

a blinding factor γ and a random cyclic permutation

π : [1 . . r ] → [1 . . r ], and then sends both of these values

to P0 and P1—but not to P3. P0 and P1 use π to cyclically

shift the components of flags(seed0) and flags(seed1) be-

fore using them as CGKS queries, and then they blind

the CGKS responses with γ before sending them to P3.

Intuitively, the permutation π severs the link between

the index j and the matching component R⃗[π(j)], while
γ prevents P3 from inferring π using [[(j,⋆)]]1—which it

also knows—in conjunction with R⃗ and the response

it receives from P1. Figure 5 illustrates this component

of the sanity check. Note that the same batch-testing

vector R⃗ can be used to check arbitrarily many DPFs,

provided (i) R⃗ is sampled after the DPFs are gener-

ated and (ii) each run of the test uses fresh choices for

π, γ.

A simple derivation confirms that P3 accepts when-

ever [[(j,⋆)]] is indeed a well-formed (leafless) DPF, as out-

put by G en. The next observation follows from a stan-

dard counting argument [26, Appendix A].

Observation 2. Let [[(j,⋆)]]0 and [[(j,⋆)]]1 be fixed, and let

R⃗ ∈R [0 . .2µ − 1]r. If flags([[(j,⋆)]]0) ⊕ flags([[(j,⋆)]]1) ̸= e⃗j ,

then Pr
[
⟨flags([[(j,⋆)]]0), R⃗⟩ ⊕ ⟨flags([[(j,⋆)]]1), R⃗⟩ = R⃗[j]

]
=

2−µ
.

Corollary 1. If flags([[(j,⋆)]]0) ⊕ flags([[(j,⋆)]]1) is not a

standard basis vector, then P3 rejects with probability at

least 1− r/2µ.

We remark that Boyle et al. proposed a 2-party san-

ity check [9, §4] based on linear sketching and 2PC;

recent work by Eskandarian, Corrigan-Gibbs, Zaharia,

and Boneh [19] modifies this test by replacing 2PC with

a 2-party SNIP. Yet another (less efficient) sanity check

for square-root-sized DPFs was proposed by Corrigan-

Gibbs, Boneh, and Mazières [14, §5.1]. Our sanity check

uses similar probabilistic batch-testing ideas, but it pro-

vides vastly superior performance by taking advantage

of the additional non-colluding computation parties at

our disposal. Indeed, whereas the Boyle et al.’s linear

sketch uses about 2r modular multiplications and r mod-

ular subtractions, the cost of our protocol is dominated

by an expected r/2 exclusive-ORs on similar-sized ele-

ments. (Note that every “multiplication” computed as

part of the above inner products uses a coefficient of

either 0 or 1.)
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B ← Fmux-sanity

(
[[(j,⋆)]]0; [[(j,⋆)]]1; R⃗; R⃗

)
Guarantee: B =

{
1 if ∃i ∈ [1. . r ], flags([[(j,⋆)]]0) ⊕ flags([[(j,⋆)]]1) = e⃗i, and
0 otherwise

P2 P3 : B ←
{

1 ∃i ∈ [1. . r ], r0 ⊕ r1= R⃗[i]
0 otherwise

P0 : r0 ←
〈
flags([[(j,⋆)]]0), R⃗

〉
⊕ γ

Output: B

P1 : r1 ←
〈
flags([[(j,⋆)]]1), R⃗

〉
⊕ γ

Output: B

(π, γ, R⃗)(π, γ, R⃗)
B

r1

B

r0

Fig. 5. The first component of the 4-party DPF sanity check protocol, as described in Appendix B.1.

