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Secure integer division with a private divisor
Abstract: We consider secure integer division within
a secret-sharing based secure multi-party computation
framework, where the dividend is secret-shared, but the
divisor is privately known to a single party. We men-
tion various applications where this situation arises. We
give a solution within the passive security model, and
extend this to the active model, achieving a complexity
linear in the input bit length. We benchmark both so-
lutions using the well-known MP-SPDZ framework in a
cloud environment. Our integer division protocol with a
private divisor clearly outperforms the secret divisor so-
lution, both in runtime and communication complexity.
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1 Introduction

Secure multi-party computation (MPC) is a well-
known and increasingly popular technology that enables
privacy-friendly computations on distributed data. Mul-
tiple parties, each having private inputs, jointly com-
pute a function of these inputs using a cryptographic
protocol, without revealing their inputs to each other.
There exist various MPC frameworks that are capable
of securely computing arbitrary functions of the parties’
inputs, using tools like homomorphic encryption, gar-
bled circuits, or secret sharing. Besides the two essen-
tial primitives of secure linear combinations and secure
multiplication, such generic frameworks typically also
implement optimized protocols for several core building
blocks, such as integer comparison, integer division, ex-
ponentiation, and so on.

We consider the integer division building block, i.e.
given a secret-shared dividend x, and a divisor d, com-
pute a secret-sharing of x ÷ d := bx/dc. This is a rel-
atively expensive operation within MPC, and it is re-
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quired in various applications, such as secure clustering
[5, 13], secure personal recommendation [14], secure face
recognition [12], secure statistical analysis [17], secure
auctions [4, 24], but also for computing the Levenshtein
distance [25]. In these applications, the divisor is often
either secret, like the dividend, or a publicly known con-
stant. In the first case, this leads to secure, but compu-
tationally intensive protocols. In the second case, more
efficient solutions are known [31].

We consider the less frequently studied case where
one party privately holds the value of the divisor, and
show solutions whose computational complexity resem-
bles the efficient solutions in case the divisor is publicly
known. In this setting, where the divisor can be seen as
a direct input of one of the parties, a common solution
is to upload the divisor to the secure computing plat-
form [32] and perform the integer division with a secret
divisor, but a dedicated protocol for a private divisor
will, as illustrated in this paper, yield a more efficient
solution.

In many of the applications mentioned above, the
situation arises where the divisor is held privately by one
of the parties. For example, in one secure recommenda-
tion system [14], each user privately learns the number
of users that are similar to them, while the summed
item ratings remain secret. To obtain the actual recom-
mendation, the user needs to divide these two numbers,
without learning sensitive rating information, i.e. the
dividend.

Similarly, in each iteration of secure clustering, the
sum of user values of one cluster needs to be divided
by the number of users in each cluster [13]. Instead of
letting the server know both values, and performing a
cleartext division, which is how this division is currently
computed, it would be more secure to keep the cluster
sum secret, and give the number of users for each cluster
to a specific user.

Also, when computing with a fixed-point represen-
tation [7], a truncation protocol is needed to divide in-
termediate results by some scaling factor. Although this
scaling factor is usually public, its exact value might re-
veal some information on the input values, so keeping
the value privately known to the holder of the inputs
values makes the solution more secure.

Another good example of such a setting is a secure
graph algorithm, where each party knows a subgraph, so
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the in- and out-degree of nodes are privately held. For
example, in the PageRank protocol, which has proven
useful for reducing financial fraud [26], intermediate val-
ues have to be divided by the out-degree of the corre-
sponding node.

1.1 Preliminaries

Our model of secure computation is very general. We
assume a set of parties P1, . . . , Pn have access to an
arithmetic black box functionality, denoted [·], on inte-
gers modulo some modulus N . The arithmetic black box
allows a party to encrypt a locally known input value,
and it allows the parties to jointly perform linear oper-
ations and multiplications on encrypted values, as well
as jointly decrypt a value. This arithmetic black box is
typically realized using multiparty computation based
on secret sharing, and we shall use this corresponding
language throughout the paper.1

Security is defined against an adversary that cor-
rupts some of the parties, where the precise set of par-
ties that can be corrupted depends on the realization of
the arithmetic black box. We distinguish between pas-
sive and active security (with abort), where in the for-
mer the parties are guaranteed to faithfully execute the
protocol.

