
Proceedings on Privacy Enhancing Technologies ; 2022 (1):253–273

Josh Smith, Hassan Jameel Asghar*, Gianpaolo Gioiosa, Sirine Mrabet, Serge Gaspers, and Paul
Tyler

Making the Most of Parallel Composition in
Differential Privacy
Abstract: We show that the ‘optimal’ use of the paral-
lel composition theorem corresponds to finding the size
of the largest subset of queries that ‘overlap’ on the
data domain, a quantity we call the maximum overlap
of the queries. It has previously been shown that a cer-
tain instance of this problem, formulated in terms of
determining the sensitivity of the queries, is NP-hard,
but also that it is possible to use graph-theoretic al-
gorithms, such as finding the maximum clique, to ap-
proximate query sensitivity. In this paper, we consider
a significant generalization of the aforementioned in-
stance which encompasses both a wider range of dif-
ferentially private mechanisms and a broader class of
queries. We show that for a particular class of predicate
queries, determining if they are disjoint can be done in
time polynomial in the number of attributes. For this
class, we show that the maximum overlap problem re-
mains NP-hard as a function of the number of queries.
However, we show that efficient approximate solutions
exist by relating maximum overlap to the clique and
chromatic numbers of a certain graph determined by
the queries. The link to chromatic number allows us to
use more efficient approximate algorithms, which can-
not be done for the clique number as it may underes-
timate the privacy budget. Our approach is defined in
the general setting of f -differential privacy, which sub-
sumes standard pure differential privacy and Gaussian
differential privacy. We prove the parallel composition
theorem for f -differential privacy. We evaluate our ap-
proach on synthetic and real-world data sets of queries.
We show that the approach can scale to large domain
sizes (up to 1020000), and that its application can reduce
the noise added to query answers by up to 60%.
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1 Introduction
The sequential [13] and parallel [26] composition theo-
rems of differential privacy are tools for understanding
how privacy loss accumulates when a sensitive data set
is queried multiple times. For example, if the individual
privacy losses for two given queries are ε1 and ε2, respec-
tively, then according to the simplest sequential compo-
sition theorem, the combined privacy loss for the queries
is less than or equal to ε1 + ε2. On the other hand, if the
two queries cover disjoint subsets of the data domain,
then according to the parallel composition theorem, the
combined privacy loss is just the maximum of ε1 and ε2.

There has been considerable research effort dedi-
cated to the study of sequential composition in differ-
ential privacy (see, e.g., [11, 20, 27, 30]). In particular,
much work has been devoted to deriving sequential com-
position theorems that give tighter bounds on combined
privacy loss than the bound provided by the simplest
such theorem (see, e.g., [20]). On the other hand, the
parallel composition theorem is usually not studied for
its intrinsic interest, but rather merely applied as part
of an analysis of a specific data release mechanism (see,
e.g., [1, 28]).

We target the following use case of practical impor-
tance. A data custodian allows users to issue queries on
a sensitive data set answered via a differentially private
mechanism. The data set is defined over a finite, dis-
crete domain. The users require the custodian to mea-
sure the privacy loss as accurately as possible, so that
given a fixed bound on the privacy loss either the num-
ber of queries that can be answered is maximized or
the amount of noise added to query answers is min-
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imized. To accurately measure privacy loss, the custo-
dian should leverage parallel composition. Given a set of
queries Q, this amounts to determining the largest sub-
set of Q such that all the queries in the subset ‘overlap’
— what we call the maximum overlap of Q. The naive
method of finding the maximum overlap begins by eval-
uating each query over all domain elements and compar-
ing set intersections. This procedure is inefficient, as the
queries need to be evaluated over the entire domain, re-
quiring time exponential in the number of attributes in
the domain. Moreover, even if there is an efficient way to
determine the coverage of a query over the domain, de-
termining the maximum overlap via the naive method of
running through all possible subsets of queries requires
time exponential in the number of queries.

Computing the maximum overlap of a set of queries
Q is related to its l1-sensitivity. The l1-sensitivity of Q
is the maximum sum of absolute differences in the an-
swers to queries from Q taken over all neighboring data
sets D and D′ (differing in a single row) from some do-
main D. Taking Q as the set of statistical range queries,
i.e., conjunctions of range predicates on individual at-
tributes, the authors from [36] show that the problem
of computing the l1-sensitivity of Q is NP-hard. In [19],
by representing each statistical range query as a ver-
tex, and introducing an edge between two vertices if
the ranges of the corresponding queries overlap, the au-
thors prove that the l1-sensitivity of Q is lower bounded
by the cardinality of the maximum clique (the clique
number) of the graph. While finding the clique num-
ber is still NP-hard, it is a well-studied problem and
various efficient algorithms exist to (exactly) compute
it in practice, implying that l1-sensitivity can be well
approximated. While these are important results, there
are some key shortcomings which we seek to address in
this paper.
– The notion of (weighted) maximum overlap1 (intro-

duced in this paper) of a set of queries Q, and hence
the optimal use of parallel composition, is a more
general problem than finding the l1-sensitivity of
Q. For composition under ε-differential privacy, one
can show that computing the weighted maximum
overlap is equivalent to finding l1-sensitivity. How-
ever, l1-sensitivity analysis excludes several promi-
nent mechanisms (and hence heterogeneous compo-

1 Weighted maximum overlap is the variant of maximum over-
lap that treats the case in which different queries may be al-
located different privacy budgets. See Section 3.2 for the exact
definition.

sition involving such mechanisms) such as the Gaus-
sian mechanism, which is proven differentially pri-
vate in the approximate sense [13] or under concen-
trated differential privacy [3, 14] using l2-sensitivity
of queries. Since the l2-sensitivity of Q is less than
or equal to its l1-sensitivity, the upper bound on l1-
sensitivity may be loose. Focusing on the problem
from the perspective of optimal parallel composition
decouples it from the underlying sensitivity metric,
so that solutions are applicable to other, relaxed no-
tions of differential privacy.

– To accomplish this, we characterize the notion of
maximum overlap in terms of f -differential privacy
[11], which is a recently proposed framework that
subsumes all notions of differential privacy that ad-
mit an interpretation in terms of hypothesis test-
ing. To this end, we prove a parallel composition
theorem and an optimal composition theorem for
f -differential privacy. This enables us to illustrate
our approach in both the well-established setting of
pure differential privacy [12, 13] and the new setting
of Gaussian differential privacy [11].

– To find instances of the targeted use case which
can be solved efficiently in the number of attributes
and the number of queries, we restrict our focus
to queries that are conjunctions of arbitrary predi-
cates on individual attributes. These queries prop-
erly subsume the statistical range queries studied
in [19, 36], and have been studied in the differential
privacy literature (see, e.g., [24]). We show that,
with such queries, one can check whether a given
subset of queries has non-empty intersection in time
polynomial in the number of attributes. We further
show that the ‘optimal’ parallel composition of such
queries can be profitably analyzed using an intersec-
tion graph, as was done in [19] for the computation
of l1-sensitivity.

– Representing the problem as an intersection graph
allows us to use algorithms for computing the clique
number to approximate the maximum overlap, sim-
ilar to [19]. However, in [19] and also in our case, we
are bound to use ‘exact’ algorithms for the computa-
tion of the clique number, as any approximate clique
number may underestimate the total privacy loss.
This is a drawback, since approximate algorithms
are often more efficient than exact algorithms. We
further upper bound the maximum overlap problem
by the chromatic number of the graph, and since any
approximate chromatic number is always greater
than or equal to the exact chromatic number, it
never underestimates the privacy loss. This allows
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us to use algorithms for computation of the approx-
imate chromatic number, which run for larger sets
of queries and larger domain sizes than exact algo-
rithms for computation of the clique number.

– We evaluate exact clique number and approximate
chromatic number algorithms proposed in the lit-
erature by varying the domain size and number of
queries, and show that the latter can be used to
approximate the maximum overlap (and hence op-
timal parallel composition) for much larger sets of
queries and domains. For instance, it can handle
more than 1,000 queries for domains of size up to
102500 (Section 7.1). Through experiments on syn-
thetic and real census query data sets, we show
that there is likely to be significant overlap between
queries, and hence using our approach results in sig-
nificant gain in utility, resulting in noise reduction of
up to 95% for synthetic queries (Section 7.2) and up
to 58.5% (36.2% on average) for real census queries
(Section 7.3).

2 f -Differential Privacy and
Optimal Parallel Composition

2.1 Preliminaries

An attribute A is a finite set, whose elements are called
attribute values. A domain, denoted D, is the Cartesian
product of m ≥ 1 attributes: D := A1 × · · · × Am. An
element of a domain is called a row. A data set D is a
subset of N|D|, in the histogram notation [13]. Let D′ be
a subset of D. The intersection D ∩D′ is the set of rows
of the data set D that are in D′. Two data sets D,D′

on D are neighboring, denoted D ∼ D′, if they differ in
a single row.

2.2 Standard Differential Privacy:
Background

Definition 1 (Differential privacy [12, 13]). A mecha-
nism (randomized algorithm) M is (ε, δ)-differentially
private if for all S ⊆ R, where R is the outcome space
of M , and all neighboring data sets D ∼ D′, one has
Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) + δ, where ε and δ

are non-negative real numbers. If δ = 0, one says that
M is ε-differentially private.

When δ = 0, the resulting notion is sometimes called
pure differential privacy, in contrast to the notion of
approximate differential privacy for δ > 0. An important
property of differential privacy is that it composes [13].

Theorem 1 (Sequential composition). LetM1, . . . ,Mk

be a sequence of mechanisms. If all the mechanisms
in the sequence are (ε, δ)-differentially private, then the
composition of the sequence is (kε, kδ)-differentially pri-
vate.

The above result is a simple example of a sequential
composition theorem for differential privacy, as opposed
to a parallel composition theorem, which is given next.

