
Proceedings on Privacy Enhancing Technologies ; 2021 (4):528–548

Ghada Almashaqbeh*, Fabrice Benhamouda, Seungwook Han, Daniel Jaroslawicz, Tal Malkin,
Alex Nicita, Tal Rabin, Abhishek Shah, and Eran Tromer

Gage MPC: Bypassing Residual Function
Leakage for Non-Interactive MPC
Abstract: Existing models for non-interactive MPC
cannot provide full privacy for inputs, because they in-
herently leak the residual function (i.e., the output of
the function on the honest parties’ input together with
all possible values of the adversarial inputs). For exam-
ple, in any non-interactive sealed-bid auction, the last
bidder can figure out what was the highest previous bid.
We present a new MPC model which avoids this privacy
leak. To achieve this, we utilize a blockchain in a novel
way, incorporating smart contracts and arbitrary par-
ties that can be incentivized to perform computation
(“bounty hunters,” akin to miners). Security is main-
tained under a monetary assumption about the parties:
an honest party can temporarily supply a recoverable
collateral of value higher than the computational cost
an adversary can expend.
We thus construct non-interactive MPC protocols with
strong security guarantees (full security, no residual
leakage) in the short term. Over time, as the adversary
can invest more and more computational resources, the
security guarantee decays. Thus, our model, which we
call Gage MPC, is suitable for secure computation with
limited-time secrecy, such as auctions.
A key ingredient in our protocols is a primitive we call
“Gage Time Capsules” (GaTC): a time capsule that al-
lows a party to commit to a value that others are able
to reveal but only at a designated computational cost.
A GaTC allows a party to commit to a value together
with a monetary collateral. If the original party properly
opens the GaTC, it can recover the collateral. Other-
wise, the collateral is used to incentivize bounty hunters
to open the GaTC. This primitive is used to ensure com-
pletion of Gage MPC protocols on the desired inputs.
As a requisite tool (of independent interest), we present
a generalization of garbled circuit that are more robust:
they can tolerate exposure of extra input labels. This
is in contrast to Yao’s garbled circuits, whose secrecy
breaks down if even a single extra label is exposed.
Finally, we present a proof-of-concept implementation
of a special case of our construction, yielding an auc-
tion functionality over an Ethereum-like blockchain.

Keywords: Non-interactive MPC, blockchain-model

DOI 10.2478/popets-2021-0083
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

1 Introduction
Secure multiparty computation (MPC) is a fundamental
area in cryptography, with a rich body of work devel-
oped since the first papers in the 80’s [11, 18, 30, 44, 48].
The setting involves n parties, each holding a private
input, who wish to compute a function on their inputs
in a manner that reveals only the output, and preserves
the privacy of the inputs.

Interaction in MPC. The question of availability and
required interaction among the parties in MPC proto-
cols has been extensively studied. Most of the literature
on secure computation requires all parties to remain on-
line throughout the computation, engaging in interac-
tive communication with each other. This requirement
is problematic in many settings, where the parties are
not all available for interaction at the same time (e.g.,
due to geographic or power constraints), and may not
even be a priori aware of all other parties.

Thus, an important goal is to reduce interaction and
online coordination in secure computation. Ideally, we
envision the following setting for non-interactive MPC
(NIMPC). When a party is available it carries out some
local computation based on its input and any needed
auxiliary information, and then it posts its result to
some public bulletin board. Once all the parties are

*Corresponding Author: Ghada Almashaqbeh: Univer-
sity of Connecticut, E-mail: ghada.almashaqbeh@uconn.edu
Fabrice Benhamouda: Algorand Foundation, E-mail: fab-
rice.benhamouda@gmail.com
Seungwook Han, Daniel Jaroslawicz, Tal Malkin, Alex
Nicita, Abhishek Shah: Columbia University, E-mail:
{sh3264,dj2468,tm2118,a.nicita,as5258}@columbia.edu
Tal Rabin: University of Pennsylvania, Algorand Foundation,
E-mail: talr@seas.upenn.edu.
Eran Tromer: Columbia University, Tel-Aviv University, E-
mail: et2555@columbia.edu

Gage MPC 529

done, an output-producing party combines the informa-
tion from the public repository and computes the output
of the function while maintaining security, i.e., no infor-
mation on the inputs is leaked beyond the output of
the function.1 However, it is known that this privacy-
preserving ideal is impossible: leakage of the residual
function [34] is inherent. Specifically, an adversary con-
trolling the output-producing party and some of the
computing parties can always repeatedly apply the le-
gitimate protocol on any desired inputs provided by the
colluding parties, to compute the function on more than
a single input (see e.g., [9, 34]).

The works of [9, 34] further prove that, beyond the
leakage of the residual function, there also needs to be
some additional setup assumption in order to achieve
Non-Interactive MPC. The results of [9, 26] work in
the semi-honest model and assume some pre-dealt cor-
related randomness that is given to the parties. The
works of [31, 34] rely on the existence of a PKI and
assume the availability of an output-computing party
that is online at all times and can be viewed as a “co-
ordinator” among the parties. Each party engages in
an interactive computation with the output-computing
party, but the parties do not need to interact with each
other. These papers provide solutions for restricted
classes of functions. In [33] a solution is presented for
all functions, at the expense of making a much stronger
assumption, namely indistinguishability obfuscation,
and a PKI. However, when collusions occur, all these
results suffer from the unavoidable leakage of the resid-
ual function.

MPC and Blockchain. In 2008, Nakamoto proposed
Bitcoin [40] as the first decentralized cryptocurrency.
The core of Bitcoin is an append-only ledger, called
blockchain, maintained by a consensus protocol. Trans-
actions are combined into blocks. For a block to be
added to the blockchain, a proof of work is used: parties
called miners need to solve a cryptographic puzzle. This
process is called mining and successful miners are auto-
matically rewarded using the BTC asset, whose issuance
and ownership are managed by the blockchain itself.
It soon became clear that the consensus protocol can
be extended to not only record transactions, but also
store arbitrary state and enforce properties about this
state and related transactions, through what became
known as smart contracts. This unearthed the potential

1 Due to the new monetary-incentivized model we consider, our
work realizes a slightly modified version of NIMPC that we de-
fine later.

of combining blockchain technology with MPC, and the
interaction between these two designs has evolved over
several steps.

Gen I. Utilizing the blockchain to provide an imple-
mentation for the broadcast channel required for
many MPC protocols (e.g., via OP_RETURN data).

Gen II. Incorporating payments into MPC protocols.
Gen III. This work. Incorporating smart contracts

and the miners as active participants in the MPC.

Gen II started with such results as [8, 13, 36] that
introduced monetary compensation and incentives in
order to go beyond existing lower bounds in MPC. In
particular, they address the fairness impossibility result
of [21], which states that in a two-party setting it can-
not be avoided that one party learns the output of the
protocol and aborts prior to the other party learning the
output. These papers present solutions which require
each party to commit to a collateral via the payment
capabilities of the blockchain. In case one party aborts,
their collateral can be used to provide financial com-
pensation for the party that did not receive the output.
Thus, the collateral is used to incentivize the party to
provide the output, and not abort. Note that while in
some scenarios this incentive may be sufficient in order
to achieve fairness, in fact the solution itself does not
guarantee that this happens. It may be the case that
despite facing a monetary loss, the party that learns
the output might think that it is beneficial to quit the
computation and prevent the other party from learning
the output. This could happen due to e.g., failure, irra-
tionality, or large external incentives to abort.

Our Work: Gage MPC (Gen III).2 In this pa-
per, we propose a new model and constructions of non-
interactive MPC for any function, without the privacy-
violating leakage of the residual function, and with se-
curity against semi-honest adversaries.3 Thus, we cir-
cumnavigate the aforementioned impossibility.

Our model, which we call the Gage MPC model,
assumes a monetary mechanism and a corresponding
assumption that enables our solution. There is a party,

2 Gage is an archaic word that means: a valued object deposited
as a guarantee of good faith.
3 We assume a semi-honest adversary only for the first step
of the protocol: parties are required to post honestly-generated
messages on the blockchain in the first step of the protocol. Later
they can arbitrarily misbehave. Furthermore this restriction can
be lifted using additional zero-knowledge proofs.

Gage MPC 530

which we refer to as party zero, that sets up the com-
putations, and puts down some collateral. At a later
stage, party zero can come back to provide some final
message(s) that allow for the computation of the out-
put. If this last step is completed, party zero can recover
the collateral. We call this path of operation the nom-
inal opening, which reflects the behavior of an honest
party zero. If party zero fails to provide the messages
then the collateral is used as payment to bounty hunters
who will complete the execution via an expensive com-
putation. (These might be, but don’t have to be, the
same as the blockchain miners.) We call this the bounty
opening. The bounty opening does not depend on any a
priori determined miner (or set of miners) and thus, as
long as there exist parties wishing to be paid for com-
putation, the bounty opening will complete successfully.
This means that under no circumstances can party zero
prevent the computation from being completed and the
output from being exposed. This is in contrast to the
Gen II MPC solutions [8, 13, 36], where the party also
puts down a collateral, but forgoing the collateral en-
ables to prevent the exposure of the output.

This bounty opening path matches the desired
NIMPC setup outlined above. Each party posts a mes-
sage and then the output computing party (in this
case, the bounty hunters) will open the commitments
and evaluate the output (which is announced on the
blockchain). On the other hand, the nominal path (and
Gage MPC 2-party protocol presented in Section 6) re-
sembles a different flavor of NIMPC. That is, party zero
will come for a second round to open the commitments,
and so allow computing the output, to avoid losing the
collateral. Nonetheless, party zero is not required to stay
online all the time since the parties are posting their
messages on the blockchain. Also, the rest of the partic-
ipants perform a single round of interaction as before.

We rely on the underlying blockchain to ensure
a consistent consensus view of these events, as well
as delivery of commitment openings messages within
bounded time (see below).

The collateral amount, along with the computa-
tional difficulty of the bounty opening, are set accord-
ing to the difficulty that party zero wishes to create
for adversaries interested in computing the (residual)
function on additional inputs. To make such additional
computations very expensive, party zero will set a high
computational difficulty, and post a corresponding large
collateral to compensate bounty hunters for their po-
tential effort (in the case where party zero later aborts
and bounty opening become necessary). This collateral
is awarded only for the first opening; an adversary who

tries to evaluate the (residual) function on additional
inputs would have to perform the expensive computa-
tion and pay its cost without being compensated by the
collateral.

Crucially, party zero can always recover the collat-
eral via the nominal path, and in that way not lose
it. This implies that the collateral can in fact be much
higher than the amount of money party zero has, as
party zero can for example take a short-term loan.4 In
contrast, for the adversary to break security, the collat-
eral amount is the actual cost that needs to be spent
for computing the function, which can be prohibitively
high. This lends to the introduction of a new type of
monetary assumption:

An honest party can put down a temporary collateral of
value much higher than what an adversary can expend on
computation.

In our theorems we will prove that as long as the ad-
versary does not spend (significantly) more than some
amount related to the collateral, then it will not learn
any additional information.

