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Abstract: A membership inference attack (MIA) against
a machine-learning model enables an attacker to de-
termine whether a given data record was part of the
model’s training data or not. In this paper, we provide
an in-depth study of the phenomenon of disparate vul-
nerability against MIAs: unequal success rate of MIAs
against different population subgroups. We first estab-
lish necessary and sufficient conditions for MIAs to be
prevented, both on average and for population sub-
groups, using a notion of distributional generalization.
Second, we derive connections of disparate vulnerabil-
ity to algorithmic fairness and to differential privacy. We
show that fairness can only prevent disparate vulnera-
bility against limited classes of adversaries. Differential
privacy bounds disparate vulnerability but can signifi-
cantly reduce the accuracy of the model. We show that
estimating disparate vulnerability by naïvely applying
existing attacks can lead to overestimation. We then
establish which attacks are suitable for estimating dis-
parate vulnerability, and provide a statistical framework
for doing so reliably. We conduct experiments on syn-
thetic and real-world data finding significant evidence
of disparate vulnerability in realistic settings.
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1 Introduction
Membership Inference Attacks (MIAs), in which an
adversary aims to determine whether an example is
part of the training set, are one of the main privacy
attacks against machine-learning (ML) models. Since
they were first described [39], many works have stud-
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ied the potential of these attacks under diverse circum-
stances [22, 24, 29, 30, 32, 33]; and the causes and limits
of these attacks [16, 26, 43]. In both empirical and theo-
retical approaches researchers focus on the average MIA
success across the records. However, there is empirical
evidence that the vulnerability to MIAs is not always
evenly distributed: it can differ across target classes [39],
it can be more effective against some individuals [29],
and it can vary across subgroups [6]. These results imply
that average-based studies can overestimate the privacy
for some individuals [15].

In this paper, we provide the first theoretical analy-
sis of the disparate vulnerability to MIA across popula-
tions subgroups. Our contributions are the following:

X We introduce a novel characterization of the vulner-
ability to MIAs, which provides a necessary and suf-
ficient condition for these attacks to succeed: lack of
distributional generalization. Vulnerability to MIA
arises when the distribution of a model’s property
(e.g., loss, or outputs) is different for samples in and
out of the training dataset. This result complements
previous studies that demonstrated the lack of stan-
dard generalization (i.e., overfitting) to be a suffi-
cient but not necessary condition for vulnerability
to MIAs [29, 43].

X We introduce the first formal analysis of disparate
vulnerability and extend our results on necessary
and sufficient conditions for preventing MIAs to sub-
group vulnerability and disparate vulnerability.

X We show that estimating the magnitude of the dis-
parate vulnerability is non-trivial when subgroups
are small. We provide a statistical framework and
methods to estimate disparate vulnerability and its
significance. We show that not all vulnerability esti-
mation mechanisms used in prior work are adequate
for subgroups. We discuss the implications of these
difficulties for regulation compliance.

X We prove that satisfying algorithmic-fairness con-
straints can decrease disparate vulnerability to lim-
ited classes of attackers. We also show that training
with differential privacy bounds the magnitude of
the disparate vulnerability.

X We empirically evaluate disparate vulnerability
both on synthetic and on real-world datasets,
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demonstrating that disparate vulnerability exists in
realistic models, with high statistical significance.

X We discuss the importance of disagreggating pri-
vacy measurements when evaluating the legal im-
plications of privacy attacks. In particular, the im-
portance of studying the consequences of privacy
attacks for subgroups when analyzing the privacy
risks of a deployment, as opposed to studying indi-
vidual privacy risks [29] that can be dismissed as
residual and acceptable.

2 Related Work

Theory studies on MIA. Yeom et al. studied the
relation of MIAs to overfitting [43]; in their work, they
formalize MIA as an indistinguishability game, which we
adapt to construct our theoretical framework. Farokhi
et al. analyzed the dependence of MIA’s success on the
amount of information the model memorizes [16], and
Jayaraman et al. investigated their dependence on the
prior probability that the example given to the adver-
sary is a member or non-member of the training set [22].
Yeom et al. [43], and Cherubin et al. [9] showed that
MIAs success is bounded by DP. Humphries et al. [21]
showed these bounds only apply so long as the training
data are i.i.d.-sampled. All these analyses, however, are
only meaningful for the average-case MIA. A classifier
thought to be secure according to these analyses may
provide weaker protection to certain individuals or sub-
populations. Our work complements these studies and
generalizes the notion of MIA risk to subgroups of the
population, enabling study of vulnerability for subsets
of the records’ labels, individuals, and subpopulations.

Disparity and machine learning. The work on dis-
parity in machine learning is centered on understanding
and mitigating disparate impact of algorithmic decisions
on subpopulations [2, 10, 28]. Bagdasaryan et al. [1] and
Pujol et al. [35] study disparity in accuracy under dif-
ferential privacy (DP), and show that training with DP
can increase disparate impact. In this work, we develop
a theory that supports the empirical evidence that dis-
parate impact would also cause disparity in vulnerabil-
ity to MIAs [6, 29, 39].

3 Membership Inference Attacks
Let Ω be a population of examples, where each exam-
ple represents an individual: x ∈ Ω. We assume that
the population is partitioned in disjoint subgroups. Each
subgroup Gz ⊂ Ω is formed by examples that share
one or several attributes (e.g., race or gender in the
way they are commonly represented in data), such that⋃t
z=1 Gz = Ω. We consider a data-generating distribu-

tion D over Ω.
We indicate with A(·) the training algorithm that

produces a model AS given training data S ⊂ Ω. The
learning task for this model is to infer the value of the
label y = y(x) associated with an individual x. We as-
sume that the model can be either a regressor (y takes
values in a set with total order, e.g. R) or a classifier (y
takes values in a finite set).

The goal of a membership inference attack (MIA)
is to predict whether an example x ∈ Ω is a member
or a non-member of the training set S. We assume a
threat model where a MIA adversary observes the target
model’s behavior that relates to x, and has information
about the data distribution D, training-data sampling,
and the training algorithm. We formalize MIAs using
the indistinguishability game by Yeom et al. [43]:

MIA(A, A, n,D)

1 : S ← Dn; AS = A(S)

2 : m
$←− {0, 1}

3 : if m = 1 then

4 : x
$←− S

5 : else

6 : x← D

7 : endif

8 : m̂← A(x, AS , n,D
)

9 : return m = m̂

In this game, the challenger samples S from the pop-
ulation, and trains a model AS using training algorithm
A (line 1). The challenger then randomly draws a secret
m (line 2) whose value denotes x’s membership in S:
m = 1 if the challenge example x is sampled from the
training set S (line 4), and m = 0 if it is sampled from
the data distribution D (line 6). As Yeom et al. [43],
we assume that the population is large enough that the
chance of sampling a member x ∈ S from D is negligi-
ble. Given the challenge example x, the target model AS
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and its training algorithm A(·), the sampling parameter
n, and the distribution of the training data D, the MIA
adversary A(·) makes a guess m̂ about the example’s
membership in S (line 8). We use this formalization as
it is the most common, although there are other ways
to formalize MIAs [21].

The MIA game defines a joint probability distribu-
tion over training datasets S, membership “coins” m,
and challenge examples x. We denote by M the random
variable taking the value of the membership coin (line
2), by X the challenge example, by Y = y(X) the label
associated with the challenge example x, by Z the sub-
group of the population z to which the x belongs, and
by Ŷ = AS(X) the output the model AS at x.

3.1 Attack Strategy

As described in the MIA game, the adversary’s knowl-
edge is limited to (x,AS , n,D), and their goal is to guess
the membership of x. For brevity, we use AS to indicate
both the access to trained models AS and their training
algorithm A(·).

We define a general strategy to perform a member-
ship attack that encompasses several instances of MIA,
e.g., [32, 39, 43]. This strategy consists of two phases.

