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Abstract: While the practicality of secure multi-party
computation (MPC) has been extensively analyzed and
improved over the past decade, we are hitting the limits
of efficiency with the traditional approaches of repre-
senting the computed functionalities as generic arith-
metic or Boolean circuits. This work follows the de-
sign principle of identifying and constructing fast and
provably-secure MPC protocols to evaluate useful high-
level algebraic abstractions; thus, improving the effi-
ciency of all applications relying on them. We present
Polymath, a constant-round secure computation pro-
tocol suite for the secure evaluation of (multi-variate)
polynomials of scalars and matrices, functionalities es-
sential to numerous data-processing applications. Us-
ing precise natural precomputation and high-degree of
parallelism prevalent in the modern computing environ-
ments, Polymath can make latency of secure polynomial
evaluations of scalars and matrices independent of poly-
nomial degree and matrix dimensions.
We implement our protocols over the HoneyBad-
gerMPC library and apply it to two prominent secure
computation tasks: privacy-preserving evaluation of de-
cision trees and privacy-preserving evaluation of Markov
processes. For the decision tree evaluation problem, we
demonstrate the feasibility of evaluating high-depth de-
cision tree models in a general n-party setting. For the
Markov process application, we demonstrate that Poly-
math can compute large powers of transition matrices
with better online time and less communication.
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1 Introduction
Secure multi-party computation (MPC) [4, 8, 32] en-
ables mutually distrusting parties to compute securely
over their private data. Informally, in a system of n > 1
mutually distrusting parties, an MPC protocol allows
them to “securely” evaluate any agreed-on function f

of their private inputs, in the presence of a centralized
adversary controlling at most any t < n parties1. Af-
ter over four decades of research in MPC, only recently,
the number of MPC instances for real-world use cases
has increased significantly. Indeed, thanks to recent re-
searches that significantly improved the performance
of MPC, several MPC frameworks are now available
to help with various use cases like privacy-preserving
machine learning [35, 37, 40, 43], privacy-preserving fi-
nancial solutions [12, 34], and secure information es-
crows [10, 31].

Typically, in MPC protocols, general-purpose com-
pilers represent any computation/functionality (over
private inputs) as a Boolean or an arithmetic circuit.
The secure computation proceeds by inductively com-
posing the secure protocols for the atomic elementary
Boolean/arithmetic gates [12, 31, 35, 44]. Although this
natural approach is complete, it tends to introduce
significant overheads. The privacy-preserving computa-
tions are at least a few orders of magnitude slower than
their non-private counterparts. Moreover, the overhead
increases as we add more parties or consider a more
powerful adversary. While the growing demand for pri-
vacy, in the form of privacy regulations (for example,
GDPR [16] and CPRA/CCPA [26]) and user expecta-
tions, is here to drive the use of MPC in a broad spec-
trum of online applications, the slowdowns among most
of the current privacy solutions are far from being ac-
ceptable.

There are opportunities to significantly improve the
efficiency of these secure computation protocols by iden-
tifying optimizations within specific computation tasks.
However, carefully handcrafting provably-secure MPC

1 For different system adversary settings, MPC may have
stricter requirements such as t < n

2 or t < n
3 .
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solutions for every interesting application is not scal-
able. Ad hoc protocol design, on the other hand, has
historically been riddled with latent security vulnerabil-
ities. Consequently, the time-tested approach is to strike
a natural balance between these two extreme techniques
by identifying shared algorithmic components underly-
ing several classes of computations of high societal im-
pact. After that, one designs optimized secure compu-
tation solutions for these individual components, thus,
permeating the efficiency gains to all application do-
mains relying on them.

This work follows the design principle of identifying
and constructing fast and provably-secure MPC pro-
tocols to evaluate useful high-level algebraic abstrac-
tions. We consider secure multi-party polynomial eval-
uations of scalars and matrices, and present constant-
round MPC solutions for them. This class of high-level
algebraic primitive finds widespread applications rang-
ing from approximating non-linear functions (e.g. the
Sigmoid function) to evaluating decision trees [25].

1.1 Our Contribution

We propose Polymath, a versatile, constant-round pro-
tocol suite focusing on improving MPC performance
of polynomial evaluation over both scalars and matri-
ces. Our protocol suite applies to any arithmetic-circuit-
based MPC computation, and the numbers of required
communication rounds are independent of the number
of participating parties, the degree of the evaluated
polynomial as well as the matrix dimensions.

Specifically, we focus on the following two function-
alities:

(a) Secure Evaluation of Polynomial Over Fi-
nite Fields. We design 2-round protocols for eval-
uating multivariate polynomials, and the communica-
tion complexity (i.e., the number of communicated bits)
only increases linearly with the number of variables
and is independent of polynomial degree. Our highly
parallelizable protocols employ specially crafted pre-
computations and offer significant improvements over
the state of the art techniques that require communica-
tion rounds logarithmic in the number of variables. We
also present 2-round protocols for evaluating univari-
ate polynomials, which extends a secure exponentiation
protocol by Damgård et al. [22].

(b) Secure Evaluation of Polynomials Over Ma-
trices. We present a 4-round protocol for secure matrix
powering/exponentiation and make use of it to evalu-

ate univariate polynomials over matrices securely. Our
protocol is not only highly parallelizable but also with
a communication complexity independent of the expo-
nent.

Despite the conceptual similarity, our protocols for
secure polynomial evaluation for scalars over finite fields
and those over matrices are inherently different as the
multiplication of finite field elements is commutative,
while matrix multiplication is not commutative in gen-
eral.

Polymath is not only theoretically interesting, but
we find it to be practically relevant to any computation
that can be represented as a polynomial. We demon-
strate this practical relevance using two representative
applications.

Application I: Privacy-Preserving Decision Tree
Evaluation. We present a solution for privacy-
preserving decision tree evaluation as an application of
Polymath, and it illustrates that we can achieve high
depth decision tree evaluation within a reasonable time.
To the best of our knowledge, our solution is the first
to support general n-party setting and high-depth tree
evaluations simultaneously.

Polymath can be employed with any arithmetic-
circuit MPC library such as SPDZ [30], or Scale
MAMBA [21]. We implement our protocols using the
HoneyBadgerMPC library [32] for robust execution in
the asynchronous setting. For a depth 8 complete de-
cision tree model, we can evaluate it with 12 seconds
under 4-party setting or 13 seconds under 7-party set-
ting.

Application II: Secure Credit Risk Analysis
Through a Markov Process. We use our matrix
powering protocol to solve the evaluation of a Markov
process. Furthermore, we show how one can use this
computation to perform credit risk analysis in financial
domains. The benchmark shows that in the 4-party set-
ting, we can evaluate the power of 10 × 10 transition
matrices (with the exponent being 1024) in (roughly)
half a second. Furthermore, we can evaluate the power
of 1024 for 320 × 320 transition matrices in around 20
seconds.

Paper Organization. In Section 2 we present the
general system setting of Polymath. In sections 3 and 4,
we introduce the protocols for multi-variate polynomial
evaluation. We provide a security analysis for protocols
in Section 5. Then in Section 6, we illustrate one of
the applications of Polymath: privacy-preserving deci-
sion evaluation, which is of unique interests. Then we
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discuss related works in Section 8 and conclude the pa-
per in Section 9.

2 Problem Setting

2.1 System Model

We consider a standard MPC setting with a set of
parties P1, P2, . . . Pn for n ≥ 2, where the parties are
connected via authenticated and secure point-to-point
channels, where everyone can send messages to each
other at the same time. In this setting, MPC has three
distinct phases: parties share their input in phase 1, they
participate in multi-party computation over the shared
input in phase 2, and finally reconstruct output by com-
bining their shares in phase 3.

The proposed Polymath techniques work across dif-
ferent communication settings and, thus, we do not
make any assumption regarding the bounded-synchrony,
partial-synchrony, or asynchrony of the underlying MPC
setting; however, we measure our protocols’ efficiency in
terms of the number of rounds (or the round complex-
ity) and we specify it below for different communication
settings.

MPC protocols for the bounded-synchronous com-
munication setting assume that parties proceed in
rounds such that the messages sent by any honest party
in any given round are delivered to every recipient in the
same round. All parties here are assumed to be some-
what synchronized and to be in the same round at all
times; thus, the number of rounds is evident from the
protocol steps.

For the definition of rounds in the partially-
synchronous and asynchronous settings, we follow [17].
Intuitively, when two messages m and m′ sent by party
Pi in an asynchronous MPC are considered to be sent
in rounds r and r′, r′ > r, if m′ can be computed only
after Pi has sent m. Here, the number of asynchronous
protocol rounds is the maximum (over all honest par-
ties) number of rounds that an honest party uses in the
protocol execution.

Polymath is also agnostic to the underlying adver-
sary model, and we leave the adversary model as well
as communication setting discussion to the individual
application setting.

2.2 Linear Secret Sharing Based MPC

We focus on the arithmetic operations for our setting
and thus input as well as all intermediate results are
represented in the form of a linear secret sharing2 among
n parties.

Based on the adversary assumption, we pick appro-
priate linear secret sharing (or secure representation) of
the input and intermediate results. For the dishonest
majority MPC (e.g., SPDZ [30]), the employed scheme
is additive secret sharing, while we consider Shamir se-
cret sharing [41] for the honest majority setting. Against
a malicious adversary, the secret sharing choices can
be verifiable secret sharing [11] or authenticated secret
sharing [30].