On Circumventing the Lower Bounds. The afore-
mentioned impossibility, saying the leakage of the resid-
ual function is inherent in the standard model, is de-
scribed for parties that all execute the same protocol.
Yet, it extends to our setting where there exists a spe-
cial party, party zero, that speaks first.5 The necessity
of correlated randomness likewise persists.6

Our constructions avoid this by creating a setting
where to compute the function on any set of inputs re-
quires considerable computational effort. This effort ef-
fectively disarms the adversary from being able to com-
pute the residual function, thus eliminating its leakage
and circumventing the lower bound. Furthermore, we
eliminate setup assumptions such as pre-shared corre-
lated randomness (or PKI), or the need for a dedicated
party to be available throughout to ensure the resolu-
tion of the computation. Our only requirements are the

4 The main cost for the honest party is the time value of money.
E.g., with a 10% APY loan, and a collateral locked for 3 days,
the cost of a $1K collateral is less than $1.
5 Consider the case of two parties P0 and P1. In the non-
interactive setting, after P0 speaks, an honest P1 must be able
to compute the output of the function. This implies that a faulty
P1 can in fact compute the function on any input that it wishes,
exposing the residual function.
6 Party zero could send correlated randomness to all the other
parties, but only if it knows their identity in advance and has
establishing secure channels or PKI with them.

Gage MPC 531

Fig. 1. Gage MPC design.

existence of the blockchain and availability of bounty
hunters (i.e., parties willing to perform computation for
a reward).

The assumption that party zero makes about the
adversary’s financial abilities might not hold indef-
initely. The model allows for a highly incentivized,
wealthy, and patient adversary to attack the computa-
tion by outspending the collateral amount, and reveal-
ing additional information about the function. Thus,
there are two points to note. First, caution should be
taken when making assumptions about the finances of
the adversary. Second, the confidence we have in the
assumption holding in relation to the adversary, due to
the nature of the assumption, is weakened over time.
This implies that the guarantee that there is no leakage
of any additional information about the function (and
in particular of the residual function) holds in the short
term and decays over time.

Thus, one should consider under what circum-
stances it makes sense to use this model. A natural set-
ting could be where the computation is of an ephemeral
nature, and long after the output of the function has
been announced, it is acceptable if additional informa-
tion about the inputs is eventually revealed. Auction
settings (as in our sample application) are often such.

1.1 Overview of our Design

Our design creates a sequence of primitives built on
top of one another. It starts with Proof-of-Opening
Time Capsules which are incorporated into Gage Time
Capsules. Those are combined with Label-Driven MPC
(LD-MPC) to finally construct our Gage MPC (Fig-
ure 1 shows how these primitives are combined in the
Gage MPC construction). In the following sections and
appendices we provide a description of our design and
the flavor of each one of these constructions. Full details
can be found in the full version [7].

Blockchain Model. Our model relies on the follow-
ing blockchain model properties. We assume that the
blockchain provides an any-to-all broadcast channel,

i.e., an ordered list of messages that is consistently vis-
ible to all. Any party can post a message that becomes
visible to all parties within some bounded time. Fur-
thermore, we assume a liveness property, i.e., messages
cannot be blocked or delayed beyond some bounded
duration (e.g., in Ethereum, it is assumed that the ma-
jority of the mining power is honest, and in particular
will not censor transactions that carry adequate trans-
action fees; the requisite fees and queue size are publicly
known). Functionally, we require the blockchain to sup-
port smart contracts, i.e., updating its consensus state
according to (simple) programs we prescribe.

Gage Time Capsules.We build on a primitive we call
Gage Time Capsule (GaTC). A GaTC is a commitment
mechanism, that contrary to regular commitments, en-
sures that the committed value is exposed when needed.

We start with a simplified construction of GaTC to
give the main ideas that underlie this primitive. GaTC
bring time capsules [10, 46] to the blockchain. Recall,
that time capsules enable a party to commit to a value
in such a manner that another party, if it wishes, can
brute-force open the commitment. GaTC combine, via
a smart contract on the blockchain, a time capsule and a
collateral that acts as an incentive mechanism for open-
ing the time capsule. The GaTC will have two time peri-
ods. In the initial grace period, the creator of the GaTC
will be able to open the commitment and retrieve the
collateral. In the second period, if the collateral has not
been retrieved, it will be used to pay bounty hunters
who work to open the commitment. This use of the col-
lateral is similar to the notion of incentives for proof
of work [24]. Interestingly, this incentive mechanism en-
sures that given a large enough pool of bounty hunters,
it is virtually guaranteed that the GaTC will be opened
if and when needed. Note, that these bounty hunters are
independent of the parties of the protocol and thus it
does not matter which ones participate in the opening.
In addition, these bounty hunters do not need to be re-
lated to the miners maintaining the blockchain in case
of proof-of-work blockchains.

Gage MPC 532

In contrast to designs of time capsules that require
a minimum amount of sequential time to be opened, we
are interested in time capsules that require some min-
imum amount of work to be opened. The work can be
parallelized, and will be parallelized between the bounty
hunters.

However, this naive construction of GaTC from
time capsules suffers from the problem that if a bounty
hunter finds an opening, other parties may steal it
and claim the collateral in place of the bounty hunter
who did the work. That is why instead of using plain
time capsules, we introduce and use Proof-of-Opening
Time Capsules (POTC). A POTC adds a decommit-
ment value which requires time to compute. In opening
the POTC the bounty hunter proves that it knows this
value rather than exposing it in the clear. This proof
can be tied to the bounty hunter in such a way that
only the bounty hunter who produced the proof will be
able to claim the collateral.

Another problem to consider, is the risk of an at-
tacker posting malformed commitments that cannot be
opened. This presents a denial of service (DoS) attack
against bounty hunters who would waste their computa-
tion resources without reward. For simplicity, we assume
a semi-honest adversary for the first step (the commit-
ment posting). This assumption can be removed using
a generic NIZK proof that P0 generates to prove the
well-formedness of the commitment.

The previous high-level definition of GaTC is actu-
ally still insufficient for our purpose: we need a more
sophisticated primitive. A GaTC will bundle together a
few POTCs and will accept as input an index (see Fig-
ure 2). It will only incentivize the opening of the POTC
that relates to the given index. No incentives will be
given for the opening of the other POTCs inside the
GaTC.

Our monetary assumption is utilized in the design
of GaTCs. The level of the collateral sets the complexity
of opening a POTC. We assume that the complexity is
set high enough that the adversary would not be inter-
ested in exerting the level of computational power that
is required to open the number of additional POTCs
within the GaTC so as to violate the security of the
general protocol.

In Section 2 we propose an idealized instantia-
tion of POTCs in the random oracle model and the
generic group model. We use Fiat-Shamir in order to
provide the proofs for the opening. In Section 3 we
define our GaTC and provide an instantiation of those.
Our GaTC can be used over any blockchain, including
proof-of-stake based ones, as long as there are bounty

POTC1 ... POTCk
Collateral

GaTC Opening by P0

(nominal path)
P0 gets

collateral

Decommitted
POTC

Opening by a
bounty hunter

Bounty hunter
gets collateral

j
j

Fig. 2. A GaTC consists of a collection of POTCs with a sin-
gle associated collateral. The collateral can be transferred to the
party that opens the desired POTC, either P0 through the nomi-
nal path or a bounty hunter. The index j indicates which POTC
to open.

hunters in the world who are interested in receiving the
incentives.

Label-Driven MPC (LD-MPC). Our construction
is based on a garbled circuit framework, i.e., there is a
wire for each input and labels associated with that wire.
In order to carry out the computation there is a need
to know one label for each wire. The general idea would
be that the labels of the wires would be committed to
via GaTCs and if needed would be brute-force opened
to enable the computation. However, Yao-like schemes
leak information about the inputs of the parties even
in the case that only one additional label, beyond those
required for the computation, is exposed [9]. Given this
leakage, basing our solution on Yao will provide only
limited results. Thus, we introduce a generalization of
garbled circuits, called Label-Driven MPC that is ro-
bust in the face of exposure of additional labels. This is
a powerful generalization that can find applications in
other settings.

We obtain more robust garbled circuits by adding
one level of indirection. In order to compute the desired
Yao garbled circuit C we add a computation of a circuit
C′ on top of it. The output of the computation of the
circuit C′ will be the needed label for each input wire for
the computation of the circuit C. It would seem that we
have not done much, but the circuit C′ will be designed
in an innovative way by addressing two issues.

The first element in the creation of C′ is that we
choose an error correcting code that takes words of
length γ and expands them to codewords of length γ+κ
(for a code of minimal distance κ+1) where κ is the de-
sired robustness level. The circuit C′ will have γ + κ

inputs and the computation that it will execute is to
test whether the input is a word in the code. If it is,
it will output the labels for the circuit C. Observe that
the error correcting code in a sense adds a buffer of
security. To move from one legal codeword to another
there is a need to change κ input wires in C′. Given our

Gage MPC 533

general idea that the labels of wires will be committed
via GaTCs this expansion with error correcting codes
provides the desired security level.

The second issue is that if C′ is built as a Yao gar-
bled circuit it may still suffer from the vulnerability of
having a single additional wire exposed. However, C′ is
a simple linear computation, one that only needs to test
if the input is in the code. Given that this is a linear
computation we can rely on techniques from NIMPC
[12] that provide robustness to linear computations.7

Utilizing these techniques we can offer robustness to C′

and thus in return provide robustness to the original
computation.

Gage MPC. To achieve our final result of an MPC
protocol that circumvents the lower bound of leaking
the residual function we define the model of Gage Mul-
tiparty Computations and combine our new LD-MPC
with our GaTC.

We consider a public function f , with parties
P0, P1 . . . , PN holding inputs x0, x1, . . . , xN to f . The
parties will compute f(x0, x1, . . . , xN). We note that if
we want the function itself to be private, we can set the
public function f to be a universal circuit, and input the
actual private function as the input x0 of party zero, P0.

We will combine different LD-MPC to achieve our
solutions: a basic solution (based on Yao), and enhance-
ments utilizing the more robust version of LD-MPC.
We provide the following security guarantees.

0-robust security, public inputs. In this setting, the in-
put of party zero, P0, is the only private one, and other
parties’ inputs are all public. This solution utilizes a
standard garbled circuit that creates two labels for each
input wire. The POTCs of the two labels of a wire are
combined into a GaTCi for each wire i by P0. More
specifically, GaTCi for wire i has POTCi,0 for label µi,0
(wire value = 0) and POTCi,1 for µi,1 (wire value = 1)
in it. It incentivizes to open only one of the labels. For
the sake of simplicity, in the introduction, we assume
that each party Pi has a single input bit corresponding
to the input wire i.

The nominal execution works as follows. Once the
parties post their inputs this fixes the index that GaTCi
should open: for input b of party Pi it should open the

7 The main result of [12] is the construction of κ = O(1)-robust
NIMPC for polynomial-size circuits. Such NIMPC would pro-
vide κ = O(1)-robust LD-MPC. Unfortunately, this would not
yield robustness for larger κ values. Instead, we use an interme-
diate result of [12] that gives a fully robust NIMPC for linear
functions, and combine them with the ideas we described above.

POTCi,b. Party P0 then comes and opens all the val-
ues and reveals the committed labels, which allows ev-
erybody to evaluate the garbled circuit and learn the
output y = f(x0, . . . , xN). Party P0 further retrieves its
collateral.