First, the adversary prepares an attack algorithm
AttA,n,D(·) which depends on the target training algo-
rithm A(·), and data-sampling parameters n and D, e.g.,
by training a shadow-model attack classifier [39]. We
drop the subscripts in AttA,n,D where the setting is clear
from the context.

In the second phase, the adversary extracts features,
w ← φ(AS , x), describing the target model and the
example, and applies the attack algorithm to the ex-
tracted features to obtain the membership guess, m̂ ←
AttA,n,D(w). Thus, the guess m̂ is obtained by applying
the attack algorithm to the extracted features:

A(x,AS , n,D) , AttA,n,D ◦ φ(AS , x)

This formalization is flexible: it captures both white-
box and black-box adversarial models. For example, the
features could be the outputs of the model and the ex-
ample’s label w = (AS(x), y(x)) [39], the model’s loss for
the challenge example, w = `(AS(x), y(x)) [43], or the
model’s gradients as in some white-box attacks [32].

We use random variableW to indicate the extracted
features w across instances of the MIA game. For exam-
ple, if the attacker uses the model’s output and the label
as features [39], we denote them as W = (Ŷ , Y ). With
a slight abuse of notation, we use φW : (AS , x) 7→ w to

indicate the procedure that extracts features w that are
realizations of the W random variable. Furthermore, we
denote by AW an adversary that uses features W .

We distinguish two kinds of adversaries depending
on the features they use: regular adversaries that do not
use subgroup information (Z /∈W ), and subgroup-aware
adversaries that do use this information (Z ∈ W ). We
assume that the latter adversary can obtain the sub-
group z from the examples x themselves, encoded in an
example (e.g., gender, race). That is the case for our
experiments on real-world data in Section 7. However,
in practical scenarios, this knowledge could be encoded
in the label y(x), or come from external sources. Prior
work has mainly considered regular adversaries.

3.2 Vulnerability

We introduce the concept of vulnerability of an ML
model to membership inference attacks (MIAs). Vul-
nerability measures the success of an adversary against
the model. We also introduce worst-case (Bayes) vul-
nerability, i.e., vulnerability against an information-
theoretically optimal adversary.

Vulnerability to MIAs is the normalized advan-
tage [43] of adversary A over random guessing:

Definition 1.We define vulnerability to adversary A as:

V (A) , 2 Pr[MIA(A, A, n,D) = 1]− 1 (1)

We also extend the definition to subgroups:

Definition 2. Let z be a subgroup of the population.
We define subgroup vulnerability to adversary A as:

Vz(A) , 2 Pr[MIA(A, A, n,D) = 1 | Z = z]− 1.

which captures the normalized advantage of a MIA ad-
versary A for challenge examples coming from a given
subgroup z.

Optimal adversaries. We base our analysis
on information-theoretically optimal adversaries. The
worst-case vulnerability to any adversary that leverages
features W is:

max
AttW :W7→{0,1}

V (AttW ◦ φW ), (2)

where W is the domain of W . The maximum is achieved
by a Bayes adversary which uses the following strategy
for the attack [9, 36]:

Att∗W (w) , arg max
m∈{0,1}

Pr[M = m |W = w], (3)
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We denote the Bayes adversary as A∗W , Att∗W ◦ φW ,
and drop the subscripts where no ambiguity arises.

Subgroup-aware Bayes adversary. We assume the
adversary can know the subgroup z to which each ex-
ample x belongs. Recall that we refer to this adversary
as subgroup-aware. As the vulnerability to the Bayes
adversary grows if the adversary has more information
about the examples, the worst-case vulnerability to a
subgroup-aware adversary is equal or higher compared
to a regular adversary:

Proposition 1. V (A∗W,Z) ≥ V (A∗W ) .

We defer the proof to Appendix A.
In our experimental evaluations, we only consider

subgroup-aware adversaries as they are guaranteed to
attain higher advantage in the worst case.

4 Distributional Generalization
and Vulnerability to MIAs

An ML model is said to overfit, or poorly generalize,
when its average loss on the training set differs from its
loss on new samples from the population. Previous work
showed that, while overfitting is an important factor
for evaluating MIA [39], it is not necessary for MIA
vulnerability [29, 43].

Fig. 1 illustrates with an example why the absence
of standard overfitting does not, in general, prevent
MIAs. The figure shows a model’s loss values on its
training and test data. The standard, average-based def-
inition of overfitting cannot distinguish between the two
distributions; but an adversary potentially can, and the
model can be vulnerable to MIAs.

4.1 Distributional Generalization

To establish the necessary and sufficient conditions for
models to be vulnerable to MIAs, we introduce an ex-
tended notion of generalization that goes beyond com-
paring the average loss on train and test data. It covers
the difference in the distributions of any given property
of a model on the training data and outside. A prop-
erty is any function that takes as input a model and
an example: π(AS , x), and returns a numeric vector. A
property function can be, for instance, a loss function,
the gradient, or the prediction from the model.

We are interested in the distributions of properties
on the examples x coming from the training dataset and
from outside of the training dataset. For any set T from
the range of π, we define the corresponding probability
measures as:

µπ1 (T ) , Pr
S∼Dn

x∼S

[π(AS , x) ∈ T ],

µπ0 (T ) , Pr
S∼Dn

x∼D

[π(AS , x) ∈ T ].

Definition 3. For any property function π(AS , x), we
define the distributional-generalization gap as follows:

R(π, d) , d
(
µπ1 , µ

π
0
)
,

where d(µ, µ′) is a measure of dissimilarity between prob-
ability distributions.

This generic notion subsumes the standard notion of
generalization. Standard generalization can be mea-
sured using the average-dataset generalization gap (see,
e.g., in Yeom et al. [43]), the difference between the ex-
pected loss on the training dataset and the expected loss
on the distribution:

R , E
S∼Dn

x∼S

[`(AS , x)]− E
S∼Dn

x∼D

[`(AS , x)],

where `(AS , x) is a loss function. We can recover this
standard notion of a generalization gap as R(`, dMD),
using the loss function as the property function and the
mean discrepancy dMD(µ, µ′) as a dissimilarity measure:

dMD(µ, µ′) ,
∫
ω dµ(ω)−

∫
ω dµ′(ω),

Whereas standard generalization quantifies how
much the training algorithm tends to memorize the
training dataset through the lens of its performance
(loss), distributional generalization can do so (1)
through the lens of other properties beyond losses, and
(2) considering distributional information instead of
only the difference between the means.

Evaluating distributional generalization enables us
to assess the generalization of an ML model on the entire
population, rather than on average. In Fig. 1 it is clear
that the model’s actual loss across the entire popula-
tion is concentrated on a few individuals. Distributional
generalization enables us to capture this discrepancy,
whereas standard generalization does not.

Concurrently, Nakkiran and Bansal [31] have also
proposed a similar notion of distributional generaliza-
tion. Our proposal allows for more general distances
between distributions, whereas Nakkiran and Bansal,
when translated to our terms, define the gap using mean
discrepancy, which is not sufficient for our analysis.
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S

`(As, x)

S̄

`(As, x)

Fig. 1. Loss values of a model AS on train data S (left) and test
data S̄ (right). According to standard notion of generalization,
this model does not overfit: average loss (area) on training and
test data is identical. Some population individuals, however, are
more penalized on the test data. This discrepancy is captured by
distributional generalization.

4.2 Relation Between Worst-case
Vulnerability and Distributional
Generalization

The ability of any classifier to successfully distinguish
between observations of two classes can be characterized
by the total variation between the class-conditional dis-
tributions of observations. By applying this fact to the
worst-case MIA attackers, we can characterize vulnera-
bility in terms of distributional generalization:

Proposition 2. The worst-case vulnerability to
MIAs with adversary’s features W is equal to the
distributional-generalization gap under total-variation
distance:

V (A∗W ) = R(φW , dTV),

where the total-variation distance is defined as:

dTV(µ, µ′) , sup
T⊆W

|µ(T )− µ′(T )|

According to Proposition 2, when the property func-
tion π is the adversary’s feature extraction mechanism
φW , the distributional-generalization gap is equal to the
worst-case vulnerability to adversaries that use features
W = φW (AS , X).

