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CrowdNotifier: Decentralized
Privacy-Preserving Presence Tracing
Abstract: There is growing evidence that SARS-CoV-2
can be transmitted beyond close proximity contacts, in
particular in closed and crowded environments with in-
sufficient ventilation. To help mitigation efforts, contact
tracers need a way to notify those who were present in
such environments at the same time as infected indi-
viduals. Neither traditional human-based contact trac-
ing powered by handwritten or electronic lists, nor
Bluetooth-enabled proximity tracing can handle this
problem efficiently. In this paper, we propose CrowdNo-
tifier, a protocol that can complement manual contact
tracing by efficiently notifying visitors of venues and
events with SARS-CoV-2-positive attendees. We prove
that CrowdNotifier provides strong privacy and abuse-
resistance, and show that it can scale to handle notifi-
cation at a national scale.
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1 Introduction
Contact tracing aims to slow down the spread of
pathogens (e.g., SARS-CoV-2). Traditionally, contact
tracing is a manual effort where contact tracers inter-
view positively tested individuals in order to determine
who their relevant contacts were. What constitutes a
relevant contact depends on the transmission modes of
the pathogen of interest. In the case of SARS-CoV-2,
close physical contact has long been identified as a main
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transmission mode, giving rise to digital proximity-
tracing applications which have been deployed in nu-
merous countries worldwide [18].

Epidemiological studies have recently pointed to
the potential of airborne transmission beyond the close
physical contact distance of 1–2 meters [24]. While the
overall contribution of this transmission route remains
unknown, multiple studies have shown that clusters –
i.e., events with a comparatively high number of trans-
mission events – play a crucial role in the epidemiolog-
ical dynamics of the COVID-19 pandemic [2, 30]. Such
clusters seem to predominantly occur in crowded indoor
environments with limited ventilation; including restau-
rants, bars, classrooms, and places of worship as well as
events such as concerts, meetings, and private reunions.
Contact tracers thus also aim to reach out to individuals
that were present at the same event to advise them of
their increased risks and how to best take precautions,
e.g., by getting tested, reducing contact with others, or
even to order quarantines.

Contact tracers need a way to notify these presence
contacts. A first generation of presence tracing solutions
requires a user to “check-in” to a location by entering
their contact data on a paper or electronic form. These
places and events can host many people. Thus, the no-
tification process can become an unbearable load for
contact tracers. As a result, the contact data collection
not only introduces privacy and abuse risks, but does
not help solve the notification problem at scale.

There is a need for presence tracing solutions that
can reduce the load of contact tracers by facilitating
the notification process. A first thought may be to use
solutions for digital proximity tracing, e.g., [5–7, 14, 29],
in which people use smartphones’ Bluetooth beacons to
detect proximity of infected users. But, these Bluetooth-
based solutions are thought to detect and notify people
at the venue who were in close physical proximity to
the infected person. They cannot reliably capture all
visitors present at a location or event.

We present CrowdNotifier, a simple presence trac-
ing system that relies on the established pattern of
scanning a QR code [10, 20–22, 27] to effectively no-
tify any presence contacts of SARS-CoV-2-positive per-



CrowdNotifier 351

sons while at the same time providing strong privacy
and abuse-prevention properties. We designed Crowd-
Notifier to limit the risks to users, thus hopefully foster-
ing adoption and limiting cheating (e.g., users providing
fake data on contact forms). CrowdNotifier’s design an-
ticipates the dangers associated with mass deployment
by taking into account the following three factors:
Checks on power. Digital presence-tracing systems aim
to facilitate the notification of individuals who meet
epidemiologically-defined criteria. If presence tracing so-
lutions leave notification decisions at the sole discre-
tion of a central authority, such infrastructure can be
easily abused. If the authority decides to, or is com-
pelled to, notify users based on non-epidemiological cri-
teria, then segments of the population can be ordered
to quarantine with no additional infrastructure or cost,
e.g., those attending particular events or frequenting
certain bars. Similar attacks on proximity tracing sys-
tems [11, 13, 28], instead require costly investments in
infrastructure or technology. Presence tracing systems
should thus have safeguards against abuse of power.
Safeguards for privacy. Systems which leak individuals’
location histories can be abused in many ways. Leaks
to central authorities may result in persecution; leaks
to other users, such as perpetrators of intimate partner
violence, may exacerbate coercive control [8, 12, 17].
Revealing which locations were visited by SARS-CoV-
2-positive people can lead to stigmatization of own-
ers/organisers and visitors. Presence tracing systems
should be designed to remove or minimise these risks.
Graceful dismantling. Because presence tracing systems
are introduced in a situation of emergency, it is impor-
tant to ensure that the impact of the system is minimal
after this situation ends. The system sunset should not
depend on authorities dismantling infrastructure (e.g.,
by stopping servers, or deleting databases).

In summary, we make the following contributions:
X We describe the security, privacy, and anti-abuse
properties that a presence tracing system should sat-
isfy; and formalize the security-and privacy properties.
X We propose CrowdNotifier, a privacy-friendly and de-
centralized presence-tracing design. We prove it satisfies
the security-oriented properties we have identified.
X We evaluate the performance of CrowdNotifier on
phones and show that it scales to nation level.
X An application building on CrowdNotifier has
been deployed in the wild (see https://github.com/
CrowdNotifier/documents).

2 Systematization
We first systematize deployed presence-tracing systems.

2.1 Deployed Presence-Tracing Systems

We classify deployed presence tracing systems based on
where they store data related to a user’s visit to a venue
or event. We identify three ways of storing these data:
at the visited location, at a central server, or on the
user’s device. Depending on how these data are stored,
notification happens in different ways.

While we list examples for each of these categories,
we are by no means exhaustive. During the early months
of the COVID-19 pandemic, a large number of private
initiatives aimed at replacing and digitizing pen-and-
paper based systems. For example, Chen mentions over
30 different presence tracing systems in New Zealand
alone [9] before the government stepped in and provided
the NZ COVID Tracer system [21]. All systems provide
the following procedures: setup of a location, recording a
visit, initiating notification, and notification of visitors.
Data stored at the location. These systems store
records of visits at the location itself. Paper-based sign-
in sheets are a good example of such a system.

To set up a location, the location owner creates a
blank sign-in sheet. People that visit the location write
their contact details and arrival time on this sheet.
When the health authorities determine that visitors of
this location for a specific time slot should be notified,
they initiate notification by requesting the attendance
list from the location owner. The authority notifies rele-
vant visitors using the contact information on the sheet.

We also consider in this class ad-hoc location-
specific digital attendance lists. For example, location
owners recording contact information on a physical de-
vice or online record they own, and only they can access.
Data stored at a central server. These systems store
records of visits at a central server that manages many
locations. The Singaporean SafeEntry System [22] and
the Swiss SocialPass [27] are examples of such systems.

To set up a location, the location owner registers
with the central service, usually providing a description
and contact information of the location. Upon visiting
a location, visitors record their visit and contact infor-
mation at the central server. For instance:
1. Users enter their data on a web site, e.g, opening

the website by scanning a QR code provided by the
location, as in the La Rioja COVID system [25].

https://github.com/CrowdNotifier/documents
https://github.com/CrowdNotifier/documents
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2. Users use a system-specific app to register visits and
transmit their contact information, for instance, by
scanning an app-specific QR code as in SocialPass.

3. The location owner records the user’s visit into the
central system directly, for instance using a special
app to scan ID cards of visitors as in SafeEntry.

To initiate tracing, health authorities request a excerpt
of the visitor log from the location owner, and use that
information to notify the relevant visitors.
Data stored on user’s device. These systems store
visits records on the user’s device. The New Zealand
NZ COVID system [21] and the UK NHS COVID App
system [20] are good examples of this.

To set up a location, the location owner registers
with the central service and they receive a location iden-
tifier, usually in the form of a QR code. When users visit
the location, they use the corresponding app to scan this
code, and store a local record on their phone. To initiate
notification, health authorities find the corresponding
location in their database and broadcast the location
identifier to all apps. Apps verify locally whether they
visited the location, and notify the user if yes.

2.2 Systematization of Entities and Actors

All presence tracing systems we examine, use the fol-
lowing high-level parties or a subset thereof:

Visitor somebody who visits a location. Sometimes
called user. There can be many visitors.

Location a semi-public location (for example, bar,
restaurant, religious building, events venue, or meet-
ing place) or an event which takes place in one or
more locations (for example, an exhibition).

Location Owner the owner or manager of a location.
For simplicity, we assume each location has one
owner. An owner may manage many locations.

Health Authority the public health-authority that
determines which visitors of which locations to no-
tify. Usually, there is only one health authority.

Backend a backend server that can (potentially) inter-
act with visitors, locations, and the health author-
ity. Usually there is only one backend.

Presence tracing concerns crowds that gather at a
certain location at a certain time. This could be a crowd
on a Friday evening at a bar, or on a Tuesday afternoon
meeting in a community center. For readability we use
the term “location” to refer to locations at a specific
time as well as specific events (that may happen within
one or more physical locations).