In case P0 misbehaves and does not reveal the la-
bels, after the initial grace period, bounty hunters are
incentivized to open the POTCs of those labels and re-
ceive the collateral as payment. Once all the needed
POTCs are opened, the output y is computed the same
way as in the nominal execution.

As stated, the underlying garbled circuit is not ro-
bust to the exposure of additional labels, and thus this
computation inherits this lack of robustness. However,
as long as the adversary does not exert the computa-
tional effort required to open any additional POTC,
the resulting protocol achieves classical MPC secu-
rity: the adversary learns no additional information but
y, x1, . . . , xN .

If the difficulty of opening a POTC is set high
enough and if there are relatively few GaTCs (i.e., few
input wires), the total collateral (of all the GaTCs) is
not much larger than the difficulty of opening a single
GaTC. In that case, it is reasonable to assume that the
adversary cannot open any additional POTC and secu-
rity holds.

However, when there are many input wires, this as-
sumption becomes less likely. The adversary may have
enough power to brute force one of the other labels on
its own. To prevent this exposure we utilize our more
robust LD-MPC.

κ-robust security, public inputs. We present a design
that protects against an adversary exerting enough com-
putational effort to open up to κ additional POTCs (i.e.,
learning κ additional garbled circuit labels). We use the
κ-secure LD-MPC. We will want to relate the complex-
ity of the work to the number γ of inputs to the func-
tion. If the adversary wants to compute the function
on an additional input, we would like the adversary to
have to work almost as much as it costs to compute
the function on a single input. Thus, we set the pa-
rameters as follows. The length of the expanded input
is γ′ = γ + κ implying that to compute the function
on one input requires a number of POTCs (or labels)
equals to γ′. We would like the robustness κ to equal
(1 − ε)γ′. This creates a (1 − ε)γ′-robust Gage MPC
with γ′ wires, where ε > 0. In other words, this new
protocol ensures security as long as the adversary can
only exert enough computational effort to open a 1− ε
fraction of the POTCs that bounty hunters would have

Gage MPC 534

Public-Inputs
0-Robust
Security

Sec. A.1

Private-Inputs
0-Robust

Two Parties

Public-Inputs
(1− ε)γ′-Robust

Security Private-Inputs
(1− ε)γ′-Robust

Security
Sec. A.3

Sec. A.
2

Sec. A.
2

Sec. A.3

Fig. 3. Gage MPC. The fully private input versions are for two parties only.

to open in the bounty case. We remark that this is the
best that can be achieved. Indeed, if the adversary can
open as many POTCs as bounty hunters would have
to open if P0 misbehaves, then the adversary would be
able to evaluate the function f on another set of inputs.
This would break security (in other words, γ′-opening
security is never achievable for a protocol with γ′ wires).

We stress that the adversary who puts enough
computational effort to open more than κ additional
POTCs may learn more than the output of the function
on one additional input. After exerting enough compu-
tation power, it may even learn the full function. We
leave it as an open question whether there exists an ef-
ficient solution whose security degrades more gracefully.

0-robust security, private inputs, two parties. We pro-
vide a second, orthogonal transformation that provides
privacy for all parties’ inputs (rather than just P0). We
address this setting only for the case of two-party secure
computation (and we discuss how this can be extended
to the general multiparty case while pointing out poten-
tial practicality limitations). Thus, we consider parties
P0, P1 holding private inputs x0, x1 respectively, try-
ing to securely compute f(x0, x1).8 We can address
this setting by combining a two-round two-party se-
cure computation evaluating the desired function with
a Gage MPC. This is done by transforming the second
step of the evaluation of the two-round protocol into a
Gage MPC protocol.

κ-robust security, private inputs, two parties. The two
transformations described above can be combined, to
achieve Gage two-party secure computation with secret
inputs and κ-robust security. See Fig. 3.

8 As mentioned above, using universal circuits this can also be
used when P0 holds a private function g and P1 holds an input
x and they compute g(x).

1.2 Application: Private Decentralized
Auctions

An important application, highlighting the power of
Gage MPC, is on-chain trading. Auctions allowing par-
ties to place bids for a published offer, and more gen-
erally exchanges allowing to place multiple bids and of-
fers (orders) in an order book, are crucial components
of economic markets.

The emergence of blockchain technology saw the
introduction of many decentralized exchanges (or auc-
tions), which are implemented using a blockchain and
often trade assets whose ownership is represented on the
blockchain. Goals and motivation in constructing such
systems include: eliminating the need for trusted par-
ties to deliver correct execution, privacy, or asset cus-
tody (credit risk); reducing costs, fees and onboarding
barriers; avoiding censorship; and enabling integration
with other blockchain-based systems, such as electronic
commerce and decentralized finance instruments. Many
such systems have been implemented [1–4, 6, 38, 43, 47],
and the total trading volume in decentralized exchanges
has recently exceeded US $20B per month [22].

The existing schemes that implement decentral-
ized blockchain-based order-book exchanges follow two
paradigms: open orders books where the orders are
broadcast in plaintext, recorded on the blockchain, and
then settled later (by the miners following consensus
rules), or some weak notion of hidden order books (i.e.,
dark pools) to keep the offers and bids secret. An exam-
ple of the latter is the commit-and-open paradigm: send-
ing the order in the form of (hiding and biding) commit-
ments to a smart contract, and later publicly opening
all these commitments [6]. Another approach is to send
orders in secret-shared form to a committee, which uses
MPC to reveal just the outcome, while letting unexe-
cuted orders remain hidden [5]. Both approaches have
the drawback that they require the continued availabil-
ity and participation of specific parties (the traders in
the former; the MPC committee members in the latter),

Gage MPC 535

and if these parties become unavailable, the orders can
never be executed. The requisite participation is incen-
tivized by escrows, or “bonds”, that are confiscated if
those parties fail to operate correctly. They are, how-
ever, technically at liberty to abort and just accept the
penalty. That is, they operate in the Gen II model.

Crucially, these approaches do not guarantee execu-
tion, they are not resilient to auxiliary incentives that
may induce participants to abort even if this entails a
penalty. For instance, a bidder may realize that the mar-
ket price has jumped and their already-committed-to
offer, if executed, would cause them enormous loss. Or
an auction seller, who has committed to a reserve price,
may later realize that revealing their low reserve price
will harm them in some future transaction. Either of
these, or an attacker trying to cause a denial-of-service
disruption, may be willing to forego their bonds or bribe
MPC parties to lose theirs.

An alternative, automated market maker, forgoes or-
der books and implements the trading counterparty as
a smart contract. All bids and offers are public, as is
the trading algorithm itself (which moreover must be
supplied with large liquidity pools).

A recent scheme, which (like us) targets the issue
of guaranteed execution without requiring the parties
to stay online, exploits time-lock puzzles to realize a
sequential blockchain-based auction functionality [23].
It follows the commit-and-open paradigm; parties seal
their bids in commitments, provide time-lock puzzles
for the opening, then if the parties do not come later
to open their commitments other miners will open the
puzzles and execute the auction. Their goal is to build
an auction-based proof-of-stake (PoS) mining algorithm
to discourage hoarding currency.

Our Gage MPC construction enables auctions which
have guaranteed evaluation, and moreover, are privacy-
preserving. Unlike [23], which opens all inputs in the
clear during the execution phase, our scheme reveals
only whether or not the bid matched the offer. The offer
price remains secret, and (if using the aforementioned
private-input transformation) so does the bid. The pri-
vacy level can be calibrated by configuring the amount
of computation required to force-open the puzzles, i.e.,
the bounty-hunting path, which is translated into mon-
etary cost.

Such privacy was unnecessary for the narrow set-
ting of [23], but it is clearly of interest in more general
auction applications. Moreover, we provide a general
auction functionality that can be used by any user to

trade any asset represented on the blockchain.9 Lastly,
note that these auctions are merely a special case, and
our construction extend to any (efficiently-computable)
two-party functionality, including those that control
asset flows in more complex ways. Thus, we solve a spe-
cial case of the important problem of trustless privacy-
preserving smart contracts.

Implementation of POTC and Simple Auctions.
As a proof of concept, and to demonstrate the poten-
tial practicality of our constructions, we implemented a
library that provides a generic interface for our POTC
operations, and evaluated its performance overhead for
each operation. Next, we used the library to implement
an instantiation of Gage MPC for a simple auction func-
tionality, in our basic security setting (public-inputs,
no additional opening). That is, a seller posts an offer
with a secret reserve price, while buyers’ offers are pub-
lic. Our prototype implementation is fully integrated in
Ethereum Virtual Machine (EVM). Our implementa-
tion is described in Section 7.

1.3 Related Work

Our work is related to several concepts found in the lit-
erature, including time capsules, Non-Interactive MPC,
and the use of blockchains to circumvent some impossi-
bility results and/or build new cryptographic primitives.
In what follows, we provide a brief description of some
of the works in each of these areas, while a more detailed
discussion can be found in the full version [7].

The notion of time capsules was first introduced
in [10], and is closely related to the notions of timed
commitments [15] and time-lock puzzles [46]. These con-
structions are different from our use of time capsules.
In particular, the constructions of [15, 46] need to en-
sure that the attacker cannot utilize parallelism in or-
der to improve the run-time for the breaking protocol.
Yet, we focus on the total amount of computation that
the adversary needs to compute in order to break the
time capsule, irrespective if this work is done in paral-
lel or not. Thus, most applications that would need to

9 It is unclear how the mining auctions of [23] would be thus
generalized, when their incentives are specific to mining, i.e., the
prospects of transaction fees and block rewards. For instance,
without incentive for the nominal path, a party can post a bid
and then disappear, leaving it to others to expensively open the
commitment and execute the auction — with no penalty, thus
enabling a DoS attack.

Gage MPC 536

enforce some minimal amount of work, with the fine-
grained capability of configuring the amount of infor-
mation leakage based on the computation power of the
adversary, would need our modified time-capsules no-
tion and construction. Other recent works [17, 39] in-
troduced the notion of homomorphic time-lock puzzles,
which allows to combine homomorphically time puz-
zles and then open a single puzzle containing the result
of the computation. Homomorphic time-lock puzzles
also allow to design decentralized auctions, however the
known constructions either require indistinguishability
obfuscation [39] or multi-key fully homomorphic encryp-
tion [17]. The auction-based mining proposed in [23],
similar to our work, brings the notion of time-lock puz-
zles to the blockchain by having miners force open un-
opened puzzles. However, as discussed above, its focus is
on the time needed for opening rather than the compu-
tational effort, and it does not incentivize the nominal
path of puzzle opening, thereby leaving the miners vul-
nerable to a DoS attack.

Another related concept is verifiable delay func-
tions [14, 25], in which a sequential function is evalu-
ated over some input and takes at least t time steps
to be completed, while verifying the correctness of the
output is much more efficient. Similar to time-lock puz-
zles, VDFs are about ensuring a given bound on the
computation delay is satisfied (and that parallelism is
not effective in attacking the scheme) rather than the
amount of computation. On the other hand, the notion
of pricing functions [24, 41], where the proof-of-work
mining is an example of such functions, are similar in
spirit to our work. The goal is to utilize moderately hard
functions to put a price on some actions (e.g., sending
spam emails) in terms of amount of computation. Our
work extends this model by involving explicit monetary
rewards to enforce computation completion.