Proof. Let us define the Bayes error L∗, the 0-1 classi-
fication error of the Bayes classifier. In the case of Att∗:

L∗ , Pr[Att∗(W ) 6= M ]

Recall that vulnerability is defined through the success
probability of an adversary:

V (AW ) , 2 Pr[Att(W ) = M ]− 1

Thus, for a Bayes adversary, V (A∗W ) uses the comple-
ment of the Bayes error L∗:

V (A∗W ) = 2(1− Pr[Att∗(W ) 6= M ])− 1 = 1− 2L∗.

It is well-known that the the Bayes error of the binary
classifier under uniform prior is equal to:

L∗ = 1
2 −

1
2 dTV (Pr[W |M = 1], Pr[W |M = 0])

= 1
2 −

1
2 dTV

(
Pr

S∼Dn

x∼S

[φW (AS , x)], Pr
S∼Dn

x∼D

[φW (AS , x)]

)

= 1
2 −

1
2 dTV

(
µφW

1 , µφW

0

)
,

See, e.g., Devroye et al. [12, Chapter 3.9]. This implies
the sought form.

This form is a straightforward consequence of our Bayes-
optimal approach to vulnerability and is an application
of a well-known result in statistical theory. It provides
us with an intuitive interpretation of the worst-case vul-
nerability to MIAs—as it is equal to the distributional-
generalization gap—thus with a guideline on how to pre-
vent MIAs. The result holds for both white-box and
black-box adversary models.

Let us visually illustrate distributional generaliza-
tion and worst-case vulnerability. Consider adversarial
features W = Ŷ . For the continuous property function
φŶ , the distributional-generalization gap becomes:

R(φŶ , dTV) = dTV

(
µφŶ

1 , µφŶ

0

)
= 1

2

∫ ∣∣f1(ŷ)− f0(ŷ)
∣∣ dŷ,

where f1 and f0 are probability density functions asso-
ciated with measures µ1 and µ0, respectively. See Fig. 2
for a visualization. The worst-case vulnerability to ad-
versaries using features W = Ŷ is the area between the
densities of the “in” and “out” output distributions.

Note that the distance used in Proposition 2 is
average-dataset. That is, when computing the features
φ(AS , X), the model AS is a random variable over the
randomness of A(·) and S ∼ Dn. To train models with
minimal vulnerability to MIAs, Li et al. [27] used a simi-
lar yet different notion of distance, the distance between
outputs of a fixed model on its training dataset and a
validation dataset. Although conceptually similar, such
distance cannot be directly used to evaluate the worst-
case vulnerability using Proposition 2.

Overfitting and worst-case vulnerability. The ab-
sence of overfitting in the standard sense does not nec-
essarily preclude MIAs [29, 43]. But, a straightforward
implication of Proposition 2 shows there is a case when
the standard generalization gap does bound the worst-
case vulnerability:
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M = 0M = 1

ŷ

fm(ŷ)

Fig. 2. Distributional-generalization gap for models’ outputs ŷ.
The curves represent the probability density functions of models’
outputs on the training datasets (M = 1) and outside (M = 0).
The striped area shows the distributional-generalization gap: total
variation between distributions of model’s outputs on training and
outside. Proposition 2 shows that the the size of the striped area
exactly equals to the worst-case vulnerability to any adversary
that uses model outputs ŷ as features for distinguishing members
from non-members.

Corollary 1. Let `(AS , x) = 1[AS(x) 6= y(x)] be the
0-1 loss, and the adversary’s features be the loss values
W = `(AS , X). Then, the standard generalization gap
equals worst-case vulnerability:

V (A∗`(AS ,X)) = |R(`, dMD)| (4)

Proof. As loss is binary-valued, R(`, dTV) simplifies to:

R(`, dTV) = |Pr[`(AS , X) = 1 |M = 1]
− Pr[`(AS , X) = 1 |M = 0]|

= |E[`(AS , X) |M = 1]
− E[`(AS , X) |M = 0)]|

= |R(`, dMD)|.

Therefore, if a MIA adversary only observes whether a
queried example has a correct or incorrect prediction by
the target model, the upper bound on the success of any
such attack has a direct relationship to standard over-
fitting R(`, dMD). Thus, for such an adversarial model,
no overfitting does imply no vulnerability to MIAs.

4.3 Disparate Vulnerability

In this section, we provide a theoretical analysis of vul-
nerability to MIAs disaggregated by subgroups.

We introduce a subgroup-specific version of distribu-
tional generalization, in which the distributions of the
property π are computed on examples that belong to a
given subgroup. For any set T from the range of π, we
define subgroup-specific measures:

µπ1,z(T ) , Pr
S∼Dn

x∼(S|z)

[π(AS , x) ∈ T ],

µπ0,z(T ) , Pr
S∼Dn

x∼(D|z)

[π(AS , x) ∈ T ],

where x ∼ (· | z) denotes sampling conditioned on the
subgroup z.

Definition 4. For a property function π(AS , x), the
subgroup-specific distributional-generalization gap is:

Rz(π, d) , d
(
µπ1,z, µ

π
0,z
)
,

where d(µ, µ′) is a measure of dissimilarity between prob-
ability distributions.

Subgroup vulnerability from distributional gen-
eralization. To extend the worst-case analysis to sub-
groups, we use the worst-case subgroup vulnerability un-
der adversary’s features W to the corresponding Bayes
adversary: Vz(A∗W ). We show that this subgroup vulner-
ability is also related to distributional generalization:

Proposition 3. The worst-case vulnerability of a sub-
group z is bounded:

Vz(A∗W ) ≤ Rz(φW , dTV) (5)

Moreover, for subgroup-aware adversaries the bound be-
comes an equality:

Vz(A∗W,Z) = Rz(φW , dTV) (6)

We defer the proof to Appendix A.

Formalizing disparate vulnerability. Finally, hav-
ing discussed subgroup vulnerability, we can analyze dis-
parate vulnerability. We define disparity in vulnerability:

Definition 5. Disparity in vulnerability (or disparity
for short) between two subgroups z and z′ is the differ-
ence in vulnerability of these subgroups:

∆Vz,z′(A∗W ) , Vz(A∗W )− V ∗z′(A∗W ) .

The previous results on the connection between sub-
group vulnerability and distributional generalization en-
able us to relate disparity to degrees of distributional
generalization across different population subgroups.
From Proposition 3, we can see that the magnitude of
disparity can be trivially bounded using distributional-
generalization gaps of the involved subgroups:

Corollary 2. Magnitude of disparity between subgroup
z and z′ is upper bounded:∣∣∆Vz,z′(A∗W )

∣∣ ≤ max{Rz(φW , dTV), Rz′(φW , dTV)}
(7)

Moreover, disparity has an exact closed form for
subgroup-aware adversaries:



Disparate Vulnerability to Membership Inference Attacks 466

Corollary 3. Suppose that a subgroup-aware adversary
uses features (W,Z). Then, disparity between subgroups
z and z′ is the difference between distributional general-
ization gaps of these subgroups:

∆Vz,z′(A∗W,Z) = Rz(φW , dTV)−Rz′(φW , dTV) . (8)

4.4 Takeaways

Necessary and sufficient condition for MIA exis-
tence. Without making any parametric assumptions,
we have showed that the vulnerability to MIAs can be
characterized using an extended notion of generaliza-
tion, and that disparity is bounded by the difference
in levels of distributional generalization across popula-
tion subgroups. This interpretation of a standard result
in statistical theory generalizes and complements the
theoretical findings of Yeom et al. [43] and Sablayrolles
et al. [36]. It also confirms that the presence of stan-
dard overfitting is not a necessary condition for MIAs
to succeed [29, 43].