Furthermore, we assume access to a secure compar-
ison functionality [b] ← Compare([x] < [y], `) that com-
pares two integers of at most ` bits. Throughout the
work, secrets are calculated modulo N , but we identify
residue classes in ZN with their representatives in the
integer interval [0, N), hence in particular integer com-
parison makes sense. The functionality takes secret inte-
gers x, y with 0 ≤ x, y < N , and outputs a secret-sharing
of a bit b that equals one, if x < y, and zero, otherwise.
Also, we require a functionality RandInt(`) that securely
generates a secret-sharing of a uniformly random inte-
ger in the interval [0, 2`). Both of these functionalities
are usually also implemented for MPC protocols that
realize the arithmetic black box (e.g. see [10] based on
SPDZ2k), and their realizations usually require a linear
number (in `) of multiplications.

The private division functionality that we want to
achieve in this work takes inputs [x] and [d], such that
P1 (without loss of generality) knows the value of d, and

1 Although we use the language of secret sharing, our results
also apply to secure multi-party computation based on homo-
morphic encryption (with threshold decryption).

produces an output [x ÷ d], such that x = d · (x ÷ d) +
(x mod d), where x÷ d ≥ 0, and 0 ≤ x mod d < d.

We use log2 x to denote the base two logarithm of
a positive integer x as a measure for the number of bits
of x. For convenience we ignore the fact that the result
should be rounded upwards to the closest integer, as
this logarithm is usually not integer valued. Let σ be
the statistical security parameter, whose value is usually
chosen around 40.

1.2 Related work in secure integer division

The related work is subdivided into two categories. The
first category contains secure integer division with a se-
cret (either secret-shared, or encrypted) divisor, and for
the second category, the divisor is publicly known. In-
teger division with public divisor is also known as trun-
cation, and is strongly related to secure computation of
the modular remainder with a public modulus.

Kiltz, Leander and Malone-Lee [21] presented an
oracle-aided protocol for computing the mean of several
database entries, which is described as a way of securely
approximating the division of two additively shared val-
ues, namely the dividend and the secret divisor. Their
main primitive is an oblivious polynomial evaluation,
which requires an amount of exponentiations and com-
munications linear in the size of the divisor.

Bunn and Ostrovsky [5] described a protocol for se-
curely clustering two databases. They propose a subpro-
tocol that securely computes the division of two secret-
shared integers, using ideas of long division.

Jakobsen [19] described several methods for divid-
ing two secret-shared integers. Also approximations are
considered, but all methods use some kind of (expen-
sive) binary search. A similar, exact approach for en-
crypted integers was found by Dahl, Ning and Toft [8],
who currently have the theoretically most efficient solu-
tion for secret division. They use threshold homomor-
phic encryption for integer division by multiplying with
the reciprocal, and truncating the result. However, in
practice, for bit lengths up to a few hundred, their ap-
proach is less efficient than Catrina and Saxena [7], who
worked out a way of securely computing with rational
numbers using a fixed-point representation. A linear se-
cret sharing scheme is used to protect the inputs and the
output. Part of this framework is a truncation protocol
that is capable of secure division with a known power of
two. The work of Catrina and Saxena is improved fur-
ther in the semi-honest model by Catrina and De Hoogh
[6].
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In 2018, Ohata and Morita [27] described a privacy-
preserving division protocol, with a trade-off between
accuracy and efficiency, by approximating the recipro-
cal. At the same conference, together with other authors,
they describe an exact division protocol with secret di-
visor, based on Goldschmidt’s division algorithm, and
apply it to Chi-squared tests [23].

Ugwuoke, Erkin and Lagendijk [30] present a secure
division for encrypted dividend and divisor, by iterat-
ing over the digits. Hiwatashi, Ohata and Nuida [18]
start from secret-shared dividend and divisor, and mod-
ify Goldschmidt’s method with a building block for ap-
proximating large products. Ding et al. [11] develop a se-
cure division for encrypted divisor in a setting for cloud
data processing with multiple parties.

Damgård et al. [9] presented secure protocols for
modulo reduction of secretly shared integers within
constant rounds. The modulus is either public, or se-
cretly shared. This secure modulo reduction could con-
sequently be used to compute the division.

Schoenmakers and Tuyls [28] presented a method,
based on threshold homomorphic crypto, to convert an
encrypted integer to its encrypted bits. One of their re-
sults is a gate that securely computes the least signifi-
cant bits. It can be used to compute an encryption of
x mod 2m for some known integer m, and from that an
encryption of x ÷ 2m, thus it enables the division of
an encrypted integer by a known power of 2. Toft [29]
showed how to reduce a secretly shared integer with re-
spect to a known modulus, thereby generalizing the re-
sults of Schoenmakers and Tuyls to arbitrary, but pub-
licly known divisors. He also extended this result to a
secretly shared modulus, using a secure comparison pro-
tocol among others.

Atallah et al. [3] presented secure protocols for inte-
ger division, either with an additively shared, or a public
divisor. The specific setting where one party holds a pri-
vate divisor has been introduced by Veugen [31].