On the blockchain model and circumventing impos-
sibility results, as mentioned before, several works tar-
geted the fairness issue in MPC. The works in [8, 13]
realize a financial-based notion of fairness in which the
party that aborts after learning the output loses its
penalty deposit to the honest players. This notion was
formalized in [36] under what is called secure MPC
with compensation. As opposed to our constructions,
the output is not guaranteed: the honest players just
get compensated if they do not receive the output. On
the other hand, [20] does not rely on financial incentives
and achieve full fairness utilizing a public bulletin board
(can be instantiated using a blockchain). However, their
constructions require either extractable witness encryp-
tion which has no known practical implementation (nor

even theoretical constructions under standard assump-
tions) or the use of secure hardware like SGX. A more
recent work [28] exploited the consensus protocols in
blockchains, particularly that what matters is the hon-
est power majority (whether it is computing power, or
stake, etc.) rather than the number of parties to circum-
vent the n/3 lower bound of MPC with malicious par-
ties when no private correlated randomness setup (e.g.,
a PKI) is used.

A related line of work used the blockchain model as
an alternative to strong assumptions. In [32] it is used
to avoid the trusted setup needed for non-interactive
knowledge (NIZK) proof systems, [19] strengthened this
model and allowed the use of global public blockchains.

For implementing new cryptographic primitives or
functionalities in the blockchain model, [35] used a pub-
lic bulletin board to enable a trusted execution envi-
ronment (TEE) hosted by an untrusted computer, to
create a secure state without requiring a persistent in-
ternal storage. In [37], a privacy preserving smart con-
tract framework is proposed, which permits implement-
ing MPC protocols on the blockchain. However, the pro-
posed framework requires to trust a manager with the
users’ inputs. Our scheme does not introduce a privi-
leged entity; it is fully distributed and decentralized. A
stronger privacy notion appears in [16], where not only
the user’s input is protected, but also the executed func-
tionality. Our scheme addresses both data privacy and
function privacy (by garbling a universal circuit), but
without requiring a privacy-preserving ledger as in [16].

2 Proof-of-Opening Time
Capsules

In this section we present proof-of-opening time capsules
(POTC), which enhance time capsules [10, 46] to add
the feature that a party that opens the time capsule
can prove in zero knowledge that it knows the open-
ing (rather than exposing the committed value in the
clear). We propose candidate constructions that satisfy
our definition. The feature of proving the opening will
be critical for our design of the new concept of GaTC
and Gage MPC. Though we see the definition and proof
of these time capsules as an important contribution of
our paper, it is not the main one. We thus focus here
on the aspects needed for the subsequent constructions,
while (due to space limitation) formal security defini-
tions, constructions, and proofs can be found in the full
version [7].

Gage MPC 537

2.1 Definition

We start by defining proof-of-opening time capsules. At
a high level, POTC adds the following to the original
time capsules [10, 46]. First, it allows the decommitment
information to be different from the randomness used in
generating the commitment (i.e, the capsule). As such,
we introduce an additional algorithm to verify a decom-
mitment. Second, it does not require the opening party
to reveal the decommitment. This is needed since the
simple method of revealing the decommitment does not
work for our purposes; an attacker who observes this
value being sent can block or front-run it, and present
this opening as their own. By requiring a zero knowl-
edge proof instead to prove opening, our approach dis-
arms such a malicious party and protects the party who
did the work to open a capsule.

In the definition below, λ is a standard crypto-
graphic security parameter (in particular, a computa-
tion time of 2λ is not feasible). On the other hand, λ∗ is
a parameter capturing the hardness of forced-opening.
That is, 2λ∗ is the time it takes to recover the message
and a decommitment from the commitment alone; it
should be feasible (polynomial), but hard (λ∗ is a mea-
sure of how costly this is).

Definition 1 (informal). A Proof-of-Opening Time
Capsule is defined by five polynomial-time algorithms
that make use of a hash function H modeled as a ran-
dom oracle:
– Commitment: (c, d) ← TC.Com(1λ, 1λ∗

, µ) takes as
input the security parameter λ, the opening hard-
ness parameter λ∗, a message µ ∈ {0, 1}poly(λ), and
outputs a commitment or time capsule c and its as-
sociated decommitment d.

– Decommitment Verification: TC.DVer(1λ, c, µ, d)
takes as input the security parameter λ, a com-
mitment c, a message µ, a decommitment d and
outputs 1 if the decommitment is valid with regards
to c and µ; and outputs 0 otherwise.

– Forced Opening: (µ, d) ← TC.ForceOpen(c) takes as
input a commitment c, brute-forces its opening, and
outputs the committed message µ and a valid decom-
mitment d.

– Opening Proof: π ← TC.Prove(c, µ, d, tag) generates
a proof π, with tag tag, that c commits to µ using
the witness d.

– Proof Verification: TC.PVer(1λ, c, µ, π, tag) takes as
input the security parameter λ, a commitment c, a
message µ, a proof π, a tag tag, and outputs 1 if

the proof is valid with regards to c, µ, and tag; and
outputs 0 otherwise.

We require the following properties to be satisfied:
Perfect correctness. TC.DVer returns 1 for hon-

estly generated commitments and decommitments.
TC.PVer returns 1 for honestly generated com-
mitments and proofs. Furthermore, TC.ForceOpen
makes about 2λ∗ evaluations of H.

Binding and Soundness. It is not possible to find a
commitment c for which there exists two valid de-
commitments d, d′ (resp., two valid proofs) for two
different messages µ 6= µ′.

Hiding and Simulatability. The original definition
of time capsule stated that it should take about 2λ∗

evaluations of H to learn any information about the
committed message µ of a commitment c. This no-
tion is insufficient for our purpose, as we may use
many time capsules, in which case the adversary
may be able to open some of them. What we require
is that if the adversary makes significantly fewer
than κ · 2λ∗ evaluations of H, it should not be able
to learn more than κ of the values in the capsules.
This property is surprisingly difficult to formalize:
our formal definition is simulation-based and uses
ideas from trapdoor commitments [27].

Non-Malleability. Generating opening proofs for a
new tag tag (for which no such proof was gener-
ated) for κ different commitments requires to make
around κ·2λ∗ evaluations of H. In particular, seeing
proofs-of-opening for a commitment c and a tag tag′
does not help in generating a proof-of-opening for
the same commitment and a different tag tag 6= tag′.
This property is used to ensure that parties cannot
“steal” proof-of-opening from another party.

2.2 Construction

We have the following theorem.

Theorem 2. There exists a POTC in the random ora-
cle and generic group model.10

In this section, we present a simplified construc-
tion without proof-of-opening. Adding proof-of-opening
could be done generically using simulation-extractable
NIZK, but this would be highly inefficient. Instead, in

10 The construction uses both a hash function modeled as a
random oracle and a cyclic group modeled as a generic group.

Gage MPC 538

the full version [7], we show how to transform the time
capsule below to make it more algebraic and uses a Fiat-
Shamir proof.

Our time capsule construction is based on the orig-
inal construction in [10] and references within. In this
original construction, to commit to a message µ, the
committer first selects a low-entropy seed s R← {0, 1}λ

∗
,

then hashes this seed and uses this hash as a one-time
pad to “encrypt” µ as c2 := H2(s) xor µ (where H2 is
a hash function). It also includes in the commitment a
hash of the seed, namely, c1 := H1(s) where H1 is an-
other hash function, that is used to verify if a seed is
the valid one. The commitment is c := (c1, c2).11

Intuitively, to force open a commitment, we need to
enumerate the possible seeds s, hash them, and check
which one corresponds to c1. This requires at most 2λ∗

hash evaluations of H1, and on average 2λ∗
/2 hash eval-

uations of H1.
Unfortunately, such a time-capsule does not satisfy

our definition of security. An adversary making even a
single hash evaluation of H1 and H2 may stumble upon
the correct seed s, with probability 1/2λ∗ , which is not
negligible. This makes such a commitment construction
difficult, if not impossible, to use as a building block of
any cryptographic protocol.

We fix the above construction as follows. Instead
of using a single seed s ∈ {0, 1}λ

∗
, we use k seeds

s1, . . . , sk ∈ {0, 1}νs , where νs = λ∗ − blog2 kc. We
commit to each seed individually by computing c1,i =
H1(i‖si), and then encrypt the message µ as c2 :=
H2(1‖s1)xor · · ·xorH2(k‖sk)xorµ. Thus, force opening a
commitment takes about 2νs · k ≈ 2λ∗ hash evaluations
(by trying every si).

However, the main difference now is that if the ad-
versary can only make significantly fewer than 2λ∗ hash
evaluations, the commitment will remain statistically
hiding. For example, if the adversary makes at most k−1
hash evaluations, the message µ is perfectly hidden since
the adversary will be missing one of the one-time pad
masks H2(i‖si). This argument can be extended to an
adversary making many more than k hash evaluations
using a careful probability analysis and tail bounds.

To provide more intuition of why this is true, let us
consider two cases which require around the same num-
ber of hash evaluations to brute force, which is about
215:

11 For the sake of simplicity, we do not include any salts in this
overview, and assume that a single commitment is made. This
is already sufficient to explain the issue we want to highlight.

Case 1. A single 15-bit seed. The probability that the
adversary succeeds with q hash evaluations is around
q/215 = q/32768. This is never negligible.
Case 2. Eight 12-bit seeds. Let us simplify the proba-
bility analysis by allowing the adversary to make q hash
evaluations per seed, instead of q hash evaluations in
total (this only makes the adversary stronger). For each
seed, the adversary will hash the correct seed value with
probability around q/212, which is not negligible. How-
ever, the adversary must guess correctly each seed value,
and each of these events are independent, so the adver-
sary’s success probability is about q8/(212)8 = q8/296,
which is negligible in practice (by which we mean, less
than 2−80).

We give some concrete parameters to show that the
construction is efficient in the full version [7]. Even for
128 bits of security where the adversary should not learn
any committed message (κ = 0), if the honest parties
are assumed to make about 240 hash evaluation to force
open a commitment while the adversary is restricted
to 230 hash evaluations, then only k = 15 seeds are
required. For weaker notions of security (where the ad-
versary is allowed to open κ > 0 messages), the number
of used seeds can be further decreased.

3 Gage Time Capsules

3.1 Definition

We proceed to introduce the notion of a Gage Time
Capsule (GaTC), which guarantees that one of several
posted commitments is opened according to some rule,
even if the original committer does not cooperate in the
opening.

A GaTC allows a committer party to publish several
commitments to values, and designate a controller party
that will choose which commitment will be opened.12

The committer also posts a collateral. It is guaranteed
that once the controller has made the choice of which
commitment to open, the commitment will indeed be
opened shortly afterwards, one way or another. Either
the committer will open the designated commitment
within a prescribed time window, and thereby reclaim
the posted collateral; or someone (an arbitrary bounty

12 In our applications, the designated controller will be an ex-
isting smart contract, which commits to the procedure by which
it will be decided which value to open.

Gage MPC 539

hunter) will force-open the commitment, and receive the
collateral as profitable compensation for the requisite
computational effort.