Hardness of defending against MIAs. The in-
terpretation of worst-case vulnerability through distri-
butional generalization has important consequences for
practical defences against MIA that do not rely on dif-
ferential privacy.

In order to reduce the vulnerability against adver-
saries that use features W , the distribution of W for ex-
amples that are outside of the training set has to be close
to that for the training set examples. This means that,
to avoid vulnerability, a target model has to—either im-
plicitly or explicitly—learn the distribution of W [23]
which is a stronger requirement than what is typically
necessary for its main task (i.e. generalization in terms
of accuracy, or average error).

Moreover, adversaries are not limited to one set of
features W ; thus, the distribution has to be learned for
a multitude of possible configurations of adversarial fea-
tures W . Additionally, to prevent disparity in vulnera-
bility, the distribution of W has to be learned across
population subgroups—an even more challenging task.

5 Detecting and Measuring
Disparate Vulnerability

We showed in Section 4 that vulnerability to MIAs ap-
pears when a model lacks in distributional generaliza-
tion. The degree to which records are vulnerable can

vary across subgroups in the data, potentially resulting
in disparate vulnerability. In this section, we provide
mechanisms to reliably estimate subgroup vulnerability
and its disparity in practice.

To empirically estimate MIA vulnerability, we sim-
ulate the MIA game with a real attack. If we could
play the game infinite times, then estimating the suc-
cess probability of the adversary would be trivial. In
practice, however, we can only run the game a finite
amount of times, which provides us with a finite number
of challenge examples x. We group these examples into
two sets of datasets of n elements: a set of r datasets
{Si}i=1..r composed of n “in” examples (i.e., sampled
as in line 4 of the MIA game, used for training), and r

datasets {S̄i}i=1..r composed of n “out” examples (i.e.,
sampled as in line 6 of the MIA game, not used for train-
ing). Each pair of datasets Si and S̄i can be seen as the
train and test datasets of one model.

We define the estimate of vulnerability as:

V̂ (A) , 1
r

r∑
i=1

vi (9)

where vi is the model-specific estimate of vulnerability:
the advantage of the adversary against a single target
model. We compute vi for a pair of datasets Si and S̄i
as:

vi , 2 · 1
2n

(
n∑
j=1

1[A(S(j)
i , ASi

, n,D) = 1]

+
n∑
j=1

1[A(S̄(j)
i , ASi

, n,D) = 0]

)
− 1,

(10)

As r increases, V̂ (A) approximates the value of the true
vulnerability V .

We use the same approach to estimate subgroup vul-
nerability Vz(A), but we only use examples that belong
to the subgroup of interest z when computing the model-
specific estimate of subgroup vulnerability vi,z. We omit
A when it is clear from context.

5.1 Statistical Detection of Disparity

When evaluating subgroup vulnerability, we have to rely
on subsets of (Si, S̄i) formed by subgroup examples.
These subsets are possibly of size much smaller than
n. Due to the variance of the empirical averages in the
Eq. (10), an estimate of subgroup vulnerability is in gen-
eral less statistically reliable than the estimate of overall
vulnerability that uses datasets (Si, S̄i) in their entirety.
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As a result, when estimating disparate vulnerability us-
ing the estimates of subgroup vulnerability, we need to
statistically ensure that, if found, disparity is not due
to random chance.

More formally, given estimates {vi,z}i=1..r across
different subgroups, we want to find statistical evidence
that the actual subgroup vulnerabilities differ:

Vz1

?
6= Vz2

?
6= . . .

?
6= Vzt (11)

Multiple subgroups. This problem is an instance
of a standard within-subjects experimental design: We
have multiple measurements (model-specific vulnerabil-
ity estimates for different subgroups vi,z1 , vi,z2 , . . . , vi,zt)
for the same subject (model ASi

). We want to know
whether the means of vulnerability values differ across
subgroups. Therefore, we can determine whether the
training algorithm exhibits disparate vulnerability us-
ing the repeated-measures one-way anova model (see,
e.g., Seltman [38, Chapter 14]). This approach enables
us to use the anova F-test to establish whether there is
evidence of disparate vulnerability. Following the stan-
dard protocol, if the F-test is positive, we perform post-
hoc followup tests to determine which particular pairs of
subgroups exhibit disparity. For the post-hoc tests, we
use pairwise dependent t-tests with correction for multi-
ple comparisons. As the correction method, we use the
standard Benjamini-Hochberg procedure for controlling
the false detection rate.

Two subgroups. When comparing only two sub-
groups, z and z′, the procedure naturally simplifies to
running one dependent t-test that checks if the differ-
ence between means of two groups is significant.

5.2 The Bias Problem

Some attacks in the literature assume that the adversary
has additional knowledge beyond the tuple (x,AS , n,D).
This knowledge can result in the vulnerability estima-
tion being positively biased: indicating higher vulnera-
bility than the actual worst case within the knowledge
model of (x,AS , n,D). Overestimating vulnerability is
not necessarily an issue, as pessimistic estimates incen-
tivize caution in deployment. However, if the positive
bias is correlated with the parameters of a subgroup
(e.g., higher bias for smaller subgroups), it leads to in-
correct conclusions about disparate vulnerability.

In this section, we check whether estimates of vul-
nerability using attacks proposed in the literature are
biased. We evaluate three attacks:

– Shadow-model attack [39]. An adversary trains
a number of shadow models using the target train-
ing algorithm A(·) on datasets sampled from Dn.
The adversary uses these shadow models to train a
machine-learning classifier to estimate the probabil-
ity Pr[M |W ]. In our evaluation, we use 30 shadows
and Gradient Boosting Trees as the attack classifier.

– Average-threshold attack [43]. An adversary
has additional knowledge: the average loss on the
training dataset τ and the loss function ` used
to compute this average,

(
τ, `(·, ·)

)
, where τ ,∑

x∈S `(AS , x). When attacking, the adversary uses
τ as threshold to decide whether the challenge exam-
ple was “in” (the example’s loss less than threshold)
or “out” (greater than threshold).

– Optimal-threshold attack [6, 40]. An adversary
has additional knowledge: the loss function ` and the
optimal loss threshold τ∗ that separates the losses
in the best way,

(
τ∗, `(·, ·)), where

τ∗ , arg max
τ

1
n

∑
x∈S

1[`(AS , x) ≤ τ ]

+ E
x∼D

[
1[`(AS , x) > τ ]

]
The attack proceeds as the average-threshold one.

We deviate slightly from the attacks’ original formu-
lations. The threshold attacks use W = `(AS , X) as fea-
tures, where the loss function is cross-entropy, whereas
the original shadow-model attack used W = (Ŷ , Y ). For
fairness, we make all adversaries use the threshold at-
tacks’ features.

As we want to evaluate subgroup-aware adversaries,
we use features W =

(
`(AS , X), Z

)
for all attacks, with

cross-entropy as loss function. We make the attacks
subgroup-aware as follows. For the shadow-model at-
tack, the adversary trains separate attack classifiers for
each subgroup, and then applies the appropriate clas-
sifier to each challenge example. For the threshold at-
tacks, we assume the adversary has different thresholds
for each subgroup [6, 41], i.e., average loss, respectively
optimal threshold, per subgroup.

Method. It is hard to tell exactly if an estimate is
higher than the worst-case vulnerability, as in practice
the worst case is unknowable. We propose a simple test
for bias within our adversarial model: run the estima-
tion method against data-independent models. A target
model can be independent of its training data, e.g., if it
is completely random, constant, or trained with differ-
ential privacy parameter ε ≈ 0 (see Section 6.2). If the
model is independent of the data, we expect the esti-
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Fig. 3. Distribution of values in our synthetic data. x-axis: value
of the 1-st dimension of the synthetic data, y-axis: value of the 2-
nd dimension. We use 100-dimensional data for our experiments.

mates of overall and subgroup vulnerabilities, as well as
disparity, to all be zero in expectation. We refer to any
violation of this property as null-model bias. We are not
only interested in whether a method exhibits such bias,
but in whether this bias is correlated with subgroups.