An (n, t) Shamir secret sharing scheme, with n >

t ≥ 0 allows n parties {P1, . . . , Pn} to obtain shares of a
secret in Fp, and the secret can be revealed if and only if
t+1 or more parties combine their shares to reconstruct
the secret value. Here, the secret is encoded into the
constant coefficient of a degree-t polynomial over Fp[x].
We use [s]t to represent a Shamir secret shared value
s ∈ Fp with threshold t. Namely, a degree-t polynomial
φ is used with φ(0) = s. The share that each party Pi

gets is the point (i, φ(i)), which we denote as [s](i)
t .3

For the arithmetic-circuit MPC, a computed func-
tionality is represented using addition and multiplica-
tion gates. As all linear secret sharing schemes are ad-
ditive homomorphic, any linear combination of multiple
sharings can be computed locally by party Pi by apply-
ing the same linear function on its shares. However, the
multiplication of two shares cannot be realized in the
same way. For Shamir secret sharing, the multiplication
of two degree-t polynomials will result in a degree-2t
polynomial. As a result, in secret sharing based MPC
we often follow the online/offline MPC paradigm and
use Beaver triples [5] to deal with the multiplication of
two secret shares.

The online/offline MPC paradigm leverages an
offline phase to generate input and functionality-

2 A linear secret sharing [19] is a standard cryptographic tech-
nique that allows a secret taken from a finite field Fp to be dis-
tributed among n parties such that each party’s share is obtained
by computing some linear function of the secret and the dealer’s
randomness, and that the secret can only be reconstructed when
a sufficient portion of shares are combined with a linear function.
3 In the malicious adversary setting, [s](i)

t may contain further
elements in the form of commitments and/or zero-knowledge
proofs; however, we ignore those here as the Polymath tech-
niques are independent to those.
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independent preprocessed sharings so that these shar-
ings are used to speed up the online phase where par-
ties compute MPC functionalities. It is allowed that the
offline phase is more costly as it can be run for a long
time before the online phase. For the offline phase, many
state-of-the-art offline protocols [4, 7] are perfectly com-
patible with our solutions.

Beaver Triple Assisted Multiplication. In lin-
ear secret sharing based MPC, additions are free and
Beaver’s triple are widely used to manage multiplica-
tion. To multiply two secret sharings [x] and [y] (with
threshold t), a precomputed triple ([a], [b], [c]) is gener-
ated during the offline phase, where c = a · b. In the on-
line phase, all parties compute and reconstruct (denoted
as Open(·) ) x−a and y−b, then the result of multipli-
cation is [xy] = (x−a)(y−b)+(x−a)[b]+(y−b)[a]+ [c].
The protocol is summarized in Algorithm 1.

Algorithm 1: Beaver Multiplication
Mul([x],[y])
Input : [x], [y]
Output : [xy]
Pre-computation: [a], [b] and [ab] where a, b

are random values..
1 [x− a] = [x]− [a]
2 [y − b] = [y]− [b]
3 (x− a) = Open([x− a]) // Round 1
4 (y − b) = Open([y − b]) // Round 1
5 return

(x− a)(y − b) + (y − b)[a] + (x− a)[b] + [ab]

Securely Evaluating the Power of a Secret Share.
Damgård et al. [22] introduced an efficient method to
calculate [xn] given [x] where n is a publicly known
value. The idea is to use the following pre-computed
values: [a] and [a−n] where [a] is a random share. The
protocol proceeds as follows: First we multiply [a] and
[x] to get [ax]. The second round is to open the value
[ax]. Then the result could be written as (ax)n[a−n].
The round complexity of the protocol is 2.

Beaver Triple Techniques for Matrix Multiplica-
tion. To multiply two k by k matrices, the naive ap-
proach is using k3 Beaver multiplications to compute
each cell, leading to O(k3) communication. Mohassel
and Zhang [35] propose a generalized version of Beaver
triple technique to deal with matrices. Instead of Beaver
triples, three matrices A,B,C are generated in the of-
fline phase where C = A · B and all elements in A and

B are uniformly random. The online computation phase
is almost the same as Beaver triple multiplication, and
the only difference is that the additions/multiplications
of field elements are replaced by those of matrices. For
simplicity, we call this protocol Beaver matrix multipli-
cation in the rest of the paper and we use it to multiply
two secret-shared matrices by default. The communica-
tion complexity of the above protocol is O(n2).

2.3 Notations

Here we summarized notations employed in Algorithm 1
as well as those that appear in the following sections.
We denote [s] as a secret sharing with the secret field el-
ement s, and we use capital letters to represent matrices
(S and [S]), where [S] means that every cell/element in
matrix S is secret shared. Open([s]) means the recon-
struction phase where parties exchange their shares to
recover the secret. Furthermore, we use Mul([x],[y]) to
represent the Beaver triple multiplication for two secret
shares [x] and [y] or two matrices [X] and [Y ]. We use
Pow([x],e) to compute xe where x is a field element and
e is a positive integer. In algorithm boxes, we use // as
the symbol of comments, instead of division.

3 Secure Computations of
Polynomial Evaluation

3.1 Secure Computation for Univariate
Polynomials

Univariate polynomials can be written in a standard
form: P (x) =

∑n
i=0 aix

i ∈ Fp[x] where ai ∈ Fp are plain-
text coefficients. As a result, the problem of evaluating
univariate polynomials reduces to computing the power
of the secret share [x].

With the protocol proposed by Damgård et al. [22],
which is mentioned in Section 2, we can compute all
required [xi] in parallel, then multiply them with corre-
sponding plaintext coefficients. The whole process takes
two rounds since the second part is local computation.
See Algorithm 2.
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Algorithm 2: Univariate Polynomial Evalu-
ation Based on [22]
Input : [x], a polynomial

P (x) =
∑n

i=0 aix
i

Output : P ([x])
Pre-computation: [r1], . . . , [rn] and

[r−1
1 ], . . . , [r−n

n ] where ris
are random values.

1 for i← 1 to n do
2 [xi] = Pow([x], i) // Round 1 & 2

3 for i← 0 to n do
4 Pi([xi]) = [xi] · ai

5 return P ([x]) =
∑
Pi([xi])

3.2 How to Calculate Multi-Variable
Polynomials

We start with some basic protocols to compute simple
multi-variable terms, then we extend the protocol step-
by-step. Finally, we show how we achieve the evaluation
of high-degree multi-variable polynomials.

3.2.1 Efficient Way to Calculate [xyz]

Beaver triple technique illustrates how to multiply 2
variables with pre-computed triples. We extend this idea
and explore how to calculate multiplication of 3 vari-
ables [x], [y], and [z] in one round. The precomputation
required by our protocol is the following: [a], [b], [c],
and [abc] where a, b, c are random elements. Similar to
Beaver’s idea, [a], [b], and [c] are used to blind [x], [y],
and [z]. The computation is based on the following for-
mula:

[(x− a)(y − b)(z − c)] = [xyz]− [xyc]− [xbz] + [xbc]
−[ayz] + [ayc] + [abz] + [abc]

We first open the values (x− a), (y− b), and (z− c).
Then we can get the following formula by taking the
opened values as constants and combining terms with
the same prefix:

(x− a)(y − b)(z − c) = [xyz]− [xc](y − b)
−[bz](x− a)− [ay](z − c)− [abc]

This formula illustrates that the multiplication of
three variables reduces to three multiplication of two
variables by the help of [a], [b], [c], and [abc]. Three nor-
mal Beaver triples are required for solving 3 two-variable
multiplication.

The protocol is formally described in Algorithm 3.
The round complexity is 1 since the opening of (x −

Algorithm 3: Tri-Variate Term Evaluation
Input : [x], [y], [z]
Output : [xyz]
Pre-computation: [a], [b], [c] and [abc] where

a, b, c are random values.
Three Beaver triples.

1 [x− a] = [x]− [a]
2 [y − b] = [y]− [b]
3 [z − c] = [z]− [c]
4 (x− a) = Open([x− a]) // Round 1
5 (y − b) = Open([y − b]) // Round 1
6 (z − c) = Open([z − c]) // Round 1
7 [xc] = Mul([x],[c]) // Round 1
8 [bz] = Mul([b],[z]) // Round 1
9 [ay] = Mul([a],[y]) // Round 1

10 return (x− a)(y − b)(z − c) + [xc](y − b) +
[bz](x− a) + [ay](z − c)− [abc]

a), (y−b), and (z−c) could be done simultaneously with
two-variable multiplications. The required invocation of
broadcasts is 9 where 3 broadcasts are used to open
(x − a), (y − b), and (z − c) and 6 broadcasts deal with
two-variable multiplications. As a trade-off, the com-
putation overhead is higher than simply using Beaver
multiplications twice. So our method provides an alter-
native that achieves better performance in high-latency
networks.

The proposed method implies that the idea of
Beaver multiplication could be extended to more vari-
ables. However, the computation and the offline cost
increase exponentially with the number of variables. As
a result, we need a better technique to deal with the
general multi-variable multiplication. Although we did
not include this protocol in our final solution, it could
potentially be useful and the same idea could be ex-
tended to other fields (e.g. it can be naturally extended
to matrix multiplication).

3.2.2 Efficient Way to Calculate Multi-Variable
Multiplication

In this section we take one step further and introduce a
method to solve multi-variable multiplication. Suppose
we want to calculate the product of [x1], [x2], . . ., [xn],
our protocol requires pre-computed values in the form of
[a1], [a2], . . ., [an], [(a1a2 . . . an)−1] where a1, a2, . . . , an

are random values.
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The protocol proceeds as follows: First we use
Beaver multiplications to multiply [xi] and [ai]. Then
we open all the multiplication results xiai. Finally,
we get the result by multiplying all the opened
values together with pre-computed value as follows:
x1a1x2a2 . . . xnan[(a1a2 . . . an)−1].