1.3 Contribution

Our main contribution is an efficient protocol for se-
cure integer division of [x] by a private divisor [d] that
is known to one of the parties. Since we use the fact
that P1 knows d, we require its cooperation. An active
adversary that corrupts P1 can always refuse to cooper-

ate, therefore the best security we can achieve2 is active
security with abort.

We build on earlier work by Veugen [31], who in-
troduced two division protocols in the passive security
model. The first protocol is for exact division with a
public divisor d, and the second is secure approximate
division with a private divisor d for which the length
log2 d is public. We show the second protocol as stated
in [31] is in fact insecure, since it leaks some information
about x mod d, and remedy this. In addition, we im-
prove the protocol from approximate to exact division,
and instead of requiring the bit length of the divisor to
be public, we only use an upper bound ` on its bit size.

The intuition behind our protocol is as follows. We
mask x by adding a (much larger) random integer R, so
that x+R statistically reveals no information about x.
We reveal the masked value z = x+R to P1, who then
performs cleartext division by d, and secret-shares the
result. This resulting value equals (x÷ d) + (R÷ d) + b,
for some b ∈ {0, 1}. By choosing R of the form dR′+R′′,
where R′′ is small, we can subtract R′ from the result
and obtain the desired x÷ d plus a small error.

Some components of this error, like the value of b,
can be computed using calls to Compare. The remaining
error component is relatively small, but it is not neces-
sarily at most one (as erroneously stated in [31]). We
show a bound on this remaining error, and show how
to reduce it to zero, by first shifting x a number of bits
to the left before performing division, and then shifting
back the result of the division. The same technique al-
lows us to avoid leaking the exact bit-length of d, as was
required in [31].

We make the key observation that we can obtain
active security against an adversary corrupting P1 by
multiplying the secret-shared division result [z′] = [z÷d]
by [d], and checking whether the result is “close enough”
to z. More precisely, we check whether [d] · [w] ≤ [x] <
[d] · ([w] + 1). These checks also leak some information
to the adversary, but we provide a detailed analysis to
show this is negligible in the security parameter.

2 Passive security

We present in Protocol 1 a passively secure version of
our private division protocol PrivateDivisionP (where P

2 Without degrading performance to that of division by a secret
divisor.
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stands for passive security). In the next section, we will
provide the modifications needed to make the protocol
actively secure.

We now explain Protocol 1 in more detail. P1 re-
ceives z, which is the input x multiplied by 2`+σ and
then blinded with two random numbers: r′′ and h, where
h is a multiple of the divisor d. The randomness of r′′

is needed because P1 has knowledge of d, so if r′′ = 0,
P1 can compute z mod d = (2`+σx) mod d, which leaks
information about x. Since d is of bit-length at most `,
we choose r′′ to be of bit-length `+σ, where σ is a statis-
tical security parameter. The randomness of h is needed
because 2`+σx + r′′ easily leaks the entire contents of
x in the high order bits. The random number h should
have σ more bits than 2`+σx, so r′ should have at least
m+σ bits. The input restriction ensures that z does not
overflow.

Line 5 compares two numbers of `+ σ bits. In fact,
the reason we have split the randomness of h/d = r +
2`+σr′ into two numbers r and r′, is because we need
the value of (h/d) mod 2`+σ, which now by construction
equals r.

We shall now prove correctness and privacy of our
protocol. First, the following properties of integer divi-
sion, which are readily verified, shall be helpful.

Proposition 1. For integers a, b, and positive integers
n,m, we have that:
(1) (a+ b)÷ n = (a÷ n) + (b÷ n) +

((a mod n) + (b mod n))÷ n
(2) (a+ bn)÷ n = (a÷ n) + b

(3) (a÷ n)÷m = a÷ (nm) = (a÷m)÷ n
(4) 0 ≤ ((a mod n) + (b mod n))÷ n ≤ 1
Furthermore, ((a mod n) + (b mod n)) ÷ n = 1, if and
only if, (a+ b) mod n < a mod n.

Theorem 1. Protocol 1 is correct in the passive secu-
rity model. Concretely, if all parties faithfully follow the
protocol, then the correct division result x÷d is returned.

Proof. In the protocol, P1 obtains z = 2`+σx + (r +
2`+σr′)d + r′′. Let ζ1 := (2`+σx + r′′) ÷ d and ζ2 :=
r+2`+σr′, such that z÷d = ζ1 +ζ2. By Proposition 1(1)
we have

y = (z ÷ d)÷ 2`+σ = (ζ1 ÷ 2`+σ) + (ζ2 ÷ 2`+σ) + b,

where b is the result of the comparison (z ÷ d) mod
2`+σ < ζ2 mod 2`+σ.