Dataset. To have control over the distributions of sub-
groups and their representation, we create a synthetic
dataset. We assume that the examples have binary class
labels y ∈ {0, 1}, and belong to one of two subgroups
z ∈ {C, T}. We generate the examples from the multi-
variate normal distributions:

Pr(x | y = 0, z = C) ∼ N (−1/2 · 1d,Σ)
Pr(x | y = 1, z = C) ∼ N (1 · 1d,Σ)
Pr(x | y = 0, z = T ) ∼ N (0 · 1d,Σ)
Pr(x | y = 1, z = T ) ∼ N (1/2 · 1d,Σ),

where 1d is a d-vector of all ones, and the covariance
matrix Σ is generated such that ||Σ||max ≤ 1. We use
d = 100 dimensions, and set Pr[y = 1] = 1/2. See Fig. 3
for an illustration.

To reflect that some subgroups can be harder to
learn than others, the distributions are designed in such
a way that the subgroup z = C is more separable and
hence more easily learnable than the subgroup z = T .
In our experiments we use the subgroup z = C as the
control (ormajority) subgroup with fixed number of rep-
resentatives in the data, and z = T as the treatment (or
minority) subgroup whose size we vary.

Setup. To see if the potential null-model bias depends
on the sizes of subgroups, we generate multiple synthetic
datasets such that each contains data belonging to two
subgroups: control and treatment. The control subgroup

has 1000 representatives in each dataset; the size of the
treatment subgroup varies between 25 and 1000, with
8 distinct values. We run 8 experiments with different
subgroup proportions. Within each experiment, we train
200 target models on freshly generated datasets. We set
the target training algorithm to output the same classi-
fier for any input training dataset. Recall that because
the models are independent of the input, we expect all
vulnerability estimates to be zero on average. We esti-
mate disparity using three attacks described above, and
run t-tests to see if the estimates are statistically signif-
icant as explained in Section 5.1.

Results on our synthetic dataset. In Fig. 4, we
can see that the estimates of disparity produced with
the shadow-model attack and the average-threshold at-
tack are centered around zero, with the statistical tests
confirming no significant difference from zero. The esti-
mates coming from the optimal-threshold attack, how-
ever, are highly biased compared to the other attacks,
as the estimates are consistently and significantly (p <
0.001) different from zero. The bias is always positive —
overestimates disparity — and gets higher as the size of
the treatment subgroup decreases. As the target models
are independent of their training data and thus cannot
have disparate vulnerability, we conclude that the use of
the optimal-threshold attack results in significant null-
model bias that grows as the subgroup size gets smaller.

Results on the dataset by Chang and Shokri [6].
To verify that our results are not artifacts of our specific
synthetic data setup, we also reproduce the data setup
used by Chang and Shokri to evaluate their subgroup-
aware optimal-threshold attack. In their setup, they
have one fixed dataset containing four subgroups that
we denote as “0-0”, “0-1”, “1-0”, “1-1”, where the first
number indicates simulated demographic group and the
second number the class y (we refer to the original
work [6] for details). The subgroups have 50, 450, 1000,
and 1000 examples, respectively, with the total dataset
size of 2500 examples. Following Chang and Shokri, we
randomly subsample training datasets of size 1250 from
the full dataset, and train one model on each. As be-
fore, we “train” a data-independent model. In this ex-
periment, we only use threshold attacks due to the small
size of the dataset (see Section 7 for more details). We
use the anova F-test as described in Section 5.1 to de-
termine whether any of the subgroups have differing sub-
group vulnerabilities.

Fig. 5 shows that significant null-model bias of the
optimal-threshold attack also appears on this dataset
(F-test p < 0.001). In particular, the subgroup vulnera-
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Fig. 4. Null-model bias of methods to estimate disparate vul-
nerability. Disparity in percentage points (y-axis) vs. size of the
treatment subgroup in the training data (x-axis). Computed on
synthetic datasets with fixed control subgroup (1000 examples)
.The target training algorithm is data-independent: actual MIA
vulnerability, subgroup vulnerabilities, and disparity in vulnerability
are all zero. The error bars represent the variation across 200
model-specific estimates. The diamond marker (♦) means that an
estimate significantly differs from zero with p < 0.001.

bility for the smallest subgroup “0-0” with 50 examples
appears as 4%. At the same time, the estimates from
the average-threshold attack are centered around 0 and
do not significantly differ (F-test p ≈ 0.1), suggesting
no null-model bias.

This bias, however, should not affect the conclusions
by Chang and Shokri [6]. Rather than directly using
the estimates of subgroup vulnerability, their analysis
used differences in estimates of subgroup vulnerability
between two models (a “fair” and a “regular” model).
In their particular scenario, the bias introduced by the
estimation should be cancelled out in the final difference.
Although the conclusions of Chang and Shokri should
not be affected by the bias, estimation methods such as
the optimal-threshold attack should be avoided when
evaluating disparate vulnerability in general.

Biased estimator in a prior version. A pre-print
version of our work1 used a vulnerability estimation
method that, like the optimal-threshold attack, lever-
aged information about the training dataset of the tar-
get model. This estimator was therefore biased, and so
were the numerical results of that version.

Takeaways. Biased estimators of vulnerability can
result in consistent overestimation of disparity if the
bias correlates with subgroup parameters. The shadow-

1 https://arxiv.org/abs/1906.00389v2
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Fig. 5. Null-model bias on the synthetic data setup from Chang
and Shokri [6]. Estimate of disparity in percentage points (y-
axis) vs. subgroup (x-axis). The target training algorithm is
data-independent, thus actual MIA vulnerability, subgroup vulner-
abilities, and disparity in vulnerability are all zero.

model attack does not have such bias as it does not
have access to any information about a specific target.
Interestingly, the average-threshold attack, despite us-
ing an additional piece of knowledge that goes beyond
our adversarial model, also does not exhibit such bias.
On the contrary, the optimal-threshold attack produces
significantly biased estimates for small groups.

Our results show the need to evaluate bias of the
estimation method when measuring disparate vulnera-
bility. To this end, we proposed to measure null-model
bias, which detects bias when the worst-case vulnerabil-
ity is zero. This test does not preclude a method from
having bias if the worst-case vulnerability is larger. How-
ever, in practice MIA vulnerability has been shown to
be relatively low.

5.3 Does Disparate Vulnerability Exist in
ML Models?

Having established suitable methods for measuring dis-
parate vulnerability, we apply them in a synthetic setup,
and show that disparate vulnerability arise in practice.

Setup. To capture the effect of subgroup size in the
training data, we create several experiments with dif-
ferent subgroup proportions. Within each experiment,
we sample 200 dataset pairs Si and S̄i from our data
distribution. In each dataset, the size of the control
subgroup is fixed at 2500, and we vary the size of
the treatment subgroup between experiments: 100, 500,
1000, and 2500. We estimate subgroup vulnerabilities us-
ing the subgroup-aware shadow-model attack (see Sec-

arxiv.org/abs/1906.00389v2
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Fig. 6. Disparate vulnerability vs. subgroup representation in a
training dataset. The y-axis represents disparity in vulnerability
between the treatment group z and control group z′ whose size
is fixed to 2500, in percentage points. The error bars represent
the variation across 200 model-specific estimates. Statistical
significance markers: p < 0.001 (♦), p < 0.01 (◦), p ≥ 0.01 (·).

tion 5.2), because this attack is guaranteed to not have
null-model bias. As before, we use W = (`(AS , X), Z) as
adversary’s features. To train shadow models, we inde-
pendently sample 30 fresh datasets from our data distri-
bution. We use t-tests to determine whether measured
disparity is statistically significant (see Section 5.1).

Targets. We evaluate the following model families: lo-
gistic regression, and two ReLU neural networks with
one hidden layer containing 8 and 32 neurons, respec-
tively. We use the scikit-learn library [34] to train these
models. All our models attain close to 100% test accu-
racy in our synthetic data setup.