The round complexity of the protocol is 2. And the
communication complexity increases linearly with the
number of variables. Compared with the method in the
previous section, this protocol has advantages both on
the round complexity and offline costs. The protocol is
formally described in Algorithm 4.

Algorithm 4: Evaluation of Degree-1
Arbitrary-Variate Term
Input : [x1], [x2], . . . , [xn]
Output : [x1x2 . . . xn]
Pre-computation: [r1], [r2], . . . , [rn] and

[(r1r2 . . . rn)−1] where ris
are random values. n
Beaver triples.

1 for i← 1 to n do
2 [xiri] = Mul([xi], [ri]) // Round 1

3 for i← 1 to n do
4 xiri = Open([xiri]) // Round 2

5 return x1r1x2r2 . . . xnrn · [(r1r2 . . . rn)−1]

3.2.3 Efficient Way to Calculate xe1
1 xe2

2 . . . xen
n

To solve the problem of polynomial evaluation, we need
to deal with terms with the most generalized form:
xe1

1 x
e2
2 . . . xen

n . We extend the ideas in previous sections
to solve this problem. In our protocol we require the pre-
computed values in the form of [r1], [r2], . . ., [rn], and
[(re1

1 re2
2 . . . ren

n )−1]. The protocol proceeds as follows:
First we multiply [xi] with [ri] for i from 1

to n. Then we open all these products to get all
xiri. After that, the result could be written as
(x1r1)e1 . . . (xnrn)en [(re1

1 re2
2 . . . ren

n )−1].
The protocol is formally described in Algorithm 5.

The round complexity is always 2 and the communica-
tion complexity is linear with the number of variables.
Given a polynomial, we can apply this protocol to each
term in parallel and as a result, any polynomial with
arbitrary degrees can be evaluated in two rounds.

Algorithm 5: Evaluation of Multi-Variate
Polynomial Term
Input : [x1], [x2] . . . [xn] and

e1, e2, . . . , en

Output : [xe1
1 x

e2
2 . . . xen

n ]
Pre-computation: [r1], [r2], . . . [rn] and

[(r−e1
1 r−e2

2 . . . r−en
n ] where

ris are random values. n
Beaver triples..

1 for i← 1 to n do
2 [xiri] = Mul([xi],[ri]) // Round 1

3 for i← 1 to n do
4 xiri = Open([xiri]) // Round 2

5 for i← 1 to n do
6 yi = (xiri)ei // local computation

7 return y1y2 . . . yn · [(r−e1
1 r−e2

2 . . . r−en
n ]

3.3 Offline Phase

For each polynomial term xe1
1 x

e2
2 . . . xen

n , the re-
quired pre-computed values are [r1], . . . , [rn], and
[r−e1

1 r−e2
2 . . . r−en

n ]. The straight forward way to gener-
ate these values is to calculate powers first then multiply
all random terms together. Given a random share [r], it
requires approximately log(e) multiplications to com-
pute [re] by running Beaver multiplication repeatedly.

As a result, the offline phase of Algorithm 5 requires
the generation of 2n random elements, n +

∑
log(ei)

MPC multiplication and n reconstruction, where n is
the number of variables. The communication complexity
of each of above operations could be linear with num-
ber of parties if we pick proper sub-protocols (e.g. [4]).
The overall round complexity is O(log(max(ei))+log(n))
considering both the computation of [rei ] and the mul-
tiplication of all [rei

i ] can be parallelized. Unlike the on-
line phase, the complexity of the offline phase depends
on the degrees of the polynomial.

4 Secure Computation of
Polynomials of Matrices

In this section, we discuss polynomial evaluation over
matrices where each matrix entry is a finite field ele-
ment. Although it is conceptually similar to the scalar
polynomial evaluation, the protocols for matrices are in-
herently different because matrix multiplication is not
commutative in general.
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4.1 Multiplying an Arbitrary Number of
Matrices

To solve polynomials over matrices, we need to evalu-
ate the terms that consist of the product of multiple
matrices. Bar-Ilan and Beaver [3] propose a constant-
round protocol to achieve it. To multiply n matrices
X1, X2, . . . .Xn (for simplicity of description, we assume
all of them are k by k square matrices, while this solu-
tion also works for matrices with arbitrary dimensions),
it requires n + 1 random matrices R0, R1, R2, . . . .Rn,
which have the same dimensions as Xis and contain
random values, and their corresponding inverse matrices
R−1

0 , R−1
1 , R−1

2 , . . . .R−1
n .

The protocol is illustrated in Algorithm 6 and the
round complexity is four.

Algorithm 6:Multiply an Arbitrary Number
of Matrices in [3]
Input : [X1], [X2], . . . , [Xn]
Output : [X1X2 . . . Xn]
Pre-computation: [R0], . . . , [Rn] and

[R−1
0 ], . . . , [R−1

n ]
1 for i← 1 to n do
2 [Ri−1Xi] = Mul([Ri−1],[Xi])
3 [Ri−1XiR

−1
i ] = Mul([Ri−1Xi],[R−1

i ])

4 for i← 1 to n do
5 Ri−1XiR

−1
i = Open([Ri−1XiR

−1
i ])

6 R0X1 . . . XnR
−1
n =

∏n
i=1Ri−1XiR

−1
i

7 return Mul([R−1
0 ] ·R0X1 . . . XnR

−1
n , [Rn])

The other alternative is to apply Beaver matrix mul-
tiplication for logn rounds. In the first round, we mul-
tiply every two matrices together so that the number
of resulted matrices is reduced by half. We keep doing
it iteratively, and after logn rounds, there is only one
matrix left which is the result. Compared with this idea,
the protocol in [3] has constant round complexity but
as a trade-off, it requires more local computation and
communication.

We implement both of them in HoneybadgerMPC to
compare the performance of these two protocols. the im-
plementation detail and the benchmark result are elabo-
rated later in Section 7.6. The result demonstrates that
the second method outperforms the first in almost all
test cases. The reason is due to the nature of matrix
multiplication: the local computation and communica-
tion become the bottleneck quickly with the increase

of the dimensions. And the local computation can eas-
ily be measured in terms of seconds, thus canceling the
benefits gained by constant round complexity which is
usually several hundred milliseconds.

However, we find out that by extending the protocol
in [3], we can achieve a very efficient protocol for matrix
powering.

Algorithm 7: Matrix Powering
Input : matrix in secret shared

form with demension k by
k: [X] and the exponent e

Output : [Xe]
Pre-computation: [R] and [R−1] where R

consists of k by k random
values

1 [RX] = Mul([R], [X]) // Round 1
2 [Y ] = Mul([RX], [R−1]) // Round 2
3 Y = Open([Y ]) // Round 3
4 return Mul([R−1] · Y e, [R]) // Round 4

4.2 Calculating Powers of a Square Matrix

The power of square matrices is a special case of matrix
multiplication. In this section, we propose a method to
calculate the powers of a square matrix, which saves sig-
nificant precomputation and communication, especially
when computing a large power. However, this method
only achieves a lower level of privacy since some infor-
mation about the input matrix is leaked (for example,
the rank of the input matrix). Please refer to Section
5 for a detailed analysis regarding the privacy loss. We
find this method meaningful as in many use cases it is
acceptable to leak that information to save significant
computation.

The protocol is described in Algorithm 7. The obser-
vation is that we only need one random matrix R in the
case of matrix powering, and we only need to calculate
and open [RXR−1] one time. It means the round com-
plexity and communication complexity are independent
of the power that we want to compute.

The state-of-the-art solution for matrix powering
that we know so far is to use Beaver matrix multiplica-
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tion for roughly log e times to get [Xe]4. As a result, it
requires log(e) rounds involving opening 2 · log(e) matri-
ces. Compared with it, our protocol requires 4 rounds
and the communication cost is opening 7 matrices. As
for the computation complexity. Each Beaver matrix
multiplication takes 3 local matrix multiplications and 6
additions. Therefore, our protocol requires 9 + log(e) lo-
cal matrix multiplications and 18 additions. Meanwhile,
the state-of-the-art protocol needs O(log(e)) number of
multiplications.

4.3 Offline Phase

For matrix powering protocol, the required precompu-
tation is in the form of A, A−1, namely a matrix with
random elements and its inverse matrix. Here we pro-
vide an efficient 2-round protocol to compute the in-
verse matrix given a secret shared matrix. The protocol
is summarized in Algorithm 8.

Algorithm 8: Precomputation for Matrix
Powering
Input : secret shared matrix [X]
Output : [X−1]
Pre-computation: [R], matrix R share the

same dimension with X
and contain random
values.

1 [XR] = Mul([X], [R]) // Round 1
2 XR = Open([XR]) // Round 2
3 R−1X−1 = (XR)−1

4 return [R]R−1X−1

The cost of this protocol includes generating k2 ran-
dom shares, one matrix multiplication, and one matrix
reconstruction, all of which have communication com-
plexity of O(k2) for k by k matrices. Thus the cost of
the offline phase is of the same order of magnitude as
the online phase.

The above protocol is efficient but there is a very
small probability of failure since XR may not have an
inverse. By Lemma 3 of Section 5, the probability of a
random matrix being not invertible is less than 1

p + 1
p2

4 If e is not a power of two, we can represent e with its binary
representation, then apply similar techniques to compute each
binary term.

where p is the size of the field, and it is small enough
for us to use in practice.