Since ζ2 mod 2`+σ = (r+ 2`+σr′) mod 2`+σ = r, the
bit b is correctly computed in Protocol 1. By Propo-

sition 1(2), and the fact that r < 2`+σ we have that
ζ2 ÷ 2`+σ = (r + 2`+σr′) ÷ 2`+σ = r′. Similarly, since
r′′ < 2`+σ, and additionally using Proposition 1(3), we
see ζ1÷2`+σ = ((2`+σx+r′′)÷d)÷2`+σ = ((2`+σx+r′′)÷
2`+σ)÷d = x÷d. We conclude the output w = y−b−r′

equals x÷ d.
To be complete, we have to make sure that there

is no overflow modulo N . Clearly, the largest value
computed in the protocol is z = 2`+σx + h + r′′. For
h = (r + 2`+σr′) · d we have h < (2`+σ + 2`+σ · (2m+σ −
1)) · (2` − 1) = 22`+m+2σ − 2`+m+2σ, which is upper
bounded by N − 2`+m+2σ. The remainder 2`+σx+ r′′ is
upper bounded by 2`+σ+m, such that z < N .

Theorem 2. Assuming the arithmetic black box,
RandInt, and Compare are passively secure functionali-
ties, Protocol 1 is private, i.e. the parties do not learn
anything beyond what they can efficiently compute from
their respective inputs and outputs.

Proof. Given an adversary A, we show there exists a
polynomial-time simulator S that simulates the real-
world view of A. By using results on composition (e.g.,
[16, Theorem 7.5.7]), we may assume oracle access to our
secure comparison functionality Compare, and the secure
random generator RandInt. Let us distinguish two cases.

If the adversary A does not corrupt P1, it only
receives up to t shares of [x], [d], [r], [r′], [r′′], [h],
[z], [y], [y′], [b], and [x ÷ d]. By privacy of the secret-
sharing scheme, these are identically distributed to ran-
dom shares.

If the adversary does corrupt P1, it additionally
learns d and z. Since d is an input for P1, S also learns
this value. We now complete the proof by showing the
simulator S can generate a uniformly random value that
is statistically indistinguishable from z.

Observe that the simulator can perfectly simulate
zR = h + r′′ = (r + 2`+σr′)d + r′′, since it knows d. We
will show the statistical distance between z = 2`+σx+zR
and zR is negligible. First, we describe the probability
distribution of zR.

LetM = 2`+m+2σ, hence h ∈ {i ·d | 0 ≤ i < M}. Let
α be an integer with 0 ≤ α < αm, where αm = (M −
1)d+ 2`+σ is a strict upper bound for zR. We define the
set S(α) := {i ∈ Z | 0 ≤ i < M and 0 ≤ α − di < 2`+σ}.
Since h is d multiplied by a uniformly random number
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Protocol 1. PrivateDivisionP([x], [d], `).
Constraints: 0 < d < 2`, 0 ≤ x < 2m, m+ 2(`+ σ) < log2 N , and P1 knows d.
1: [r]← RandInt(`+ σ)

[r′]← RandInt(m+ σ)
[r′′]← RandInt(`+ σ)

2: [h]← ([r] + 2`+σ[r′]) · [d]
3: [z]← 2`+σ[x] + [h] + [r′′]

The parties reveal [z] to P1.
4: P1 computes y ← z ÷ (2`+σd) and y′ ← (z ÷ d) mod 2`+σ

P1 secret-shares y and y′.
5: [b]← Compare([r] > [y′], `+ σ) . `+ σ bits
6: [w]← [y]− ([b] + [r′]) . w = x÷ d
7: return [w]

in [0,M), we have

Pr(zR = α) =
∑
i

Pr(h = di) · Pr(r′′ = α− di)

=
∑
i∈S(α)

1
M
· 1

2`+σ
= |S(α)|
M2`+σ

.

For most values of α, the cardinality |S(α)| equals
2`+σ ÷ d+ e, where e ∈ {0, 1}. Concretely, this holds (at
least) for all α with 2`+σ ≤ α ≤ αm. For the remaining
values of α (0 ≤ α < 2`+σ), the upper bound |S(α)| ≤
2`+σ suffices.

Adding 2`+σx to the random variable zR ‘shifts’
the probability distribution to the right, with at most
2`+m+σ. Using the above bounds, we can bound the
statistical distance between the original and shifted dis-
tributions:

∆[z, zR] = 1
2
∑
α

|Pr(z = α)− Pr(zR = α)| .