Theorem 2 (Heterogeneous parallel composition [26]).
Let D be a domain, let D ∈ N|D| be a data set, and let
k be a positive integer. For each i ∈ [k], let Di be a
subset of D, let Mi be a mechanism that takes D ∩ Di
as input, and suppose Mi is εi-differentially private. If
Di ∩Dj = ∅ whenever i 6= j, then the composition of the
sequence M1, . . . ,Mk is max {εi : i ∈ [k]}-differentially
private.

Although it is not explicitly stated in the theorem, it
should be noted that each member of the sequence of
mechanisms may also take the outputs of its predeces-
sors it as input.

Definition 2 (Laplace mechanism [12]). The zero-
mean Laplace distribution has the probability density
function Lap(x | b) := 1

2be
− |x|

b , where b, a non-negative
real number, is a scale parameter. Let Q be a set of
queries each of which maps data sets to real numbers.
The l1-sensitivity of Q, denoted ∆Q, is defined as

∆Q = max
D,D′

D∼D′

‖Q(D)−Q(D′)‖1

Given a data set D and a set of t queries Q, the Laplace
mechanism is defined asM(Q,D) := Q(D)+(Y1, . . . , Yt),
where Yi is a Laplace random variable of scale ∆Q/ε.
The Laplace mechanism is ε-differentially private [12].

2.3 f -Differential Privacy: Background

It is well known that the sequential composition re-
sult in Theorem 1 for (ε, δ)-differential privacy is not
tight. There have been a number of successful attempts
to obtain tighter composition results by adopting re-
laxed notions of differential privacy, including the ad-
vanced composition theorem for approximate differen-



Making the Most of Parallel Composition in Differential Privacy 256

tial privacy [13], as well as concentrated differential pri-
vacy [3, 14] and Rényi differential privacy [27]. In this
paper, we focus on the notion of f-differential privacy
recently proposed by Dong, Roth and Su [11], which is
a generalization of standard differential privacy (i.e., of
(ε, δ)-differential privacy) based on its hypothesis testing
interpretation. Let D and D′ be neighboring data sets
given as input to a mechanism M . Given the output of
the mechanism, the goal is to distinguish between two
competing hypotheses: the underlying data set being D
or D′. Let P and P ′ denote the probability distributions
of M(D) and M(D′), respectively. Given any rejection
rule 0 ≤ φ ≤ 1, the type-I and type-II errors are defined
as follows [11]: αφ := EP [φ] and βφ := 1− EP ′ [φ].

Definition 3 (Trade-off function [11]). For any two
probability distributions P and P ′ on the same space,
the trade-off function T (P, P ′) : [0, 1]→ [0, 1] is defined
by

T (P, P ′)(α) := inf{βφ : αφ ≤ α}

for all α ∈ [0, 1], where the infimum is taken over all
(measurable) rejection rules.

A trade-off function gives the minimum achievable type-
II error at any given level of type-I error. For a function
to be a trade-off function, it must satisfy the conditions
specified in the following proposition.

Proposition 1 ([11]). A function f : [0, 1]→ [0, 1] is a
trade-off function if and only if f is convex, continuous
and non-increasing, and f(x) ≤ 1− x for all x ∈ [0, 1].

Abusing notation, let M(D) denote the distribution of
a mechanism M when given a data set D as input.

Definition 4 (f -differential privacy [11]). Let f be a
trade-off function. A mechanism M is said to be f-
differentially private if T (M(D),M(D′)) ≥ f for all
neighboring data sets D and D′.

Definition 5 (Gaussian Differential Privacy). A key
example of f -differential privacy is Gaussian differential
privacy [11], which is based on the trade-off function

Gµ := T (N (0, 1),N (µ, 1)),

where µ ≥ 0. This trade-off function can be written ex-
plicitly as Gµ := Φ(Φ−1(1−α)−µ), where Φ is the stan-
dard normal CDF. An example of a Gµ-differentially
private mechanism (or µ-GDP mechanism, for short) is
the Gaussian mechanism:M(q,D) := q(D)+Y , where q
is a query of sensitivity ∆q and Y ∼ N (0,∆q2/µ2) [11].

Definition 6 (Tensor product [11]). Let P1, P2, P3 and
P4 be probability distributions. Let f and g be the trade-
off functions T (P1, P2) and T (P3, P4), respectively. The
tensor product of f and g, which is denoted f ⊗ g, is
defined by

f ⊗ g := T (P1 × P3, P2 × P4).

This extends to n-fold tensor products due to the asso-
ciativity of the tensor product [11]. The following the-
orem is the basic sequential composition result for f -
differential privacy.

Theorem 3 (Sequential composition [11]). Let
Mi(·, y1, . . . , yi−1) be fi-DP for all y1 ∈ Y1, . . . , yi−1 ∈
Yi−1. Then the n-fold composed mechanism M : X →
Y1 × · · · × Yn is f1 ⊗ · · · ⊗ fn-differentially private.

A corollary of the above is that the n-fold (sequential)
composition of µi-GDP mechanisms is

√
µ2

1 + · · ·+ µ2
n-

GDP [11]. A mechanism M is (ε, δ)-DP if and only if it
is fε,δ-DP [11, 34], where fε,δ is the trade-off function
max{0, 1− δ − eεα, e−ε(1− δ − α)}.

2.4 f -Differential Privacy and
Composition

In this section, we prove a parallel composition theo-
rem for f -DP as a counterpart to Theorem 2, and then
the optimal composition, in terms of the number of in-
vocations of parallel and sequential compositions, of an
arbitrary sequence of f -DP mechanisms. To prove these
results we recall the notion of lower convex envelope
(see, e.g., [33, §2.4.2.3]).

Definition 7. Let f1 and f2 be trade-off functions. The
lower convex envelope f̆ : [0, 1] → [0, 1] of f1 and f2,
denoted lce{f1, f2}, is defined as

f̆(x) := sup {f(x) | f is convex and f ≤ min{f1, f2}}.

Lemma 1. The lower convex envelope f̆ of two trade-
off functions f1 and f2 is a trade-off function.

Proof. See Appendix B.

Corollary 1. Let f̆ be the lower convex envelope of two
trade-off functions f1 and f2 such that f1 ≤ f2 over
[0, 1]. Then f̆ = f1.

Let D and D′ be any two neighboring data sets from
N|D|. Let D1 and D2 be disjoint subsets of D. Write D1 =



Making the Most of Parallel Composition in Differential Privacy 257

D∩D1 and D2 = D∩D2. Analogously define D′1 and D′2.
Let T be the trade-off function as defined in Definition 3.

Theorem 4 (Parallel composition in f -DP). Let M1
and M2 be f1-DP and f2-DP mechanisms, respec-
tively. The joint mechanism M defined by M(D) :=
(y1,M2(y1, D2)), where y1 := M1(D1), is lce{f1, f2}-DP.

Proof. We have

T (M(D),M(D′))
= T (M1(D1)×M2(y1, D2),M1(D′1)×M2(y1, D

′
2))

= T (M1(D1),M1(D′1))⊗ T (M2(y1, D2),M2(y1, D
′
2)).
(1)

Since D ∼ D′, either D1 ∼ D′1 or D2 ∼ D′2, but not
both. Assume D1 ∼ D′1. Then D2 = D′2, and Eq. 1
becomes

T (M(D),M(D′))
= T (M1(D1),M1(D′1))⊗ T (M2(y1, D2),M2(y1, D2))
= T (M1(D1),M1(D′1))⊗ Id
= T (M1(D1),M1(D′1))
≥ f1, (2)

where Id is the trade-off function of two identical distri-
butions, and the third step follows from the properties
of the tensor product of trade-off functions [11, §3.1].
Next assume D2 ∼ D′2, which means D1 = D′1, and in
this case Eq. 1 becomes

T (M(D),M(D′))
= T (M1(D1),M1(D1))⊗ T (M2(y1, D2),M2(y1, D

′
2))

= Id⊗ T (M2(y1, D2),M2(y1, D
′
2))

= T (M2(y1, D2),M2(y1, D
′
2))

≥ f2. (3)

Combining Eqs. 2 and 3, for the unconditional distribu-
tions M(D) and M(D′), we get

T (M(D),M(D′)) ≥ min{f1, f2} ≥ lce{f1, f2}.

The above extends to any countable number of disjoint
subsets of the data domain. In particular, for k ≥ 2, we
have that M is lce{f1, f2, . . . , fk}-DP.

Corollary 2. Let a sequence of k mechanisms Mi each
be µi-GDP. Let Di be disjoint subsets of D. The joint
mechanism defined as the sequence of Mi(D∩Di) (given
also the output of the previous i − 1 mechanisms) is
max{µ1, µ2, . . . , µk}-GDP.

Proof. See Appendix B.

The parallel composition theorem considers mechanisms
that operate on disjoint subsets of the domain. How-
ever, we are interested in the more general case where
mechanisms operate on arbitrary subsets of the domain.
To address this, we introduce the concept of maximum
overlap, which we explore in depth in subsequent sec-
tions.

Maximum Overlap. Let Mi be a sequence of k mecha-
nisms, each providing fi-differential privacy. Let Di be
arbitrary subsets of the domain D. Let D ∩ Di denote
the input to the mechanism Mi, where D is a data set.
The mechanism is also given as input the outputs of the
previous i − 1 mechanisms. The maximum overlap fγ
for the sequence of mechanisms is defined by

fγ := lce
I⊆{1,...,k}

{⊗
i∈I

fi :
⋂
i∈I

Di 6= ∅

}
.

The name ‘maximum’ may be a bit confusing given
the lower convex envelope and its relation to the mini-
mum of the trade-off functions in the definition. This is
because fγ is a trade-off function, and for specific defini-
tions of privacy (e.g., ε-DP or µ-GDP), the minimization
of the trade-off function corresponds to a maximization
of the parameters (e.g., ε or µ).

For Gaussian differential privacy, where each mech-
anism provides µi-GDP, we can exactly characterize the
maximum overlap as Gγ , where

γ := max
I⊆{1,...,k}


√∑

i∈I

µ2
i :
⋂
i∈I

Di 6= ∅

 .