5 Security Analysis
The correctness for these protocols is trivial from the
protocol description and we defer it to an extended ver-
sion.

In this section, we analyze the security of the pro-
tocols. While most complete proofs are available in ap-
pendices, we prove here that the distributions of the
transcripts of our protocol under different inputs are in-
distinguishable from one another, thereby proving that
our protocol reveals no information about the input.

5.1 Intermediate Lemmas

We first provide a list of Lemmas, whose proofs are avail-
able in Appendix A.1. For generality, we are considering
Fq, where q is a power of a prime p.

Lemma 1. Let x′, x′′ be arbitrary field elements in Fq,
and r be an independent field element chosen uniformly
at random from the field Fq. Then, the distributions of
x′−r and x′′−r are identical, and, therefore, (perfectly)
indistinguishable from each other.

Lemma 2. Let x′, x′′ be arbitrary field elements in
Fq \ {0}, and r be an independent field element chosen
uniformly at random from the field Fq. Then, the distri-
butions of x′ · r and x′′ · r are identical, and, therefore,
(perfectly) indistinguishable from each other.

Lemma 1 and Lemma 2 are used to prove Theorem 1
and Theorem 2.

Lemma 3. Fix any n ∈ {1, 2, 3, . . . }. Let R be a matrix
chosen uniformly at random from the set of all n-by-
n matrices where each element is a field element from
Fq. The probability that the matrix R does not have an
inverse (i.e., the matrix R is singular) is at most 1

q + 1
q2 .

Let GL(n, q) represent the set of all invertible n-by-n
matrices with elements in Fq (read as, The General Lin-
ear Group). One can define a multiplicative group over
this set using (standard) “matrix multiplication” as the
operation.
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Lemma 4. Let X ′, X ′′ be arbitrary elements from
GL(n, q). Let R be a random n-by-n matrix chosen uni-
formly at random from the group GL(n, q). Then, the
distributions of X ′ · R and X ′′ · R are identical, and,
therefore, (perfectly) indistinguishable, from each other.

Lemma 5. Fix an arbitrary matrix X ∈ GL(n, q). Let
Cl(X) ⊆ GL(n, q) be the conjugacy class of the matrix
X. Fix any λ ∈ Cl(X). For a matrix R ∈ GL(n, q) cho-
sen uniformly at random, we have the guarantee that
Pr[RXR−1 = λ] = 1

|Cl(X)| .

Observe that RXR−1 is always in the conjugacy class
Cl(X), for any R ∈ GL(n, q). This lemma states that
the random variable RXR−1 is uniformly random over
the set Cl(X), where R is uniformly random in GL(n, q).

Above Lemmas are applied in the proof of Theorem
3.

5.2 Analysis Regarding Multi-Variable
Polynomials

5.2.1 Security Analysis for the Protocol: Tri-Variate
Term Evaluation

The security of computing [xyz] is very similar to tra-
ditional Beaver multiplication. Intuitively, since a, b, c

are chosen uniformly at random, (x − a), (y − b), and
(z − c) are all indistinguishable from random values.
Therefore, revealing (x−a), (y− b), and (z− c) does not
reveal anything about x, y, or z. The other operations
are the addition of two values and multiplication by a
public value, where the security comes from the secu-
rity of additive homomorphic secret sharing, as well as
operations involving traditional Beaver multiplications
where the security comes from traditional Beaver mul-
tiplications.

We define the transcript as all the values an arbi-
trary party can see during the execution of our protocol.
We also focus on parts of the transcript that are unique
to our protocol, which in this case is (x−a), (y−b), (z−c).
We prove that given different values of x, y, z, the prob-
ability distribution of the transcript remains the same.

Theorem 1. Let x′, y′, z′, x′′, y′′, z′′ be arbitrary values.
The probability distribution of each transcript are iden-
tical when x = x′, y = y′, z = z′ and when x = x′′, y =
y′′, z = z′′.

5.2.2 Security Analysis for the Protocol: Evaluation
of Degree-1 Arbitrary-Variate Term

Intuitively, since each ai is chosen uniformly at ran-
dom, each xiai is indistinguishable from random val-
ues. Therefore, we leak no information by revealing xiai.
There are two special cases. There is a negligible proba-
bility that our protocol may be incorrect if ai = 0, since
0 does not have a multiplicative inverse in a prime field.
Additionally, if xi = 0, then xiai = 0 and all parties will
know xi. Therefore, we also restrict the input xis to be
non-zero.

We define the transcript as all the values an arbi-
trary party can see during the execution of our protocol.
We also focus on parts of the transcript that are unique
to our protocol, which in this case is x1a1, x2a2, . . . xnan.
We prove that given different values of x1, x2, . . . xn, the
probability distribution of the transcript remains the
same.

Theorem 2. Let x′1, x
′
2, . . . x

′
n, x
′′
1 , x
′′
2 , . . . x

′′
n be arbi-

trary values under the restriction that they are non-zero.
The probability distribution of each transcript are iden-
tical when x1 = x′1, x2 = x′2, . . . xn = x′n and when
x1 = x′′1 , x2 = x′′2 , . . . xn = x′′n except with a negligible
probability.

5.2.3 Security Analysis for the Protocol: Evaluation
of Multi-Variate Polynomial Term

The security of calculating polynomial terms is the com-
bination of the security for the secret powering protocol
in [22] and the security for calculating multi-variable
multiplication. We refer readers to [22] for more details
about the security of the secret powering protocol.

5.3 Analysis Regarding Secure
Computation of Matrix Powering

Intuitively, while R is random, R and R−1 are not in-
dependent. Therefore, RXR−1 will be in the same con-
jugacy class as X. We leak the conjugacy class of X by
revealing RXR−1.

The key observation is that if we restrict X ′ and X ′′

to be in the same conjugacy class, then the probability
distribution of RXR−1 is identical when X = X ′ and
when X = X ′′.

Given that we know the conjugacy class of X, we
prove that our protocol reveals no additional informa-
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tion about X by showing that given two different val-
ues of X, the probability distributions of possible tran-
scripts remain the same. Below is the proof outline:

Theorem 3. Let X ′, X ′′ be arbitrary invertible matri-
ces under the constraint that they belong to the same
conjugacy class. The probability distribution of RX ′R−1

is identical to RX ′′R−1, where R is a random square
matrix with the same dimension as X ′

Proof Outline. Note that with high probability,
X ′, X ′′, R,R−1 are all in GL(n, q) (The General Lin-
ear Group, where GL(n, q) is the set of all n by n

invertible matrices with elements from a finite field of
size q) by lemma 3.

Define Cl(X ′) as the conjugacy class of X ′.
∀λ,Pr[RX ′R−1 = λ] = Pr[R ∈ S′] = |S′|

|GL(n,q)| =
1

|Cl(X′)| where S
′ is a specific subset of GL(n, q) of size

|GL(n,q)|
|Cl(X′)| by Lemma 5.
∀λ,Pr[RX ′′R−1 = λ] = Pr[R ∈ S′′] = 1

|Cl(X′′)|

where S′′ is a specific subset of GL(n, q) of size |GL(n,q)|
|Cl(X′′)| .

∀λ,Pr[RX ′R−1 = λ] = Pr[R ∈ S′] = 1
|Cl(X′)| =

1
|Cl(X′′)| = Pr[R ∈ S′′] = Pr[RX ′′R−1 = λ] since X ′ and
X ′′ belong to the same conjugacy class so |Cl(X ′)| =
|Cl(X ′′)|.

Above summarizes the key part of the proof. We refer
readers to Appendix A.2.3 for the outline of the full
proof.

5.4 Connection Between Security and
Revealing Its Conjugacy Class

As mentioned above, protocol Matrix Powering reveals
the conjugacy class of the matrixX. We will now discuss
the effects of revealing the conjugacy class of X.

The matrices in the same conjugacy class share the
same rank and characteristic polynomial (and statistics
that can be derived from them, such as the determinant,
trace, and spectrum). Beyond that, the full impact of
revealing the conjugacy class of the matrix specific to
particular applications is not entirely well-understood,
and needs further investigation. This impact on secu-
rity potentially depends on the particular application.
For example, if the output of the secure computation
is ABA−1 for private matrices A and B, then revealing
this information is secure. However, if the output of the
secure computation hides some part of the conjugacy
class information (for example, computing the trace se-
curely), then revealing the conjugacy class is insecure.

There are approaches to mitigate the potential
problems. For instance, we can add a slight perturba-
tion to the matrix (e.g. change the last bit of one entry),
such that the matrix falls into another conjugacy class,
without decreasing its usability. The results in [35] il-
lustrate that small errors caused by multiplication and
truncation almost have no influence on the accuracy of
privacy-preserving machine learning. And a slight per-
turbation of the matrix could be expected to have the
same effect as those small errors.

5.5 Security Against Malicious Adversary

We claim our protocols’ security in both semi-honest
and malicious settings and elaborate our claim here.
Our protocols utilize other protocols as building blocks
(such as secret sharing schemes). Beyond that, our pro-
tocol does not reveal any additional information (with
the exception of the protocol Matrix Powering, which re-
veals nothing beyond the conjugacy class). Therefore, to
make our protocol secure against malicious adversaries,
we only need to make sure we use linear secret sharing-
based MPC (see Section 2.2) that are secure against
malicious adversaries. In general, the malicious security
of our protocols can be derived from the malicious secu-
rity of the underlying linear secret sharing-based MPC
library.