(B0, B1)← Fdemux-sanity

(
([[(j,⋆)]]0, [cwh]0, R⃗); ([[(j,⋆)]]1, [cwh]1, R⃗); ([[(j,⋆)]]0, [cwh]1, R⃗); ([[(j,⋆)]]1, [cwh]0, R⃗)

)
Guarantee: B0 = B1 =

{
1 if EvalFull([[(j,⋆)]]0∥cwh) − EvalFull([[(j,⋆)]]1∥cwh) = 0⃗, and
0 otherwise

P2 : r2 ← [cwh]1 · ⟨flags([[(j,⋆)]]0), R⃗⟩+ α P3 : r3 ← [cwh]0 · ⟨flags([[(j,⋆)]]1), R⃗⟩+ β

P0 : r0 ← ⟨EvalFull([[(j,⋆)]]0∥[cwh]0, R⃗⟩
Output: B0 := r0 + r2 − (r1 + r3 − α) ?= 0

P1 : r1 ← ⟨EvalFull([[(j,⋆)]]1∥[cwh]1), R⃗⟩
Output: B1 := r1 + r3 − (r0 + r2 − β) ?= 0

αr2 r3β

r0 + r2 − β

r1 + r3 − α

Fig. 6. Second component of 4-party DPF sanity check, as described in Appendix B.2.

B.2 Testing the leaf-layer CW shares

The second component of the sanity check employs

the same “mix-and-match” pattern as the 4-party

MUX (§6.2.2) to test if the leaf-layer CW shares

are well formed. Suppose P0 and P1 respectively hold

([[(j,⋆)]]0, [cwh]0) and ([[(j,⋆)]]1, [cwh]1), while P2 and P3 re-

spectively hold ([[(j,⋆)]]0, [cwh]1) and ([[(j,⋆)]]1, [cwh]0); the
goal is to verify that indeed

0⃗ ?= EvalFull([[(j,⋆)]]0∥cwh)− EvalFull([[(j,⋆)]]1∥cwh) . (4)

By construction [9, Fig. 1], we have that

EvalFull([[(j,⋆)]]0∥[cwh]0) =EvalFull([[(j,⋆)]]0∥⃗0)
+ [cwh]0 flags([[(j,⋆)]]0)

=EvalFull([[(j,⋆)]]0∥[cwh]1)
+ ([cwh]0− [cwh]1) flags([[(j,⋆)]]0) ,

and, symmetrically, that

EvalFull([[(j,⋆)]]1∥[cwh]1) =EvalFull([[(j,⋆)]]1∥[cwh]1−[cwh]0)
+ [cwh]0 flags([[(j,⋆)]]1) ;

hence, Equation (4) holds if and only if

0⃗ ?= EvalFull([[(j,⋆)]]0∥[cwh]0) + [cwh]1 flags(seed0)
− EvalFull([[(j,⋆)]]1∥[cwh]1)− [cwh]0 flags(seed1) . (5)

Disclosing the four vectors comprising Equation (5)

to a single party would leak both cwh and the value on

the selection wire—to say nothing of the prohibitively

high communication overhead. Instead, each of the four

parties computes the inner product of their respective

vectors with a random vector R⃗ and then they use a 2-

move protocol to check that the resulting inner products

sum to 0. Note that the same random vector R⃗ can be

(i) shared among the two components of the test and

(ii) reused to test an arbitrary number of DPFs. Figure 6

illustrates this component of the sanity check.

C Simulators for subprotocols

In this section we provide the security proofs for MPC

subprotocols used in this paper. These proofs rely on

the simulatability of DPFs (see [9] for the proofs that

DPFs are secure).

C.1 2-Party MUX

In the 2-Party MUX there is no communication between

P0 and P1. Therefore, the security of the 2-Party MUX,
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directly follows from the security of Distributed Point

Functions.

C.2 4-Party MUX

Lemma 1. There exists a simulator which simulates the

views of P0, P1, P2 and P3 in Fmux (4-Party Multiplexer).

Proof. The simulator works as follows. Parties P2 and

P3 receive no messages in the protocol.

1. P0 receives a blinded profile from P2, and a blind of

profile size from P3.

2. Similarly, P1 receives a blinded profile from P3, and

a blind of profile size from P2.

Therefore, the simulation for Pb is pair of uniformly

generated random profiles.

C.3 MUX-sanity check

Lemma 2. There exists a simulator which simulates

the views of P0, P1, P2, and P3, in Fmux-sanity (the MUX-

Sanity Check).