Abstractly, the GaTC functionality has the follow-
ing interface. Given a broadcast channel, a consensus
view of public events’ ordering, an approximate global
clock, and means to programmatically transfer assets
(all of these will be realized, below, by an underlying
blockchain):

– Creation: The committer party invokes
GaTC.Create(1λ, 1λ∗

,µ, ctrl, deposit) (where λ is the
security parameter and λ∗ is the opening hard-
ness parameter as defined in POTC) to commit
to a vector of messages µ = (µ0, . . . , µL−1) where
µi ∈ {0, 1}νµ , and places an associated collateral of
a prescribed monetary value, represented by deposit.
Initially, this collateral is locked up and inaccessible.
The existence of this new GaTC, and L, become
public, but not the content of µ. The committer
party also designates the party represented by ctrl
as the controller of this GaTC.

– Request opening: The controller party invokes
GaTC.RequestOpen(σ) once, where σ ∈ ZL, to
choose which commitment should be opened. This
index σ becomes public. From this event, we mea-
sure a prescribed time duration to a deadline T .

– Nominal opening: Subsequently, the committer may
invoke GaTC.NominalOpen(), which causes the value
µσ to be publicly released. If this is the first time
that the committer called GaTC.NominalOpen, and
moreover either the deadline T has not yet passed or
no call to GaTC.ForceOpen has been completed yet,
then the collateral is returned to the committer.13

– Bounty opening: GaTC.ForceOpen() can be invoked
by any party (serving as a bounty hunter). This
will cause that party to perform a computation-
ally expensive process, and eventually publish the
value µσ. If the deadline T has passed, and moreover
this is the first invocation of GaTC.NominalOpen or
GaTC.ForceOpen that completed, then the the col-
lateral is transferred to the bounty hunter.

– Querying the result: GaTC.GetResult() may be in-
voked by anyone, after GaTC.RequestOpen has been
invoked. This returns µσ if GaTC.NominalOpen or

13 We assume a global clock; in the realization, this will be
defined by the length of a blockchain’s consensus view, measured
in blocks.

GaTC.ForceOpen have already been invoked and
completed; otherwise it returns ⊥.

Implicit parameters. For brevity, we let the message
length be constant, and thus omit it from this descrip-
tion. We also omit specification of the collateral amount
and of the time window until the committer’s deadline;
these need to be calibrated to the properties of the appli-
cation and the underlying asset and blockchain. In par-
ticular, the collateral amount should suffice to compen-
sate and incentivize the computation of TC.ForceOpen
(from the POTC) within GaTC.ForceOpen.

The time window for the deadline should be long
enough to allow the committer party to open the time
capsules and recover its collateral. It is fixed indepen-
dent of how long it takes to compute the opening by the
bounty hunters. It only depends on how long (in num-
ber of blocks) an adversary can censor a transaction
(i.e., prevent it from being added to the blockchain),
assuring that the committer party can post the open-
ing.

3.2 Realization on a Blockchain

Model. We realize the GaTC functionality using a
POTC scheme TC along with a blockchain that supports
smart contracts and assets with monetary value. Specif-
ically, we assume an append-only ledger, composed of
blocks each of which records an ordered list of trans-
actions; a consensus algorithm that provides all par-
ties with a consistent consensus view of this ledger; and
a permissionless censorship-free protocol for appending
transactions to this ledger. We assume that the transac-
tion syntax and semantics support smart contracts, i.e.,
user-defined stateful interactive programs executed by
the blockchain’s consensus rules (e.g., as implemented
in Ethereum). We also assume that transactions can
represent ownership and transfers of assets with mone-
tary value, such as a native cryptocurrency (e.g., ETH)
or other tokens (e.g., ERC-20 or ERC-721).

We consider time in terms of rounds, where a round
is the time needed to append (i.e., mine) a block on
the blockchain. Hence, a capsule’s grace period, i.e.,
the time during which P0 can use the nominal path,
is defind in number of rounds. We assume a secure
blockchain that satisfies the liveness and persistence
security properties [29, 42]. In particular, censorship
(blocking publication of a valid transaction for un-
bounded time) is assumed infeasible due to the liveness

Gage MPC 540

property, as discussed in Section 1.1.

Construction. A GaTC coordination smart contract,
designated GaTCContract, implements the function-
ality of storing the state of POTCs, implementing the
requisite rules (e.g., checking the proofs of opening),
and handling the collateral (i.e., taking custody of it
and paying this collateral to the correct party when the
conditions are fulfilled). The POTC scheme is used with
suitable security parameter λ and opening hardness pa-
rameter λ∗, and assets of correspondingly suitable value
are used as a collateral and for compensating bounty
hunters.

Thus, the GaTC is realized as a “decentralized app,”
where each of the GaTC’s algorithms consists of a por-
tion executed by a party and/or a portion executed by
GaTCContract, as follows (in any of the steps below,
which corresponds to some message asking to perform a
specific operation, if any of the checks fail the contract
will simply ignore the calling message).14

– The committer invokes GaTC.Create(1λ, 1λ∗
,µ, ctrl,

deposit) where µ = (µ0, . . . , µL−1) and deposit
grants control over the assets to be placed as col-
lateral (a spending key for a wallet with adequate
balance):
1. The committer runs (ci, di) ←

TC.Com(1λ, 1λ∗
, µi) for i ∈ ZL where λ is the

security parameter and λ∗ is the opening hard-
ness parameter (see Section 2.1).

2. The committer calls a method of GaTCCon-
tract that, given c = {ci}i∈ZL , deposit, ctrl and
(implicitly) the caller address cmtr:15
(a) initializes GaTCContract’s state with

the following values: c,16 the controller’s
address ctrl, the committer’s address cmtr,
σ = ⊥ and µ = ⊥;

(b) moves ownership of the collateral to GaTC-
Contract using deposit.

14 For simplicity, we assume that GaTCContract is created
anew for every instance of the GaTC. It can be trivially extended
to serve multiple instances.
15 We identify parties with their account address on the
blockchain, and assume they control the assets in this account
as well as the ability to send messages that are identified as sent
from this account, as in Ethereum.
16 Since persistent storage in smart contracts is expensive in
platforms such as Ethereum, costs can be reduced by storing
only the Merkle tree root of the vector c, and then including
Merkle authentication paths in later calls to the smart contracts.
We omit this optimization for simplicity.

3. The committer remembers {(ci, µi, di)}i∈ZL for
later.

– The controller invokes GaTC.RequestOpen(σ), where
σ ∈ ZL:
1. The controller calls a method of GaTCCon-

tract that, given σ and the caller:
(a) verifies that the caller is ctrl, and that the

stored σ is ⊥;
(b) stores the new σ;
(c) stores the deadline T , expressed as a block

number and computed by adding a constant
to the current block number.

– The committer invokes GaTC.NominalOpen():
1. The committer retrieves σ from GaTCCon-

tract, and aborts if it is ⊥.
2. The committer runs π ← TC.Prove(cσ, µσ, dσ,

cmtr) where cmtr is the committer’s account ad-
dress.

3. The committer calls a method of GaTCCon-
tract that, given µ̄ = µσ and π:
(a) verifies that the stored µ is ⊥, and the

stored σ is not ⊥;
(b) verifies that TC.PVer(1λ, cσ, µ̄, π, cmtr) = 1;
(c) updates the stored µ to µ̄;
(d) transfers the deposit to cmtr.

– A bounty hunter invokes GaTC.ForceOpen():
1. The bounty hunter retrieves σ and cσ from

GaTCContract (and aborts if σ is ⊥).
2. The bounty hunter runs (µ̄, d̄) ←

TC.ForceOpen(cσ).
3. The bounty hunter runs π ← TC.Prove(cσ, µ̄, d̄,

hntr) where hntr is the bounty hunter’s account
address.

4. The bounty hunter calls a method of GaTC-
Contract that, given µ̄, π and hntr:
(a) verifies that the stored µ is ⊥, and the

stored σ is not ⊥;
(b) verifies the current time (block number) is

later than T ;
(c) verifies that TC.PVer(1λ, cσ, µ̄, π, hntr) = 1;
(d) updates the stored µ to µ̄;
(e) transfers the deposit to hntr.

– GaTC.GetResult(): returns the µ as stored in GaTC-
Contract (possibly ⊥).

Note that within the smart contract
GaTCContract, the only cryptographic operation
is calling TC.PVer to verify proofs; the rest is simple
logic, storage and retrieval of (publicly known) state,
and asset transfers.

Gage MPC 541

Security. The above construction realizes the definition
of GaTC from Section 3.1. For brevity we omit a full
formal treatment, but note the following nuances:

By assumption, the underlying blockchain serializes
on-chain events, including calls to the smart contract.
This avoids time-of-check-to-time-of-use vulnerabilities
in the tests done by the smart contracts.

There is the concern of front-running attacks by
bounty hunters (i.e., stealing someone else’s opening
proofs while they’re still in the process of being pub-
lished to the blockchain, and claiming the collateral
for themselves). This is prevented using the tags as-
sociated with each proof, which convey the identity of
the prover (i.e., the initiator or the bounty hunter who
ran TC.ForceOpen). The non-malleability property of the
POTC guarantees that the tag associated with a proof
cannot be changed by others.

If a commitment opening transaction, sent by the
committer or bounty hunter, is blocked for sufficiently
long, then the collateral may be collected by another
bounty hunter. However, as mentioned under the para-
graph “Model” above, prolonged censorship is assumed
infeasible due to the liveliness properties of the under-
lying blockchain.

4 Sample GaTC Usage: Auctions
As a tutorial example of using GaTCs in a higher-level
application, we show a simple protocol that implements
fully-decentralized semi-private reserve-price auctions
over the blockchain, when the set of possible prices is
small enough that costs (storage and computation) can
be linear in the size of this set.17 Using Gage Time
Capsule, we ensure that the auction is completed even
if the seller tries to abort it. Section 6 below extends
this to general MPC (and in particular auctions with
a large range of prices), and Section 7 describes our
implementation.

One-shot reserve-price auction. Consider an auc-
tion for trading digital assets (e.g., selling some
Ethereum-based token for some amount of Ether). A
seller P0 announces on the blockchain that she wants
to sell a token, but only if the potential buyer pays

17 While we use auctions for concreteness, this approach natu-
rally extends to evaluating any function with a small truth table,
where the function is secret and the input is public. Complexity
is linear in the size of the truth table.

at least a secret reserve price x0, known to be in a
predefined set, x0 ∈ ZL = {0, . . . , L − 1}.18 A buyer
P1 can then come and announce (publicly) a price x1
on the blockchain. If x1 ≥ x0, the auction succeeds, P1
should get the token and P0 obtains x0 coins in return.
Otherwise, the auction completes without moving these
assets.

Construction. The application-layer protocol (here:
the auction) is implemented as a decentralized app: a
combination of a smart contract and local instructions
to parties. Concretely, we implement an application-
contract AuctionContract which handles the aspect
of the auction protocol that rely on consensus state
and rules. In turn, AuctionContract makes use of
a single GaTC and its associated contract GaTCCon-
tract. The role of AuctionContract is to collect
application-level inputs from the parties (here: the auc-
tion bid); instruct the GaTC which commitments to
open accordingly (by calling GaTC.RequestOpen), and
then learn the opening (by calling GaTC.GetResult) and
act on it (here: by announcing the auction’s outcome
and potentially transferring the token and the coins if
the auction is successful).