For ε-differential privacy, where each mechanism
provides εi-DP, we have that fγ ≥ fε′,0, where fε′,0 is
the trade-off function of an ε′-DP mechanism and

ε′ := max
I⊆{1,...,k}

{∑
i∈I

εi :
⋂
i∈I

Di 6= ∅

}
.

Or, in the special case where all mechanisms provide
ε-DP, we have

ε′ := ε max
I⊆{1,...,k}

{
|I| :

⋂
i∈I

Di 6= ∅

}
.

This definition of maximum overlap leads to our
theorem for composition of mechanisms operating on
arbitrary subsets of the domain.

Theorem 5 (Composition of arbitrary mechanisms).
Let M := {Mi(D ∩ Di)}, for 1 ≤ i ≤ k, be a set of



Making the Most of Parallel Composition in Differential Privacy 258

mechanisms, where Di are subsets of the domain D.
Suppose that Mi is fi-differentially private. Then the
composition of M is fγ-differentially private, where fγ
is the maximum overlap of {fi : i ∈ [k]}.

Proof. Consider I1 :=
{
I ⊆ [k] :

⋂
i∈I Di 6= ∅

}
, and

let F1 :=
{⊗

i∈I fi : I ∈ I1
}
. Also, let I2 :=

{I ∈ I1 : for all I ′ ∈ I1, I 6⊂ I ′}, i.e., the set of all ele-
ments of I1 which are not proper subsets of any other
element in I1. Finally, let F2 :=

{⊗
i∈I fi : I ∈ I2

}
. We

claim that minF1 = minF2. Since I2 is a subset of I1,
we immediately have that minF1 ≤ minF2. Next, con-
sider minF2. Let I ′ ∈ I1, and let I ′′ ⊇ I ′ be a set (which
is guaranteed to be in I2 by construction). We see that

minF2 ≤
⊗
i∈I′′

fi =
⊗
i∈I′

fi
⊗
i/∈I′

fi ≤
⊗
i∈I′

fi
⊗
i/∈I′

Id =
⊗
i∈I′

fi,

where Id is the trade-off function of two identical distri-
butions [11]. Above, we have used the fact that Id ≥ f

for all trade-off functions f , and other properties of the
tensor product [11, Section 3.1]. Therefore, minF2 ≤
minF1. Thus, minF1 = minF2. Next, we claim that
for all I ′, I ′′ ∈ I2, the intersected domains

⋂
i∈I′ Di and⋂

i∈I′′ Di are disjoint. Assume to the contrary that they
are not. Then

(⋂
i∈I′ Di

)
∩
(⋂

i∈I′′ Di
)

=
⋂
i∈I′∪I′′ Di 6=

∅. This implies that I ′ ∪ I ′′ ∈ I2, a contradiction. Thus,
the set of mechanisms {Mi(D ∩ Di)} is lce{F2}-DP ac-
cording to Theorem 4. Since, minF2 = minF1, this is
exactly the maximum overlap of {fi : i ∈ [k]}.

We note that if no subsets of the domain are disjoint,
fγ is exactly the sequential composition of all mecha-
nisms, and if all subsets of the domain are disjoint, fγ
is given exactly the parallel composition of all mecha-
nisms (Theorem 4).

3 Predicate Queries and
Maximum Overlap

In Section 2.4, we defined maximum overlap in terms of
f -differential privacy. According to the definition, max-
imum overlap is determined by identifying mechanisms
whose sub-domains overlap. In general, there are differ-
ent f -differentially private mechanisms answering dif-
ferent types of queries, e.g., predicate and sum queries.
In practice, however, there is often a single fixed mecha-
nism, e.g., the Gaussian mechanism (Definition 5), and
a single class of queries, e.g., the predicate queries. In
this case, one can determine maximum overlap using

only information about the queries, i.e., by checking the
subsets of the domain covered by the queries.

In this section, we will show how maximum overlap
relates to a given set Q of t queries. The data custodian
could optimize the overall privacy budget usage using
Theorem 5. Unfortunately, this procedure is exponen-
tial in m (the number of attributes in the domain) as
it requires checking each element of the domain to see
if it satisfies the query or not. We introduce a class of
queries, which we call predicate queries, also presented
in [24], for which we can efficiently determine if the do-
mains overlap. We then show how Theorem 5 relates to
this query class.

3.1 Predicates and Predicate Queries

A predicate on an attribute A is a boolean function
φ : A → {0, 1}. An attribute value a ∈ A is said to
satisfy a predicate φ if φ(a) = 1. The coverage Cφ(A) of
a predicate φ on the attribute A is the set of all attribute
values of A that satisfy φ, i.e.,

Cφ(A) := {a ∈ A : φ(a) = 1}.

Two predicates φ1 and φ2 are disjoint on attribute A if
Cφ1(A)∩Cφ2(A) = ∅. Otherwise they are said to overlap.

Predicate Queries. Following [24], we define a predicate
query q on a row as a conjunction of m predicates where
the ith predicate is evaluated on the ith attribute value
of the row. That is, given x ∈ D,

q(x) := φ1(x1) ∧ φ2(x2) ∧ · · · ∧ φm(xm). (4)

Overloading notation, the query q on a data set D is
defined as q(D) :=

∑
x∈D q(x). One may write a query in

terms of its constituent predicates: q := (φ1, φ2, . . . , φm).

Query Coverage. Since a conjunction of predicates is
itself a predicate, one can view a query q on a domain D
as a predicate. With this, one can extend the notion of
coverage to the domain. A row x ∈ D is said to satisfy a
query q if q(x) = 1. It follows that a row x ∈ D satisfies
a query q := (φ1, φ2, . . . , φm) if and only if for each i,
xi satisfies φi. The coverage Cq(D) of a query q on the
domain D is the set of all rows that satisfy q, i.e.,

Cq(D) := {x ∈ D : q(x) = 1}.

Our definition of predicate queries is broader than
the set of statistical range queries considered in [19, 36],
and includes them as a special case, i.e., when each non-
trivial predicate on an attribute is a range of values
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of the attribute. Two queries q1 and q2 are said to be
disjoint if Cq1(D)∩Cq2(D) = ∅. Otherwise they are said
to overlap.

Proposition 2. Two queries q1 := (φ1,1, φ2,1, . . . , φm,1)
and q2 := (φ1,2, φ2,2, . . . , φm,2) are disjoint if and only if
there exists at least one attribute Ai such that φi,1 and
φi,2 are disjoint on Ai.

Proof. See Appendix B.

Due to the set-theoretic nature of the notion of cover-
age, the results extend to any finite set of queries Q. In
particular, we define CQ(D) :=

⋂
q∈Q Cq(D) to be the

joint coverage of all queries in Q.

Computational Efficiency. Proposition 2 gives one an
efficient way to decide whether two queries q1 and q2
are disjoint: for each attribute where the corresponding
predicates of both queries are non-trivial, one checks if
the two predicates are disjoint; if they are, the queries
are disjoint, otherwise they overlap. Assuming that the
evaluation of a predicate on an attribute is efficient, the
above procedure takes O(m) time only, as compared to
the naive way of evaluating queries on each element of
the domain, which takes time O(|D|), which is exponen-
tial in m.

Generalized Query Coverage. The above defined notion
of query coverage is specific to the class of predicate
queries, which is the main focus of this paper. However,
one can define the notion more generally for other types
of queries. Let Q be a set of queries, where each q ∈ Q is
an arbitrary function q : N|D| → R. Given a data set D
and a row x ∈ D, let D¬x denote the neighboring data
set of D with one instance of x removed from D. Given a
row x ∈ D, we say that q covers x if there exists at least
one data set D such that x ∈ D and q(D) 6= q(D¬x).
The coverage, Cq(D), of q is defined as

Cq(D) := {x ∈ D : q covers x}.

The coverage of Q is then defined as intersection of
the coverage of all its queries, as before. Note that
in the above, the amount of change in the answers is
not specified. For an example where the generalized no-
tion of query coverage deviates from query coverage for
predicate (or count) queries, consider sum queries, i.e.,
queries that sum the values of an attribute satisfying
a given criterion (e.g., the salaries of all female man-
agers in a company). Clearly, the absolute difference
of the answers to any given sum query on two neigh-
boring data sets (i.e., data sets that differ only in the
inclusion/exclusion of a single row) depends on the row

being removed. This is not the case with the predicate
or counting queries; for such queries, if there is a change
in answer, then the absolute difference is always 1.

3.2 Maximum Overlap

Let Q := {q1, q2, . . . , qt} be a set of t queries. The max-
imum overlap of Q, denoted γ(Q), is defined by

γ(Q) := max
Q′⊆Q

{|Q′| : CQ′(D) 6= ∅}.

It is easy to see that 1 ≤ γ(Q) ≤ t.

Example 1. Consider the set of queries Q :=
{q1, q2, q3} defined by

q1 : Postcode == A, Native == Y

q2 : Postcode == A OR B

q3 : Postcode == B, Native == N.

Then
– q1 and q2 are overlapping because the predicate

Native == Y overlaps with the tautology Native ==
Any (not explicit) in q2, and the predicates Postcode
== A and Postcode == A OR B also overlap;

– q2 and q3 are overlapping because the predicate
Native == N overlaps with the tautology Native ==
Any (not explicit) in q2, and the predicates Postcode
== A OR B and Postcode == B also overlap; and

– q1 and q3 are disjoint because the predicates Native
== Y and Native == N are disjoint.

We immediately have that γ(Q) = 2.

As mentioned earlier, we seek an efficient way to deter-
mine γ(Q) as a function of the number of queries t in
Q. The naive way is to go through all subsets of Q to
determine γ(Q), which takes time O(2t). The following
proposition sheds light on the difficulty of the problem.

Proposition 3. Let Q be a set of queries. Then
1. if CQ(D) 6= ∅, then all queries in Q pairwise overlap;

and
2. it is possible that all queries in Q pairwise overlap

while CQ(D) = ∅.

Proof. See Appendix B.