Proof. The first component of the DPF sanity check

verifies that flags(seed0) and flags(seed1) are indeed the

shares of a standard basis vector. P2 does not have any

output. Parties P0, P1, P3 have an output B ∈ {0, 1}.
B = 1 indicates that the flags(seed0) and flags(seed1)
are shares of a standard basis vector and B = 0 indi-

cates otherwise. Pb (for b ∈ {0, 1})) receives a random

permutation, a blinding factor and random vector from

P2.

The simulation for P0 and P1 are (i) a random per-

mutation vector, (ii) a uniformly random vector, and

(iii) a uniformly random blinding factor.

The simulation for P3 is conditioned on the value of

B. (i) If B = 0, then the simulation for P3 is pair of

random numbers, and (ii) If B = 1, then the simulation

is r0 generated uniformly at random and r1 ← r0 ⊕ R⃗[i]
for some i.

C.4 DeMUX sanity check

Lemma 3. There exists a simulator which simulates the

views of P0, P1, P2, and P3 in Fdemux-sanity (the DeMUX

Sanity Check).

Proof. P2 and P3 do not receive any messages in the

protocol.

The simulation for P0 works as follows. The secret

input for P0 is its seed for Evalfull and R⃗.

1. P0 receives something completely random from P2
and something completely random from P3. Call

them r2 and r3 respectively.

2. P0 computes the Evallfull on its seed and takes the

dot-product with R⃗. Call it r.

3. P0 receives r0 from P1 with the property that, (r0 −
(r + r2)) = 0.

Therefore, the simulation for P0 is (i) a ran-

dom r2 (simulating the message from P2, (ii) a uni-

formly random β (simulating the message from P3, and

(iii) r0 = −(r2 + EvalFull([[(j,⋆)]]0∥(cwh − δ)), R⃗⟩). The

simulation for P1 is symmetrical to that of P0.

C.5 3PC vector normalization

Lemma 4. There exists a simulator which simulates

the views of P0, P1, and P2 in Fisqrt (the 3-party inverse

square root).

Proof. P2 does not receive any messages in the protocol.

P0 and P1 receive a DPF key, a blinding factor and share

of a sign bit.

The simulation for P0 and P1 is (i) A random DPF

key., (ii) A uniformly random number., and (iii) A uni-

formly random bit.

C.6 3PC integer comparison

Lemma 5. There exists a simulator which simulates the

views of P0, P1, and P2 in Fgeq (the 3-party Comparison).

Proof. P2 does not receive any messages in the protocol.

P0 and P1 receive a DPF key and blinding factor.

The simulation for P0 and P1 is (i) A random DPF

key, and (ii) A uniformly random number.

D Security analysis

This appendix sketches a proof of security for

PIRSONA in the ideal-world/real-world simulation

paradigm.
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In the ideal world, all PIRSONA users hand their re-

quests directly to some benevolent trusted party, T , who
provides honest answers and correctly updates user and

item profiles in response to incoming requests. We con-

sider an attacker A who corrupts an arbitrary subset

of PIRSONA users, adaptively choosing corrupted users’

requests to T and examining T ’s responses in a bid to

draw inferences about the behaviour of one or more non-

corrupted users.

In the real world, we replace T with the multi-

server PIRSONA protocols described in the main text. We

also permit the attacker to corrupt one of the PIRSONA

servers (in addition to an arbitrary subset of users). As

in the ideal world, A seeks to draw inferences about non-

corrupted users—only now A can leverage any informa-

tion learned through its privileged position as a PIRSONA

server to help in drawing these inferences. We stress that

A is assumed to be PPT and may only employ semi-

honest strategies; that is, it logs, analyzes, and exploits

any information it encounters during the PIRSONA exe-

cution, but it otherwise follows all MPC sub-protocols

precisely as specified.

Informally, we wish to show that operating in

the real world provides A with no tangible advantage

over operating in the ideal world, where all inferences

about non-corrupted users necessarily result from model

leakage inherent to the underlying collaborative filter-

ing recommendations—not from the MPC components

PIRSONA uses to realize those recommendations. We

demonstrate this by constructing an efficient simulator

that uses A’s ideal-world views to sample “simulated”

real-world views for A. The existence of such a sim-

ulator guarantees that any inferences A can draw in

the real-world, it can just as easily draw in the ideal

world.