Health authorities may use different criteria to de-
termine when to notify visitors to a location for a given
time slot (e.g., visitors were wearing masks, there were
barriers or large separation between groups). We use the
following terminology to indicate locations whose visi-
tors should be notified, and the visitors that are notified:
Trace location a location that was visited by one or

more SARS-CoV-2-positive persons, and whose vis-
itors should be notified.

Presence contact a person that was present at a lo-
cation around the same time as one or more SARS-
CoV-2-positive persons and should thus be notified.

2.3 Limitations and Challenges

All of the above designs are susceptible to denial of ser-
vice attacks by location owners and health authorities.
Both can prevent visitors from being notified: the health
authority can refuse to initiate tracing; and the owner
can refuse to let users scan in (or provides wrong infor-
mation) and/or not provide contact information when
asked. We leave denial of service attacks out of scope of
technological protections. The lack of technical solutions
illustrates the importance of establishing appropriate in-
centive structures around technological interventions.

Some of these designs require the creation of a reg-
istry of locations. Rendering some types of social gath-
erings, meetings or communities legible to machines,
however, may cause societal harm. While many venues
already volunteer or are legally compelled to be part
of large, often publicly accessible databases (e.g., bars
for licensing or mapping purposes), this is not the case
for all epidemiologically relevant gatherings. For some,
such as political or religious gatherings, presence trac-
ing technology in combination with relevant legislation
that demands they formally register to an entity outside
their community may in itself pose a threat regardless of
the individual privacy protections or safeguards on the
power to issue notifications (see e.g., in the United King-
dom [15, schedules 1–4]). As the definition of relevant
locations is ill-suited to being limited by technological
means, we instead aim to build a solution that does not
rely on such a registry of locations.

3 Presence Tracing Requirements
In this section we describe the requirements that a digi-
tal presence tracing system should fulfill in order to meet
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epidemiological need while safeguarding privacy, provid-
ing checks on power and abuse, and minimising infras-
tructural impact after an emergency ends. We then an-
alyze the existing systems with respect to these require-
ments and see where they fall short.

We stress that we focus on notification of presence
contacts only. We make the following assumptions:
– The health authority is trusted to (i) determine

which locations’ visitors should be notified and (ii)
to trigger notification when required.

– The use of the tool by location owners and visitors
is voluntary.

– The system does not need to enforce the adherence
of users to their obligations once they are notified.

3.1 Requirements

Functional requirements. The system must provide
the following functionalities.
F1: Fallback option available. There should be a fallback
option for people that do not have, or do not want to
use, a smartphone to interact with the system.
F2: Presence contacts are notified. All presence con-
tacts at a trace location should be notified. Notification
should be possible even if the SARS-CoV-2-positive user
used the fallback option.

We do not require that any party learns the identity
or contact information of presence contacts.
F3: Non-presence contacts are not notified. After a pos-
itive SARS-CoV-2 diagnosis for a person, any visitors to
a location whose visit interval does not have an epidemi-
ologically relevant overlap with visit(s) of the SARS-
CoV-2-positive person are not notified.
Non-functional requirements. To ensure deployabil-
ity, as well as effectiveness, the system must fulfill the
following requirements.
NF1: Ease of use for users. The system should be easy
to use from a user’s perspective, and no more compli-
cated than paper-based solutions.
NF2: Easy deployment for locations. The system should
not require (special) hardware at locations or server in-
frastructure managed by locations. The solution should
not require frequent human actions to maintain the safe
functioning of the system.
NF3: Speed of notification. After the health authority
has determined a trace location, presence contacts at
that location should receive a notification quickly.
NF4: Small bandwidth and computation requirements.
The system should have a small bandwidth and compu-

tation requirement on the side of the user. (And small
user bandwidth implies manageable server bandwidth.)
Security/privacy requirements. The following de-
fines privacy requirements for visitors and trace loca-
tions, and security requirements.
I. Privacy of users. We consider the following user-
privacy requirements.
PU1: No central collection of personal data. No cen-
tral party should be able to determine personal data of
visitors (e.g., name, IP address, device identifier, tele-
phone number, e-mail address, locations visited). As a
corollary, the central parties should not be able to infer
location or co-location data of either visitors or notified
visitors. This corollary implies that the backend server
should not be able to deduce that a specific IP address
visits a specific location. The health authority, however,
needs to learn which locations a SARS-CoV-2-positive
person visited.
PU2: No collection of personal data at a location. The
system should not require the location to process or
collect personal data of visitors.
PU3: No location confirmation attacks. The system
should not enable anyone to learn where a user has been.
PU1 and PU2 imply that this information should not
be available centrally or at the location itself. If the sys-
tem relies on a smart phone application, then require-
ment PU3 additionally states that location information
should not be available even if an adversary has access
to the phone and its internal storage (e.g., law enforce-
ment); and can can visit the same locations as the user.
In particular:
– The User Interface (UI) should not reveal which lo-

cations the user visited (e.g., to prevent location
tracking by intimate partners [8, 12, 17] and law
enforcement).

– Data stored on the user’s phone should not reveal
or enable confirmation of visited locations except for
the locations and times for which the user should be
notified, e.g., when they visited a trace location.

We note that if the phone locally determines whether
the user should be notified, it is not possible to prevent
location confirmation attacks if a user’s visit to a trace
locations coincides with the notification period (per F2,
the user must be notified in this situation).
PU4: Notification privacy. No central party or network
observer (if any) should be able to determine that a
specific user has been notified.
PU5: SARS-CoV-2-positive status privacy. No central
party or network observer other than the health author-
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ity, should be able to determine if a user has received a
positive test result.
II. Privacy of locations. We consider the following
privacy requirements for locations.
PL1: Hide which locations had a SARS-CoV-2-positive
case from non-visitors. Attackers that never visited a
location (and do not collude with somebody who did)
should not be able to determine whether that location
had a SARS-CoV-2-positive case.
PL2: Hide which locations had a SARS-CoV-2-positive
case from non-contemporal visitors. An attacker that
did not visit a location during the time when a SARS-
CoV-2-positive person was present (and did not collude
with somebody who did) should not be able to deter-
mine whether that location is a trace location. This
property should hold even if the attacker (or the people
they collude with) did visit this location at other times.
This property strengthens PL1.

PL1 and PL2 protect locations against stigmatiza-
tion. This is particularly relevant for locations such as
mosques or gay bars where minorities gather [16].

PL2 is the strongest possible location privacy prop-
erty with respect to visitors. Attackers that do visit the
location during a notification window will learn that the
location is a trace location, as they must be notified (be-
cause of the functional requirement F2).

When venues provide static information to visitors,
e.g., a QR code, the best possible property is PL1. PL2
cannot be met: Once an attacker obtains the static in-
formation, they can simulate check-ins at any time, and
thus receive notifications even if they were not present.

In both cases, attackers can collude or crowd-source
data to increase their collective knowledge of trace loca-
tions. In systems that only provide PL1, gathering this
data requires only one visit per location; and is thus
easier to do.
PL3: No new central database of locations. The system
must not create (or rely on) a central database of infor-
mation about locations.
PL4: Hide locations triggering notification through net-
work traffic. The network traffic (if any) should not re-
veal that a specific location has been asked to upload
tracing information.
III. Security. We consider the following security re-
quirements.
S1: No fake notifications (targeting of users). The sys-
tem should make it impossible to target specific indi-
viduals, thereby causing them to be quarantined.
S2: No population control (targeting of locations). The
system should make it difficult to target sensitive loca-

tions (gay bar, biker hangout, places of worship, etc.),
thereby causing all the visitors to be quarantined.
S3: Automatic dismantling of the system. The disman-
tling of the system should not depend on central au-
thorities to take action, e.g., to delete keys or data. In-
stead, as soon as users and location owners stop using
the system, any remaining infrastructure should become
automatically useless.

Requirement S2 is not achievable in two situations.
First, if an infected person deliberately visits sensitive
locations: the functional requirements imply that visi-
tors of this location must be notified. Second, a mali-
cious diagnosed user might lie to the health authority
about their past whereabouts, converting the health au-
thority into a confused deputy that marks a “clean” lo-
cation as a trace location. The extent of this problem de-
pends on the mechanisms used by the health authorities
to mark a location as a trace location (e.g., whether this
requires several reports) and whether health authorities
can verify that the SARS-CoV-2-positive person was at
the claimed location.

3.2 Evaluation of Deployed Systems

We evaluate deployed systems in each of the three cat-
egories introduced in Section 2.1 against the require-
ments from the previous section (summary in Table 1).
None of these systems process information about SARS-
CoV-2-positive users, so all satisfy PU5.
Data stored at the location. We focus our analy-
sis on paper-based systems. In these systems, no data
related to visits is stored centrally nor on the user’s
phone (PU1 and PU3 satisfied). However, visit records
are stored locally (violating PU2). The means to notify
users is implementation specific, but likely happens by
communicating contact data to health authorities. Visi-
tors are therefore contacted out of band (PU4 satisfied).

The system only reveals trace locations to contem-
porary visitors (PL1 and PL2 satisfied), and does not
require a database of locations (PL3 satisfied).