Thus, we cannot determine γ(Q) by simply checking
pairs of queries to see if they overlap.

MaximumWeight Overlap.We also consider the general
case where each query q ∈ Q has an associated weight
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w : Q → R+. The weight corresponds to the privacy
budget allocated to the query when a differentially pri-
vate mechanism is used to answer q. To handle the case
when multiple queries are answered by the mechanism,
we need to define how their weights compose. The exact
form of composition depends on the type of differential
privacy used, e.g., ε-DP or f -DP. However, there are
common properties.

Definition 8 (Composition Function). Let Q be a set
of queries, where each query q ∈ Q has weight w(q), for
some function w : Q→ R+. A composition function is a
function comp : P(Q)→ R+ such that
– comp({q}) ≥ w(q) for any q ∈ Q; and
– comp(Q′) ≥ comp(Q′′) if Q′ ⊇ Q′′, for any Q′, Q′′ ⊆

Q (Monotonicity).

Examples of the function comp include a simple sum of
weights (sequential composition under ε-DP), a sum of
squares of weights, or the square root of a sum of squares
of weights (sequential composition under Gaussian DP).
We define the maximum weight overlap of Q, denoted
γw(Q), by

γw(Q) := max
Q′∈P(Q)

{comp(Q′) : CQ′(D) 6= ∅}.

Define the set O1 as the set of overlapping queries in
P(Q), i.e., O1 := {Q′ ∈ P(Q) : CQ′(D) 6= ∅}. Also, define
the set O2, the set of maximal overlapping subsets of O1,
by O2 := {Q′ ∈ O1 : for all Q′′ ∈ O1, Q

′ 6⊂ Q′′}, i.e., the
set of elements of O1 which are not proper subsets of any
other elements in O1. We have the following proposition.

Proposition 4. γw(Q) = max {comp(Q′) : Q′ ∈ O1} =
max {comp(Q′) : Q′ ∈ O2}.

Proof. See Appendix B.

Note that no two distinct subsets of O2 overlap, since
otherwise their union will be in O2, contradicting the
fact that they are maximally overlapping subsets of
queries. The proof of the above theorem is similar to
the proof of Theorem 4. The advantage here is that
one can directly compute maximum (weighted) over-
lap by considering overlapping queries and then use the
underlying composition function, as long as the com-
position function allows parallel composition and the
query weights are equal to the privacy parameter associ-
ated with each query. This decouples the computational
problem from the underlying type of differential pri-
vacy. For instance, if one considers µi-GDP mechanisms,

then comp(Q) =
√∑

qi
w(qi)2, where w(qi) = µi. If one

considers εi-DP mechanisms under sequential composi-
tion, then comp(Q) =

∑
qi
w(qi), where w(qi) = εi. And

for homogeneous mechanisms, comp(Q) = ε · |Q|, under
basic composition of standard differential privacy. This
last result follows from the following proposition, which
can easily be proved by invoking the monotonicity prop-
erty of the composition function.

Proposition 5. Let Q be a set of queries. If all queries
in Q have the same weight, then γw(Q) = w · γ(Q).

3.3 Utility Gain

Assume the data custodian wishes to release answers to
a setQ of t queries via a differentially private mechanism
M. Let Yi denote the random variable representing the
noise added to the ith query by the differentially private
mechanism, i.e., Yi = M(qi, D) − qi(D). We are inter-
ested in the expectation of the absolute value of the total
noise added over all t queries. Under sequential compo-
sition, this is E

(∑t
i=1 |Yi|

)
=
∑t
i=1 E(|Yi|). Let Q′ ⊆ Q

be the set such that γw(Q) = comp(Q′). Under opti-
mal composition, the expectation is E

(∑
i:qi∈Q′ |Yi|

)
=∑

i:qi∈Q′ E(|Yi|). The utility gain, denoted U , is defined
as:

U := 1−
∑
i:qi∈Q′ E(|Yi|)∑t
i=1 E(|Yi|)

(5)

Thus, e.g., if M is the Laplace mechanism under basic
composition of pure differential privacy, with w(qi) = ε

for all i, then Eq. 5 simplifies to

U = 1− γ

t
. (6)

Similarly, ifM is the Gaussian mechanism with compo-
sition under µ-GDP, with w(qi) = µ for all i, then the
utility gain is the same as above. Thus, the above met-
ric is not dependent on the composition function, but
only on the optimal use of parallel composition, and
compares it directly to sequential composition.

For example, if a set of t = 100 queries has γ = 70,
the utility gain is 30%. For the data custodian, this
means 30% less noise needs to be added to query results
while maintaining the same overall privacy budget. In
some cases we shall also report the more commonly used
average l1-error, for ease of comparison against our util-
ity gain metric. For a set Q of t queries, q1, q2, . . . , qt,
answered via a differentially private mechanismM, the
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average l1-error is defined as follows:

Average l1 Error := 1
t

t∑
i=1
|M(qi, D)− qi(D)| (7)

4 Hardness of Maximum Overlap
Even if one can efficiently check whether two predicate
queries overlap, finding the maximum overlap remains
a hard problem. This is mainly because one needs to
search the powerset of the set of queries Q. Indeed, in
this section, we show that finding the maximum overlap
of a set of predicate queries is NP-hard.

This will be established by linking one instance of
maximum weighted overlap with the problem of finding
l1-sensitivity of a set of queries Q. As mentioned in the
introduction, [36] have already shown that computing
l1-sensitivity is NP-hard. This then implies readily that
maximum weight overlap is NP-hard.

Let Q be a set of queries, and let q ∈ Q. Let
D and D′ be neighboring databases. The sensitivity
of the query q is defined as ∆q := maxD∼D′ |q(D) −
q(D′)|. The l1-sensitivity of Q is defined as ∆Q :=
maxD∼D′

(∑
q∈Q|q(D)− q(D′)|

)
. Next define w(q) :=

∆q for each q ∈ Q, and define the composition function
as comp(Q) :=

∑
q∈Q w(q) =

∑
q∈Q ∆q. We next show

that γw(Q) = ∆Q under a consistency condition. More
specifically, note that the notion of generalized query
coverage (discussed in Section 3.1) defines a query q

to cover some row x in the domain if its answer on at
least one data set D containing x differs from its an-
swer on the neighboring data set D¬x. But this does
not say how much the answer changes by, or whether
the change is the same for all rows. We say that the
set of queries Q satisfies the consistency condition if
for each q ∈ Q we have |q(D) − q(D′)| = ∆q whenever
q(D) 6= q(D′) for all neighboring data sets D and D′. In
other words, whenever there is a change in query value
over two neighboring data sets, it is the same change
over any two neighboring data sets, i.e., the maximum
possible change. Thus, the equivalence of the two no-
tions may not hold for general queries, i.e., without the
consistency condition being satisfied.

Theorem 6. For each q ∈ Q, if |q(D) − q(D′)| = ∆q
whenever q(D) 6= q(D′) for all neighboring data sets D
and D′, then γw(Q) = ∆Q.

Proof. See Appendix B.

In particular, the predicate queries considered in this pa-
per, and the statistical range queries [19, 36] (a proper
subset of the former) are examples of queries that obey
the consistency condition. Note that Theorem 6 only
shows the equivalence of the two notions under ba-
sic composition: weights add up linearly. The notion
of maximum weight overlap is more general than l1-
sensitivity and encompasses other forms of composi-
tion, e.g., composition of Gaussian mechanisms under
f -DP. The Gaussian mechanism is not ε-DP under l1-
sensitivity (it is (ε, δ)-DP under l2-sensitivity). Hence,
our notion and accompanying results have broader ap-
plicability. We define the maximum overlap problem in
terms of predicate queries.

Maximum Overlap: Given a set A of m attributes,
a set Φ containing a predicate φA for each attribute
A ∈ A, a set Q of t predicate queries q1, q2, . . . , qt, and
a positive integer k < t, is there a subset of k or more
queries that overlap?

The following then follows immediately from Theo-
rem 6 and the NP-hardness of l1-sensitivity of the sta-
tistical range queries [36].

Theorem 7 ([36]). Maximum Overlap is NP-hard.

It follows that the Maximum Weight Overlap prob-
lem is NP-hard as well; for otherwise it could be used to
efficiently solve the Maximum Overlap problem with
the same weight assigned to all queries (Proposition 5).
In the full version of this paper, we also show that this
problem is NP-complete with an alternative proof of
NP-hardness.

5 Connection to Graphs
Inan et al. [19] relate the problem of computing l1-
sensitivity of a set of queries Q to a graph problem, by
modelling Q as a graph. The authors then upper bound
computing l1-sensitivity to finding the maximum clique
of the graph. The advantage is that we can use well-
known graph algorithms to solve the problem. Likewise,
in this section, we shall represent the maximum over-
lap problems in terms of graphs, looking for efficient
algorithms in practice. There are two key differences
between [19] and our treatment in this section:
– We show that the problem of finding maximum

weighted overlap exactly translates to a hypergraph
problem, but with a computationally expensive so-
lution. Details appear in Appendix A.
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– Due to the expensive nature of solving the hyper-
graph problem, we instead target pairwise over-
laps of queries using simple graphs, which allows us
to upper bound maximum overlap with the clique
number of the graph, in the manner of [19]. How-
ever, unlike [19], we show that maximum overlap is
further upper bounded by the chromatic number of
the graph (to be defined shortly). The advantage
here is that whereas here and in [19], one is forced
to use exact algorithms to compute the clique num-
ber, lest the maximum overlap be underestimated
(leading to a potential privacy risk), the chromatic
number can be computed using an approximate al-
gorithm that never underestimates the maximum
overlap. This allows us to use these approximate
algorithms for query set sizes and domain sizes sig-
nificantly beyond what can feasibly be handled by
the exact clique algorithms.

A graph is a pair G := (V,E), where V is a set of vertices
and E is a set of edges such that E ⊆ V ×V . We consider
the graph formed by pairwise overlaps of queries, rather
than all possible subsets of queries. This pairwise query
graph takes time O(t2) to construct.