Because AuctionContract decides which index
the underlying GaTC will be queried on, it serves as
the controller for that GaTC. Thus, in the realization,
the address of the application contract will be passed as
ctrl to GaTC.Create, which tells the underlying GaTC-
Contract to respect GaTC.RequestOpen calls from the
application contract. This means that at the time when
the GaTC is created and the collateral is deposited, it
comes with irrevocable instructions for how to deter-
mine which commitment to open (which may depend
on anything visible to the application contract).

To initiate an auction with a secret reserve price x0,
the seller P0 does the following:

1. Create an instance of the AuctionContract
smart contract (which implements the behavior de-
scribed below).

2. Let µ = (µ0, . . . , µL) where µi = 0 if i < x0 and
µi = 1 if i ≥ x0. (This is the truth table of the “does
the bid reach the reserve price x0?” function.)

3. Prepare a deposit deposit of a collateral (e.g., a given
amount of Ether).

18 We assume here that prices are denominated in small inte-
gers. More generally, we can support an arbitrary monotonically-
increasing list of L real-valued prices, and let x0 (and x1 below)
serve as indices into this list.

Gage MPC 542

4. Call GaTC.Create(µ,AuctionContract, deposit)
to create a GaTC for µ, with the
AuctionContract instance as the controller that
determines which entry of µ will be opened.

5. Call a method of AuctionContract that tell it to
control this instance of GaTCContract.

6. Broadcast the existence of the auction and the ad-
dress of AuctionContract instance that serves it.

Later, a buyer P1 wishes to post a bid on this auc-
tion, with a public bid price x1. To do so, it calls a Bid
method of AuctionContract, passing x1. If this is the
first such call, then Bid records the account address of
P1 and the bid x1, and invokes GaTC.RequestOpen(x1).

Subsequently, the GaTC ensures that value µx1

will be revealed, whether by having P0 invoke
GaTC.NominalOpen(), or by having some bounty hunter
invoke GaTC.ForceOpen(). In either case, and regardless
of the auction’s outcome, whoever successfully posted
the commitment opening will collect the collateral: in
the nominal case, P0 just gets the collateral back;
whereas in the bounty case, the bounty hunter receives
the collateral as compensation and incentive for their
computational work. Given a sufficiently large collat-
eral, this is guaranteed to occur in the presence of ra-
tional bounty hunters.

Once the GaTC has been opened, GaTC.GetResult()
will output µx1 when called. Thus the auction outcome
can be decided: if µx1 = 1 the bid has met the reserve
price and the trade is settled, meaning that P0 gets x1
coins and P1 gets the token; otherwise the reserve price
was not met, and P0 and P1 retain their assets. (Auto-
matic settlement can be implemented within Auction-
Contract, by having it take custody of the token being
sold and of the bid, and then either sending them back
or exchange one for the other, according to the bid out-
come.)

Note that the above protocol assures the decision
and settlement, regardless of whether the parties are
online and cooperative when the auction outcome is de-
cided and settled.

The above protocol protects the privacy of the re-
serve price, though not of the bids. To make the latter
private as well, and reveal nothing but the final result,
one can use the additional “private inputs” transforma-
tion described in Section 1.1.

5 Label-Driven MPC
In this section we present a generalization of garbled cir-
cuits which we call Label-Driven MPC (LD-MPC). The
purpose of this generalization is to provide constructions
of MPC that use secret labels and that are more robust
to the exposure of additional labels, beyond the ones
required for the computation. Due to space limitation,
formal definitions and constructions are provided in Ap-
pendix A. Here, we only provide informal definitions.

LD-MPC is defined as follows. Party P0 holds a se-
cret input x0 and a public function f to be computed
on x0 and on the inputs x1, . . . , xN held by parties
P1, . . . , PN . P0 generates a message m0 as well as labels
{µj,u}j∈[γ],u∈ZL for γ wires: (m0, {µj,u}j∈[γ],u∈ZL) ←
Msg0(1λ, x0). For a Yao-based construction, γ is the
number of inputs and L = 2 (see Construction 7 in Ap-
pendix A). The other parties Pi can generate messages
mi depending on P0’s message m0 and their input xi:
mi ← Msgi(m0, xi).

Finally, evaluation is done in two steps. First the set
of labels that need to be used (represented by a vector
σ ∈ ZγL) is computed: σ := Eval1(m0,m1, . . . ,mN). For
a Yao-based construction, σ = x1‖ . . . ‖xN . Then the
output y = f(x0, x1, . . . , xN) is computed from the la-
bels {µj,σj}j selected by σ: y ← Eval2(m0,m1, . . . ,mN ,

{µj,σj}j∈[γ]).

6 Gage MPC
In this section we describe how to achieve our final goal
of Gage MPC. We utilize our Gage TC (GaTC) and
Label-Driven MPC. Recall that Gage MPC enables a
party P0 with private input x0, to allow the evaluation
of a function f(x0, •, . . . , •), on a set of inputs x1, . . . , xN
held by parties P1, . . . , PN . As described in the Intro-
duction this is achieved as follows: P0 takes the labels
created by the Label-Driven MPC and for each wire,
create a GaTC with the labels of this wire. Party P0 de-
posits a collateral to create each GaTC. Once the par-
ties P1, . . . , PN reveal their messages m1, . . . ,mN corre-
sponding to their respective inputs x1, . . . , xN , this de-
fines which labels need to be revealed (i.e., which POTC
in each GaTC needs to be opened). Each GaTC then
gives party P0 a grace period during which it can open
the needed POTC and retrieve its collateral. After the
grace period, the collateral is utilized to pay bounty
hunters to complete the computation by opening the

Gage MPC 543

needed POTCs. In either case, the output f(x1, . . . , xN)
can be publicly computed from the opened labels.

The security of the Gage MPC follows from the se-
curity of the Label-Driven MPC and the GaTC. More-
over, security holds even under parallel composition,
since GaTC already allows for parallel commitments.

We assume that party P0 also has an address
which it will use for retrieving its collateral. Let Π =
(Msg0,Msg1, . . . ,MsgN ,Eval1,Eval2) be a Label-Driven
MPC for the computation of the function f held by P0.
Given the secret input x0, party P0 proceeds as follows
to create a Gage MPC.

1. Setup carried out by P0:
(a) Run (m0, {µj,u}j∈[γ],u∈ZL) ← Msg0(1λ, x0). Set

µj = {µj,u}u∈ZL for j ∈ [γ].
(b) Determine level of complexity desired for the

opening of the label of a wire. Fix the collateral
to the amount related to this level of complexity.
Create γ payment transactions {depositj}j∈[γ]
for this collateral amount, one for each wire.

(c) Instantiate γ times the GaTC functionality as:
{GaTCj}j∈[γ] incorporating the collateral from
the previous step.

(d) Create an application smart contract GMPC
that will implement the full MPC and will serve
as controller for the GaTC:
– Party Pi can invoke (a single time)

GMPC.Msg(i,mi) with message mi to record
the message mi.

– If all the messages m1, . . . ,mN are recorded,
GMPC computes σ := Eval1(m0, . . . ,mN).
Then for each j ∈ [γ], invoke
GaTCj .RequestOpen(σj).

– Any party can invoke GMPC.GetResult()
to get the result of the computation. If
the result y was already computed be-
fore, GMPC outputs y. Otherwise, for each
j ∈ [γ], it invokes GaTCj .GetResult() to
get µj,σj . If one of µj,σj is ⊥, output
⊥. Otherwise, compute and output y ←
Eval2(m0,m1, . . . ,mN , {µj,σj}j).

(e) Call GaTCj .Create as follows:
GaTCj .Create(µj ,GMPC, depositj)

2. Pi, i ∈ [N], computes mi ← Msgi(m0, xi) and in-
vokes GMPC.Msg(i,mi).

3. Nominal path: Given σ party P0 invokes
GaTCj .NominalOpen() for all j ∈ [γ] to reveal the
labels {µj,σj} necessary to finish the computation.

4. Bounty path: After deadline T (from GaTC), any
bounty hunter opening a time capsule that must be

opened (corresponding to a σj) receives the corre-
sponding collateral.

5. Once all openings are available (whether if by
the nominal path or the bounty path) anybody
can get the result of the computation by invoking
GMPC.GetResult().

7 Implementation of Time
Capsule and Gage Auction

We implemented a C++ library for POTC and used it
to build a real-world application of Gage MPC, namely,
Gage auctions over a blockchain. We used the Ivory
Runtime Library [45] for elliptic curve operations over
Curve25519 and garble circuit operations. With the cho-
sen parameters, all POTC operations, except the force
opening, take less than a few milliseconds on a standard
laptop. The real-world application uses the Parity ver-
sion of the Ethereum Virtual Machine (EVM). We im-
plemented both the simple scheme from Section 4 and
the one based on Section A.1. We only implemented the
Label-Driven MPC that corresponds to a standard gar-
bled circuit. More robust Label-Driven MPC essentially
adds an additional NIMPC. This essentially replaces 2γ
128-bit label by around γ2/ε labels of size 2(γ+1)2 log γ,
where γ is the original number of labels, and we want
to achieve (1 − ε)γ-robustness. Overhead computation
cost for evaluation is about 2γ sums of γ terms modulo
a prime number of size log γ.

Acknowledgments

The authors thank Craig Gentry for helping with some
probability computations. Tal Malkin was supported
in part by a grant from the Columbia-IBM center for
Blockchain and Data Transparency, by a gift from Lex-
isNexis Risk Solutions, and by JPMorgan Chase & Co.
Tal Rabin was supported by ONR award N00014-19-1-
2292. Abhishek Shah was supported by an NSF Gradu-
ate Fellowship. Any views or opinions expressed herein
are solely those of the authors, and may differ from the
views and opinions expressed by JPMorgan Chase &
Co. or its affiliates. This material is not a product of the
Research Department of J.P. Morgan Securities LLC.
This material should not be construed as an individ-
ual recommendation for any particular client and is not
intended as a recommendation of particular securities,
financial instruments or strategies for a particular client.

Gage MPC 544

This material does not constitute a solicitation or offer
in any jurisdiction.