For security, the health authority can easily target
individual users (S1 not satisfied), but requires coopera-
tion of the location owner to target crowds (S2 satisfied).
The system automatically dismantles itself as soon as
owners stop keeping lists, or users stop recording their
presence on these lists (S3 satisfied).
Data stored at a central server. Of the three sys-
tems we explored for this setting [22, 25, 27] only
SafeEntry processes user data at the location. None of
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Store at Location Store at Server Store at Phone CrowdNotifier
e.g., paper lists e.g., [22, 25, 27] e.g., [20, 21]

Privacy of Users
No central data collection (PU1) X x X X

No data collection at location (PU2) x X X X

No location confirmation attacks given phone (PU3) X X x/X X

No notification side channel (PU4) X unknown X X

No SARS-CoV-2-positive diagnosis side channel (PU5) X X X X

Confidentiality of locations
Hide trace locations from non-visitors (PL1) X X X X

Hide trace locations from non-contemporal visitors (PL2) X X x/X x/X
No database of locations (PL3) X x x/X X

Security
No targeting of individuals (S1) x x X X

No crowd control (S2) X x x X

Automatic dismantling (S3) X x x/X X

Table 1. Security and privacy analysis of deployed systems grouped by where they store data related to visits; and compared with
CrowdNotifier. The indication “x/X” means does not currently achieve, but could with modifications.

them store this data at the location (PU2 mostly sat-
isfied), nor on the phone (PU3 satisfied). However, to
notify presence contacts, the system relies on a central
database that gives health authorities access to personal
data (PU1 violated).

Location privacy is limited. While the system does
not necessarily reveal which locations were marked as a
trace location (PL1 & PL2 satisfied), the system does
rely on a central location database to track who is where
(violating PL3).

Because of the centralized design, it is easy to target
individuals (violating S1), do crowd control (violating
S2) and dismantling requires active actions by the sys-
tem operator to delete visit records and the database of
locations (violating S3).
Data stored on user’s device. We focus our analysis
on the New Zealand and UK systems [20, 21]. In these
systems, the central database nor the location store any
personal data about users (satisfying PU1 and PU2).
The phone stores a list of the locations that the user has
visited, and this list is not protected. Apps can increase
protection only if venues use one-time registrations and
apps do not store additional data (PU3 not satisfied by
default, but could be).

Only a random identifier needs to be published to
mark a specific location as a trace location. Thus the
identity of trace locations is hidden from non-visitors
(satisfying PL1). Non-contemporal visitors of locations,
however, can still determine whether a SARS-CoV-2-
positive person visited a location that they also visited.

Locations can avoid this by using one-time registrations
(PL2 not satisfied by default, but could be).

The current NZ Tracer App and UK COVID-19 sys-
tems do build a central database of locations and venues,
violating PL3. However, the existence of this database
is not actually necessary in every decentralized system
(PL3 not satisfied, but could be).

Finally, it is not possible to target individuals (S1
satisfied). However, crowd control is still possible, as
notification only depends on the central health author-
ity (violating S2). Dismantling requires active action by
the system operator to remove the database of location
information (violating S3, but could be fixed by not cre-
ating this database).
Other designs. We expect that other designs will ap-
pear following these design paradigms. These designs
will have similar security and privacy properties as the
systems studied. A quick analysis of two very recent de-
signs confirms the general thrust of Table 1. The Cléa
system [26] (published March 2, 2021) follows the store
at the phone paradigm; but uses hardware at locations
and rotating QR codes to ensure PU3 and PL2. The
considerably more complex Luca system [10] (published
March 10, 2021) instead follows the store at the server
paradigm and uses encryption and distributed trust to
protect the centrally stored visitor logs. However, by de-
sign, these data are accessible to health authorities (vio-
lating PU1). Finally, the functionality of Cléa and Luca
requires uploads to a server by SARS-CoV-2-positive
users. It is unclear if either design protects these up-
loads from traffic analysis (PU5 unknown).
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4 CrowdNotifier Overview
The analysis of existing solutions indicates the need for
a more privacy-friendly and abuse-resistant system. In
this section we introduce CrowdNotifier. CrowdNotifier
stores records of visits on the user’s phone and it uses
cryptography to ensure that records are private and
that notifying users requires cooperation of the location
owner to prevent abuse.

To facilitate easy deployment by location owners
(NF2), CrowdNotifier does not require special hard-
ware at locations, and assumes instead owners place
static QR codes that their visitors scan. CrowdNotifier
provides the best possible location privacy in this set-
ting. It achieves PL1, but not PL2. At the same time,
CrowdNotifier achieves the strongest possible user pri-
vacy (achieving PU1, PU2, and PU3).

To achieve these properties, each location owner
acts as the trusted authority in an identity-based en-
cryption (IBE) scheme. When users visit a location,
they store an encrypted record under a time-based iden-
tity for the location. To initiate tracing, the location
owner publishes the decryption keys for the correspond-
ing notification time slots, enabling phones to decrypt
private records and notify their users.

Letting users scan QR codes is the most prevalent
approach in deployed presence tracing systems (as well
as other systems in the hospitality sector). The high
adoption rate of these solutions in several countries
leads us to believe that this is an approach that users
are familiar with and can use (achieving NF1).

4.1 A Walkthrough of the System

Figure 1 gives an overview of the proposed system.
Setting up. Suppose Charlie manages a location for
which she decides to use CrowdNotifier presence noti-
fication. To do so, Charlie first uses CrowdNotifier to
generate and print two QR codes: an entry code and a
tracing code. The entry code contains information de-
scribing the venue as well as an identity-based master
public key. The tracing code contains the corresponding
master private key.

Charlie posts the entry code in a place where visitors
can scan it (e.g., at the entrance, or on the tables), and
keeps the tracing code private. See Figure 1(A).
Visiting the location. When entering the location,
visitors can use the app or not. If they do, they scan
the QR code posted at the entry to the location. The

Fig. 1. Overview of our presence-tracing system

app shows the name of the location and asks the user
to confirm the check in. See Figure 1(B). If they do not
use the app, they write contact data on an attendee list.

At some point the app learns the check-out time,
e.g., after an explicit check out, determined automati-
cally by the app, established by the QR code, or inserted
by the user upon a reminder from the app. The app then
stores a private record containing the identity-based en-
cryption (using the location’s master public key) of the
entry and departure times, using the entry hour as part
of the identity. Anonymity of the IBE scheme ensures
that these ciphertexts do not reveal to anyone with ac-
cess to the phone the location for which they were cre-
ated as long as the location owner does not reveal the
specific decryption key.
Presence tracing. First, health officials need to de-
termine which venues the SARS-CoV-2-positive person
attended (step 1, Figure 1(C)), e.g., using the tradi-
tional interviewing process in which different positive
users report having been at a venue. The health offi-
cial then contacts the owner for each of these venues,
requesting two things (step 2):
– The paper backup list (step 3)
– That the owner uploads tracing keys for the af-

fected time interval. The owner scans the tracing
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code (step 4), computes the tracing keys (e.g., as-
sisted by a local JavaScript webpage) and uploads
them (step 5). These tracing keys take the form of
identity-based decryption keys.

The health official checks and approves the uploaded
tracing keys (step 6). This ensures that the data corre-
sponds to the requested venue. Then, the health author-
ity’s backend makes available the tracing keys (steps 7
and 8) to all users of the system.

Phones download the provided tracing keys to try
and unlock (i.e., decrypt) private records stored on the
phone. If unlocking succeeds, it means that the user
was at a location with a SARS-CoV-2-positive person.
In this case, the phone recovers the user’s entry and
departure times for the venue and determines if there
is an epidemiologically relevant overlap between the
user’s time at the location and that of the SARS-CoV-2-
positive person. If there is a relevant overlap, the phone
notifies the user (step 9).

4.2 High-level Security Analysis

We now discuss how CrowdNotifier addresses the se-
curity and privacy requirements from Section 3.1 at a
high level. In the next two sections, we provide a con-
crete cryptographic instantiation and a detailed security
analysis of the scheme.

4.2.1 Security and Privacy by Design

We first discuss how the design choices behind Crowd-
Notifier result in some of the requirements in Section 3.1
being achieved, or being impossible to achieve.
On-device matching. In CrowdNotifier all information is
stored on the user devices, which match visited locations
to trace locations and notify the user. Thus, by design,
user data is neither stored centrally nor at the location
(achieving PU1 and PU2).
Local generation of QR codes. Location owners generate
their QR codes locally, without connecting to a server.
Thus, the system does not require a central database
of locations, achieving PL3. We note that in the design
above, PL4 is not achieved, but we explain in Section 5.4
how to achieve PL4 through dummy uploads.
(Semi-)Static QR codes for venues. Locations can use
static QR codes, ensuring easy deployment for locations
(fulfilling NF2). As a result of this choice – regardless of
the underlying cryptography – PL2 becomes impossible
to achieve. Users that visited a location at any time

know the same information as contemporary visitors,
and can thus later confirm that this location was marked
as a trace location; even if the user was not there on the
same day/time.