Results. The results in Fig. 6 show that ML mod-
els can exhibit disparate vulnerability, even on a simple
dataset. For all treatment sizes and targets, our esti-
mates of disparity are significant (p < 0.001), with the
exception of the logistic regression when the treatment
subgroup is relatively well-represented (500 – 2500 ex-
amples). We also see that the sample size of the sub-
group plays an important role in disparate vulnerability:
the less represented is a group in the training data, the
higher the disparate vulnerability as compared to a better
represented group. Even though the sample size seems
to be the dominant effect, we observe small but signif-
icant disparate vulnerability even when the subgroups
are equally represented in training.

6 Mitigating Disparate
Vulnerability

We study whether existing methods for addressing pri-
vacy and fairness in ML prevent disparate vulnerability.

6.1 Fairness Constraints

Due to the dependency of disparate vulnerability on the
disparate behavior of the model across subgroups, min-
imizing the between-subgroup discrepancy in any given
property, such as model’s outputs or loss [11], intuitively
could decrease disparate vulnerability.

Formally, let us denote by gapπ the total-variation
distance between distributions of some property of a
model π(AS , x) on examples coming from two subgroups
z and z′:

gapπ , dTV

 Pr
S∼Dn

x∼(D|z)

[π(AS , x)], Pr
S∼Dn

x∼(D|z′)

[π(AS , x)]


Certain notions of algorithmic fairness upper bound, or
are equivalent to, the above gap given an appropriate
choice of the property function: if we choose the model
property to be its outputs, then for π(AS , x) = AS(x),
we obtain demographic parity [14]. Similarly, for the
0-1 loss property of the model, choosing π(AS , x) =
1[AS(x) = y(x)] gives us accuracy equality [4].

In practice, a notion of fairness is satisfied on the
training dataset rather than the whole data distribution.
To capture this, we define an in-training gap as follows:

gapπS , dTV

 Pr
S∼Dn

x∼(S|z)

[π(AS , x)], Pr
S∼Dn

x∼(S|z′)

[π(AS , x)]


The following proposition establishes that, if the in-

training gap is bounded and the model generalizes its
fairness condition well, then vulnerability disparity is
bounded to adversaries that use the property addressed
by the fairness notion:

Proposition 4. Suppose a subgroup-aware adversary
uses features (W,Z), and the following two conditions
are satisfied:
1. Fairness on the training data: gapφW

S ≤ γ
2. Fairness generalization: |gapφW − gapφW

S | ≤ δ
Then, the magnitude of disparity in worst-case vulnera-
bility is bounded as follows:

|∆Vz,z′(A∗W,Z)| ≤ 2γ + δ
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Fig. 7. Effect of algorithmic-fairness constraints on disparate vulnerability. The vulnerability is estimated with subgroup-aware attacks
that use models’ outputs as the feature (left), and the models’ loss (right). The results for logistic regression are provided for reference
(its values here are not comparable with the results of other experiments as the data dimensionality is different). See Fig. 6 caption for
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We defer the proof to Appendix A.
We note that these guarantees only apply to ad-

versaries targeting the features addressed by imple-
mented the fairness notion. In other words, just as in
algorithmic-fairness literature where no single fairness
measure is appropriate in a general context [17], no one
fairness measure can provide guarantees for bounding
disparate vulnerability for any adversary.

6.1.1 Empirical Evaluation

Fairness notions. To validate the theoretical re-
sults, we estimate vulnerability of models that satisfy
two algorithmic-fairness notions: First, demographic par-
ity [14] which ensures that distributions of model out-
puts between demographic subgroups are close: gapφŶ ≈
0. Second, equalized odds, which ensures that true-
positive rates and false-positive rates between the sub-

groups are close [19]. We choose these notions as they
are common in the literature, and there exist efficient
algorithms and tooling for producing classifiers that sat-
isfy them. To train the classifiers, we use the thresh-
old post-processing approach [19] from the fairlearn li-
brary [5], applied to a logistic regression classifier.

Setup. Within the setup of Section 5.3, we run the
following two experiments:

E1 We fulfill the requirements of Proposition 4. For this,
we estimate vulnerability using features equalized
by demographic parity: W = (Ŷ , Z). By Proposi-
tion 4, we expect low disparity in vulnerability for
both classifiers as long as they generalize their fair-
ness property well. In Appendix A, we show that in
our data setup equalized odds implies demographic
parity, thus the theoretical guarantee also applies
for equality of odds.
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E2 We estimate vulnerability using adversary’s features
W = (`(AS , X), Z) which do not match what the
fairness property does, so the requirements of Propo-
sition 4 are not fulfilled.

We find that with 100 dimensions in our setup, the
threshold-optimization algorithm produces models that
classify the data with 100% accuracy and no vulnerabil-
ity. To demonstrate a setting where disparate vulnerabil-
ity arises, we deviate from the parameters of Section 5.3
and use the synthetic dataset with 10 dimensions.

Results. We present the results in Fig. 7. For E1, we
see that demographic parity decreases disparate vulner-
ability compared to standard logistic regression. This
empirically confirms Proposition 4. For E2, as expected,
both equalized odds and demographic parity do not com-
pletely prevent disparate vulnerability. Yet, they do de-
crease its magnitude by 3× compared to the standard
logistic regression.

In our particular setup, the constrained models do
not perform worse than the unconstrained models. In
general, however, fairness notions can be inherently at
odds with accuracy [44].

6.2 Differentially Private Training

In this section, we look at how learning with differential
privacy [13] relates to disparity in vulnerability. We use
the basic notion of differential privacy:

Definition 6. Training algorithm A satisfies ε-
differential privacy (DP) if for any two datasets S, S′

differing by the records of one individual, for any set of
models T :

Pr[AS ∈ T ] ≤ exp(ε) Pr[AS′ ∈ T ]

DP training limits the contribution of any individual in
the dataset to the model training. Thus, DP should de-
crease vulnerability to MIAs. In particular, Yeom et al.
[43], Chatzikokolakis et al. [7] and Humphries et al. [21],
showed the advantage of a MIA adversary is bounded
by DP in the setting of the MIA game. For example:

Proposition 5 (Adapted from Yeom et al. [43]). If
the training algorithm satisfies ε-DP, the worst-case vul-
nerability with any adversary’s features W is bounded:

V (A∗W ) ≤ exp(ε)− 1 (12)

These guarantees extend to disparate vulnerability:

Proposition 6. If the training algorithm satisfies ε-
DP, the worst-case subgroup vulnerability of any z, as
well as magnitude of vulnerability disparity between any
subgroups z and z′, are uniformly bounded for any ad-
versary’s features W :

Vz(A∗W ) ≤ exp(ε)− 1,
∣∣∆Vz,z′(A∗W )

∣∣ ≤ exp(ε)− 1
(13)

We defer the proof to Appendix A.

6.2.1 Empirical Evaluation

To study how DP affects disparate vulnerability we train
DP models with different privacy levels. As target mod-
els, we use DP logistic regression with private empirical
risk minimization [8], trained using the diffprivlib [20]
implementation. We use a min-max scaler, and provide
a maximum row norm estimated on a separate sam-
ple from the data distribution. We use privacy levels
ε = 0.1, 1, 2, 10.

We see in Fig. 8 that, for all evaluated values of ε,
DP training considerably reduces disparity compared to
the non-private logistic regression, with statistical tests
not detecting significant deviations from 0.

On the downside, unlike training with fairness con-
straints, DP training results in a significant decrease in
accuracy of the models: from 45 p.p. to 5 p.p. drop de-
pending on the value of ε.