PIRSONA in the ideal world

Each user i interacts with the ideal-world trusted party

T through a confidential, point-to-point channel (so that

T always knows with which user it is interacting) via

two public interfaces: T .Queryi(·) and T .Recommendi(·).
In addition to servicing requests via these interfaces, T
curates (i) the database D :=

[
D⃗1; · · · ; D⃗r

]
, (ii) the

item- and user-profile matrices V :=
[
u⃗1; · · · ; u⃗m

]
and

U :=
[⃗
v1; · · · ; v⃗r

]
, (iii) a publicly viewable list L sum-

marizing its interactions with PIRSONA users
10
, (iv) a

queue Q of queries for which T has yet to update the

collaborative filtering user and item profiles, and (v) a

queue Q′
of all queries previously submitted to T . We

stress that T represents and performs arithmetic oper-

ations on the components of V and U via the same

fixed-point representation used by PIRSONA in the real

world.

The following specifications dictate how T responds

to requests from user i on each public interface:

1. T .Queryi(j): If j /∈ [1 . . r], then T appends

(Query; i, invalid) to L and returns ⊥ to user i; oth-

erwise, it appends (Query; i, valid) to L and (i, j)
both to Q and to Q′

, and then it returns the re-

quested item D⃗j to user i.

2. T .Recommendi(u): T appends (Recommend; i, u) to

L and then it emulates the steps of the protocol of

Section 7 to render a recommendation; that is, it

computes

cdfi :=
(
P1, P2, . . . , Pr

)
,

using Pk :=
∑k

j=1 pi,j for each k = 1, . . . , r , where

pi,j :=

{
0 (i, j) ∈ Q′

and

⟨u⃗i, v⃗j⟩ otherwise,

and then it sends min{k | Pk ≤ u · Pr} to user i.

In addition to the two public interfaces, T also imple-

ments the following profile-updation interface that is in-

voked periodically (pursuant to some policy specific to

the given PIRSONA deployment):

3. T .Update(): T appends (Update) to L and then,

while Q is nonempty, it pops (i, j) from the front

of Q and verifies that j ∈ [1 . . r ]; if so, it updates

u⃗i ← u⃗i + v⃗j

(
1− ⟨u⃗i, v⃗j⟩

)
and

v⃗j ← v⃗j + u⃗i

(
1− ⟨u⃗i, v⃗j⟩

)
.

Once Q is empty, T uses the piecewise-linear ap-

proximation specified by coeffs (see Section 6.4) to

normalize (i) every item profile v⃗j and (ii) each user

profile u⃗i that was updated in the preceding while

loop.

10 The summary L captures any cleartext metadata that

PIRSONA servers automatically learn in the real-world analogs

of the two interfaces.
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Security theorem

Theorem 1. For every semi-honest PPT adversary A
controlling at-most-1 server in a real-world (s+1)-server
PIRSONA deployment, there exists an efficient simulator

S that, by interacting with T , samples simulated protocol

views from a distribution computationally indistinguish-

able from that describing real-world views of A.

Proof (sketch). We assume without loss of generality

that A controls Pk for some k ∈ [1. .3], and then we

sketch the strategy S employs to simulate each of the

three interfaces that T exposes. Note that this setup

implies that A holds a copy of the database D along

with additive shares of V ; if k = 0 or 1, then A further

holds additive shares of U .

Meanwhile, S holds a copy of D and all value sent

to or received from T by corrupted users; it uses T ’s
publicly viewable list L to decide which interface call to

simulate next—and with which inputs—as it progresses

through the simulation. Specifically, S performs an in-

order traversal through the entries in L, invoking one of

the following three sub-routines depending on the entry

it encounters at each step of the traversal. It maintains

queues Q̂ and Q̂′
which serve purposes analogous to the

queue’s Q and Q′
that T maintains.

If the next entry is (Query; i, x): There are two

cases to consider, namely when user i is corrupted

versus when it is non-corrupted.

Case 1 (i is corrupted): In this case, both S and

A are privy to the query index j. In the real

world, A is also privy to the query-response pair

(seedk
′ , responsek

′) that user i sends to and receives

from Pk
′ for each k

′ = 0, . . . , s, plus the record D⃗j

that user i ultimately reconstructs.