6 Privacy Preserving Decision
Tree Evaluation

In recent years, privacy-preserving machine learning
becomes more and more prominent and many works
[2, 25, 43, 44] are deployed to achieve secure model
training or secure inferences. In this work, we focus
our efforts on decision trees, one of the common clas-
sifiers used in many fields such as medical treatment
and finance. To the best of our knowledge, our work
provides the first solution for privacy-preserving deci-
sion tree evaluation that can be applied to a general
multi-party setting with the capability of evaluating
high-depth models. We implement our protocols and
show that our protocol can achieve very high-precision
prediction for decision tree models within a reasonable
time.
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6.1 System Model

We consider three kinds of parties in our system model:
model holders, service providers, and clients. We as-
sume model holders are parties that hold the trained
model and would like to outsource the models to ser-
vice providers in a secure fashion. Clients have secret in-
put data and expect the prediction value by the trained
model. The data flow is as follows in a secret sharing
based setting: model holders secret-share their models
to service providers, and clients also secret-share the
private input to service provides. The service providers
run MPC protocols to achieve decision tree evaluation
with the private tree model and private user input.

6.2 Decision Tree Representation

Decision Tree Representation With Polynomi-
als. Giacomelli et al. [25] describe how a tree can be
represented by polynomials. That representation is a
perfect match with our protocols described in Section 3
so we choose to use it in our solution. We give a brief
introduction here and we refer readers to [25] for more
details.

In general, a decision tree T can be represented
by two types of nodes: non-leaf nodes and leaf nodes.
We can always take T as a binary tree since all trees
can be transformed into a binary fashion. Also to hide
the topology of the decision tree, we simply trans-
form the decision tree to be a complete tree by adding
dummy nodes. The input to the tree is a vector X =
(X[1], X[2], . . . , X[n]) where we call X[i] features and
the output is the prediction value y. In each non-leaf
node, a comparison operation is defined by a pair (ji, ti)
where ji ranges from 1 to n and ti is a threshold value.
This means at this node, we will choose the left branch if
X[ji] < ti, otherwise we choose the right branch. Given
the input x, we follow this rule to traverse the tree start-
ing from the root and finally reach a leaf node where the
prediction value y is stored.

Assume the result of comparison in each non-leaf
node Ni to be xi = (X[ji] < ti)? − 1 : 1. Then for each
leaf node, we represent it with the product of d terms of
the form (xi−1) and (xi+1) as follows: starting from the
root node, (xi−1) is chosen if the root-leaf path chooses
the left branch at node Ni, otherwise (xi + 1) is chosen.
Since we consider a complete binary tree. So each leaf
node Li can be represented as a polynomial Pi of degree
d containing d factors of (xi − 1) or (xi + 1). Now given
an input x, it can be observed that there is only one Pi

that the evaluation of Pi is non-zero. And it means the
value stored in the leaf-node Li is the prediction y of
the input x.

As a result, we can solve the decision tree evalua-
tion with many comparisons and one single polynomial
T (x) =

∑
P (i) · invi · yi where P (i) is the polynomial

representing the leaf node Li, invi is the inverse value
of P (i) when P (i) is non-zero (the value of P (i) is 2d if
there is even number of (xi−1), or −2d otherwise), and
yi is the prediction stored on the leaf node Li. Given an
input x, only one leaf node Li is reached in the end and
so that P (i) · invi = 1 and P (j) · invj = 0 for all j 6= i,
therefore T (x) = yi.

Fixed-Point Numbers Representation. Consider-
ing the feature space is typically R, we use fixed-point
numbers as data format. Therefore we require fixed-
point number algebra in secure computation scenario.
For data representation, we follow the standard pro-
posed in [13, 14] and consider a multi-party compu-
tation framework based on Shamir secret sharing over
a prime field Zq. The data type that we consider are
signed integers and signed fixed-point numbers. We en-
code a k-bit integer x ∈ Z<k> = {−2k < x ≤ 2k − 1} to
field element x′ in Zq through a simple mod operation
f : x′ = f(x) = x mod q. As a result, for any two inte-
gers x and y and the operations } ∈ {+,−, ·}, we have
x} y = f−1(f(x)} f(y)). We require q > 2k+1 since we
have 2k non-negative numbers and 2k negative numbers
in total. For multiplication, we require q > 22(k+1) to
avoid multiplication overflow[13, 14].

As for fixed-point numbers, we encode them as fol-
lows: for a signed fixed-point number x ∈ Q<k,f> =
{x = x̄ · 2−f , x̄ ∈ Z<k>}, we represent it using the cor-
responding integer x̄ = x · 2f . Therefore, the addition,
subtraction and multiplication of fixed-point numbers
could be achieved by directly doing computations over
their integer representation. The multiplication requires
more attention since a f -bit truncation on the result is
needed to maintain the precision of the multiplication
result. We directly use the truncation protocol intro-
duced in [13] to achieve the goal.

6.3 Secure Comparison Over Fixed-Point
Numbers

All non-leaf nodes in the decision tree are represented
as secure comparisons. Therefore, we require a general
n-party secure comparison protocol for this task. In our
solution, the secure comparison protocol can be treated
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as a plug-and-play module, and many protocols in the
literature [13, 14, 39, 43] can be applied here.

We choose to implement the secure comparison pro-
tocol in [13] to make our decision tree solution complete.
This secure comparison protocol is designed for the gen-
eral n-party setting. It is a good match to our solution as
we derive the fix-point number representation from the
same work. Besides, it can be applied against both semi-
honest and malicious adversaries. As mentioned in [13],
security against a malicious adversary can be achieved
through using malicious secure building blocks such as
verifiable secret sharing(VSS)5. We refer readers to [13]
for more details of the protocol.

The benchmark illustrates that the secure compari-
son protocol becomes the bottleneck as our polynomial
evaluation protocol is significantly faster. Indeed, the
overall performance could improve significantly once a
more efficient secure comparison protocol available in
the future. The goal of this work is to provide highly ef-
ficient building blocks for secure polynomial evaluation.

6.4 Secure Polynomial Evaluation

Recall that we can solve the decision tree evaluation
by solving the polynomial T (x) =

∑
P (i) · invi · yi. We

apply our polynomial evaluation protocol on each term
of polynomials then sum them up to form the final T (x).
For a complete binary decision tree with depth d, P (i) ·
invi ·yi can be treated as a degree d+1 polynomial where
invi is a constant coefficient, P (i) contains d variables
in secret sharing form as results of comparisons, and yi

is the secret shared prediction for the corresponding leaf
node. The degrees of all variables above are 1, so we only
need to use the protocol introduced in Algorithm 4 and
all the terms can be computed in parallel in two rounds.
Note that since the input values are either −1 or 1, they
satisfy the non-zero input requirement of Algorithm 4.
After that, we locally sum the terms up to get the final
T (x).

6.5 Prototype Implementation

We developed prototypes for our decision tree evalu-
ation protocols. We choose the Nursery dataset from
the UCI Machine Learning Repository [24] as the data

5 In our implementation, such malicious secure building blocks
are provided by HoneybadgerMPC [32].

source. Nursery dataset has 12960 number of instances,
each of which has 8 features. The original dataset con-
sists of only string data so we mapped them to fixed-
point numbers. We used sk-learn library to achieve de-
cision tree training. We directly use the trained model
and imported it into the MPC codes.

The MPC protocols are implemented in Honeybad-
gerMPC [32], a secret sharing based MPC framework
that supports malicious security. The implementations
are written in Python3, parts of the fixed-point algebra
codes are from HoneybadgerMPC itself and we extend
its code to support the comparison protocol and secure
polynomial evaluation protocol. As for the test environ-
ment, we deploy our codes in 4 machines with Intel Xeon
E5-263040(40 cores) and 384 GB RAM. These machines
are connected through LAN and the latency among each
other is around 0.1 ms.

Prime q is a 160-bit integer and thus, the field can
support the multiplication of 64-bit integers and 32-bit
statistical security for fixed-point algebra [14]. While
we do not instantiate malicious behaviors in our ex-
periments, our protocol implementations are malicious
secure, and the current benchmark includes the verifi-
cation overhead. We directly use the malicious secure
building blocks provided by the HoneybadgerMPC li-
brary.

6.6 Experimental Analysis

The original trained model has 385 nodes and achieves
99.6% accuracy. Through tuning the parameters, we are
able to get models with different depths, and we ex-
tend them to be complete trees to hide the decision tree
topology. The experiment result is shown in Table 1. In
general it takes around 12 seconds to finish a depth-8
tree evaluation. And it takes around 100 seconds to eval-
uate a depth-11 tree. As we can see, the performance of
our polynomial evaluation protocol takes only around
10% of the whole time, and the secure comparison pro-
tocol is the bottleneck. Overall, the performance of the
proposed approach can improve significantly when a
more efficient comparison protocol is available. As se-
cure comparison protocol is not the main goal of this
paper, we omit the further discovery for it.

To the best of our knowledge, our protocol is the
first to support decision tree evaluation in a general n-
party setting. In Appendix B, we compare our proto-
col with state-of-the-art 2-PC protocol [33] and explain
the difference between general n-PC protocols and 2-PC
protocols.
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Table 1. Decision tree evaluation benchmark using Nursery dataset over 4 parties.