6.3 Takeaways

Fairness only bounds disparate vulnerability in certain
scenarios. Even when the classifier’s fairness property
generalizes beyond the training set, the bound is re-
stricted to the adversarial strategy covered by the cho-
sen fairness notion. Covering one adversarial strategy,
however, is a weak security guarantee: the model could
be (disparately) vulnerable to other strategies. More-
over, it is known that different fairness constraints are at
odds with each other [17]. Hence, a model protected by
one fairness notion may be inherently insecure against
adversaries exploiting non-protected features.

Differential privacy bounds disparate vulnerability.
We show that DP provides an upper bound on the vul-
nerability of all individuals, subgroups, and therefore
on disparate vulnerability too. On the flip side, because
DP guarantees are often at odds with accuracy, in prac-
tical applications ε is usually set high, allowing for a lot
of variation within the upper bound of Proposition 6.
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Practically, the particular approach to DP training that
we evaluated has mitigated disparity even with a high
privacy level ε = 10 that results in vacuous theoretical
bounds, but at significant accuracy costs.

7 Evaluation on Real-World Data
To investigate if we can detect disparate vulnerability
in a realistic setting, we use the following two datasets
as case studies:

– adult dataset [25]. The dataset contains 48,842 ex-
amples from the 1994 Census database2. The task is
to determine if a yearly salary is over/under $50K.
It contains attributes such as age, sex, education,
race, native country, etc. After one-hot encoding,
the dataset contains 91 features. We use the race
column as the subgroup attribute.

– texas-50K dataset.We create this dataset based on
2013 Texas Hospital Discharge data3. As our evalu-
ation setup is computationally expensive, to accom-
modate the same training algorithms as used in the
synthetic data experiments, we randomly subsample
50,000 examples, and reduce the number of features
for training. We use the following columns: type of
admission, illness severity, mortality risk, principal
diagnosis code (out of more than 6000 codes, we only
keep the top 1000 and create one separate code for
the rest), length of stay, and patient’s demographic
attributes: sex, race, ethnicity. After one-hot encod-
ing, we have 1025 features. We use the race column
as the subgroup attribute. As a task, analogously
to the adult dataset, we use prediction of whether
the total amount of charges is greater than a thresh-
old (e.g., for health-insurance risk-scoring). As the
threshold we pick the median total charges on the
subsampled dataset.

Table 1 provides details about the subgroups.

Target models. We consider as target models logistic
regression and neural networks with 8 and 32 neurons
in the hidden layer (Section 5.3), logistic regression with
fairness constraints (Section 6.1), and differentially pri-
vate logistic regression with ε values 1, 2, and 10 (Sec-

2 https://archive.ics.uci.edu/ml/datasets/adult
3 https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm

Table 1. Subgroup representation in the datasets.

Dataset z Size

adult “White” (WH) 38,903
“Black” (BL) 4,228
“Asian-Pac-Islander” (AI) 1,303
“Amer-Indian-Eskimo” (AE) 435
“Other” (OT) 353
All 48,842

texas-50K 4 31,514
5 10,883
3 6,451
2 1,019
1 133
All 50,000

tion 6.2). All the models beat the random accuracy base-
line on the tasks.

Estimation method. As opposed to our synthetic
data setup in which datasets to train shadow models can
be directly sampled from the data-generating distribu-
tion, when real data is involved we can only sample data
from the available finite dataset. We split the dataset in
two parts: one for training of the shadow models, and
one for evaluation of vulnerability [39]. As a result, the
amount of available training data is greatly reduced, in
particular, for minority subgroups that already have few
representatives in the dataset. To avoid this problem, in
this section we use the average-threshold attack for vul-
nerability estimation, which does not require training
shadow models. Our evaluation in Section 5.2 showed
that this attack is not null-model biased.

Setup. To train each target model, we randomly sub-
sample 50% of the dataset to use for training (Si), and
hold out the remaining data (S̄i). We train 200 models
for each model family on different splits of the dataset.
For our statistical tests (see Section 5.1), we use α = 0.01
as significance level.

Results. We summarize the results in Table 2. As in
our synthetic experiments, we observe evidence of dis-
parity in neural networks. Importantly, the results show
that low vulnerability in absolute terms does not imply
absence of disparity. On adult, the 8-neuron network
shows relatively low 0.4% vulnerability but statistically
significant disparity (p < 10−4). Interestingly, on texas-
50K, we also see statistical evidence of disparate vulner-
ability for logistic regression with demographic-parity
constraints, although its overall vulnerability of 1.46%
is comparable to standard logistic regression.

https://archive.ics.uci.edu/ml/datasets/adult
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
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Table 2. Summary of models performance and vulnerability on adult and texas-50K. Columns: Disparity test: p-value of the anova
F-test that checks if any of the subgroups have differing subgroup vulnerabilities, Test acc.: Test accuracy of models, Gen. gap: Per-
model difference between train accuracy and test accuracy, Vuln.: Aggregate vulnerability V (A). Bold font indicates models that have
statistically significant disparity (p < 0.01).

adult Disparity test Test acc. Gen. gap Vuln., %
p avg std avg std avg std

Model

Logistic Regression (LR) 0.3230 0.8404 0.0018 0.0012 0.0034 0.0942 0.4093
8-Neuron NN 0.0000 0.8421 0.0018 0.0044 0.0033 0.4052 0.3927
32-Neuron NN 0.0000 0.8410 0.0019 0.0131 0.0033 1.1373 0.4178
DP LR, ε = 1 0.8534 0.7797 0.0135 0.0006 0.0040 0.0830 0.3478
DP LR, ε = 2 0.0500 0.8053 0.0076 0.0004 0.0036 0.0563 0.3360
DP LR, ε = 10 0.0419 0.8321 0.0023 0.0011 0.0032 0.0888 0.4100
Fair LR (Dem. Parity) 0.8945 0.8267 0.0018 0.0011 0.0035 0.0980 0.3331
Fair LR (Equalized Odds) 0.7089 0.7941 0.0095 0.0006 0.0038 0.0782 0.3521

texas-50K Disparity test Test acc. Gen. gap Vuln., %
p avg std avg std avg std

Model

Logistic Regression (LR) 0.2666 0.7833 0.0021 0.0152 0.0036 1.3905 0.4374
8-Neuron NN 0.0112 0.8836 0.0068 0.0282 0.0055 2.2384 0.5916
32-Neuron NN 0.0000 0.8639 0.0060 0.0686 0.0060 6.6238 0.7212
DP LR, ε = 1 0.6192 0.6175 0.0191 0.0002 0.0045 0.0540 0.4317
DP LR, ε = 2 0.0522 0.6363 0.0136 0.0014 0.0040 0.2125 0.3916
DP LR, ε = 10 0.9737 0.7114 0.0146 0.0038 0.0041 0.5224 0.3245
Fair LR (Dem. Parity) 0.0078 0.7609 0.0028 0.0143 0.0039 1.2393 0.3444
Fair LR (Equalized Odds) 0.7174 0.7477 0.0180 0.0133 0.0038 1.4676 0.3983

For the models with F-test p < 0.01, we conduct
follow-up post-hoc tests to see which particular pairs of
subgroups have high disparity (we defer the detailed re-
sults of the post-hoc tests to Appendix B). On adult,
consistently with our synthetic experiments, the smaller
subgroups “Asian-Pac-Islander” (AI, 1,302 examples),
and “Other” (OT, 353 examples), exhibit disparity be-
tween themselves and other more populous subgroups.
On texas-50K, almost all subgroup pairs exhibit signif-
icant disparity for 32-neuron network.

The results for the logistic regression with fairness
constraints are unlike the synthetic experiments. As op-
posed to a minority subgroup, as in the previous results,
disparity appears between the most populous subgroup
“4” (31,514 examples) and subgroups “2”, “3” and “5”.
This disparity does not exist in the standard logistic
regression. Thus, this result shows that fairness con-
straints can introduce disparity when the conditions of
Proposition 4 are not met.

Discussion. We have used binary classification tasks
for compatibility with the fairness definitions, but we
expect disparity to be more pronounced in multi-class
settings. As detailed in Section 4.4, disparate vulnera-
bility is bound to happen whenever a model does not

faithfully learn the distributional properties of the data
for some subgroups. Prior research suggests it is likely
to appear when the task has many features, or many
classes in the case of classification [37].