Query Graph.Given a set of queriesQ := {q1, q2, . . . , qt},
their query graph, G(Q) := (V,E), is defined as follows:
each query is a vertex (i.e., V = Q), and two vertices
have an edge connecting them if the queries they repre-
sent overlap:

E := {(qi, qj) : qi and qj overlap}.

See Appendix A for an example set of queries and its
query graph.

Weighted Query Graph. A weighted query graph is a
query graph where each vertex is assigned a weight
w : Q → R+, and weights compose via a composition
function comp : P(Q)→ R+ function (see Definition 8).
We denote this by Gw(Q).

Whilst the query graph is far faster to construct
than the overlap hypergraph (Appendix A), there is no
analogue of Proposition 8 (in the appendix), which ex-
actly links maximum overlap to cardinality of the largest
hyperedge of the hypergraph. However, we present two
graph metrics that bound the maximum overlap from
above — the clique number and chromatic number.

Clique Number. A complete subgraph G′ is a subgraph
of G where all vertices are pairwise adjacent [10]. The
clique number of a graph G is defined as the size of the
largest complete subgraph of G.

Weighted Clique Number. The weighted clique number
of the weighted query graph Gw(Q) is defined as the
maximum value of comp(Q′), where Q′ ⊆ Q is a com-
plete subgraph.

To avoid notational clutter, we will denote the clique
number ω of the query graph G(Q) and the weighted
query graph Gw(Q) by ω(Q) and ωw(Q), respectively.

Proposition 6. Let Q be a set of queries. Then
γw(Q) ≤ ωw(Q).

Proof. See Appendix B.

We also have the same bound in the unweighted case:

Corollary 3. Let Q be a set of queries. Then γ(Q) ≤
ω(Q).

Next, we introduce the chromatic number of G(Q).

Independent Set. For a graph G := (V,E), an indepen-
dent set is a subset of vertices S ⊆ V such that no two
vertices vi, vj ∈ S share an edge [32]. Let S be an in-
dependent set of queries in the query graph Gw(Q). We
define the weight of S as w(S) := max{w(q) : q ∈ S}.
This is consistent with the fact that these queries do
not overlap, and hence can be composed in parallel if
given as input to a differentially private mechanism that
allows parallel composition.

Chromatic Number and Minimum Weight Coloring.
A proper coloring of a graph G := (V,E) is a parti-
tion S := (S1, S2, . . . , Sk) of V into k independent sets.
The chromatic number χ(G) of the graph is defined as
the minimum k over all proper colorings [32]. Another
(more common) definition of the chromatic number is
the minimum number of colors needed to color the ver-
tices, such that no two adjacent vertices have the same
color. As defined above, each independent set has weight
w(Si) = max{w(q) : q ∈ Si}. The weight of a coloring
S is then given by the sequential composition of the
weights of the independent sets:

w(S) = comp(S) =
k∑
i=1

w(Si) =
k∑
i=1

max{w(q) : q ∈ Si}.

A minimum weight coloring χw(G) is then the coloring
S of Gw(Q) that minimizes w(S). This is called the chro-
matic number, which we shall denote in the unweighted
case by χ(Q), and in the weighted case by χw(Q).

It is well known that ω(Q) ≤ χ(Q), and in fact this
gap can be arbitrarily large [31]. Similarly, ωw(G) ≤
χw(G). From Proposition 6, it follows that:

γw(Q) ≤ ωw(Q) ≤ χw(Q) ≤ comp(Q). (8)
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And in the unweighted case, we have γ(Q) ≤ ω(Q) ≤
χ(Q) ≤ |Q|. Thus, computing the (weighted) clique
number or chromatic number of the query graph will
give an approximation for the (weighted) maximum
overlap. We give algorithms for computing these metrics
in the next section.

6 Computing Maximum Overlap
In this section we present a number of algorithms for
computing the maximum overlap, clique number and
chromatic number of a set of queries. By Theorem 5,
maximum overlap is exactly the privacy loss of the set
of queries, and according to Eq. 8, the clique and chro-
matic number are an approximation (overestimate) of
the privacy loss.

‘Safe’ Approximations for Maximum Overlap. The
problems of computing ω(Q) and χ(Q) are known to be
NP-hard [23, 32]. In Theorem 7, we show that comput-
ing γ(Q) is also NP-hard. Thus, as the query set grows,
computing ω(Q), χ(Q) or γ(Q) will become infeasible.
We therefore consider approximate algorithms.

Since the clique number ω(Q) is framed as a max-
imization problem (namely, the problem of finding the
largest clique), any approximate ω̃(Q) will be upper
bounded by ω(Q). However, according to Eq. 8, this
means it may be possible that ω̃(Q) ≤ γ(Q), which may
lead to a privacy leakage! As such, we say that it is ‘un-
safe’ to use an approximate clique number, i.e., ω̃(Q).

By contrast, any approximate chromatic number
χ̃(Q) will satisfy χ(Q) ≤ χ̃(Q) ≤ |Q|, since it is framed
as a minimization problem. Therefore, γ(Q) ≤ χ̃(Q).
This makes it ‘safe’ to compute an approximate chro-
matic number, as there is never a risk of privacy leakage.
Therefore, we are bound to consider exact algorithms for
maximum clique, whereas for chromatic number we can
use more efficient approximate algorithms.

Maximum Clique. Computing the maximum clique of
an arbitrary graph is an extensively studied problem. A
detailed, recent review is given in [35], which discusses
both approximate and exact computation of ωw(Q).
Due to the necessity of ensuring safe approximation, we
consider only algorithms for exactly computing ωw(Q).
These algorithms are based on the branch-and-bound
framework, which consists of two main aspects — a
search strategy to recursively partition the search space
into smaller sub-problems (branching), and a pruning
strategy that allows sub-problems with a provably sub-

optimal solution to be pruned from the search space
(bounding) [6, 29]. For our experiments, we implement
the maximum clique algorithm presented in [7]. For
completeness, the description of the algorithm is given
in Appendix C.

Maximum Overlap. Given the connection between max-
imum overlap and maximum clique, we can adapt Al-
gorithm 1 to compute the (exact) maximum overlap
directly. This can be done simply by adding the con-
straint that the maximum clique returned must have
non-empty intersection prior to line 3 in Algorithm 1,
i.e., if CX(D) = ∅ then return B. This change ensures
we compute the maximum weighted overlap rather than
the maximum weighted clique.

Approximate Chromatic Number. There is significant
literature dedicated to the problem of computing an ex-
act or approximate chromatic number (see, e.g., [23]).
Due to the NP-hardness of exactly computing the chro-
matic number and the ‘safe’ approximation issue dis-
cussed earlier, we focus on algorithms for computing an
approximate chromatic number χ̃w(Q). One such algo-
rithm is the DSatur algorithm [2]. For our experiments,
we use the implementation of DSatur available in the
Python networkx package [17]. The DSatur algorithm
is presented as Algorithm 2 in Appendix C.

7 Experimental Evaluation
In this section, we demonstrate the effectiveness of our
approach in terms of computational efficiency and util-
ity gain as a function of the domain size and number of
queries on both synthetic and real-world data sets. Our
use case is the setting where an analysts asks queries
through an online interface. We therefore fix a cap of
60 seconds on the amount of time it should take for the
algorithm to return a solution to the problem, i.e., max-
imum overlap or approximate maximum overlap. We
demonstrate that the approximate chromatic number
algorithm can find an approximation to the maximum
overlap within this time bound for a much larger set of
queries than the exact clique number algorithm and its
maximum overlap variant. At the same time, in all cases,
we find that the gap between the approximate chromatic
number and the maximum overlap is very small. Thus,
this demonstrates the feasibility of computing the max-
imum overlap using the approximate chromatic number
algorithm.
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7.1 Effect of Domain Size and Number of
Queries

We first experiment with scaling the domain size and
number of queries to assess the feasibility of the algo-
rithms discussed in Section 6. More specifically, we use
the exact clique number and its exact maximum over-
lap variant based on Algorithm 1 and the approximate
chromatic number algorithm based on the DSatur algo-
rithm presented in Algorithm 2. We consider a varying
number of queries t and a varying domain size |D|. We
consider the algorithm to have completed if it provides
a result in under 60 seconds. Otherwise, the algorithm
is considered to be too time expensive and recorded as
a ‘time-out’. For each of the experiments, we select, uni-
formly at random, a number of attributes m ranging
from 10 to 50, 000, and then select for each attribute
10k attribute values, where k is chosen uniformly at ran-
dom from the set {1, 2, . . . , 6}. The domain size, which
is capped at 1080000 for reasons of computational feasi-
bility, is then calculated as the product of the sizes of
the sets of attribute values.

Uniform Distribution. A single query on a given do-
main D is generated by selecting a random number of
attributes m′ ∼ Uniform(1,m). For each of the m′ at-
tributes selected, we construct a predicate by randomly
selecting a subset of values of size a′ ∼ Uniform(1, |A|).
The query is then the conjunction of the m′ predicates.
Using this procedure, we are able to generate sets of t
queries. We vary t from 10 to 2,000. Finally, for a given
domain D and number of queries t, we attempt to com-
pute the exact clique number, exact maximum overlap
and approximate chromatic number using the aforemen-
tioned algorithms. The results are presented for each
algorithm in Figures 1a, 1b and 1c, respectively.

Figures 1a and 1b show very similar patterns for
scaling. This makes sense intuitively, as the algorithm
used for computing maximum overlap is based on the
algorithm for computing maximum clique. Note that
both algorithms time-out for relatively small number
of queries on very small domains, i.e., log10 |D| ≈ 10000
and number of queries t ≈ 350. The reason behind this
is that due to the query generation process, queries on
larger domains are more likely to be disjoint from one
another. The peak around log10 |D| = 10000 indicates
that the algorithm is most efficient at a certain like-
lihood of disjointness. This is evident from Figure 2,
where the instances of the maximum clique algorithm
are divided into three classes based on the size of the
maximum clique. When log10 |D| ≤ 10000, there are

many instances of maximum cliques of sizes ≥ 10, and
almost no such instances exist for larger domain sizes.
Thus, the queries overlap more for smaller domains, and
hence the algorithm takes longer to compute the corre-
sponding maximum clique or maximum overlap.