For most values of α, i.e. the values with 2`+m+σ ≤
α ≤ αm, the difference |Pr(z = α) − Pr(h + r′′ = α)| is
bounded by 1/(M2`+σ). In the two tails, which are both
of length 2`+m+σ, the probability of either distribution
is bounded by 1/M , such that

∆[z, zR] ≤
1
2

(
αm − 2`+m+σ + 1

M2`+σ
+ 2 · 2`+m+σ

M

)
<

1
2M

(
2`+m+σ + 2`+m+σ+1) =

3
2 · 2

−σ,

which is negligible in the security parameter σ.

Although we reveal z in the protocol to P1 only, the
proof shows that it could also be revealed to all parties,
and considered as a public value.

By leaving out the secure comparison that computes
b, we can get a faster protocol that approximates the di-
vision result (has error at most 1), just like in [31, Pro-
tocol 3]. An important difference with that protocol is
that we choose r to be of length `+σ instead of `. This is
necessary for guaranteeing statistical security. Further-
more, Protocols 4 and 5 from [31], where the compari-
son result of two integers is approximated by comparing
only the most significant bits, are not suitable when the
two inputs are close. Note that [31, Protocol 6], which
computes an approximate minimum of two encrypted
numbers, implicitly overcomes this problem.

In Section 4 we implement an obvious variation of
Protocol 1, where the divisor is public. In this variation,
all parties learn z and d, and they individually com-
pute y and y′. For the secure comparison, they (non-
interactively) fix a secret-sharing of y′. Assuming an ac-
tively secure arithmetic black box, this gives an actively
secure division protocol in the case of a public divisor.

3 Active security

We now show how to modify Protocol 1 to turn it into
an actively secure protocol. First, we make the addi-
tional assumption that the underlying primitives, i.e.
the arithmetic black box and the functionalities Compare
and RandInt, are actively secure. Then, the thing that re-
mains is to ensure that P1 properly calculates y and y′,
as in line 4 of Protocol 1.

Since both y and y′ can be derived from (the bits
of) z ÷ d, the goal is to have P1 compute z′ = z ÷ d,
and verify its correctness. This is done by verifying that
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the remainder z′′ = z − z′ · d of z after division by d is
between 0 and d: 0 ≤ z′′ < d.

An efficient and well-known way for P1 to prove that
the value of z′ is less than 2m+`+2σ+1, is to generate its
bits z′i, 0 ≤ i ≤ m+ `+ 2σ, securely upload them to the
arithmetic black box, and let the parties compute [z′] =∑m+`+2σ
i=0 [z′i]2i. To show that the z′i are indeed bits, the

parties can compute and reveal z′i(1 − z′i), and check
whether the outcome is zero. Since z′i(1− z′i) = z′i − z′i

2,
a dedicated (and more efficient) squaring could be used
instead of a regular secure multiplication. We denote
this subprotocol, which takes O(m+ σ) secure multipli-
cations, by RangeProof(P1, z

′,m+ `+ 2σ + 1). We work
this out in more detail in Protocol 2 (PrivateDivisionA, A
stands for active security).

An alternative, and possibly more efficient way
would be to replace the range proofs by edaBits [15],
which could also be used for the RandBits functionality.

In case the modulus of the secret-sharing scheme is
a power of two, a secret-sharing of y′ could be obtained
from [z′] directly by reducing the shares modulo 2`+σ.
Similarly, the RangeProof of z′′ could be avoided, by
reducing [z′′] modulo 2` directly.

The upper bounds on the comparison and range
proof inputs determine the total (order of) number of
secure multiplications, such that Protocol 2 has a to-
tal complexity of O(m+ `+ 2σ) secure multiplications,
which is somewhat larger than, but comparable to, the
O(`+ σ) secure multiplications of Protocol 1.

If one of the verifications (of β1, or β2), or one of the
range proofs fail, the parties know that P1 has cheated,
and the protocol aborts. We formally prove the correct-
ness and security of Protocol 2.

We now argue the security of Protocol 2 in the
ideal/real stand-alone model. We show that for each ad-
versary participating in an execution of the real proto-
col, there exists a simulator that produces indistinguish-
able output while interacting with the following ideal
functionality F :
1. The parties send their shares of [x] and [d] to F .
2. P1 sends the value of d to F .
3. F secret-shares the division result x÷ d to the par-

ties.

At any step, the adversary is given the option to abort
the functionality. Our proof constructs a straight-line
black box simulator that only uses oracle access to the
adversary; hence, security under general composition, or
equivalently in the universal composability (UC) model,
follows from existing results [22].

Theorem 3. Assuming the arithmetic black box, in-
cluding RandInt and Compare, are actively secure func-
tionalities, Protocol 2 is actively secure.