If protecting against this attack is essential, loca-
tions can instead generate new QR codes for every day
or time-slot (at the cost of having a person doing these
changes for all QR codes displayed or installing screens
at the venue). This change would require the adversary
to have been present at the same time as the SARS-
CoV-2-positive user to determine whether the location
is notified (or collude with somebody who was). This
is the best protection any system can provide as, if the
adversary shared space with the SARS-CoV-2-positive
user, the adversary should be notified (to fulfill F2).
Single-purpose: notify presence contacts. CrowdNotifier
does not aim to aid contact tracers in their interview
with a SARS-CoV-2-positive user. Thus, CrowdNoti-
fier does not have to retain a readable list of visited
locations (fulfilling PU3). Instead—as is currently the
norm—contact tracers must rely on interviews with the
SARS-CoV-2-positive person to determine which loca-
tions that person visited, when and for how long.
No network connections required when entering a loca-
tion/event. All necessary information is embedded in
the QR code. Thus the system works even when there
is no Internet connection (facilitating NF1, NF2). More-
over, the system does not generate any observable net-
work traffic when entering locations as a result.
No uploads by users. Notified and SARS-CoV-2-positive
users do not generate any network traffic or send data
to central servers, achieving PU4 and PU5.
Regular polling by phones rather than push messages.
The use of push notification services such as Firebase
to send notifications requires that users enroll with and
connect to 3rd party services (violating PU1). This is
not necessary to notify contacts (F2).
User- and owner-centric dismantling. By design, the
system also supports dismantling without the collab-
oration of any authority. When users do not scan or
owners do not reveal tracing keys, the system ceases its
operation, fulfilling S3. Even though technically this is
the case, in practice an authority could legally mandate
venues to have the system in place and require scan-
ning from users, effectively keeping the system in place.
Even in this case, as the triggering of notifications can-
not be monitored and reactions to notifications cannot
be enforced, owners and users could still sabotage the
system: owners could provide fake tracing keys that do
not result in notifications, and users could ignore the
notifications.
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Alternative mechanisms.We considered other mech-
anisms to detect presence at a location such as Blue-
tooth Low Energy (BLE) – for example, using the
Google/Apple Exposure Notification (GAEN) frame-
work or using custom hardware [3] – or other wireless
beacons such as SSIDs. These alternatives, however, re-
quire deploying or modifying specific infrastructure and
are therefore much harder to deploy at scale (violating
NF2). In particular, in the case of BLE, locations would
need to operate one or more Bluetooth beacons. More-
over, any wireless beacons would need to be crafted to
ensure that all devices inside the location would receive
the broadcast, while avoiding false alarms to others that
are not in the same place (e.g., others in a flat upstairs, a
neighboring establishment, or the next meeting room).
This trade-off would make the system less precise than
the active check-in process of CrowdNotifier.

We also briefly considered using fine-grained loca-
tion data to determine a user’s location. However, this
does not work reliably enough indoor to distinguish dif-
ferent rooms (e.g., consider a block of small meeting
rooms), and has negative impact on users’ perspective
of the system as requesting access to location is per-
ceived as a privacy violation.

4.2.2 Security and Privacy by Implementation

The rest of the requirements cannot be achieved just
with architectural choices, and rather depend on con-
crete implementation details. We assume that an at-
tacker can potentially collude with or coerce any of the
parties in the system (users, location owners, health au-
thority) and impersonate them when interacting with
other parties in the system. If the adversary coerces all
entities in the system, they would have the following
capabilities:
– Attackers can visit locations and obtain their public

QR codes.
– Attackers can modify the QR code of a venue, e.g.,

by taping a new QR code on top of the old one.
– Attackers can upload any tracing key (e.g., by col-

luding with an owner that is authorized to upload)
– Attackers might corrupt users’ phones to read

stored information and modify phone behavior.
– Attackers might monitor network communication

between users/location-owners and backend sys-
tems.

If the adversary has all of these capabilities, in their
widest sense (e.g., visit all locations or continuously cor-
rupt the phone) some requirements cannot be fulfilled.

CrowdNotifier does not aim to protect users in those
cases, as there is no technological defense possible. Con-
cretely, we do not aim at protecting from the following
three cases. First, the case of a health authority that de-
cides to trigger notifications from a venue, even though
no SARS-CoV-2-positive patient has declared having
visited that location. We assume the health authority
has a process in place to protect from such function
creep. We show that in all cases the health authority re-
quires cooperation of the owner to trigger notifications.
Second, the case of an attacker that has continuous con-
trol over a users’ phone. Such an adversary can hide
notifications resulting in denial of service, show false
notifications, keep records of locations visited by users,
and even determine whether they have been notified. It
is not possible to protect against these attacks. We only
consider attackers with one-off access to the phone when
analyzing the privacy of visited locations. We note that
even with the phone, the adversary cannot learn infor-
mation about trace locations that the user did not visit,
nor information related to positive users. Third, if the
adversary controls both the health authority and the
QR code at the location (i.e., the adversary knows the
secret key of the QR code scanned by the user) we can-
not protect the user against notifications. The adversary
has all the information to trigger a notification at a place
where the user has scanned a QR code. By F2, this user
should be notified. In other words, the functional re-
quirements imply that no protection against this attack
is possible.

In the following, we detail under which adversar-
ial conditions CrowdNotifier can fulfill which of the re-
maining requirements. We explain in Section 6 how our
construction fulfills the requirements.
Preventing false notifications (S1,S2). As QR
codes are printed and posted in a location, it is diffi-
cult to tailor them to specific visitors. Therefore, it is
difficult to single out specific users even if all of the
rest of the system protections fail, ensuring S1. When it
comes to groups (S2), we aim to prevent attackers from
triggering false notifications in the following situations:
– Trace security. Users that check-in only to honest

venues (i.e., the QR code was generated by an hon-
est owner, and not modified) will not be notified as
long as the honest owners do not upload tracing in-
formation. This property holds even against attack-
ers that collude with the health authority (assuming
that the HA does not compel tracing information
from the honest venue). We formalize this property
in Definition 4 in Section 6.2.
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– Info binding. Users that scan arbitrarily modified
QR codes will not be notified as long as the health
authority is honest and the locations correspond-
ing to the scan are not marked as trace locations.
We formalized this property in Definition 5 in Sec-
tion 6.2.

– Entry binding. Modifications of honestly generated
QR codes never result in notifications, not even
when the health authority initiates tracing for the
original locations. We formalize this property in
Definition 6 in Section 6.2.

Preserving privacy of trace locations (PL1). As
a result of the functional requirements, health authori-
ties learn which locations are marked as trace locations.
Similarly, users that once visited the location learn (or
could deduce) which locations are marked as trace lo-
cations and they could tell others. We therefore aim to
provide privacy of trace locations against non-visitors of
a location that do not collude with visitors. We formal-
ize this property in Definition 7 in Section 6.3.
Preserving privacy of visited locations (PU3). In-
formation about visits stored on the phone should not
reveal the visited locations to snapshot attackers that
gain one-off access to the data stored on a user’s phone.
This property must hold even against attackers that can
visit locations (e.g., to obtain the QR code) and even
when the location the user visited is a trace location
at times that do not coincide with the targeted user’s
visit. We formalize this property in Definition 8 in Sec-
tion 6.4. In Section 5.4 we show how this property can
be made to hold even for attackers that gain access to
the private tracing data stored by locations, as long as
the attacker does not collude with the health authority.

4.3 Is IBE Needed?

To motivate our choice of using an advanced crypto-
graphic solution, we explain why simpler alternative ap-
proaches do not meet the securiy and privacy require-
ments we established.

First, it is fair to ask: is cryptography necessary at
all? Suppose a design where QR codes include a plain-
text random venue identifier and phones store this iden-
tifier (e.g., as in the UK and New Zealand systems).
Then, an attacker that both visits the same location as
the user (and thus obtains the random identifier) and
obtains the data stored on the user’s phone, can con-
firm the user’s visits. This violates PU3, resulting in
weak user privacy.

To prevent this attack, user’s records on a location
must be different from (and uncorrelated to) the record
that the adversary would obtain when visiting a venue.
The straightforward solution would be to use a standard
public key encryption scheme, publish the public key in
the QR code, and have the phone store a ciphertext un-
der this key. If encryption fulfills the right anonymity
properties, the attacker cannot relate this ciphertext to
the key, even if they attacker visited the same venue.
This protection, however, falls apart if the visited lo-
cation is ever marked as a trace location. To facilitate
tracing, the locationmust publish the private key. Given
the private key, the attacker can confirm a visit, even if
the user was not at that location during the notification
interval. This again violates PU3.

Another method to uncorrelate the records on the
phone from the attacker’s view is to use a random iden-
tifier, but rotate QR codes frequently, and let phones
again store this identifier. For example, Cléa proposes
to generate a QR code with a new identifier each
day [26]. Thus ensuring PU3 as long as the attacker
did not visit the location on the same day as the tar-
get. This approach, however, has a high cost. It re-
quires infrastructure at each location to display these
QR codes or considerable effort from owners (violating
NF2). This approach also relies on perfect operation by
the owner/device. If the codes are not rotated, the user’s
privacy is considerably worse than for CrowdNotifier.