By contrast, Figure 1c shows a much smoother curve
for the feasible region of the approximate chromatic
number algorithm. The algorithm is able to handle
much larger query sets on smaller domains, and for very
small domains is able to handle thousands of queries
within the allowed 60-second processing time. The algo-
rithm also runs to completion on almost all cases where
the maximum overlap and clique number algorithms run
to completion. In Figure 3, we compare the three al-
gorithms in terms of the maximum number of queries
handled as a function of the domain size. As seen from
the figure, the approximate chromatic number is able
to handle a larger number of queries before being timed
out as compared to the other algorithms. This is a sig-
nificant advantage of the approximate chromatic num-
ber algorithm, which we shall return to in the next sec-
tion. Finally, for very large domains (log10 |D| > 20, 000)
all three algorithms appear to be limited to between
100 and 200 queries. This may indicate that for larger
domains, constructing the query graph itself (common
to all three algorithms) dominates the run time. This
makes sense, as the construction of the query graph has
O(mt2) time complexity. Thus, run-time is dominated
by the graph algorithms for smaller domains, and by
query graph construction for larger domains.

Other Distributions. In generating random queries
above, we assumed that the following quantities are dis-
tributed uniformly:
1. the number of predicates in a given query;
2. which attributes occur in the predicates in a given

query;
3. the number of attribute values occurring in the

predicates in a given query; and
4. which attribute values occur in the predicates in a

given query.

We generalized our experiments by considering some al-
ternative distributions of the above quantities. For the
first and third quantities, we considered the exponential
distribution (with different scale parameters). For the
second and fourth quantities, we considered the normal
distribution (with different standard deviations).

For reasons of computational feasibility, we capped
the domain size at 1048 (instead of 1080000) and regarded
non-termination of an algorithm within 10 seconds (in-
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(c) Approximate chromatic number

Fig. 1. Feasible regions for the exact maximum clique, exact maximum overlap and approximate chromatic number algorithms
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Fig. 3. The maximum number of queries processed within 60
seconds by the three algorithms, as a function of domain size

stead of 60 seconds) as a time-out. We focused on the
‘comfortable query limit’, i.e., the maximum number of
queries that could with very high probability be pro-
cessed by an algorithm before time-out.

We varied the distribution for each of the aforemen-
tioned four quantities in turn while fixing the uniform
distribution for the remaining three. We observed the
following discrepancies with the previous experiments:
– For the approximate chromatic number algorithm,

when the numbers of attribute values occurring in

predicates were distributed exponentially, the com-
fortable query limit increased by about 23%.

– For the clique number algorithm, when the num-
bers of predicates occurring in queries were dis-
tributed exponentially, the comfortable query limit
decreased by about 333%. Also, when the numbers
of attribute values occurring in predicates were dis-
tributed exponentially, the limit increased by about
46%. As the parameter of the distribution increased,
the probability of time-out increased modestly. Fi-
nally, when attribute values occurred in predicates
according to a normal distribution, the limit in-
creased by about 92%.

– For the maximum overlap algorithm, when at-
tributes occurred in predicates according to a nor-
mal distribution, the comfortable query limit in-
creased by about 20%. Also, when the numbers of
attribute values occurring in predicates were dis-
tributed exponentially, the limit increased by about
260%. As the scale parameter increased, the proba-
bility of time-out increased modestly.

7.2 Utility Gain on Random Synthetic
Census Queries

In this section, we compare the utility gain obtained via
the three graph algorithms as a function of the number
of queries, and show that even when the approximate
maximum overlap returned by the three algorithms is
the same, the approximate chromatic number algorithm
has an advantage over the other two in terms of time-
outs. For this, we analyze a workload of queries on a
census-like data set from [37, Section 9.2] (see also [4])
and examine the utility gain by taking maximum over-
lap into account. We assume that each query is allo-
cated the same privacy budget and answered by a homo-
geneous DP mechanism, e.g., the Gaussian mechanism
under µ-GDP (Definition 5), or the Laplace mechanism
under ε-DP (Definition 2). From Eq. 6 in Section 3.3,
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this means that the utility gain (in both cases) is 1−γ̃/t,
where γ̃ is the maximum overlap returned by the algo-
rithm, and t is the number of queries.

The census data set discussed in [37] consists of the
following attributes:
– Income: 5,000 uniformly sized ranges on the interval

(0, 75,0000)
– Age: 5 uniformly sized ranges on the interval (0, 100)
– Marital status: 4 discrete values
– Race: 7 discrete values
– Gender: 2 discrete values

This gives a total domain size of |D| = 1.4 × 106. Of
the three query workloads considered in [37], the third
is nicely suited to our problem. The workload consists
of all queries of the form (Income ∈ (0, i), Age ==
a, Marital status == m, Race == r, Gender == g),
where (0, i) is an income range and a,m, r and g are
either single elements from the field’s domain or all el-
ements from the field’s domain.

To generate a random query, we simply sample ran-
dom values for i, a,m, r and g. We can use this process
to generate a random set of queries of size t. In our ex-
periments we vary t from 25 to 2,000. For each value
of t, we generate 30 different query sets, and report the
mean of the maximum overlap, clique number and ap-
proximate chromatic number. These results are given in
Figure 4. The figure shows that the utility gain remains
within the 85–95% bracket for all three algorithms, and
around 95% for most of the queries. This utility gain is
huge, but easily explained by the highly parallel nature
of the workload. Importantly, Figure 4 indicates that
for this data set and method of sampling queries, the
gap between the approximate chromatic number and
the maximum overlap is very small. This contrasts with
the theoretical results in Section 5, where the gap be-
tween the chromatic number and maximum clique can
be arbitrarily large (see [31]).

However, there is some difference in the algorithms
in terms of execution time. The dotted vertical line in
the figure indicates the starting point (as a function of
the number of queries) where the maximum overlap and
clique number algorithms start to time out (i.e., take
more than 60 seconds to execute). This is illustrated
in Figure 5, where we show the percentage of the 30
randomly sampled query sets completed within 60 sec-
onds for each value of t. While the approximate chro-
matic number algorithm always gives an output within
60 seconds, at t = 1,350 we begin to see that the other
two algorithms start to time out, with the percentage
of time-outs increasing as t grows.
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Fig. 4. Utility gain as a function of number of queries. Maximum
overlap and maximum clique always gave the same results, as well
as approximate chromatic number in most cases, and hence the
lines overlap.
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Fig. 5. The percentage of the query sets for which the three algo-
rithms output a result before time-out.

Other Distributions. Just as was done for the scalability
experiments reported in Section 7.1, we generalized the
experiments for utility gain by considering non-uniform
distributions (in turn) for the four salient quantities con-
trolling the random generation of queries identified in
that section. The results are detailed in Appendix D. In
all cases, we observe considerable utility gain.

7.3 Real Census Queries Data Set

We also analyze a data set of queries on the Australian
national census data, logged by Australia’s national
statistics agency, the Australian Bureau of Statistics.
The data set contains nine separate workloads of queries
for a census-like data set. The census-like data set has
a domain of size |D| ≈ 6.8 × 1028. We analyze the ben-
efit of running our approach on the query sets using
the utility gain metric introduced in Section 3.2. Recall
that the utility gain was defined as U = 1−γ/t, where t
is the number of queries. For this experiment, we com-
pute the maximum overlap and utility gain for each set



Making the Most of Parallel Composition in Differential Privacy 267

Data set t γ Utility gain Average l1 Error
Seq. Opt.

1 9 6 0.333 2.392 1.9488
2 120 107 0.108 8.747 8.254
3 2 2 0.000 1.133 1.133
4 267 216 0.191 13.040 11.734
5 54 34 0.370 5.850 4.657
6 68 55 0.191 6.573 5.921
7 41 17 0.585 5.116 3.286
8 38 20 0.474 4.912 3.568
9 284 208 0.268 13.446 11.516

Combined 883 563 0.362 23.709 18.940

Table 1. Utility gain on the real census query data set and the
comparison of average absolute error through µ-GDP with µ = 1
under sequential composition (Seq.) versus optimal composition
(Opt.)

of queries. We also compute these values for the work-
load of all queries combined together. The results can
be seen in Table 1.

With the exception of data set 3, improvements in
utility range from 10.8% to 58.5%. We found that on all
data sets (including the combined data set), there was
no gap between the approximate chromatic number and
the true maximum overlap (and hence χ̃(Q) = ω(Q) =
γ(Q)). The overall utility gain for the combined data set
was 36.2%.

We also present the results using the more familiar
average l1 error metric (Eq. 7) in Table 1. We choose the
Gaussian mechanism which is µ-GDP private. We set
the overall budget to be µ = 1. By sequential composi-
tion of µ-GDP mechanisms, this means that each of the
t queries in Q is allocated a budget of µ′ = 1/

√
t. Using

optimal composition, we allocate each query a budget
of µ′ = 1/√γ. The results for the two cases are dis-
played in columns labelled ‘Seq.’ and ‘Opt.’, respectively.
Notice that with optimal parallel composition there is
a significant decrease in absolute error, resulting in an
overall error of less than 4.7; a significant improvement
for sensitivity-1 queries.