Tree Depth Time for
Comparison (s)

Time for
Polynomial (s)

Total Time (s) Total
Bandwidth
(MB)

8 11.16 1.20 12.46 3.73
9 22.02 2.72 24.99 7.55
10 44.30 5.69 50.53 15.3
11 87.37 12.67 101.32 30.9

Introducing Higher Network Latency. Since we
run the benchmark on 4 machines in a LAN where the
network latency is below one millisecond, We launch
another test where we change the communication layer
of HoneybadgerMPC and add 100ms latency to simu-
late real-world settings6. The benchmark result demon-
strates that the total online time increases around
200− 300ms as expected.

Offline Phase Benchmark. We benchmark the of-
fline phase of our protocol using the same environment
as the online phase experiment. The result is shown in
Table 2. For the offline phase of polynomial evaluation,
we get benchmark data through directly running the
offline phase code. And for the offline phase of secure
comparison protocol, we count the number of random-
ness required by the online protocol, then run Honey-
badgerMPC offline phase codes to generate the same
amount of randomness, and record the execution time
and bandwidth as the offline phase benchmark. The re-
sult shows that the cost of the offline phase is acceptable.
To give an illustrative example, for the evaluation of a
depth-8 decision tree model, the offline phase cost takes
around 84% of the total time cost and 83% of the total
bandwidth cost.

Analysis With a Higher Number of Parties. To
evaluate the scalability of our solution, we repeat the
experiment on 7 machines where the machines have the
same hardware as before. We pick (7,2) secret shar-
ing to tolerate at most two malicious parties in this
setting. The benchmark result is available at Table 3.
Adding more parties does not influence the local com-
putation time, and only slightly increases the commu-
nication time since there are more data to send.

6 Note that our protocol requires communication of a few MB
of data. Nevertheless, the considered MPC-as-a-service setting
often run in networks with sufficient bandwidth (e.g. AWS
EC2 [1]) and bandwidth is not counted as the bottleneck of
the protocol. As a result, we only study the influence of network
latency in the experiments.

Table 2. Offline cost of decision tree solution

Tree
depth

Time
(secure
com-
parison)
(s)

Time
(poly-
nomial
evalua-
tion)

Bandwidth
(secure
compari-
son)

Bandwidth
(poly-
nomial
evaluation)

8 62.43 3.69 16.9 1.53
9 124.9 7.09 33.8 3.42
10 249.7 14.93 67.6 7.57
11 499.5 31.91 135.2 16.54

* The experiment is run under a 4-party setting with (4,1)
Shamir secret sharing.

* The unit of time is second, and the unit of bandwidth is
MB.

Analysis With Another Dataset. To test if the per-
formance is sensitive to the training dataset or resulted
models. We test our protocols again using the Boston
housing dataset, which is the largest dataset measured
in the work of Kiss et al. [45].

The result illustrates that the general performance
looks almost the same as the nursery dataset. The rea-
son is that the performance is theoretically independent
of the training dataset. Instead, it depends only on the
depth of the tree. For a model with depth d, the num-
ber of comparisons required is always 2d−1 (the internal
nodes) and the number of polynomial evaluation calls is
2d (leaf nodes).

7 Secure Markov Process
Evaluation

In this section, we demonstrate how the matrix power-
ing protocol can be used to solve secure Markov process
evaluation and we provide a concrete example: credit
risk analysis.
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Table 3. Decision tree evaluation benchmark using Nursery dataset over 7 parties with (7, 2) secret sharing.

Tree Depth Time for
Comparison (s)

Time for
Polynomial (s)

Total Time (s) Total
Bandwidth
(MB)

8 11.75 1.30 13.16 4.98
9 23.71 2.81 26.76 10.08
10 45.41 6.17 52.11 20.42
11 89.94 13.32 104.51 41.3

7.1 Markov Chain Introduction

Markov chain is a common-used model to describe a
process with multiple states where the future state only
depends on the current state and not on the past. It is
used in many applications to model randomness, rang-
ing from biology to economics. We include all possible
states into a state space S = {s1, s2, . . . , sk}. We say a
process satisfies Markov property if the probability Pij

of state transitions from si to sj only depends only on
the current state si. We denote xi to be the state of the
process in the time point i, then Markov property can
be described by the following equation:

P (xt+1|x1, x2, . . . xt) = P (xt+1|xt)
In this work, we focus on the first-order stationary

Markov processes where all probabilities Pij are con-
stant numbers and do not change with time. As a result,
we can represent the probabilities with a k-by-k square
matrix P , then we can compute xi = x0 · P i. This is
the equation that we need to solve for Markov process
evaluation at the time point i.

7.2 The Markov Chain Application: Credit
Risk Analysis

Credit risk analysis is a significant task for banks since
the profits and risks of banks are directly linked with the
credit quality of their customers, and the credit quality
of customers is modeled through the Markov process in
many economy works [28, 38]. In these works, a transi-
tion matrix is used to explain the transition of creditor
quality, and many methods are introduced to generate
proper transition matrices given the data of creditors.
The transition matrix is valuable in the sense that it
can be used to predict the credit quality migration for a
new customer who shares similar financial backgrounds.
However, there is almost no research about privacy of
credit risk analysis.

We observe that privacy can fit the problem of credit
risk analysis quite well due to the following reasons:
transition matrices are valuable assets since it is trained

on sensitive data of creditors and can be used for predic-
tions of new customers. As a result, it is a perfect match
that multi-party computation can be applied here so
that one bank can train transition matrices, sell matri-
ces to other banks by providing prediction services, and
meanwhile keep the transition matrices hidden. And this
pattern can be applied to many Markov chain models
in fields beyond finance.

7.3 System Model

We abstract the scenarios into an MPC-as-a-service
model. There are three types of parties: model holders
who own the transition matrices, servers who collabo-
rate to provide MPC services, and clients who want to
get the prediction value given the Markov model. Both
the transition matrices and the input of clients are con-
sidered private data and should keep hidden from other
parties. The data flow is as follows: the model holders
(e.g. banks) outsource their transition matrices to the
servers through secret sharing, the clients also secret-
share their private input to servers so that servers can
run MPC protocols to finish the evaluation. We assume
servers are fully connected with each other and keep on-
line to provide MPC service. Model holders only need
to upload their models to servers then they are not re-
quired to be online.

The adversary model is the same as our general set-
ting: we support both semi-honest adversary and mali-
cious adversary by picking different sub-protocols such
as Shamir secret sharing and verifiable secret sharing.

7.4 Secure Evaluation of Markov Process

As mentioned, the equation that we need to solve is as
follows: xi = x0 · P i where x0 is the private input from
clients in the form of a vector, and P is the trained tran-
sition matrix. The core part of the solution is how to ef-
ficiently compute matrix powers and we can use our pro-
tocol to achieve it. Recall that we can finish the matrix
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power computation in four rounds with less communica-
tion and computation compared to previous works. As
a result, we can achieve the evaluation for the Markov
process in five rounds, where the first four rounds are
used to compute the power of transition matrix and the
last round is used to multiply P i and x0. Our protocol
can be used to compute very high power p due to the
fact that the computation complexity is O(log p).

7.5 Experiments for Evaluation of Markov
Process

We build up the prototype using HoneybadgerMPC [32]
as the MPC framework. The implementation of matrix
multiplication and powering are implemented with both
Python and C++. The Python codes are mainly re-
sponsible for the operations where communication is re-
quired. Batch structures are also applied to guarantee
the correct round complexity of the protocol. Due to
the heavy local computation included in the protocol,
mainly matrix multiplications, We implemented C++
code using NTL library to implement them and used file
IO as the connection between Python code and C++
code. This file IO caused some overhead that is only
because we used a Python framework for MPC, and
this overhead can be eliminated when a C/C++ frame-
work is used, which means the performance could have
been better. The test environment is 4 cluster machines,
each with Intel Xeon E5-263040 (40 cores) cores and
384GB RAM. The latency between these machines is
around 0.1ms. The benchmark result for matrix power-
ing is demonstrated in Table 5. In the use case of credit
risk analysis, the transfer matrix is often small, (e.g. a
9 × 9 matrix is used in [38]) and our benchmark shows
that we can solve 10 × 10 matrix powering within one
second. Besides, we observe that the bottleneck of the
protocol is the communication time, and the communi-
cation time is independent of the power. Thus our per-
formance almost remains unchanged when we compute
higher powers. This observation remains true for small
matrices.

To make a comparison, we also implement the typi-
cal protocol to compute matrix powering where Beaver
matrix multiplication is applied log p times. The bench-
mark of the typical protocol is done using the same
hardware and it turns out that our protocol outper-
forms the typical protocol by around 3x when e is small
(less than 1024). When e is larger our protocol outper-
forms the typical protocols more as our communication
is independent of the power.

Table 4. Offline cost of Matrix powering

Matrix
dimen-
sion

Time for
random
generation
(s)

Time for ac-
tual offline
phase (s)

Total
(s)

Bandwidth
(MB)

10 ∗ 10 0.21 0.53 0.74 0.071
40 ∗ 40 3.40 1.51 4.91 1.29
80 ∗ 80 12.79 5.78 18.57 5.28

* The experiment is run under a 4-party setting with (4,1)
Shamir secret sharing.

Table 5. Benchmark result for proposed Matrix Powering protocol
under 4 parties

Dimension Power Online
time(s)

Bandwidth

10 × 10 16 0.12 0.04
10 × 10 1024 0.147 0.04
40 × 40 16 0.465 0.9
40 × 40 1024 0.532 0.9
320 × 320 16 18.552 64.1
320 × 320 1024 19.367 64.1
320 × 320 8192 20.848 64.1

* The experiment is run under a 4-party setting with
(4,1) Shamir secret sharing.