References
[1] Altcoin.io decentralized exchange. https://altcoin.io/
[2] Etherdelta decentralized exchange. https://etherdelta.com/
[3] Etheropt decentralized exchange (mirror of original soft-

ware). https://github.com/destenson/etheropt--etheropt.
github.io

[4] Intrinsically tradable tokens. https://github.com/
o0ragman0o/ITT

[5] Ren: A privacy preserving virtual machine powering zero-
knowledge financial applications. https://renproject.io/
litepaper.pdf

[6] Solidity by example: Blind auction. https://solidity.
readthedocs.io/en/v0.5.3/solidity-by-example.html#id2

[7] Almashaqbeh, G., Benhamouda, F., Han, S., Jaroslawicz,
D., Malkin, T., Nicita, A., Rabin, T., Shah, A., Tromer,
E.: Gage mpc: Bypassing residual function leakage for
non-interactive mpc. Cryptology ePrint Archive, Report
2021/256 (2021), https://eprint.iacr.org/2021/256

[8] Andrychowicz, M., Dziembowski, S., Malinowski, D.,
Mazurek, L.: Secure multiparty computations on bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. pp. 443–
458. IEEE Computer Society Press (May 2014)

[9] Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.,
Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive se-
cure multiparty computation. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–
404. Springer, Heidelberg (Aug 2014)

[10] Bellare, M., Goldwasser, S.: Encapsulated key escrow. Tech.
rep., Cambridge, MA, USA (1996)

[11] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness
theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In: 20th ACM STOC. pp.
1–10. ACM Press (May 1988)

[12] Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-
interactive multiparty computation against constant-size
collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 391–419. Springer, Heidelberg
(Aug 2017)

[13] Bentov, I., Kumaresan, R.: How to use bitcoin to de-
sign fair protocols. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (Aug 2014)

[14] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable
delay functions. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 757–788.
Springer, Heidelberg (Aug 2018)

[15] Boneh, D., Naor, M.: Timed commitments. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254.
Springer, Heidelberg (Aug 2000)

[16] Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P.,
Wu, H.: Zexe: Enabling decentralized private computa-
tion. Cryptology ePrint Archive, Report 2018/962 (2018),
https://eprint.iacr.org/2018/962.pdf

[17] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Lever-
aging linear decryption: Rate-1 fully-homomorphic encryp-
tion and time-lock puzzles. In: Hofheinz, D., Rosen, A.
(eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437.
Springer, Heidelberg (Dec 2019)

[18] Chaum, D., Crépeau, C., Damgård, I.: Multiparty uncondi-
tionally secure protocols (extended abstract). In: 20th ACM
STOC. pp. 11–19. ACM Press (May 1988)

[19] Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure com-
putation on blockchains. In: Ishai, Y., Rijmen, V. (eds.) EU-
ROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 351–380.
Springer, Heidelberg (May 2019)

[20] Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers,
I.: Fairness in an unfair world: Fair multiparty computation
from public bulletin boards. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 719–728.
ACM Press (Oct / Nov 2017)

[21] Cleve, R.: Limits on the security of coin flips when half the
processors are faulty (extended abstract). In: 18th ACM
STOC. pp. 364–369. ACM Press (May 1986)

[22] DeFiprime.com: Dex tracker - decentralized exchanges trad-
ing volume. https://defiprime.com/dex-volume

[23] Deuber, D., Döttling, N., Magri, B., Malavolta, G., Thya-
garajan, S.A.K.: Minting mechanism for proof of stake
blockchains. In: International Conference on Applied Cryp-
tography and Network Security. pp. 315–334. Springer
(2020)

[24] Dwork, C., Naor, M.: Pricing via processing or combatting
junk mail. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol.
740, pp. 139–147. Springer, Heidelberg (Aug 1993)

[25] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Con-
tinuous verifiable delay functions. In: Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. pp. 125–154. Springer (2020)

[26] Feige, U., Kilian, J., Naor, M.: A minimal model for secure
computation (extended abstract). In: 26th ACM STOC. pp.
554–563. ACM Press (May 1994)

[27] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge
in two rounds. In: Brassard, G. (ed.) CRYPTO’89. LNCS,
vol. 435, pp. 526–544. Springer, Heidelberg (Aug 1990)

[28] Garay, J., Kiayias, A., Ostrovsky, R.M., Panagiotakos, G.,
Zikas, V.: Resource-restricted cryptography: Revisiting mpc
bounds in the proof-of-work era. In: Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. pp. 129–158. Springer (2020)

[29] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin back-
bone protocol: Analysis and applications. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (Apr 2015)

[30] Goldreich, O., Micali, S., Wigderson, A.: How to play any
mental game or A completeness theorem for protocols with
honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp.
218–229. ACM Press (May 1987)

[31] Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party
computation of polynomials and branching programs without
simultaneous interaction. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 575–591.
Springer, Heidelberg (May 2013)

[32] Goyal, R., Goyal, V.: Overcoming cryptographic impossibility
results using blockchains. In: Kalai, Y., Reyzin, L. (eds.)

https://altcoin.io/
https://etherdelta.com/
https://github.com/destenson/etheropt--etheropt.github.io
https://github.com/destenson/etheropt--etheropt.github.io
https://github.com/o0ragman0o/ITT
https://github.com/o0ragman0o/ITT
https://renproject.io/litepaper.pdf
https://renproject.io/litepaper.pdf
https://solidity.readthedocs.io/en/v0.5.3/solidity-by-example.html#id2
https://solidity.readthedocs.io/en/v0.5.3/solidity-by-example.html#id2
https://eprint.iacr.org/2021/256
https://eprint.iacr.org/2018/962.pdf
https://defiprime.com/dex-volume

Gage MPC 545

TCC 2017, Part I. LNCS, vol. 10677, pp. 529–561. Springer,
Heidelberg (Nov 2017)

[33] Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A.,
Yogev, E.: Non-interactive multiparty computation without
correlated randomness. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211.
Springer, Heidelberg (Dec 2017)

[34] Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on
the web: Computing without simultaneous interaction. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
132–150. Springer, Heidelberg (Aug 2011)

[35] Kaptchuk, G., Green, M., Miers, I.: Giving state to the
stateless: Augmenting trustworthy computation with ledgers.
In: NDSS 2019. The Internet Society (Feb 2019)

[36] Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-
party computation using a global transaction ledger. In:
Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (May
2016)

[37] Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.:
Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In: 2016 IEEE Symposium on
Security and Privacy. pp. 839–858. IEEE Computer Society
Press (May 2016)

[38] Labs, A.: Idex: A real-time and high-throughput ethereum
smart contract exchange. https://idex.market/

[39] Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock
puzzles and applications. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 620–
649. Springer, Heidelberg (Aug 2019)

[40] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash sys-
tem. White Paper, https://bitcoin.org/bitcoin.pdf (2008)

[41] Naor, M.: Moderately hard functions: From complexity to
spam fighting. In: International Conference on Foundations
of Software Technology and Theoretical Computer Science.
pp. 434–442. Springer (2003)

[42] Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain
protocol in asynchronous networks. In: Coron, J., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211,
pp. 643–673. Springer, Heidelberg (Apr / May 2017)

[43] Peterson, J., Krug, J.: Augur: a decentralized, open-
source platform for prediction markets. arXiv preprint
arXiv:1501.01042 (2015)

[44] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multi-
party protocols with honest majority (extended abstract). In:
21st ACM STOC. pp. 73–85. ACM Press (May 1989)

[45] Rindal, P.: The ivory secure computation runtime. https:
//github.com/ladnir/Ivory-Runtime, [Online; accessed 2019-
10-07]

[46] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles
and timed-release crypto. Tech. rep., Cambridge, MA, USA
(1996)

[47] Warren, W., Bandeali, A.: 0x: An open protocol for de-
centralized exchange on the ethereum blockchain. https:
//github.com/0xProject/whitepaper/blob/master/0x_
white_paper.pdf

[48] Yao, A.C.C.: Protocols for secure computations (extended
abstract). In: 23rd FOCS. pp. 160–164. IEEE Computer
Society Press (Nov 1982)

A Label-Driven MPC
Formally, we define Label-Driven MPC as follows:19

Definition 3. A Label-Driven MPC for a functional-
ity f : ({0, 1}∗)N+1 → {0, 1}∗ is defined by N + 3 algo-
rithms (Msg0,Msg1, . . . ,MsgN ,Eval1,Eval2) with the fol-
lowing syntax:
– P0-Message: (m0, {µj,u}j∈[γ],u∈ZL) ← Msg0(1λ, x0)
takes as input the security parameter λ, the input
x0 ∈ {0, 1}poly(λ) of P0, and outputs a message m0
and a set of labels {µj,u}j∈[γ],u∈ZL , where γ and L
are two parameters polynomial in λ.

– Pi-Message (i ∈ [N]): mi ← Msgi(m0, xi) takes
as input a message m0 from P0, the input xi ∈
{0, 1}poly(λ) of Pi, and outputs a message mi.

– First Step of Evaluation: σ := Eval1(m0,m1, . . . ,mN)
takes as input the messages m0,m1, . . . ,mN from all
the parties and deterministically outputs a vector
σ ∈ ZγL.

– Second Step of Evaluation: y ← Eval2(m0,m1, . . . ,

mN , {µj,σj}j∈[γ]) takes as input the messages
m0,m1, . . . ,mN as well as the labels µj,σj and out-
puts the value y.

We require a Label-Driven MPC to satisfy the following
properties:
Correctness. There exists a negligible function negl,

such that for all security parameters λ ∈ N, all in-
puts x0, . . . , xN ∈ {0, 1}poly(λ) the following proba-
bility is ≥ 1− negl(λ):

Pr

y = f({xi}i)

∣∣∣∣∣∣∣∣∣
(m0, {µj,u}j,u)← Msg0(1λ, x0),
∀i ∈ [N], mi ← Msgi(m0, xi),
σ := Eval1(m0,m1, . . . ,mN),
y ← Eval2({mi}i, {µj,σj}j)


To define security, we first define the view of the Label-
Driven MPC protocol that takes as input the set of cor-
rupted parties, P , as well as the inputs xi and random-
ness ρi of all parties, as follows:

View
(
P , {xi, ρi}i∈[0,N]

)
:= ({xi, ρi}i∈T , {mi}i∈[0,N],M)

where (m0, {µj,u}j,u)← Msg0(1λ, x0; ρ0), and for all i ∈
[N], mi ← Msgi(m0, xi), and:

19 Note that a LD-MPC is a tool like garbled circuits rather
than a full-blown protocol, and as such, a property-based defini-
tion is more suitable. Composability of protocols using LD-MPC
can be argued from these properties.

https://idex.market/
https://bitcoin.org/bitcoin.pdf
https://github.com/ladnir/Ivory-Runtime
https://github.com/ladnir/Ivory-Runtime
https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf
https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf
https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf

Gage MPC 546

– if 0 ∈ P (P0 is corrupted), M = {µj,u}j,u are the
labels produced by Msg0.

– if 0 /∈ P (P0 is not corrupted), M = {µj,σj}j
are the labels needed by Eval2, where σ :=
Eval1(m0,m1, . . . ,mN).

In the following definition we consider the setting of
MPC with private inputs where the adversary is allowed
to learn at most κ additional labels µj,u. Note, that the
definition for the case where P0 is corrupted does not
include κ, this is due to the fact that P0 knows already
all the labels µj,u.

Definition 4 (κ-Robust Security, Private-Inputs). A
Label-Driven MPC is κ-robust secure with private-inputs
if it satisfies the following properties:
Security with Corrupted P0. There exists a stateful

PPT simulator S, such that for all PPT adversaries
A, there exists a negligible function negl, such that
for all security parameters λ, sets of corrupted par-
ties T ⊆ [0, N], 0 ∈ P , inputs x0, x1, . . . , xN , ran-
dom tapes {ρi}i∈P , auxiliary input z ∈ {0, 1}poly(λ):

|Pr[AReveal(z,View(P , {xi, ρi}i∈[0,N])) = 1]

− Pr[AS(reveal,•)(z,S(view, T, {xi, ρi}i∈T , y)) = 1]|
≤ negl(λ) ,

where y = f(x0, x1, . . . , xN) and the adversary A is
allowed access to an oracle Reveal that takes as input
a pair (j, u) and outputs µj,u.