Therefore, CrowdNotifier uses an IBE scheme so
that when tracing a location, location owner can pro-
duce specific decryption keys just for the notification
interval. As a result, records created for other intervals
cannot be decrypted, and thus remain unlinkable for
an attacker. This holds even if notifications are sent for
other times, and even if the attacker visited the location
or colluded with someone who did; ensuring PU3.

5 The CrowdNotifier System
In this section, we first present the CrowdNotifier cryp-
tographic scheme (Section 5.2) and then show how to
use it to build the CrowdNotifier system in Section 5.3.

5.1 Cryptographic Preliminaries

Let G1, G2, and GT be cyclic groups of prime order
p generated by generators g1, g2, gT such that exists a
bilinear pairing e : G1 × G2 → GT . Furthermore, let
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H1 : {0, 1}∗ → G1 be a hash function mapping strings
into group elements of G1.

Let AE.Gen,AE.Enc,AE.Dec be an authenticated en-
cryption scheme. The key generator algorithm k ←
AE.Gen(1`) takes as input a security parameter `

and outputs a key k. The encryption algorithm c ←
AE.Enc(k,m) takes as input a key k and a message
m ∈ {0, 1}∗ and outputs a ciphertext c. The decryp-
tion algorithm m ← AE.Dec(k, c) takes as input a key
k and a ciphertext c, and outputs a message m or an
error symbol ⊥.

We use a multi-authority identity-base encryption
scheme [23] given by the following algorithms:
– pp ← IBE.CommonSetup(1`). Output common pa-

rameters pp.
– (mpk,msk) ← IBE.KeyGen(pp). Generate master

public key mpk and master private key msk for a
trust authority.

– skid ← IBE.KeyDer(mpk,msk, id). On input of mas-
ter public key mpk, master private key msk, and
identity id ∈ {0, 1}∗; outputs a decryption key skid.

– ctxt ← IBE.Enc(mpk, id,m). On input of a master
public key mpk, an identity id ∈ {0, 1}∗, and a mes-
sage m, output a ciphertext ctxt.

– m ← IBE.Dec(id, skid, ctxt). On input of identity id,
private key skid, and a ciphertext ctxt; either return
a message m or a failure symbol ⊥.

The decryption algorithm takes as input the identity id.
We show in Appendix A how the FullIdent scheme by
Boneh-Franklin [4] can be modified to include it.

5.2 CrowdNotifier Scheme

A presence-tracing scheme is given by the following
methods:
– pp ← Setup(1`). The Setup algorithm, run by the

health authority, takes as input a security parameter
`, and outputs a set of public parameters pp. All
other algorithms implicitly take pp as input.

– (ent, πent,mtr) ← GenCode(info). The algorithm
GenCode, run by the location owner, takes as input
public information info (e.g., the name and address
of the location), outputs entry information ent and
entry proof πent (both will be encoded into the entry
QR code), as well as master tracing information mtr
(which will be encoded into the tracing QR code).

– rec ← Scan(ent, πent, info, cnt, aux). The algorithm
Scan, run by the user, takes as input entry informa-
tion ent, entry proof πent, public information info, a

counter cnt (representing the time slot during which
the user entered), and auxiliary data aux (e.g., entry
and departure times); and outputs a record rec.

– (tr, πtr) ← GenTrace(mtr, cnt). The algorithm
GenTrace, run by the location owner, takes master
tracing information mtr and a counter cnt (e.g., the
time for which to notify visitors) as input; and out-
puts tracing information tr and a proof of correct-
ness πtr.

– VerifyTrace(info, cnt, tr, πtr). The VerifyTrace algo-
rithm, run by the health authority, takes as input
the venue’s public information info, a counter cnt,
tracing information tr, and a proof of correctness
πtr. It outputs > if the proof certifies that tr was
generated for info and cnt, and ⊥ otherwise.

– aux ← Match(rec, tr). The algorithm Match, run by
the user, takes as input a record rec and tracing
information tr. If tr matches rec, it outputs auxiliary
information aux recorded in rec, and ⊥ otherwise.

A forward secure tracing scheme should satisfy the fol-
lowing correctness property. For all pp ← Setup(1`),
info ← {0, 1}∗, (ent, πent,mtr) ← GenCode(info), cnt ∈
N, (tr, πtr) ← GenTrace(mtr, cnt), aux ← {0, 1}∗,
and rec ← Scan(ent, πent, info, cnt, aux) we have that
VerifyTrace(info, cnt, tr, πtr) = > as well as Match(rec,
tr) = aux.

Following the core idea sketched in Section 4.1
we instantiate this scheme by applying an appropriate
identity-based encryption scheme.
– pp ← Setup(1`). On input of security parameter `,

run pp ← IBE.CommonSetup(1`), and pick a hash
function H : {0, 1}∗ → {0, 1}2`. Output (pp, H).

– (ent, πent,mtr) ← GenCode(info). This algorithm is
run by the location owner. On input of info, run
(mpk,msk) ← IBE.KeyGen(pp), and pick random
nonces nonce1, nonce2 ∈ {0, 1}2`. Output ent = mpk,
πent = (nonce1, nonce2), (embedded in the entry
QR code) and mtr = (mpk,msk, info, nonce1, nonce2)
(embedded in the tracing QR code).

– rec ← Scan(ent, πent, info, cnt, aux). Run by a visi-
tor. Given entry information ent = mpk, entry proof
πent = (nonce1, nonce2), public information info (all
from the QR code they scan), counter cnt (e.g., en-
coding entry hour) and auxiliary data aux (e.g., en-
coding entry and departure time), compute

id = H(H(info ‖ nonce1) ‖ cnt ‖ nonce2),

and output rec = IBE.Enc(mpk, id, aux).
– (tr, πtr) ← GenTrace(mtr, cnt). Run by the location

owner to initiate tracing for a time window encoded
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in cnt. Parse mtr as (mpk,msk, info, nonce1, nonce2),
and compute id = H(H(info ‖ nonce1) ‖ cnt ‖
nonce2) and skid = IBE.KeyDer(mpk,msk, id). Re-
turn tr = (id, skid) and πtr = (mpk, nonce1, nonce2).

– VerifyTrace(info, cnt, tr, πtr). Run by health author-
ity to verify tr. Parse tr as (id, skid), and πtr
as (mpk, nonce1, nonce2). First, verify that id =
H(H(info ‖ nonce1) ‖ cnt ‖ nonce2). Then ver-
ify the correctness of skid as follows. Construct
ctxt = IBE.Enc(mpk, id,m) for a random message
m ∈ {0, 1}2` and check that IBE.Dec(id, skid, ctxt) =
m. If both check pass, return > and otherwise ⊥.

– aux ← Match(rec, tr). Run by the user. Let tr =
(id, skid). Return IBE.Dec(id, skid, rec).

5.3 CrowdNotifier System

The CrowdNotifier system builds on top of the above
presence-notification scheme in the following way.

– Health Authority Setup. The health authority runs
Setup. It publishes the parameters pp, H. The health
authority publishes a list TRlist (initially empty)
with tracing information that apps can retrieve.

– Location Setup and QR code generation. A venue
with public information info (e.g., name of the
venue/even, address, etc.) runs (ent, πent,mtr) ←
GenCode(info) and then constructs two QR codes.
The first, QRentry, encodes the tuple (ent, πent, info).
The second, QRtrace encodes mtr. The location
places QRentry at a place easily accessible by visi-
tors, and keeps QRtrace private.

– Visiting a location.When users visit a location, they
use their app to scan QRentry, let (ent, πent, info) be
the content. The app shows info to the user, so that
they user can check they are scanning in to the cor-
rect location. The app aborts if the users does not
wants to proceed. Once the app knows the entry and
departure times, it encodes them into a string aux.
Then for each cnt representing a time slot that over-
laps with the user’s time at the venue, the app com-
putes and stores rec ← Scan(ent, πent, info, cnt, aux)
and the corresponding day.

– Initiating notification of users. Once the health au-
thority determines that it wants to notify the users
of a location with public information info during a
specific time window, it proceeds as follows. First, it
computes the counters cnt1, . . . , cntt corresponding
to the time window it wants to notify users. It con-
tacts the location owner, to request and obtain trac-

ing information for each of these counters. Let mtr
be the tuple stored in QRtrace. The venue owner runs
(tri, πi

ptr) ← GenTrace(mtr, cnti) for i ∈ {1, . . . , t},
and sends the tuples (tri, πi

tr) to the health au-
thority. Next the health authority verifies these
tuples by running VerifyTrace(info, cnti, tri, πi

tr) for
i ∈ {1, . . . , t}. It aborts, if any check fails. Otherwise,
it adds entries (tri, start time, end time) to TRlist.

– Notifying visitors. Apps regularly download entries
(tr, start time, end time) that have been added to
TRlist since the last time they checked. For each of
these entries, and for each record rec stored match-
ing the day of tr, they check whether Match(rec,
tr) 6= ⊥. If so, they extract the user’s entry and de-
parture time from aux and compare them against
the times published by the health authority. If they
overlap, the apps notify their users of a potential
exposure.

To reduce the complexity of checking all records,
apps automatically expire records that are no longer
epidemiologically relevant. For example, in the case of
proximity tracing, records usually expire after 10 days.