8 Related Work
The work most closely related to our own is contained
in [36] and [19]. The former work was the first to prove
that computing the l1-sensitivity of a set of queries is
NP-hard. As we have discussed, the notion of maximum
overlap under basic sequential composition is equivalent
to finding the l1-sensitivity of a set of queries. However,
our treatment of the maximum overlap in terms of its

f -differential privacy characterization is much broader,
and includes other mechanisms such as the Gaussian
mechanism for which the l1-sensitivity result does not
apply. The work from [19] formulates the problem of
computing l1-sensitivity of a set of statistical range
queries as a graph problem. They then compute l1-
sensitivity via exact maximum clique algorithms. As
mentioned before, we are bound to use exact maximum
clique algorithms, and not their approximate counter-
parts, because the result may underestimate the pri-
vacy budget, hence potentially causing privacy leakage.
We have additionally linked finding the chromatic num-
ber of the graph to maximum overlap, with the advan-
tage that the approximate chromatic number algorithms
never underestimate the privacy budget. As a result, we
are able to run the algorithm for a much larger number
of queries and domain sizes than was possible in [19]. We
also remark that our results hold for the set of predicate
queries, a large class of queries that properly includes
the statistical range queries considered in [36] and [19].

Zhang et al. [37] introduce approaches for com-
puting a reduced workload matrix of queries. Their
workload-based ‘partition selection’ operator directly
takes advantage of parallel composition, and this re-
sults in improved accuracy. The authors also devise ways
of exploiting the structure of range queries, and give a
modified version of the Multiplicative Weights Expo-
nential Mechanism (MWEM) [18] that selects groups of
queries that are pairwise disjoint. Our approach is able
to scale to much larger data domains.

The framework of personalized differential privacy
[15] is based on a notion that is closely related to our
notion of the maximum overlap of a set of queries. In
this framework each individual actually in the data set is
assigned a separate maximum allowed privacy loss, and
every query that accesses the individual’s data increases
the individual’s privacy loss. In contrast, we consider
the domain of all individuals that could be in the data
set and, crucially, discuss the computational aspects of
determining how queries cover the data domain.

The designers of the High-Dimensional Matrix
Mechanism (HDMM) [24] consider the problem of si-
multaneously maximising accuracy of query answers
and minimising privacy loss for a workload of predicate
queries of the same type as that considered by us. How-
ever, whereas we focus on this class of queries for the
purpose of reducing time complexity, the designers of
HDMM do so to reduce space complexity. Specifically,
workloads of such queries can be compactly represented
through use of the Kronecker product. However, exper-
imental results indicate that the run-time of HDMM
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scales with the size of the data domain (as opposed to
the number of attributes). Thus, in practice HDMM can
handle only small domains.

HDMM is a well-known example of a ‘workload-
aware’ differentially private mechanism. Such mecha-
nisms execute an optimisation routine (such as a least-
squares regression) in order to maximize the expected
accuracy of the answers to the queries in a given work-
load of queries. While it is likely that such mechanisms
make use of parallel composition, they do so only im-
plicitly. Indeed, to date, no work has been conducted
to determine the extent to which workload-aware mech-
anisms exploit parallel composition. Our approach ad-
dresses the problem of making optimal use of parallel
composition directly, thereby avoiding the significant
computational overheads associated with most of the
optimisation routines used by workload-aware mecha-
nisms.

McKenna et al. [25] use probabilistic graphical mod-
els (PGMs) [21] to address the problem of inference in
high-dimensional data sets. Rather than building an ex-
plicit probability vector over all elements of the data
domain, the use of PGMs allows for a compact, implicit
representation whose size scales with the number of at-
tributes. Our graph-based framework has similar bene-
fits, but is intended for the measurement of privacy loss,
rather than the optimisation of inference. Future work in
this area could involve combining the two frameworks.

9 Limitations
We list a few shortcomings of our work which, if ad-
dressed, could further improve our work.
– Our primary use case is the online setting where the

data custodian answers queries on the fly. Our ap-
proach is to regenerate the query graph whenever a
new batch of queries arrives. However, an approach
based on a dynamic query graph [9] could improve
the overall query processing time, because it would
eliminate the need to regenerate the query graph
from scratch.

– A possible method of reducing the size of the query
graph is to represent complex queries which have
a pre-determined, regular structure as single nodes
in the graph. For instance, an SQL ‘GROUP BY’
query across different attribute values of a single at-
tribute A (i.e., a histogram query) has such a struc-
ture. Such a query might be representable as a single
node, instead of |A| nodes, in the query graph. This

idea leads to the more general question of whether it
is possible to efficiently pre-process the query graph
to reduce its size before executing the graph algo-
rithms.

– We evaluated our approach on real-world workloads
of queries in Section 7.3. Unfortunately, there is a
lack of publicly available such workloads. The TPC-
H data set [8] for database performance benchmark-
ing contains samples of real-world queries over mul-
tiple data sets, but not workloads of queries on sin-
gle data sets.

10 Conclusion and Future Work
We have shown that making the optimal use of paral-
lel composition amounts to computing the maximum
overlap of a set of queries. Although computing the
maximum overlap is NP-hard, it is possible to approxi-
mate this quantity using well-known graph algorithms,
e.g., by using efficient approximate algorithms for the
chromatic number of the query graph, showing sig-
nificant utility gain in practice. It would be interest-
ing to broaden the scope of our approach to include
additional classes of queries. Range queries form one
particularly interesting class of queries. Each predicate
in a range query can be represented as an interval,
so that the query can be regarded as a box (hyper-
rectangle) in m-dimensional space (where m is the num-
ber of attributes). We remark that the maximum over-
lap problem for range queries is equivalent to the max-
imum depth problem in computational geometry [5].
Another interesting direction is to investigate whether
more could be squeezed out of the maximum overlap
problem. For instance, we have defined an overlap as
a binary function: two queries overlap if they intersect
on at least one row in the domain. Is it possible to ob-
tain an even tighter privacy analysis by considering the
amount (the number of rows in the domain) by which
queries overlap? We leave this as an open question.
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A Hypergraphs and Maximum
Overlap

A hypergraph is a generalisation of the concept of a
graph, where the elements of E are non-empty subsets
of any cardinality of V (i.e., not simply two-element sub-
sets) [10]. In the context of hypergraphs, an element of
E shall be called a hyperedge. A simple brute-force al-
gorithm for finding γ(Q) would check all 2t subsets of
Q, check whether each subset has a non-empty coverage,
and report the largest subset with a non-empty cover-
age. Performing such a brute-force search would allow
us to construct the following hypergraph:

Overlap Hypergraph. Given a set of queries Q :=
{q1, q2, . . . , qt}, their overlap hypergraph, denoted H(Q),
is defined as follows: each query is a vertex (i.e., V = Q),
and hyperedges are subsets of queries with a non-empty
coverage, i.e.,

E := {Q′ ⊆ Q : CQ′(D) 6= ∅}.

Down-Closed Hypergraph. A hypergraph H = (V,E) is
down-closed if e1 ∈ E and e2 ⊆ e1 implies e2 ∈ E (i.e.,
every subset of a hyperedge is also a hyperedge) [16].

Proposition 7. H(Q) is down-closed.

Proof. If a set of queries Q′ ⊆ Q has a non-empty cov-
erage CQ′(D) 6= ∅, then every subset of Q′′ ⊆ Q′ also
has CQ′′(D) 6= ∅. Thus, every subset of a hyperedge in
H(Q) is also a hyperedge in H(Q).

Rank. The rank r(H) of a hypergraph H := (V,E) is
the cardinality of the largest hyperedge, i.e., r(H) :=
maxe∈E |E| [32].

Proposition 8. Given a set of queries Q, one has
γ(Q) = r(H(Q)).

Proof. For the overlap hypergraph H(Q), the edges are
defined by E := {Q′ ⊆ Q : CQ′(D) 6= ∅}. It follows that
maxe∈E |E| = maxQ′⊆Q{|Q′| : CQ′(D) 6= ∅} = γ(Q).

Thus, computing γ(Q) exactly translates to finding the
rank of the overlap hypergraph. However, the O(2t) run-
ning time means it is not very useful in practice. There-
fore, we focus on the query graph instead to obtain a
lower bound.

Postcode
== A,

Native == Y

Postcode
== A OR B

Postcode
== A OR C,
Native == N

Native == Y

Postcode
== C

Postcode
== B,

Native == N

Fig. 6. The query graph and the overlap hypergraph of the set of
queries from Example 2.

Example 2. Consider the set Q of six queries:

q1 : Postcode == A, Native == Y

q2 : Postcode == A OR B

q3 : Postcode == A OR C, Native == N

q4 : Native == Y

q5 : Postcode == C

q6 : Postcode == B, Native == N

Then the query graph G(Q) and overlap hypergraph
H(Q) are shown in Figure 6. Note that in the hyper-
graph shown in the figure, every subset of the hyperedge
shaded via a triangle is also a hyperedge. These hyper-
edges are not explicitly illustrated in the figure.

B Proofs

Proof of Lemma 1. By definition f̆ is convex. It is
also non-increasing since it is less than or equal to
min{f1, f2}, both of which are non-increasing. Also, by
definition, f̆(x) ≤ min{f1, f2} ≤ 1 − x for all x ∈ [0, 1].
Since f̆ is convex, it is continuous over (0, 1). Since
f1(1) = f2(1) = 1, we have f̆(1) = 1. Then, in the half
neighborhood of (1, f̆(1)), the graph of f̆ coincides with
that of f1 or f2 or both [33, Theorem 2.5]. Therefore,
f̆ is continuous at 1, due to the continuity of both f1
and f2 at 1. At x = 0, if f1(0) = f2(0), then the conti-
nuity of f̆ follows due to a similar argument as above.
So let us assume that is not the case, and without loss
of generality, let f1(0) < f2(0). Then the graph of f̆
in the half neighborhood of (0, f̆(0)) is either a straight
line [33, Theorem 2.5], or coincides with that of f1. In
either case, it is continuous at 0. It follows that f̆ is a
trade-off function.

Proof of Corollary 2. From Theorem 4, M is
lce{Gµ1 , Gµ2 , . . . , Gµk}-DP. From the definition of
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Gµ [11], Gµ = Φ(Φ−1(1− α)− µ), where Φ is the stan-
dard normal CDF, µ ≥ 0, and 0 ≤ α ≤ 1. Fix any µi
and µj such that µi 6= µj . Equating Gµi and Gµj , and
noting that Φ is a strictly increasing function, we get

Φ−1(1− α)− µi = Φ−1(1− α)− µj ,

which implies µi = µj , a contradiction. Thus, Gµi

and Gµj do not intersect for all real numbers in
[0, 1]. Assume that Gµi < Gµj . From Corollary 1,
lce{Gµi , Gµj} = Gµi , and

Φ−1(1− α)− µi < Φ−1(1− α)− µj ,

implies that µi > µj . The result follows.