* Bandwidth is measured through total megabytes(MB)
sent per party.

Offline Phase Cost. We benchmark the offline phase
of our protocol and the result is shown in Table 4. The
result shows that the cost of the offline phase is accept-
able.

7.6 Experiments for Multiplying an
Arbitrary Number of Matrices

As mentioned in Section 4.1, we implement both pro-
tocols for multiplying an arbitrary number of matrices.
The test environment is the same as the experiment
for Markov process. The protocols are instantiated on
4 parties with (4,1) Shamir secret sharing. The detailed
benchmark result is shown in Table 6. We observe that
Beaver matrix multiplication outperforms the protocol
of Bar-Ilan and Beaver [3] in all test cases, which con-
firms our analysis in Section 4.1.
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Table 6. Benchmark comparison for multiplying multiple matrices between the method of Bar-Ilan and Beaver [3] and Beaver Matrix
Multiplication. The experiments is under 4-party setting. Bandwidth is measured through total megabytes sent out per party.

Dimension Num of matrices Bar-Ilan and Beaver [3] Beaver Matrix Multiplication
Computation
time(s)

Communication
time(s)

Bandwidth
(MB)

Computation
time(s)

Communication
time(s)

Bandwidth
(MB)

10 × 10 16 0.07s 0.3 0.5 0.03 0.173 0.17
10 × 10 64 0.16s 0.86 2.1 0.12 0.71 0.7
20 × 20 16 0.2s 1.1 2.32 0.07 0.51 0.72
20 × 20 64 0.82s 2.82 9.07 0.31 0.95 2.99
80 × 80 16 3.23s 9.07 43.3 0.89 3.06 11.67
80 × 80 64 20.883s 35.71 169.5 5.82 14.65 49.3

8 Related Works and Future
Directions

To the best of our knowledge, our work is the first
to achieve efficient high-degree polynomials evaluation
with arbitrary numbers of variables. In [27], Ishai and
Kushilevitz try to solve the same problem as we do. The
method they chose is to represent the high degree poly-
nomials into multiple low degree polynomials with ran-
domness, then solve many low degree polynomials. Re-
garding polynomial algebra, Mohassel and Franklin [36]
works in the setting of directly performing operations
on the polynomials, such as polynomial multiplication,
division with remainder, polynomial interpolation, poly-
nomial GCD, etc, while our work is primarily focused on
evaluating the polynomials. Dachman-Soled et al. [20]
work in the setting of evaluating multivariate polynomi-
als where each party holds different variables as private
inputs. In our setting, all the variables are shared among
all the parties. Cramer and Damgård [18] also focus on
operations of linear algebra, and their work aims at solv-
ing computation of determinant, characteristic polyno-
mial, rank, and the solution space of linear systems of
equations, which is a different set of operations than our
paper.

Privacy-preserving decision tree evaluation was
firstly proposed in [9]. Kiss et al. [45] system-
atize the recent privacy-preserving decision tree train-
ing/evaluation solutions and in general, these solutions
can be divided into two types. The first type rely on
homomorphic encryption. For example, Wu et al. [44],
Joye and Salehi [29] use additive homomorphic encryp-
tion combined with different private comparison pro-
tocols to achieve decision tree evaluation. The second
type makes use of garbled circuits with efficient private
comparison. For example, Tueno et al. [42] represent
the decision tree as an array and achieve privacy pre-

serving evaluation through garbled circuits or oblivious
RAM. Due to the nature of homomorphic encryption
and garbled circuits, the above protocols focus only on
two-party setting, where the server has private decision
tree model and the client holds the private testing in-
put. Another alternative solution is mentioned in [23],
which is also based on secret sharing as we do. It re-
quires full-threshold secret sharing and the comparison
protocol is designed for 2 parties, therefore this solution
is also limited to 2-party setting. Compared with these
works, our work is built on secret sharing and inherently
supports the general n-party setting.

9 Conclusion
To conclude, we propose Polymath, a secure multi-party
computation toolkit that supports the evaluation of
multi-variate high degree polynomials. The protocols in
Polymath have constant round complexity and require
less communication than other works. We also demon-
strate a complete solution for privacy-preserving deci-
sion tree evaluation in general n-party setting, and we
make it practical to evaluate high-depth decision tree
models and get prediction results with very high accu-
racy.
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A Proofs

A.1 Lemmas

Proof of Lemma 1. ∀λ,Pr[x′−r = λ] = Pr[r = x′−λ] =
1
q ∀λ,Pr[x′′−r = λ] = Pr[r = x′′−λ] = 1

q ∀λ,Pr[x′−r =
λ] = Pr[r = x′ − λ] = 1

q = Pr[r = x′′ − λ] = Pr[x′′ − r =
λ]

Proof of Lemma 2. ∀λ,Pr[x′r = λ] = Pr[r = x′−1λ] = 1
q

∀λ,Pr[x′′r = λ] = Pr[r = x′′−1λ] = 1
q ∀λ,Pr[x′r = λ] =

Pr[r = x′−1λ] = 1
q = Pr[r = x′′−1λ] = Pr[x′′r = λ]

Proof of Lemma 3. The number of all n by n matrix
with elements from Fq is qnn. The size of GL(n, q) (the
amount of invertible n by n matrix with elements from
Fq) is Πn−1

i=0 (qn − qi). Therefore, the probability of a
matrix chosen uniformly at random being singular (not
having an inverse) is 1− Πn−1

i=0 (qn−qi)
qnn , which is less than

1
q + 1

q2 . Therefore the probability of a matrix chosen
uniformly at random being singular (not having an in-
verse) is less than 1

q + 1
q2 . We still need to prove that

1− Πn−1
i=0 (qn−qi)

qnn is less than 1
q + 1

q2 .
If n = 1, then the matrix is the same as the field

and all matrices are invertible (since all field elements
have inverses), and the probability of a random 1 by 1
matrix being singular is 1

q , which is less than 1
q + 1

q2 .
For n = 2:
Πn−1

i=0 (qn − qi) = qnn − qnn−1 − qnn−2 + qnn−3 =
qnn − qnn−1 − qnn−2 +O(qnn−3)

For n = 3:
Πn−1

i=0 (qn − qi) = qnn − qnn−1 − qnn−2 + qnn−4 +
Σnn−4

i=1 aiq
nn−4−i = qnn − qnn−1 − qnn−2 +O(qnn−3)

For n = 4:
Πn−1

i=0 (qn − qi) = qnn − qnn−1 − qnn−2 + 2qnn−4 +
Σnn−4

i=1 aiq
nn−4−i = qnn − qnn−1 − qnn−2 +O(qnn−3)

For n ≥ 5:
Πn−1

i=0 (qn − qi) = qnn − qnn−1 − qnn−2 + 2qnn−5 +
Σnn−5

i=1 aiq
nn−5−i = qnn − qnn−1 − qnn−2 +O(qnn−3)

https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2019/1315
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1−
Πn−1

i=0 (qn − qi)
qnn

= 1
q

+ qnn−2 −O(qnn−3)
qnn

≤ 1
q

+ qnn−2

qnn

≤ 1
q

+ 1
q2

Proof of Lemma 4. ∀λ,Pr[X ′R = λ] = Pr[R =
X ′−1λ] = 1

|GL(n,q)| ∀λ,Pr[X ′′R = λ] = Pr[R =
X ′′−1λ] = 1

|GL(n,q)| ∀λ,Pr[X ′R = λ] = Pr[R =
X ′−1λ] = 1

|GL(n,q)| = Pr[R = X ′′−1λ] = Pr[X ′′R =
λ]

Proof of Lemma 5. Define Xi for i = 0 to
i = |GL(n, q)| − 1 to be all elements in
GL(n, q). Define Si as the multiset where
Si =

{
∀Y ∈ GL(n, q), Y XiY

−1}. ∀Xj ∈
Cl(Xi),∃Xij |XijXiX

−1
ij = Xj Define Sij as the multi-

set where Sij =
{
∀Y ∈ GL(n, q), Y XijXiX

−1
ij Y −1

}
.