5.4 Extra Protection

We propose two small extensions to get extra protection.
Protecting mtr. An attacker that has access to the
records stored on a user’s phone and that gains access to
mtr, e.g., by bribing or coercing the location owner, can
break record privacy. We propose a modification to the
above scheme to require such an attacker to also collude
with the health authority to break record privacy.

The idea is straightforward. The honest owner se-
cret shares msk as msk = mskL +mskHA and stores mskL
in the clear, while encrypting mskHA (using a CCA2
secure scheme) against the public key of the health au-
thority. To generate tracing information tr, the location
owner first sends the ciphertext to the health authority,
which decrypts it, to recover mskHA. Thereafter, they
run a distributed version of the IBE.KeyDer method to
compute skid for the identity id = H(H(info ‖ nonce1) ‖
cnt ‖ nonce2). Such a protocol is easy to construct for
the Boneh-Franklin IBE scheme we use.

The CCA2 security of the encryption scheme, and
the fact that the health authority itself computes the
identity id, ensures that attackers cannot break record
privacy, even when giving oracle access to the health
authority for other venues.
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Hiding uploads by tracing locations. The network
traffic patterns generated by uploads by tracing loca-
tions are likely recognizable to network adversaries, vi-
olating PL4. To protect these uploads, CrowdNotifier
can provide an app for location owners. This app then
makes regular dummy uploads, for example following
an exponential distribution, thereby providing plausible
deniability of the real upload.

6 Security & Privacy Properties
The security and privacy of CrowdNotifier relies on
properties of the underlying IBE scheme. We define
these properties next. All corresponding proofs and IBE
games are in Appendix A.

6.1 Properties of IBE Schemes

For the security of our scheme, we require that the un-
derlying IBE scheme satisfies some notion of robustness
to ensure that records do not match (i.e., decrypt) un-
der adversarial tracing keys (i.e., decryption keys). In
particular, we require the following strengthening of the
classical weak robustness notion [1], where the cipher-
text is honestly generated, but the adversary can supply
master public and private keys.

Definition 1. We say a scheme is weakly robust under
adversarial keys if for all PPT adversaries A

Pr
[
ExpWRAK
A (`) = 1

]
< negl(`).

See Figure 7 in Appendix A for ExpWRAK
A (`).

Correctness implies that the adversary can always com-
pute at least one tuple (id, sk) such that IBE.Dec does
not return ⊥. This robustness property ensures that this
is the only (efficiently computable) decryption key that
will cause ctxt to successfully decrypt.

We use a slight modification of the FullIdent Boneh-
Franklin scheme [4], see Appendix A. The only modifi-
cation is that the randomness r used to compute ci-
phertexts now also depends on the identity id, which is
passed to IBE.Dec for verification purposes.

Theorem 1. The (modified) FullIdent scheme by
Boneh-Franklin [4] is weakly robust under adversarial
keys in the random oracle model for HT and H3.

Additionally, we require that ciphertexts have recip-
ient anonymity (they do not reveal the identity under

which they have been encrypted) and trusted authority
anonymity (they do not reveal under which master pub-
lic key they have been created). This notion has been
formalized as the m-IND-RA-TAA-CPA security prop-
erty by Paterson and Srinivasan [23]. They also prove
that the FullIdent scheme from Boneh and Franklin sat-
isfies this property. Our modification to how r is com-
puted does not violate this property. See Paterson and
Srinivasan [23] for the formal security game.

Theorem 2. The (modified) FullIdent Boneh-Franklin
IBE scheme is m-IND-RA-TAA-CPA secure.

We also require that an adversary cannot compute
master public keys and specific identity id and decryp-
tion key skid such that (id, skid) can decrypt two ci-
phertexts honestly encrypted under different identities
id0 and id1. In the following definition the adversary
controls the messages as well the master public keys
mpk0,mpk1. We only require that IBE.Dec returns a
value other than ⊥.

Definition 2. An IBE scheme has uniqueness of
identity-based decryption keys if for all PPT adversaries
A we have that

Pr
[
ExpUIBDK
A (`) = 1

]
< negl(`).

See Figure 8 in Appendix A for ExpUIBDK
A .

Theorem 3. The (modified) FullIdent scheme by
Boneh-Franklin [4] has uniqueness of private keys, as-
suming the collision resistance of H1, HT , and H3.

Finally, we require that an identity-based decryption
key skid does not reveal any information about the iden-
tity that it is bound to, provided that the adversary does
not know the corresponding master public key.

Definition 3. A multi-TA IBE scheme has decryption-
key privacy if for all PPT adversaries A∣∣Pr[Expm-DKPRIV-b

A 1(`) = 1]−
Pr[Expm-DKPRIV-b

A 0(`) = 1]
∣∣ < negl(`).

See Figure 9 in Appendix A for Expm-DKPRIV-b
A .

Theorem 4. The (modified) FullIdent scheme by
Boneh-Franklin [4] has decryption-key privacy assum-
ing the DDH assumption holds in G1 in the random
oracle model for H1.

Next, we show how these IBE properties guarantee the
security (Section 6.2) and privacy (Sections 6.3 and 6.4)
properties of CrowdNotifier.
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ExpTRSEC
A (`):

pp← Setup(1`)
T = ∅
(info, state)← A(pp)
(ent, πent,mtr)← GenCode(info)
(tr′, cnt, aux)← AOGetTrace(state, ent, πent)
rec← Scan(ent, πent, info, cnt, aux)
If (cnt, tr′) ∈ T or Match(rec, tr) = ⊥ return 0
Else return 1

OGetTrace(cnt):
(tr, πtr)← GenTrace(mtr, cnt)
T = T ∪ {(cnt, tr)}
Return tr

Fig. 2. Trace Security (TRSEC) experiment.

ExpINFOBIND
A (`):

pp← Setup(1`)
(ent, πent, info, cnt, aux, info′, cnt′, tr′, π′

tr)← A(pp)
If (info, cnt) = (info′, cnt′) return 0
If VerifyTrace(info′, cnt′, tr′, π′

tr) = ⊥ return 0
rec← Scan(ent, πent, info, cnt, aux)
If Match(rec, tr′) 6= ⊥ return 1 else 0

Fig. 3. Info Binding (INFOBIND) experiment.

6.2 Protection Against False Notifications

The next definition captures that an adversary cannot
generate tracing information that matches a honestly-
generated QR code. As a result, a malicious health
authority cannot generate notifications for honestly-
generated QR codes, as long as the owner does not re-
veal the corresponding tracing information.

Definition 4 (Trace Security). We say that a scheme
has trace security if for all PPT adversaries A

Pr
[
ExpTRSEC
A (`) = 1

]
< negl(`),

where experiment ExpTRSEC
A (`) is as defined in Figure 2.

In Appendix B we prove the following theorem.

Theorem 5. The presence tracing scheme has trace
security provided the underlying IBE scheme is weakly
robust under adversarial keys and CPA secure.

The next definition captures that an adversary can-
not construct a QR code in such a way that it shows
info to the user, while claiming a different value info′

towards the health authority when uploading tracing
information. As a result, a user that scans in to a venue
with info can only be notified if the health authority
approved the release of tracing information for info. In

ExpENTRYBIND
A (`):

pp← Setup(1`)
(info, state)← A(pp)
(ent, πent,mtr)← GenCode(info)
(π′

ent, info′, cnt, aux, tr′, π′
tr, cnt′)← A(state, ent, πent,mtr)

If (πent, info) = (π′
ent, info′) return 0

If VerifyTrace(info, cnt′, tr′, π′
tr) = ⊥ return 0

rec′ ← Scan(ent, π′
ent, info′, cnt, aux)

If Match(rec, tr′) 6= ⊥ return 1 else 0

Fig. 4. Entry Binding (ENTRYBIND) experiment.

the following game, we also let the adversary control the
values of cnt (corresponding to the check-in times).

Definition 5 (Info Binding). We say that a scheme has
info binding if for all PPT adversarys A we have that

Pr
[
ExpINFOBIND
A (`) = 1

]
< negl(`),

where experiment ExpINFOBIND
A (`) is as in Figure 3.

In Appendix B we prove the following theorem.

Theorem 6. The CrowdNotifier scheme has info
binding provided that the underlying IBE scheme has
uniqueness of identity-based decryption keys (see Defi-
nition 2) and H is collision resistant.

The following property says that an adversary can-
not modify an entry QR code (containing ent, πent, info)
into a related QR code (e.g., by modifying the name in
info while keeping ent intact) and still generate notifi-
cations provided that the health authority only accepts
uploads related to the original info. This property holds
even if the adversary has access to mtr.

Definition 6 (Entry binding). We say that a scheme
has entry binding if for all PPT adversaries A

Pr
[
ExpENTRYBIND
A (`)

]
< negl(`)

where experiment ExpENTRYBIND
A (`) is as in Figure 4.

Note that in the game in Figure 4 the adversary can
modify info′ and π′ent, but Scan still takes the original
honest value ent as input. Similarly, the health authority
verifies tr′ against the original value info.

In Appendix B we prove the following theorem.