Proof of Proposition 2. First consider that q1 and q2
are disjoint, and assume to the contrary that for all i,
φi,1 and φi,2 overlap on Ai. Let x be a row whose ith

coordinate is a member of the set Cφi,1(Ai)∩Cφi,2(Ai),
which by assumption is non-empty. Then x satisfies both
q1 and q2, contradicting the fact that they are disjoint.

Next assume that for some i, φi,1 and φi,2 are dis-
joint on Ai. Let x ∈ D, then its ith coordinate can not
simultaneously satisfy φi,1 and φi,2. If xi satisfies nei-
ther, then it does not satisfy both q1 and q2. If xi satis-
fies φi,1, then it does not satisfy φi,2 and hence x does
not satisfy q2. If xi satisfies φi,2, then it does not satisfy
φi,1, and hence x does not satisfy q1. In all cases, q1 and
q2 are disjoint.

Proof of Proposition 3. Part (1) follows from the prop-
erties of set intersection. If the intersection of |Q| sets is
non-empty, then the intersection of each pair of sets is
necessarily non-empty. For part (2), we present a coun-
terexample. Consider a domain D with just three rows
{x1, x2, x3}. Let Q := {q1, q2, q3}, which are defined such
that the coverage of q1 is {x2, x3}, that of q2 is {x1, x3},
and that of q3 is {x1, x2}. Then the three pairwise over-
lap, yet CQ(D) = ∅.

Proof of Proposition 4. The first equality follows imme-
diately from the definitions of maximum weight over-
lap and the set O1. We consider the second equal-
ity. Let A1 := {comp(Q′) : Q′ ∈ O1}, and let A2 :=
{comp(Q′) : Q′ ∈ O2}. Since A2 ⊆ A1, we have that
maxA1 ≥ maxA2. Next consider maxA2. Let Q′ ∈ O1,
and let Q′′ ⊇ Q′, which is guaranteed to be in O2
by construction. Then, by the monotonicity property
of the composition function, we have that maxA2 ≥
comp(Q′′) ≥ comp(Q′). Thus, maxA2 ≥ maxA1. From
this it follows that maxA2 = maxA1 = γw(Q).

Proof of Theorem 6. Let Q′ be the subset of Q such that
γw(Q) =

∑
q∈Q′ ∆q. Let D and D′ be the neighboring

data sets such that ∆Q =
∑
q∈Q |q(D) − q(D′)|. Let us

assume that the row they differ in is x. Let Q′′ ⊆ Q be
such that for all q ∈ Q′′, q(D) 6= q(D′). Then, through
the consistency condition

∆Q =
∑
q∈Q

|q(D)−q(D′)| =
∑
q∈Q′′

|q(D)−q(D′)| =
∑
q∈Q′′

∆q.

Since all queries in Q′′ cover x, CQ′′(D) 6= ∅. Therefore,
according to the definition of maximum overlap

∆Q =
∑
q∈Q′′

∆q ≤
∑
q∈Q′

∆q = γw(Q).

Next take Q′, and let x ∈ CQ′(D). Let Dx be a data
set containing x, and D¬x be the neighboring data set
of Dx with one instance of x removed. Once again, ac-
cording to the consistency condition and the definition
of maximum overlap, we have

γw(Q) =
∑
q∈Q′

∆q

=
∑
q∈Q′

|q(Dx)− q(D¬x)|

=
∑
q∈Q

|q(Dx)− q(D¬x)|

≤ max
D∼D′

∑
q∈Q

|q(D)− q(D′)|

= ∆Q.

Hence γw(Q) = ∆Q.

Proof of Proposition 6. Recall the definition of γw(Q):

γw(Q) := max
Q′⊆Q

{comp(Q′) : CQ′(D) 6= ∅}.

By part (1) of Proposition 3, all queries in Q′ pairwise
overlap, and hence form a complete subgraph of the
query graph. By part (2) of Proposition 3, it is also
possible for a clique Q′′ on the query graph to contain
queries that all pairwise overlap, but have CQ′′(D) = ∅.
By the monotonicity property of comp, we must have
that ωw(Q) is bounded from below by γw(Q).

C Maximum Clique and
Approximate Chromatic
Number Algorithms

Maximum Clique. For our experiments, we implement
the maximum clique algorithm presented in [7]. A de-
scription of the algorithm is given in Algorithm 1. The
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algorithm takes as input the query graph G(Q), a candi-
date maximum clique X, the current best known clique
B and an upper bound on the maximum weight of the
clique ub. X and B are initialized as empty sets, and
ub is initialized as comp(Q). In the algorithm N(q) de-
notes the neighbors of a query q in the query graph.
The algorithm recursively builds a maximum clique by
selecting maximum degree nodes from the query graph
and pruning nodes that are not adjacent to the cur-
rently selected nodes in X. This strategy quickly finds a
candidate maximum clique, which is set to B when no
nodes remain in G(Q). This candidate maximum clique
forms a lower bound on the weight of the true maximum
clique.

The algorithm then backtracks, recursively explor-
ing the search space to find a larger weighted clique
than B. To prune the search space, an upper bound on
the maximum weight of X is computed by adding the
current weight comp(X) and an approximate coloring of
the remaining query graph χ̃w(G). If this upper bound
is smaller than comp(B), there is no point in searching
further, allowing the algorithm to prune and backtrack.
This algorithm could be further improved. For exam-
ple, the authors of [22] note that there is a trade-off
between the run-time cost of computing χ̃w(G) and the
level of pruning performed at different recursion depths.
Several other optimized algorithms for maximum clique
are discussed in [35].

1 Initialize, G← G(Q), X ← ∅, B ← ∅,
ub← comp(Q).

2 MaxWeightClique (G, X, B, ub):
3 if G = ∅ then
4 return X.
5 χ̃w(G)← an approximate coloring of G.
6 ub′ ← min(ub, comp(X) + χ̃w(G)).
7 if ub′ ≤ comp(B) then
8 return B.
9 q ← a max degree vertex of G.

10 G′ ← graph induced by N(q).
11 X ′ ← X ∪ {q}.
12 B′ ← MaxWeightClique(G′, X ′, B,ub′).
13 if ub′ = comp(B′) then
14 return B.
15 G′′ ← graph induced by V (G)− {q}.
16 return MaxWeightClique(G′′, X,B, ub′).
Algorithm 1: Maximum Clique Algorithm with
coloring-based pruning [7]

Approximate Chromatic Number. The DSatur algo-
rithm given in Algorithm 2 takes as input the set of
queries Q (and their query graph G(Q)), as well as an
empty partition S. The algorithm returns a valid col-
oring S. Lines 4-14 of this algorithm comprise a greedy
algorithm for finding a coloring of a graph. The algo-
rithm simply chooses vertices one by one, and checks
to see if the vertex can be added to any existing inde-
pendent sets in S (lines 4-9). If it cannot, the vertex
becomes a new independent set (lines 10-12). Once all
vertices have been placed into S, the algorithm termi-
nates.

What separates DSatur from a typical greedy algo-
rithm is the heuristic on line 3 for selecting vertices. The
saturation degree of an uncolored vertex v is defined as
the number of different colors assigned to adjacent ver-
tices. Thus, a vertex with maximal saturation degree
can be considered as one that has the fewest available
colors from which to choose. In practice, this heuristic
works very well, and for certain classes of graphs the
DSatur algorithm produces an optimal coloring. In the
worst case, the DSatur algorithm has run time O(t2),
where t is the number of vertices in the graph [23].

1 DSatur(X ← Q, S ← ∅).
2 while X 6= ∅ do
3 choose q ∈ X with maximal saturation

degree.
4 for j ← 1 to |S| do
5 if Sj ∪ {q} is an independent set then
6 Sj ← Sj ∪ {q}.
7 break
8 else
9 j ← j + 1

10 if j > |S| then
11 Sj ← {q}.
12 S ← S ∪ Sj .
13 X ← X − {q}.
14 return S
Algorithm 2: DSatur Algorithm for the approxi-
mate chromatic number of a graph [23]



Making the Most of Parallel Composition in Differential Privacy 273

200 400 600 800 1000

Number of queries t

0.0

0.2

0.4

0.6

0.8

1.0
U

ti
lit

y
ga

in
uniform

exp-3.0

exp-2.0

exp-1.0

(a) Influence of distribution on the number of predicates
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(b) Influence of distribution on the attributes
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(c) Influence of distribution on the number of values per predicate
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(d) Influence of distribution on the attribute values

Fig. 7. Utility gain versus number of queries, for the approximate chromatic number algorithm, for different distributions on the four
quantities (random variables) used in generating queries from Section 7.1. The label ‘uniform’ refers to the uniform distribution; ‘exp’
refers to the exponential distribution (with three different scale parameters); and ‘norm’ refers to the normal distribution (with three
different standard deviations).

D Further Results on Random
Synthetic Census Queries

Since the clique number and maximum overlap algo-
rithms did not scale well for a larger set of queries, i.e.,
timing out around 50 to 80 queries as shown in Sec-
tion 7.1, we focus on the results for the approximate
chromatic number algorithm for query sets of size up
to 1000. For each query set size, we repeated the exper-
iment three times, and report the results in Figure 7.
For three of the four quantities, the utility gain through
the uniform distribution is either comparable or better
than the other distributions. The utility gain is highest
for the uniform distribution on the number of predicates
selected. The uniform distribution in this case can se-
lect a larger number of predicates, thus making more
queries overlap. On the other hand the utility gain for
the uniform distribution on the number of values taken
by a predicate is the lowest. This is again explainable,

as the exponential distribution on the number of values
taken per predicate means that the resulting queries are
more likely to overlap.
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