Proof. First we show Protocol 2 computes the correct
result, i.e. w = x ÷ d, in case the protocol does not
abort. The input bounds for the calls to Compare are
guaranteed by the output bounds of the functionalities
RangeProof, Compare and RandInt. We only need to show
z′ indeed equals z ÷ d. Since the values of y and y′ are
computed from z′, using only the functionality Compare,
and basic operations from the arithmetic black box, we
can use the proof of Theorem 1 to conclude correctness.

Assume the protocol does not abort. Then, since
β2 = 0, we know the equivalence z ≡ z′ ·d+z′′ (mod N)
holds. Furthermore, β1 = 1 guarantees 0 ≤ z′′ < d, such
that z′ = (z + kN)÷ d for a certain k, 0 ≤ k < d. Using
the bounds on x, d, and N , and the bounds obtained
from the RangeProofs, we see that firstly N ÷ d > N ·
2−` ≥ 2m+`+2σ+1, and secondly, since z = 2`+σx+ (r +
2`+σr′) · d+ r′′, z ÷ d = r+ 2`+σr′ + (2`+σx+ r′′)÷ d ≤
2m+`+2σ−1 + (2m+`+σ−1)÷d < 2m+`+2σ+1. It follows
that k = 0, and z′ = z ÷ d.

Second, we show that the protocol is private, given
an arithmetic black box with security with abort and
t-threshold secret sharing. More precisely, given an ad-
versary A, we show there exists a polynomial-time sim-
ulator S that simulates the real-world view of A. We
assume oracle access to our secure comparison function-
ality Compare, and the secure random generator RandInt.
Let us distinguish two cases.

If the adversary A does not corrupt P1, it re-
ceives up to t shares of the values [x], [d], [r], [r′], [r′′],
[z′i]0≤i≤m+`+2σ, [z′′i ]0≤i<`, [b]; depending on whether
and when an abort occurred. Since P1 is not corrupted,
the simulator will also receive secret-sharings of known
values β1 = 1, and β2 = 0; it can also generate those.
By privacy of the secret-sharing scheme, the simula-
tor can generate shares that are indistinguishable from
the shares in the real execution. The remaining secret-
sharings [y], [y′], [z′], [z′′], and [w] can be obtained by
local computation from the above shares.

If the adversary does corrupt P1, it additionally
learns d and z (if the adversary chooses not to abort
before step 3). Since d is an input for P1, S also learns
this value. As shown in Theorem 2, the simulator S can
generate a uniformly random value zR that is statisti-
cally indistinguishable from z. The adversary can devi-
ate from the protocol by choosing different values for z′

and z′′ and possibly learn something from the values β1
and β2. However, since β1 and β2 only depend on val-
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Protocol 2. PrivateDivisionA([x], [d], `).
Parameters: 0 < d < 2`, 0 ≤ x < 2m, m+ 2(`+ σ) + 1 < log2 N , and only P1 knows d.
1: [r]← RandInt(`+ σ)

[r′]← RandInt(m+ σ)
[r′′]← RandInt(`+ σ)

2: [h]← ([r] + 2`+σ[r′]) · [d]
3: [z]← 2`+σ[x] + [h] + [r′′]

The parties reveal [z] towards P1.
4: P1 computes z′ = z ÷ d and its bits z′0, . . . , z′m+`+2σ.
5: P1 secret-shares z′ via its bit decomposition and shows that it was correctly computed:

[z′]← RangeProof(P1, z
′,m+ `+ 2σ + 1) . [z′]←

∑m+`+2σ
i=0 2i[zi]

P1 computes z′′ = z mod d and its bits z′′0 , . . . , z′′`−1.
[z′′]← RangeProof(P1, z

′′, `) . [z′′]←
∑`−1
i=0 2i[z′′i ]

6: [β1]← Compare([z′′] < [d], `) . ` bits
[β2]← [z]− [z′] · [d]− [z′′]
Reveal β1 and β2, and verify β1 = 1 and β2 = 0.

7: [y′]←
∑`+σ−1
i=0 2i[z′i] and [y]←

∑m+`+2σ
i=`+σ 2i−`−σ[z′i] . y′ = z′ mod 2`+σ and y = z′ ÷ 2`+σ

[b]← Compare([r] > [y′], `+ σ) . `+ σ bits
8: [w]← [y]− ([b] + [r′]) . w = x÷ d

return [w]

ues z, z′, z′′, and d that are known by the adversary,
the simulator can also just generate β1 and β2 by itself,
depending on the input distributions for z′ and z′′ that
it copies from the adversary.

Formally, the ideal-world tuple (zR, β1, β2) is
statistically indistinguishable from the real-world
(z, β1, β2).

Although we reveal z in the protocol to P1 only, the
proof shows that it could also be revealed to all parties,
and considered as a public value.