Theorem 7. The CrowdNotifier scheme has entry
binding provided that underlying IBE scheme is weakly
robust against adversarially chosen keys and hash func-
tion H is collision resistant.
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ExpTRPRIV-b
A (`):

pp← Setup(1`)
C = T = ∅
(i0, cnt0, i1, cnt1, state)← AO(pp)
(tr, πtr) = GenTrace(mtrib

, cntib
)

b′ ← AO(state, tr)
If i0 ∈ C, i1 ∈ C, (i0, cnt0) ∈ T , or (i1, cnt1) ∈ T , return 0
Else return b′

OAddLocation(i, info):
(enti, πi

ent,mtri)← GenCode(info)
Return >

OGetTrace(i, cnt):
T = T ∪ {(i, cnt)}
(tr, πtr)← GenTrace(mtri, cnt)
Return tr

Ocorrupt(i):
C = C ∪ {i}
Return (enti, πi

ent,mtri)

Fig. 5. Trace privacy experiment where O = {OAddLocation,
OGetTrace,Ocorrupt}.

ExpRECPRIV-b
A (`):

pp← Setup(1`)
C = T = ∅
(i0, cnt0, aux0, i1, cnt1, aux1, state)← AO(pp)
If |aux0| 6= |aux1| return 0
rec← Scan(entib

, π
ib
ent, cnti, auxi)

b′ ← AO(state, rec)
If i0 ∈ C, i1 ∈ C, (i0, cnt0) ∈ T , or (i1, cnt1) ∈ T , return 0
Else return b′

OAddLocation(i, info):
(enti, πi

ent,mtri)← GenCode(info)
Return (enti, πi

ent)

Fig. 6. Record privacy experiment where O = {OAddLocation,
OGetTrace,Ocorrupt}. OGetTrace and Ocorrupt are as in Fig-
ure 5.

6.3 Trace Location Privacy

The following definition states that an adversary that
never visited a venue cannot distinguish between trace
locations based on publicly available tracing informa-
tion. This property implies that public tracing informa-
tion does not leak any information to non-visitors.

Definition 7 (Trace location privacy). We say a
scheme has trace location privacy if for all PPT
adversaries A we have that∣∣Pr[ExpTRPRIV-1

A (`) = 1]−
Pr[ExpTRPRIV-0

A (`) = 1]
∣∣ < negl(`)

where experiment ExpTRPRIV-b
A is defined in Figure 5.

In this game, the adversary can use the OAddLocation
oracle to create locations with corresponding info strings
of its choice. The adversary does not automatically get
access to (enti, πi

ent) as these are only available to vis-
itors of locations. Instead, to model a visit, the adver-
sary has to explicitly call Ocorrupt to obtain them (in
response, the game also returns mtri). The adversary
can request tracing information for any location i and
counter cnt by calling OGetTrace.

Finally, as in a standard unlinkability game, the ad-
versary outputs two pairs (i0, cnt0) and (i1, cnt1). It will
receive tracing information for one of them. The game
rules out trivial wins where the adversary corrupts the
challenge locations i0 or i1 (recorded in C) or requested
trace information for (ij , cntj) (recorded in T ).

In Appendix B we prove the following theorem.

Theorem 8. The scheme has trace location privacy in
the random oracle model for H assuming the underlying
IBE scheme has decryption-key privacy.

6.4 Privacy of Records

The following definition states that no adversary with-
out access to tracing information can link a record rec
to a corresponding public QR code. The adversary has
full control over where the user checks in, when, and
what data is stored in the encrypted record.

Definition 8 (Record Privacy). We say a scheme has
record privacy if for all PPT algorithms A we have that∣∣Pr[ExpRECPRIV-1

A (`) = 1]−
Pr[ExpRECPRIV-0

A (`) = 1]
∣∣ < negl(`)

where experiment ExpRECPRIV-b
A is defined in Figure 6.

Theorem 9. The CrowdNotifier scheme has record
privacy assuming that the underlying IBE scheme is m-
IND-RA-TAA-CPA secure.

Proof sketch. Records are IBE ciphertexts. The chal-
lenge ciphertexts/records differ in their master public
key (determined by entib), their identity (determined by
πib
ent and cnti), and their plaintext payload (determined

by auxb). As the IBE scheme is m-IND-RA-TAA-CPA
secure, the adversary cannot exploit these differences:
recipient anonymity (RA) hides differences in the iden-
tities, trusted authority anonymity (TAA) hides differ-
ences in master public keys, and CPA security hides
differences in the payload.
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Laptop i7-7600U Pixel 2 Huawei P9 Pixel 5 iPhone 6 iPhone 11Pro
Browser 2017 2016 2020 2014 2019

Scan 11.25 (0.75) 7.02 6.12 5.65 6.38 1.63
GenTrace 1.41 (0.07) – – – – –
VerifyTrace 19.1 (0.90) – – – – –
Match returning ⊥ 6.60 (0.39) 4.47 3.89 3.59 3.72 0.93
Match returning aux 7.98 (0.40) 5.38 4.63 4.39 4.63 1.15

Table 2. Average run time of CrowdNotifier operations on a laptop CPU implemented in Javascript (standard error of the mean in
parentheses), and native implementations on several Android and iOS mobile devices (standard error less than 0.02 ms in all cases).

7 Evaluation
We implemented CrowdNotifier in JavaScript to eval-
uate the performance for location owners; and Java
for Android, and Swift for iOS to evaluate the perfor-
mance on user’s devices. The source code is available via
https://github.com/CrowdNotifier/documents. All three
implementations use the mcl pairing library [19] which
we configured to use the BLS381-12 curve to achieve
a security level of roughly 128 bits. We instantiated
all random oracles using SHA256 and used the built-
in hashAndMapToG1 method to map strings to group
elements in G1.

We evaluated each of the functions Scan, GenTrace,
VerifyTrace and Match over 1000 runs. We set the length
of aux to 8 bytes to represent two 4-byte timestamps.
Table 2 reports the running times. We report two num-
bers for Match as failing decryptions are almost always
caught by the authenticated encryption scheme, thus
omitting the need for the extra exponentiation in G2.

We evaluated the JavaScript implementation on an
Intel i7-7600U CPU running at 2.80GHz. Using an x86
build of mcl gives an 8x performance boost. The major-
ity of the time taken for Scan, VerifyTrace, and Match
can be attributed to the pairing evaluation (around
6.6ms per pairing in the JavaScript version of mcl).

Users run Scan and Match on their mobile devices.
We used the Android and iOS implementations to eval-
uate the performance on several mobile devices. We ob-
serve that modern iPhones vastly outperform Android
devices of similar age. We suspect this is because the
Java implementation must traverse the JNI interface on
each call to mcl, which adds additional delays.

The cost of running CrowdNotifier on user devices is
small, even on old devices. Suppose that users generate
5 records per day; and that the health authorities mark
150 locations as trace locations per day with 3 trac-
ing keys each (corresponding to 3-hour time windows).
Then each phone needs to run Match 2,250 times in to-

tal. This can be done in within 12 seconds on all devices
(and within 3 seconds on recent iPhones).

We want to point out that 150 trace locations per
day is a high number (the UK had 226 trace locations
from September 2020 to January 2021 [31]). However,
if the computation cost becomes prohibitive, apps can
easily store a few bits of id to reduce computation time.

Finally, the daily download cost per user is moder-
ate. A tracing key tr = (id, skid) is 32+48 bytes. There-
fore, 1000 records require roughly 80 kB. For compari-
son, a single diagnosed user’s keys in proximity tracing
systems are roughly the same size as a tracing entry.

8 Take Aways
Notifying contacts of SARS-CoV-2-positive persons is
critical to reduce the spread of the pandemic. This in-
cludes their close contacts, but also others that shared
badly-ventilated events with the positive user. Our con-
tributions show that it is possible to implement this
functionality without introducing new infrastructures
with high potential for privacy violations and abuse of
power.
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A Details of IBE Scheme, Games,
and Proofs

The modified FullIdent Boneh-Franklin scheme [4] is as
follows.

– pp ← IBE.CommonSetup(1`). On input of secu-
rity parameter `, generate a type III set of bi-
linear groups G1, G2, GT generated by respectively
g1, g2, gT all of prime order p and let e : G1 ×
G2 → GT be the corresponding pairing. Generate
the following hash-functions (modeled as random
oracles): H1 : {0, 1}∗ → G∗1 a hash function map-
ping points to the group G∗1, HT : GT → {0, 1}2`

mapping group elements from the target group,
H3 : {0, 1}2` × {0, 1}∗ × {0, 1}∗ → {0, 1}2`, and
H4 : {0, 1}2` → K mapping into the key-space of
the authenticated encryption scheme. Setup outputs
pp = ((G1, G2, GT , g1, g2, gT , p, e), H1, HT , H3, H4).

– (mpk,msk)← IBE.KeyGen(pp). Pick random msk←
Zp and set mpk = gmsk

2 ∈ G2. Return (mpk,msk).
– skid ← IBE.KeyDer(mpk,msk, id). On input of a

master public key mpk, a master private key msk,
and an identity id ∈ {0, 1}∗; outputs a private key
skid = H1(id)msk ∈ G1.