Security with Honest P0. This is defined similarly
to security with corrupted P0 except that 0 /∈ P and
the adversary is restricted to make at most κ queries
to Reveal.

κ-robust security, public-inputs is defined similarly ex-
cept that S is given as input all the inputs x1, . . . , xN
except for the input of P0. When P0 is corrupted, this
security notion is trivial as all the inputs are known by
the simulator. But when P0 is not corrupted, the secu-
rity notion ensures the privacy of x0.

Our constructions provide the following theorems.
First the basic construction which is a Yao garbled cir-
cuit (that can be constructed assuming one-way func-
tions):

Theorem 5. Let f be a function that can be com-
puted in polynomial time. Assuming the existence of
one-way functions, there exists a correct and 0-robust
secure public-inputs Label-Driven MPC for f .

We further present an improved construction using
error-correcting codes and NIMPC techniques and pro-
vide the following.

Theorem 6. Let f be a function that can be computed
in polynomial time. Let ε > 0. Assuming the existence
of one-way functions, there exists a correct and (1−ε)γ-
robust secure public-inputs Label-Driven MPC for f , for
some integer γ (which is also the length of the vector σ).

This is a very strong theorem as it basically turns the
efforts of the adversary into a 0-1 situation. Either the
adversary exerts the full effort to complete the compu-
tation of the function on a different set of inputs or it
learns nothing.

We now proceed to present our designs for the LD-
MPC.

A.1 0-Robust Secure, Public Inputs

The Yao garbled circuit design directly provides a 0-
robust secure, public-inputs Label-Driven MPC. The
fact that it satisfies the definition is derived directly
from the security proofs of Yao.

Construction 7. Concretely, the construction is as
follows:
– (m0, {µj,u}j∈[γ],u∈ZL)← Msg0(1λ, x0), where L = 2,
garbles the circuit corresponding to the function f .
The message m0 consists of the labels correspond-
ing to the input x0 and of the labels of the garbled
circuit itself. The values µj,u are the input labels
corresponding to the inputs x1, . . . , xN .

– mi ← Msgi(m0, xi) outputs mi = xi.
– σ ← Eval1(m0, . . . ,mN) return σ = x1‖x2‖ . . . ‖xN .
– y ← Eval2(m0, . . . ,mN , {µj,σj}j) evaluates the gar-
bled circuit contained in m0 using the labels for x0
in m0 and the labels {µj,σj}j for x1, . . . , xN .

We recall that a garbled circuit scheme is correct if and
only if the evaluation on the correct label yields the
correct result with overwhelming probability; and it is
secure if there exists a simulator able to generate the
garbled circuit and the labels corresponding to the in-
put, knowing only the output of the function. We thus
have the following immediate theorem, which implies
Theorem 5.

Theorem 8. Construction 7 is correct and 0-robust se-
cure if and only if the underlying garbled circuit scheme
is correct and secure.

Gage MPC 547

A.2 From 0-Robust Secure to
(1− ε)γ′-robust Secure

In this section, we show how to transform (public- or
private-inputs) Label-Driven MPC which is 0-robust se-
cure into one which is (1 − ε)γ′-secure. What this im-
plies is that if the number of labels required to compute
the function on a single set of input is γ′ then to com-
pute the function on an additional set of inputs would
require to open more than (1 − ε)γ′ additional labels.
This is a great improvement as it increases the effort
that the adversary needs to exert considerably in order
to learn information about the function beyond what it
is “legally” entitled to learn. Intuitively, when we design
the Gage MPC this means that the adversary needs to
be able to force-open more than κ = (1− ε)γ′ time cap-
sules, which is almost the number γ′ of time capsules
that bounty hunters need to open if P0 does not follow
the nominal path.

We start with a high-level overview. Let us focus
on the public-inputs construction from Appendix A.1
for N + 1 = 2 parties. P0 garbles the function f(x0, ·).
P1 outputs the message m1 = x1 (its input). Evalua-
tion consists of opening the commitments of the labels
corresponding to the bits of x1 = m1, which allows to
evaluate the garbled circuit on x1.

We proved this construction is 0-robust secure. But
it is not even 1-robust secure for the following reason.
If the adversary learns one more label (i.e., by force-
opening one POTC), it now has two labels for the same
wire of the garbled circuit. It is known that garbled
circuits do not provide any security guarantees in this
case.

The idea of our transformation is to encode the in-
put x1 using an error correcting code and to enforce
that the only way for the adversary to learn anything is
to learn labels corresponding to valid codewords. If the
distance of the code is δ, this ensures that even if the
adversary learns δ − 1 more labels, it will learn nothing
more.

To realize this idea, instead of using directly the
labels of the garbled circuits, we use new labels (aka,
correlated randomness) of a non-interactive multiparty
computation (NIMPC) which outputs the garbled cir-
cuit labels, if the inputs are valid codewords (and noth-
ing otherwise). The security properties of the NIMPC
ensures that the only way for the adversary to learn
any extra label of the inner garbled circuit is for the
adversary to get labels from the NIMPC corresponding
to another valid codeword. As discussed before, if the
distance of the code is δ, this requires the adversary to

learn δ more labels to be able to learn any extra label
of the inner garbled circuit. Furthermore, for linear er-
ror correcting codes, such an NIMPC protocol can be
constructed using techniques in [12].

The transformation can be generalized to any Label-
Driven MPC and any number of parties. Instead of en-
coding x1, the vector σ is encoded using the linear error
correcting code. We have the following theorem, which
implies Theorem 6 when combined with Theorem 5:

Theorem 9. Let MPC be a 0-robust public-inputs
(resp., private-inputs) secure Label-Driven MPC (with
γ = |σ| wires) for a function f . Then for any ε >

0, there exists a (1 − ε)γ′-robust public-inputs (resp.,
private-inputs) secure Label-Driven MPC for f with γ′

wires (where γ′ = O(γ/ε)).

A.3 From Public-Inputs to Private-Inputs
Security

We show how to transform a public-inputs Label-Driven
MPC into a private-inputs Label-Driven MPC, for the
special case that there are two parties P0 and P1
(namely N = 1). The transformation makes use of any
2-round 2-party secure computation (2PC) with solitary
output protocol, namely where only P0 receives an out-
put (formal definition of 2PC with solitary output can
be found in the full version of the paper).

Construction 10. Let f : ({0, 1}∗)2 →
{0, 1}∗ be a functionality. Let 2PC =
(2PC.Msg0, 2PC.Msg1, 2PC.Out0) be a 2PC for f . Let g
be the following function: g(s̃t0, m̃1) = 2PC.Out(s̃t0, m̃1).
Let MPC = (Msg0,Msg1,Eval) be a κ-opening public-
inputs secure Label-Driven MPC for g.

We construct the following Label-Driven MPC pro-
tocol MPC′ = (Msg′0,Msg′1,Eval′1,Eval′2) for f :
– (m′0, {µ′j,u}j,u) ← Msg′0(1λ, x0) generates

(m̃0, s̃t0) ← 2PC.Msg0(1λ, x0), computes
(m0, {µj,u}j,u)← MsgTC.Com

0 (1λ, s̃t0), and outputs:

m′0 := (m̃0,m0) and {µ′j,u}j,u := {µj,u}j,u .

– m′1 ← Msg′i(m′0, x1) generates m̃1 ←
2PC.Msg1(m̃0, x1), compute m1 ← Msg1(m0, m̃1),
and outputs: m′1 := m1.

– σ ← Eval′1(m′0,m′1) computes σ := Eval1(m0,m1).
– y ← Eval′2(m′0,m′1, {µj,σj}j) computes y :=

Eval2(m0,m1, {µj,σj}).

Gage MPC 548

We have the following theorem, which implies Theo-
rem 12.

Theorem 11. If 2PC is a secure 2-round 2-party secure
computation scheme for f with solitary output, and if
MPC is a κ-opening public-inputs secure Label-Driven
MPC for g, then the scheme MPC′ constructed above is
a κ-opening private-inputs secure Label-Driven MPC for
f .

Proof sketch. Correctness follows from correctness of
2PC and MPC: using notations in the construction, the
value output by Eval′2 (on honestly generated inputs) is:

g(s̃t0, m̃1) = 2PC.Out(s̃t0, m̃1) = f(x0, x1) .

Private-Inputs Security when P0 is corrupted. P1 is sim-
ulated as follows: generate m̃1 using the simulator of P1
for 2PC, and output m′1 := m1 ← Msg1(m0, m̃1).

Private-Inputs Security when P1 is corrupted. P0 is sim-
ulated as follows: generate m̃0 using the simulator of P0
for 2PC, then generate m0 using the simulator of P0 for
MPC, and output m′0 := (m̃0,m0).

The above theorem implies Theorem 12.

Theorem 12 (informal). In the setting with N + 1 = 2
parties, if there exists a secure 2-round 2-party secure
computation scheme 2PC with solitary output for f and
if there exists a κ-robust public-inputs secure Label-
Driven MPC for a specific function g (corresponding
to the “output” function of 2PC), then there exists a
κ-robust private-inputs secure Label-Driven MPC for f .

Remark 13 (On the restriction to two parties).
When there are more than two parties, private-input
κ-robust security cannot be achieved (except for very
limited functionalities). The adversary can indeed cor-
rupt P0 and P1, honestly generate messages m0, m1,
(for some inputs x0 and x1), get the messages m2, m3,
. . . , mN from parties P2, . . . , PN (on inputs x2, . . . ,
xN). Then it can evaluate the output of the function
f on inputs (x0, x

′
1, x2, . . . , xN) for any x′1 (and not

just on x1), because the adversary know all the labels
{µi,u}i,u.

We remark that this impossibility relies on the fact
that parties P1, . . . , PN are not allowed to produce any
labels ({µj,u}j,u) from which the adversary only see part
of them ({µj,σj}j). When compiling Label-Driven MPC
into Gage MPC, this restriction will translate to the fact
that only P0 is allowed to make time capsule commit-

ments. If we remove this restriction, we should be able to
construct private-inputs Gage MPC using 2-round MPC
protocols and similar ideas as the ones used below for
N + 1 = 2 parties. Such a construction however would
likely be quite inefficient.

	Gage MPC: Bypassing Residual Function Leakage for Non-Interactive MPC
	1 Introduction
	1.1 Overview of our Design
	1.2 Application: Private Decentralized Auctions
	1.3 Related Work

	2 Proof-of-Opening Time Capsules
	2.1 Definition
	2.2 Construction

	3 Gage Time Capsules
	3.1 Definition
	3.2 Realization on a Blockchain

	4 Sample GaTC Usage: Auctions
	5 Label-Driven MPC
	6 Gage MPC
	7 Implementation of Time Capsule and Gage Auction
	A Label-Driven MPC
	A.1 0-Robust Secure, Public Inputs
	A.2 From 0-Robust Secure to (1-) '-robust Secure
	A.3 From Public-Inputs to Private-Inputs Security