Sij =
{
∀Y ∈ GL(n, q), Y XijXiX

−1
ij Y −1

}
=

{
∀Y ∈ GL(n, q), (Y Xij)Xi

(
X−1

ij Y −1
)}

={
∀Y ∈ GL(n, q), Y XiY

−1} = Si Sij ={
∀Y ∈ GL(n, q), Y XijXiX

−1
ij Y −1

}
=

{
∀Y ∈ GL(n, q), Y

(
XijXiX

−1
ij

)
Y −1

}
={

∀Y ∈ GL(n, q), Y XjY
−1} = Sj ∀i∀j|Xj ∈

Cl(Xi), Si = Sij = Sj

Define mXj
(Xi) as the number of elements Xa

such that XaXjX
−1
a = Xi. We now prove that

∀i, j, k|Xj ∈ Cl(Xi) ∧ Xk ∈ Cl(Xi),mXk
(Xi) =

mXk
(Xj). Assume ∃i, j, k|Xi ∈ Cl(Xj) ∧ mXk

(Xi) >

mXk
(Xj) ∀Xa|XaXkX

−1
a = Xi, X

−1
a XiXa = Xk

∀Xa|XaXkX
−1
a = Xj , X

−1
a XjXa = Xk Therefore

mXi
(Xk) > mXj

(Xk). By the statement above, Sk =
Si = Sj . This is a contradiction. ∀i, j, k|Xj ∈
Cl(Xi),mXk

(Xi) = mXk
(Xj) ∀i, j, k|Xj ∈ Cl(Xi) ∧

Xk ∈ Cl(Xi),mXk
(Xj) = |GL(n,q)|

|Cl(Xi)| ∀λ,Pr[RXR−1 =
λ] = Pr[R ∈ S] = |S|

|GL(n,q)| = 1
|Cl(X)| where S is a spe-

cific subset of GL(n, q) of size |GL(n,q)|
|Cl(X)|

A.2 Proof of Protocols

A.2.1 Proof for the Protocol Tri-Variate Term
Evaluation

We prove that our protocol reveals no information about

x, y, z by showing that given two different values of
x, y, z, the probability distributions of possible tran-
scripts remain the same. We define the transcript as all
the values an arbitrary party Pi can see during the exe-
cution of our protocol. For this protocol, the transcript
includes:
– Messages related to the secret sharing of

x, y, z, a, b, c

– All other parties’ shares of x− a
– All other parties’ shares of y − b
– All other parties’ shares of z − c
– Messages related to doing multiplication of two vari-

ables with traditional Beaver triples

For messages related to doing multiplication of two vari-
ables with traditional Beaver triples [6], the security is
already proven and well understood. For messages re-
lated to the secret sharing of x, y, z, a, b, c, the security
is proven by the specific secret sharing scheme. We as-
sume that the secret sharing scheme is information the-
oretically secure against semi-honest adversaries, such
as Shamir’s Secret Sharing Scheme [41]. Therefore we
ignore those messages in our security analysis. Addi-
tionally, given these messages, the party Pi can also
calculate the values of some of the secret shared val-
ues. Therefore we focus on the following items as the
transcript specific to our protocol:
– All other parties’ shares of x− a
– All other parties’ shares of y − b
– All other parties’ shares of z − c
– The value of x− a
– The value of y − b
– The value of z − c

Proof of Theorem 1. By Lemma 1, the value distribu-
tion for x − a, y − c, z − c are identical for different
values for x, y, z.

Furthermore, since the probability distributions of
x′ − a, y′ − c, z′ − c, and x′′ − a, y′′ − c, z′′ − c, are
uniformly random, the probability distributions of the
secret shares of x′− a, y′− c, z′− c are identical to that
of x′′ − a, y′′ − c, z′′ − c.

A.2.2 Proof for the Protocol Evaluation of Degree-1
Arbitrary-Variate Term

We prove that our protocol reveals no information about
x1, x2, . . . xn by showing that given two different sets of
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non-zero values for x1, x2, . . . xn, the probability distri-
butions of possible transcripts remain the same.

We define the transcript as all the values an ar-
bitrary party Pi can see during the execution of our
protocol. For this protocol, the transcript includes:
– Messages for Party Pi related to the secret sharing

of x1, x2, . . . xn

– Messages for Party Pi related to the secret sharing
of a1, a2, . . . an

– Messages for Party Pi related to the secret sharing
of (a1a2 . . . an)−1

– All other parties’ shares of x1a1, x2a2, . . . xnan

– Messages related to doing multiplication of two hid-
den variables with traditional Beaver triples

The Proof here is similar to the Proof for the protocol
Tri-variate Term Evaluation above.

Proof of Theorem 2. With high probability, none of
ai is 0. By Lemma 2, the value distribution for
x1a1, x2a2, . . . xnan are identical for different values for
x1, x2, . . . xn, namely, all universally random. Further-
more, since the probability distributions of x′1a1, x′2a2,
. . . x′nan, and x′′1a1, x′′2a2, . . . x′′nan, are uniformly ran-
dom, the probability distributions of the secret shares of
x′1a1, x′2a2, . . . x′nan are identical to that of x′′1a1, x′′2a2,
. . . x′′nan.

A.2.3 Proof for the Protocol Matrix Powering

By Lemma 3, with high probability, X,R are in GL(n, q)
(The General Linear Group, where GL(n, q) is the set
of all n by n invertible matrices with elements from a
finite field of size q), which means R−1 exist with high
probability.

Given that We know the conjugacy class of X, we
prove that our protocol reveals no additional informa-
tion about X by showing that given two different val-
ues of X, the probability distributions of possible tran-
scripts remain the same. We define the transcript as all
the values an arbitrary party Pi can see during the exe-
cution of our protocol. For this protocol, the transcript
includes:
– Messages related to the secret sharing of X
– Messages related to the secret sharing of R
– Messages related to the secret sharing of R−1

– All other parties’ shares of RXR−1

– Messages related to doing multiplication of two se-
cret matrices with Beaver Matrix Multiplication

– Messages related to doing multiplication of three
secret matrices

For messages related to doing multiplication of two se-
cret matrices with Beaver matrix multiplication [35],
the security is already proven and well understood. For
messages related to the secret sharing of X,R,R−1,
the security is proven by the specific secret sharing
scheme. We assume that the secret sharing scheme is
information theoretically secure against semi-honest ad-
versaries, such as Shamir’s Secret Sharing Scheme [41].
Therefore, we ignore those messages in our security
analysis.

For Messages related to doing multiplication of
three secret matrices, we can either use a specialized
protocol or simply perform 2 Beaver Matrix Multiplica-
tions. Additionally, given these messages, the party Pi

can also calculate the values of some of the secret shared
values. Therefore we focus on the following items as the
transcript specific to our protocol:
– All other parties’ shares of RXR−1

– The value of RXR−1

Proof of Theorem 3. By lemma 4, with high probabil-
ity, X ′, X ′′, R,R−1 are all in GL(n, q) (The General Lin-
ear Group, where GL(n, q) is the set of all n by n in-
vertible matrices with elements from a finite field of size
q).
∀λ,Pr[RX ′R−1 = λ] = Pr[R ∈ S′] = |S′|

|GL(n,q)| =
1

|Cl(X′)| where S
′ is a specific subset of GL(n, q) of size

|GL(n,q)|
|Cl(X′)| by Lemma 5.
∀λ,Pr[RX ′′R−1 = λ] = Pr[R ∈ S′′] = 1

|Cl(X′′)|

where S′′ is a specific subset of GL(n, q) of size |GL(n,q)|
|Cl(X′′)| .

∀λ,Pr[RX ′R−1 = λ] = Pr[R ∈ S′] = 1
|Cl(X′)| =

1
|Cl(X′′)| = Pr[R ∈ S′′] = Pr[RX ′R−1 = λ] since X ′ and
X ′′ belong to the same conjugacy class so |Cl(X ′)| =
|Cl(X ′′)|.
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Table 7. Comparing Nursery dataset with Diabetes dataset

Protocol Dataset Tree depth Features Original
Nodes

Padded/Total
Non-Leaf
Nodes

Online
time(ms)

Ours Nursery 11 8 385 2047 101320
Ma et al. Diabetes 28 10 393 6432 < 100

* The Nursery dataset is run over 4 parties, and the Diabetes dataset is run over 2 parties.
* Both the Nursery dataset and Diabetes dataset are run on LAN ( 1Gbps/0.1ms) [33]

B Comparison With Ma et al.’s
Protocol

In this section, we provide a brief comparison to Ma
et al. [33]. While the library used by the authors (emp-
toolkit) is public, to the best of our knowledge, the
authors did not make their benchmarking codes pub-
lic. Therefore, we only make comparisons based on the
benchmarking numbers reported in the paper.

Overall, their benchmarking number suggests that
their protocols are more efficient compared to ours, with
their protocols taking between 10 and 100 milliseconds
for most settings while our protocol takes 10 to 100 sec-
onds.

While we have access to the dataset used by Ma et
al., we could not re-produce their models. Therefore, we
look for dataset and settings where our benchmarking is
similar to theirs for a more precise comparison. As the
performance of our protocol depends on the number of
nodes, we pick two models where the number of nodes
are similar for comparison. In terms of tree depth, fea-
ture/attribute amount, and the number of nodes, their
diabetes dataset seems to be the closest to our nursery
dataset, with their decision tree having 17 more depth,
2 more features/attributes, and 4385 more total nodes.
Additionally, since we ran our experiment on machines
connected through LAN with around 0.1ms latency, we
compare with their LAN setting, which also has a la-
tency of 0.1ms.

Table 7 summaries the comparison between our
Nursery dataset and the Diabetes dataset from Ma
et al. [33].

However, we would like to highlight the key differ-
ences between their protocol and ours. First, their pro-
tocol is a specialized two-party decision tree evaluation
protocol, while our protocol is a general multiparty pro-
tocol. Our protocol focuses on situations where multiple
servers jointly hold the decision tree, while Ma et al. [33]
only extends to two non-colluding cloud servers. There-
fore, our protocol and their protocol target different use

cases. Our protocol is more suitable to the MPC-as-
a-service setting, where a group of online servers run
MPC protocols to provide a secure decision tree eval-
uation service. As a tradeoff, 2PC protocols are often
more efficient than ours as the building blocks of 2PC
protocols are way more efficient than building blocks of
n-PC protocols. Besides, we would like to highlight the
reason that two protocols are designed for different use
cases: Our implementation guarantees robustness and
fairness, such that the honest parties always get correct
evaluation results, no matter what the active malicious
adversary do. However, robustness and fairness is not
achieved in [33]7. Therefore, in some cases where ro-
bustness or fairness is required, our protocol could be
the only option.

7 Robustness and fairness can not be achieved in 2-PC setting
[15] (e.g. one party can simply choose to abort the protocol, and
robustness and fairness cannot be achieved.).
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