– ctxt ← IBE.Enc(mpk, id,m). On input of a master
public key mpk, an identity id ∈ {0, 1}∗, and a mes-
sage m, proceed as follows. Check that mpk ∈ G∗2.
Pick a random key x← {0, 1}2` and compute

c1 = gr
2,

c2 = x⊕HT (e(H1(id),mpk)r),
c3 = AE.Enc(H4(x),m)

where r = H3(x,m, id). Return ctxt = (c1, c2, c3).
– m ← IBE.Dec(id, skid, ctxt). On input of an iden-

tity id, a private key skid, and a ciphertext ctxt,
proceed as follows. Parse ctxt as (c1, c2, c3) and
return ⊥ if parsing fails. Check that skid ∈ G∗1,
and compute x′ = c2 ⊕ HT (e(skid, c1)) and m′ =
AE.Dec(H4(x′), c3). Return ⊥ if m′ = ⊥. Finally,
compute r′ = H3(x′,m′, id) and check that c1 = gr′

2 .
If this check fails, return ⊥, otherwise, return m′.

ExpWRAK
A (`):

pp← IBE.CommonSetup(1`)
(mpk, id,m, id0, sk0, id1, sk1)← A(pp)
If m = ⊥ or (id0, sk0) = (id1, sk1) return 0
ctxt = IBE.Enc(mpk, id,m)
m0 = IBE.Dec(id0, sk0, ctxt)
m1 = IBE.Dec(id1, sk1, ctxt)
If m0 6= ⊥ ∧m1 6= ⊥ return 1 else 0

Fig. 7. Weak Robustness under Adversarial Keys (WRAK) ex-
periment. The adversary’s goal is to produce keys and identities
such that an honestly generated ciphertext ctxt decrypts under
two different keys.

ExpUIBDK
A (`):

pp← IBE.CommonSetup(1`)
(mpk0, id0,m0,mpk1, id1,m1, id, skid)← A(pp)
If id0 = id1 return 0
ctxt0 = IBE.Enc(mpk0, id0,m0)
ctxt1 = IBE.Enc(mpk1, id1,m1)
m′

0 = IBE.Dec(id, skid, ctxt0)
m′

1 = IBE.Dec(id, skid, ctxt1)
If m′

0 6= ⊥ and m′
1 6= ⊥ return 1 else 0

Fig. 8. Uniqueness of Identity-Based Decryption Keys (UIBDK)
experiment.

Proof of Theorem 1. We follow the robustness argu-
ment of Abdalla et al. [1]. Let ctxt = (c1, c2, c3). Assume
first that sk0 6= sk1. Then, since e is non-degenerate and
c1 has full order we have that e(sk0, c1) 6= e(sk1, c1),
and by the collision resistance of H2, we have that
x0 = c2 ⊕ HT (e(sk0, c1)) and x1 = c2 ⊕ HT (e(sk1, c1))
are different as well with overwhelming probability. Let
m0 = AE.Dec(H4(x0), c3) and m1 = AE.Dec(H4(x1), c3)
(assuming decryption actually succeeds).

Similarly, if sk0 = sk1, we must have id0 6=
id1. Therefore, in either case we have that r0 =
H3(x0,m0, id0) and r1 = H3(x1,m1, id1) must be dif-
ferent under collision resistance of H3. So therefore at
most one of r0, r1 can pass the final check c1 = gri

2 .

Proof of Theorem 3. Let ctxt0 = (c1, c2, c3) and ctxt1 =
(d1, d2, d3) and m′0,m′1 be the recovered plaintexts. Let
x0 and x1 be the original random keys for ctxt0 re-
spectively ctxt1. And let r0 = H3(x0,m0, id0) and r1 =
H3(x1,m1, id1). Let

x′0 = c2 ⊕HT (e(skid, c1))
x′1 = d2 ⊕HT (e(skid, d1))

and r′i = H3(x′i,m′i, id) as computed in IBE.Dec. Since
c1 = g

r′
0

2 = gr0
2 and d1 = g

r′
1

2 = gr1
2 we must have ri = r′i.

Therefore, by collision resistance for H3, we must have
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Expm-DKPRIV-b
A (`):

pp← IBE.CommonSetup(1`)
∀i ∈ [m], (mpki,mski)← IBE.KeyGen(pp)
C = D = ∅
(i0, id0, i1, id1, state)← AOKeyDer,Ocorrupt(pp)
skb = IBE.KeyDer(mpkib

,mskib
, idb)

b′ ← AOKeyDer,Ocorrupt(state, skb)
If i0 ∈ C, i1 ∈ C, (i0, id0) ∈ D, or (i1, id1) ∈ D, return 0
Else return b′

OKeyDer(i, id):
D = D ∪ {(i, id)}
Return IBE.KeyDer(mpki,mski, id)

Ocorrupt(i):
C = C ∪ {i}
Return (mpki,mski)

Fig. 9. The IBE Decryption Key Privacy (m-DKPRIV) experiment

that (xi,mi, idi) = (x′i,m′i, id). Thus, contradicting the
assumption that id0 and id1 are different.

Proof sketch of Theorem 4. Decryption keys take the
form ofH(id)msk for a master secret keymsk. As a result,
even seeing many H(id), H(id)mski pairs, does not allow
the adversary to recognize H(idb)mskb . The proof follows
by a straightforward encoding of a DDH challenge into
skb.

B Proofs of CrowdNotifier
Scheme

Proof of Theorem 5. By construction, rec =
IBE.Enc(mpk, id, aux) where id = H(H(info ‖
nonce1) ‖ nonce2). Suppose A wins the game.
Let tr = (id, sk). Then IBE.Dec(id, sk, rec) does
not output ⊥. Let mtr = (mpk,msk, info, nonce).
By correctness of the IBE scheme, for decryption
key tr′ = IBE.KeyDer(mpk,msk, id), we have that
IBE.Dec(tr′, rec) 6= ⊥.

Since the IBE scheme is weakly robust under ad-
versarial keys, we must therefore have that tr = tr′. The
adversary thus recomputed the unique identity-based
decryption key tr without querying it from the oracle
Otrace. This clearly violates the CPA security of the
IBE scheme.

Proof of Theorem 6. The proof follows directly from
the uniqueness of identity-based decryption keys prop-
erty. Let tr′ = (id′, sk′id).

First consider Scan. Let ent = mpk and πent =
(nonce1, nonce2); and let id = H(H(info ‖ nonce1) ‖
cnt ‖ nonce2). Then Scan computes record rec as
IBE.Enc(mpk, id, aux). Per construction, Match(rec, tr)
returns the output of IBE.Dec(id′, sk′id, rec) which is by
assumption not ⊥.

Next consider VerifyTrace. On input tr′ = (id′, sk′id)
and π′tr = (mpk′, nonce′1, nonce′2) it first checks that
id′ = H(H(info′ ‖ nonce′1) ‖ cnt′ ‖ nonce′)). Because
of the collision resistance of H we therefore have with
overwhelming probability that id 6= id′. Next VerifyTrace
computes ctxt = IBE.Enc(mpk′, id′,m) for a random
message m. Since VerifyTrace accepts, we must have that
IBE.Dec(id′, sk′id, ctxt) 6= ⊥.

However, by uniqueness of identity-based decryp-
tion keys, (id, skid) cannot simultaneously successfully
decrypt the ciphertexts rec and ctxt constructed under
different identities id and id′.

Proof of Theorem 7. Let ent = mpk and π′ent =
(nonce′1, nonce′2). Then by construction Scan computes
id = H(H(info′ ‖ nonce′1) ‖ cnt ‖ nonce2) and re-
turns record rec = IBE.Enc(mpk, id, aux). Let tr =
(id, skid) = GenTrace(mtr, cnt), then by correctness
IBE.Dec(id, skid, rec) = aux.

Let tr′ = (id′, sk′id) and π′tr = (mpk′, nonce′′1 , nonce′′2 ).
Since VerifyTrace accepts, we must have that id′ =
H(H(info ‖ nonce′′1 ) ‖ cnt′ ‖ nonce′′2 ). Therefore, since
info 6= info′ by collision resistance of H we must have
that id 6= id′.

Finally, Match does not output ⊥, and therefore
neither does IBE.Dec(id′, sk′id, rec). The fact that rec de-
crypts under both (id, skid) and (id′, sk′id) violates the
weak robustness under adversarial keys property.

Proof of Theorem 8. Let mtrib = (mpkb,mskb,

infob, nonceb
1, nonceb

2). Then tr = (idb, skb) where
idb = H(H(infob ‖ nonceb

0) ‖ cntb ‖ nonceb
1) and

skb = IBE.KeyDer(mpkb,mskb, idb).
To prove the theorem we use game hopping. First,

notice that the adversary never corrupts i0 or i1
and thus does not learn the corresponding nonces
nonce0

1, nonce1
1, nonce0

2, nonce1
2 directly. Moreover, in the

random oracle model for H, the traces for i0, i1 for other
counters it queried from Otrace do not reveal any infor-
mation about the nonces either. Therefore we can re-
place id0 with id1 in the challenge trace tr without the
adversary realizing.

Next, we replace sk0 by sk1 in the challenge trace.
Any adversary that distinguishes this situation breaks
the decryption-key privacy experiment. This completes
the proof.
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