To simulate this, S uses the (genuine) Hafiz-Henry

algorithms for the simulation; that is, it invokes the

Hafiz-Henry query algorithm with input j to sam-

ple (seed0, . . . , seeds), and then it produces the re-

sponses (response0, . . . , responses) by evaluating the

Hafiz-Henry response algorithm against D using each

resulting query vector, before finally running the

Hafiz-Henry reconstruction algorithm to extract D⃗j

from the responses.

S adds the triple (i, dpf(0)
, x) to Q̂ and Q̂′

, where

dpf(0)
is the least-significant-bit DPF seed in the query

vector seedk.

Case 2 (i is non-corrupted): In this case, neither S
nor A is privy to the query index j. In the real world,

A learns only the query vector that user i sends to Pk

and the response that Pk sends back to user i.

To simulate this, S invokes the simulator for

Boyle-Gilboa-Ishai (2, 2)-DPF generation to sample

an L-tuple seedk of simulated (2, 2)-DPF seeds,
11

and

then it produces the response responsek by evaluating

the Hafiz-Henry response algorithm against D using

these simulated query vector.

S adds the triple (i, dpf(0)
, x) to Q̂ and Q̂′

, where

dpf(0)
is the least-significant-bit DPF seed in the query

vector seedk.

If the next entry is (Recommend; i, u): There are

three main cases to consider, namely when k = 3,
when k = 2, or when k = 0 or 1; each of these cases

comprising two subcases, name when i is corrupted ver-

sus when it is non-corrupted. The“outer” cases capture

differences in what A learns in its capacity as a party

to the MPC, while the “inner” cases capture differences

in what A learns (or does not learn) in its capacity

as user. For brevity, we treat the MPC-specific part of

the three “outer” cases in isolation, before separately

addressing the two “inner” sub-cases.

Case 1 (k = 3): PIRSONA produces recommendations

using a 3PC involving only P0, P1, and P2; hence, there

are no MPC-related steps to simulate.

Case 2 (k = 2): P2 receives no input and produces no

output in the MPC (i.e., it only sends Du-Atallah

blinding factors and correction terms to P0 and P1);

hence, the MPC-related parts of the simulation are

trivial.

Case 3 (k = 0 or 1): S computes

[⃗e]k ←⊕(i,dpf)∈Q̂′ EvalFull(dpf) ,

and then it passes [⃗e]k, [⃗ui]k, and [V ]k to the simu-

lator for generalized Du-Atallah multiplication-based

computation of [pmfi]k from which it computes its own

simulated share of [cdfi]k =
(
[P1]k, . . . , [Pr]k

)
. Finally,

it repeatedly invokes the simulator for Fgeq to simulate

comparing u · [Pr]k with each entry of [cdfi], and then

it outputs the inner product of the comparison results

with ⟨1, 2, . . . , r⟩ to produce a recommendation share

[recomm]k.
For the sub-cases:

11 The pseudorandomness of leaf-layer CWs implies that leaf-

less DPF seeds are indistinguishable from standard DPF seeds

with the same domain and range; hence, no additional steps are

required to simulate the least-significant-bit seed.
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Sub-case 1 (i is corrupted): In this case, A pro-

duces no output and so there is nothing for S to out-

put.

Sub-case 2 (i is non-corrupted): In this case, A
learns both of the shares comprising [recomm]k (and,

hence recomm itself); thus, S computes [recomm]1−k =
recomm− [recomm]k.

If the next entry is (Update): While Q̂ is non-empty,

S pops (i, dpf(0)
, x) from the front of Q̂. If x = invalid,

then S simulates a rejecting run of the sanity check pro-

tocol and stops. Otherwise, if x = valid, then S simu-

lates an accepting run of the sanity check protocol, in-

vokes the simulator for the Fmux, invokes the simulator

for computing the Du-Atallah-based gradient descent

adaptation values, and then invokes the simulator for

Fdemux to update item-profile shares. Once Q̂′
is empty,

S also invokes the simulator for precision reduction and

normalization, as mandated by the actual MPC proto-

cols.
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