4 Performance

In this section we describe the way we implemented our
protocols, explain a state-of-the-art secret divisor pro-
tocol, show the benchmark results, and end with a com-
plexity analysis.

4.1 Implementation

We implemented our protocols in the MP-SPDZ frame-
work [20] using primitives based on 3-party (allow-
ing one corruption) replicated secret-sharing modulo a
power of two, and using σ = 40 bits of statistical secu-
rity. Concretely, we use the 3-party techniques by [2] for

the arithmetic black box, with active security with abort
using the protocol from [1].3 The built-in functionalities
RandInt and Compare of MP-SPDZ have been realized
using protocols described in [10].

This framework allows the user to write secure algo-
rithms in a Python-derived DSL, which are then com-
piled to MPC-specific byte-code, to be executed by an
optimized virtual machine. We slightly modified the
framework by adding a byte-code instruction that per-
forms cleartext integer division.4

We ran our benchmarks on three Amazon EC2 vir-
tual servers of type m5dn.2xlarge (8 vCPU, 32 GB
memory) in the us-east-2c region, connected through a
25 Gbps LAN (average round-trip latency 0.075 ms). In
our benchmarks, we ran each protocol in a batch of 100
divisions in parallel. We tested each batch three times
consecutively and measured elapsed wall clock time for
each of them, and then took the minimum runtime.

A complication is that the virtual machine in MP-
SPDZ does not support instructions for partially open-
ing values to a specific party P1 mid-execution, and then
have that party run local computations and secret-share

3 We use the replicated-ring-party and sy-rep-ring-party
engines for passive and active security, respectively.
4 Our modification was forked off from commit 15d179a, after
version 0.2.0.
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the result to the other parties. To this end, we bench-
mark a protocol that needs slightly more computation,
and thus our benchmarks provide an upper bound for
our secure protocol. Instead of partially opening a value
to P1, our benchmarking protocol does not maintain pri-
vacy, and instead opens the value to all parties (that are
also given the value of d), each running the local com-
putations that only P1 should. To emulate P1 secret-
sharing the result of the local computations in Proto-
cols 1 and 2, P1 then inputs a sharing of 0, that is added
to the publicly known output of the local computation.

4.2 Division protocol of MP-SPDZ

In the benchmarks, we compare our solutions with
the built-in primitives of MP-SPDZ. These primitives
are targeted towards fixed-point arithmetic, where each
number consists of an integral and a fractional part,
both having a fixed number of bits. As a result, to di-
vide anm-bit dividend by an `-bit divisor, they need two
max{`,m}-bit integers, and log2 N ≥ 4 max{`,m} + σ

bits of space.
The division protocol of MP-SPDZ is based on the

fixed-point solution from Catrina and Saxena [7]. They
use Goldsmidt’s method for iteratively approximating
x/d: each iteration both dividend and divisor are mul-
tiplied with a suitably chosen fraction, such that the
divisor converges to one, and hence the dividend to x/d.
The desired accuracy determines the number of itera-
tions, but five iterations are already sufficient for 112
bit precision. This makes the approach more efficient
than competitors like [8]. Given two inputs consisting of
k bits, the division protocol takes O(log2 k) communica-
tion rounds, and O(k log2 k) secure multiplications.

4.3 Improved public divisor protocol

Although the division protocol from MP-SPDZ was de-
signed for a secret divisor, they also use it when the
divisor is public, which is convenient, but not the most
efficient approach for this setting. With a small modi-
fication to our private divisor protocol Protocol 1, we
obtain a division protocol for a public divisor, which
outperforms the method built into MP-SPDZ. In the
benchmarks, we refer to the resulting protocol as Pub-
lic*.

In the modification, we treat d as public, and let
each party “act as P1”. Concretely, instead of opening
[z] to a single party, z is revealed to all parties, and each

party computes y and y′ locally. By running the proto-
col with actively secure underlying primitives, correct-
ness is guaranteed, since once the value of z is revealed,
each party computes the same publicly-known values y
and y′, and active security of the arithmetic black box
ensures these values must be identical.

4.4 Benchmarks

We compare three different secure integer division pro-
tocols. The first one with a public divisor that is known
to all parties. The second one with a private divisor,
known to only one party, and the final one with a secret
divisor, unknown to all parties. To show the merits of
having a separate solution for private divisor, instead of
treating it as a secret divisor, we compare the complex-
ity of all three solutions.

We ran our protocol on different bit-lengths of the
dividend, and took the divisor to be half its bit-length.
In this way, the outcome of the division, and the divisor,
will have the same ` bit precision, just as in the bench-
marked protocol with secret divisor that uses fixed-point
arithmetic. The results can be found in Table 1, the
coloured marks referring to the corresponding lines in
Figure 1. The table consists of communication and run-
time performance of all secure division protocols, in both
the passive, and the active security model. The runtime
results have also been depicted in Figure 1, where the
red (public divisor; ) and green (secret divisor; ) lines
are for the protocols built into MP-SPDZ, and the blue
(private divisor; ) and purple (public divisor; ) lines are
for our solutions. As mentioned above in Section 4.3, we
found that our public version of the private divisor pro-
tocol, as depicted in Protocol 1, outperforms the stan-
dard MP-SPDZ protocol for public divisor. Likewise, our
protocol for a private divisor outperforms the public di-
visor one from MP-SPDZ, but here it does not make
sense to benchmark Public*in the passive case, since it
is basically the same protocol as the private divisor pro-
tocol (contrary to the actively secure case, where our
private divisor protocol is Protocol 2 rather than Pro-
tocol 1).

Table 1 also shows the communication complexity,
in particular the number of communicated shares. Since
in the secret-sharing setting, each secure multiplication
requires a fixed amount of communication (and addi-
tions can be performed locally), this complexity mea-
sure is also a fair indication of computational complex-
ity. The required secret sharing modulus sizes are de-
picted in Table 2, which are the same for both security



Secure integer division with a private divisor 347

Divisor Bit-length of the dividend
8 16 24 32 40 48 54 64

Passive security

Public Runtime 0.093 0.121 0.145 0.181 0.221 0.242 0.298 0.372
Communication 4.0 10.8 18.1 33.6 49.7 64.5 86.1 127.5

Private Runtime 0.015 0.017 0.028 0.031 0.043 0.047 0.055 0.071
Communication 8.2 10.8 16.5 20.0 27.6 32.1 41.6 47.0

Secret Runtime 0.025 0.059 0.123 0.196 0.295 0.387 0.574 0.784
Communication 8.6 32.6 62.3 121.0 179.6 255.6 339.7 492.7

Active security

Public Runtime 0.147 0.262 0.322 0.518 0.663 0.914 1.161 2.069
Communication 16.6 40.3 63.2 115.0 166.1 211.2 279.6 416.8

Public* Runtime 0.121 0.135 0.187 0.228 0.287 0.402 0.502 0.531
Communication 30.9 38.4 57.0 66.9 91.1 104.4 134.3 149.8

Private Runtime 0.270 0.292 0.324 0.415 0.450 0.611 0.670 0.718
Communication 34.9 44.1 54.3 78.1 91.8 122.3 139.7 158.9

Secret Runtime 0.125 0.431 0.660 1.305 1.743 2.780 3.693 6.498
Communication 33.1 113.2 201.9 377.6 545.2 762.1 1005.6 1446.6

Table 1. Runtime (in seconds) and communication (in MB) for our different protocols. Public* is the protocol discussed in Section 4.3.
The colored marks correspond to Figure 1.

Table 2. Modulus size of division protocols

Divisor Input restrictions
x ≤ 2m and d ≤ 2`

Private m+ 2(`+ σ) + 1 < log2 N

Secret [7] m = ` and 4`+ σ < log2 N

models. As explained before, the modulus space for the
secret divisor protocol is due to the fixed-point arith-
metic approach.

4.5 Complexity analysis

Both the passively secure protocol with private divisor
(and its variant with public divisor), and the actively se-
cure protocol with private divisor have a complexity de-
pending on `, m, and σ. Both solutions are linear in the
input bit length (assuming linear complexity of RandBits
and Compare).

However, the most intensive operation in the pas-
sively secure protocol seems to be the secure compari-
son with inputs of `+σ bits, whereas the actively secure
protocol requires an additional RangeProof of length
m+ `+ 2σ + 1. Figure 1 shows that secure integer divi-
sion with secret divisor is more complex than public, or
private divisor.

5 Conclusion

We considered securely computing the integer division
with multiple parties, only one party holding the divi-
sor. We showed to which applications this problem was
relevant. We developed a new solution for the private
divisor problem, and extended it from the passive se-
curity model to the actively secure one. This extension
required some additional RangeProofs, but maintained
a linear complexity in the bit length of the inputs.

We implemented both solutions within the well-
known MP-SPDZ framework, and ran benchmarks in an
independent cloud environment. The complexity of our
private divisor protocols clearly outperformed the secret
divisor protocol from MP-SPDZ. It even outperformed
the public divisor solution from MP-SPDZ. Our public
variant of the private divisor solution did the same in
the active security model.

We conclude that we found a new solution for se-
cure integer division with private division, worthwhile
for many applications, with the potential of improving
performance, even with respect to some public divisor
solutions.
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