We also only considered relatively small dataset
sizes. Bigger datasets, on the one hand, enable better
learning of the models thus decreasing vulnerability and
disparate vulnerability, but on the other hand, they
would enable the adversary to use shadow-model at-
tacks that could provide better results than the average-
threshold attack used in our experiments.

We leave investigations of the effect of th number
of classes and dataset size on disparate vulnerability for
future work.

8 Conclusions
We have provided the first formal analysis of the dis-
parate vulnerability of population subgroups to mem-
bership inference attacks. Our analysis provides new in-
sights into why and when vulnerability to MIAs arises
and why and when these attacks have disparate impact.
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Key takeaways. The first key learning of our study
is that fully preventing MIAs, and thus preventing dis-
parate vulnerability can only be done in two ways. Ei-
ther by significantly increasing the complexity of the
learning problem to ensure distributional generalization;
or using a differentially-private training algorithm with
the associated hit on performance.

The second learning surfaces a more general prob-
lem: the consequences of the unreliability of privacy es-
timation for demographic groups with a minority repre-
sentation in the data. We show that for small subgroups
it is easy to incorrectly estimate their protection indi-
rectly via aggregate privacy measures, or directly when
not considering biases adequately.

Why disparate vulnerability is important. Dis-
parate vulnerability has crucial legal and policy signif-
icance. Companies moving data between organizations
or across borders face frictions designed to protect fun-
damental rights established by the approximately 140
countries with largely conceptually and textually similar
privacy regulation around the world [18]. For example,
moving data from Europe into a country with significant
state surveillance apparatus, such as the United States,
is difficult after the European Court of Justice’s judge-
ment in Schrems II. Other countries, such as several in
South Asia, have established specific personal data lo-
calization laws [3]. As a consequence, there is growing
interest in attempting to replace a direct trade in per-
sonal data with various forms of trade in models trained
on this data.

Yet vulnerability of models to MIAs or other at-
tacks compromising confidentiality might in some situ-
ations qualify models themselves as personal data [42].
The accountability principle in European data protec-
tion law places the onus on data controllers to demon-
strate that a model should not be classified this way,
for example through privacy-estimation techniques. Our
study indicates there is a real risk of “privacy-washing”,
laundering a model with aggregate statistics that mask
vulnerabilities of subgroups. It is true that prior work
has also indicated that aggregate analysis can hide MIA
vulnerability to attacks focusing on structurally vulner-
able records [29]. However, this appears easier to dis-
miss as an acceptable residual leakage risk compared to
disparate risks concerning members of salient minority
groups, as in a liberal democracy, a regulator is more
accountable towards these than towards a socially arbi-
trary selection of persons.

Open challenges. Our results also uncover a new chal-
lenge. It is difficult for auditors or regulators to practi-

cally inspect disparate vulnerability, because they might
lack a sufficient number of examples relating to a minor-
ity group. When the subgroup data is scarce, our meth-
ods could be underpowered to detect disparity; however,
not using the statistical tests and unbiased estimation
methods from Section 5 risks flagging disparity always
whenever subgroup data differ, devaluing the meaning
of the estimate.

This points to a need for theoretical results that can
be used as foundation in practical regulatory contexts.
Theoretical results may be able to help regulators better
ascertain the limits of metrics presented to them, and
the conditions under which a model is structurally likely
to be vulnerable to different types of privacy attacks
even without difficult-to-obtain empirical evidence. The
initial results provided in this paper can already signifi-
cantly contribute to discussions around the classification
of machine learning systems in relation to their risk of
data leakage as business practices of using models to
transport information continue to evolve.
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A Proofs
In this section we provide the omitted proofs.

A.1 Regular vs. Subgroup-Aware
Vulnerability

Proof of Proposition 1. Recall that the Bayes adversary
uses a Bayes-optimal classifier that maximizes the suc-
cess probability (i.e., vulnerability) among all the pos-
sible classifiers. That is, for the regular and subgroup-
aware adversaries, we have respectively:

V (A∗W ) = max
g:W 7→{0,1}

Pr[g(Ŷ ) = M ]

V (A∗W,Z) = max
g:W×Z 7→{0,1}

Pr[g(Ŷ , Z) = M ] .

Let F = {f | f = g ◦ h, h(w, z) = w, g : W 7→ {0, 1}};
that is, F is the set of functions f : W × Z 7→ {0, 1}
that first reduce the tuple (w, z) to w and then apply a
function g to the remaining input. Clearly, F ⊂ {g | g :
W× Z 7→ {0, 1}}.

Then, to prove this proposition it suffices to observe
that the regular adversary is equivalent to a subgroup-
aware one restricted to the set of functions F .

V (A∗W,Z) = max
g:W×Z7→{0,1}

Pr[g(w,Z) = M ]

≥ max
f∈F

Pr[f(w,Z) = M ]

= max
g:W 7→{0,1}

Pr[g(w) = M ]

= V (A∗W ) .

A.2 Subgroup Vulnerability

To prove Proposition 3, we use the following statement:

Proposition 7. For any two discrete probability mea-
sures µ and µ′ the following holds:∑

x:µ(x)>µ′(x)

[
µ(x)− µ′(x)

]
= 1

2 ||µ− µ
′||1.

Proof. First, observe:

1
2 ||µ− µ

′||1 = 1
2
∑
x

|µ(x)− µ′(x)|

= 1
2

∑
µ(x)>µ′(x)

(µ(x)− µ′(x))

− 1
2

∑
µ(x)≤µ′(x)

(µ(x)− µ′(x)).

Rearranging and grouping the terms, we get:

= 1
2

( ∑
µ(x)>µ′(x)

µ(x)−
∑

µ(x)≤µ(x)

µ′(x)

−
∑

µ(x)>µ′(x)

µ′(x) +
∑

µ(x)≤µ′(x)

µ′(x)
)

=
∑

x:µ(x)>µ′(x)

[
µ(x)− µ′(x)

]

Proof of Proposition 3. We provide a proof for the case
of discrete features W . The proof is analogous in the
case of absolutely continuous W . Note that for discrete
measures µ and µ′, dTV(µ, µ′) = 1

2 ||µ− µ
′||1.

For convenience, let us define feature gaps as fol-
lows:

gap(w) , µ1(w)− µ0(w)
gapz(w) , µ1,z(w)− µ0,z(w)

Adversary’s success for a subgroup has the following
form that is useful for our proof:

2 Pr[Att∗(W ) = M | Z = z]− 1 =
= Pr[Att∗(W ) = 1 |M = 1, Z = z]
− Pr[Att∗(W ) = 1 |M = 0, Z = z]

=
∑

w:Att∗(w)=1

µ1,z(w) +
∑

w:Att∗(w)=1

µ0,z(w)

=
∑

w:µ1(w)>µ0(w)

[
µ1,z(w)− µ0,z(w)

]
=

∑
w:gap(w)>0

gapz(w)

(14)
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Table 3. Results of post-hoc tests on adult models. Columns: z and z′: identifiers of subgroups, t: value of the t statistic, p: uncor-
rected p-value, p-corr.: p-value after the correction for multiple comparisons.

NN-8 z z′ t p p-corr.

0 AE AI -4.4298 0.0000 0.0001
1 AE BL 0.5143 0.6076 0.6751
2 AE OT -1.7468 0.0822 0.1174
3 AE WH 0.0498 0.9604 0.9604
4 AI BL 8.8677 0.0000 0.0000
5 AI OT 1.8976 0.0592 0.0987
6 AI WH 8.9236 0.0000 0.0000
7 BL OT -2.6402 0.0089 0.0224
8 BL WH -1.3443 0.1804 0.2255
9 OT WH 2.3290 0.0209 0.0417

NN-32 z′ z′ t p p-corr.

0 AE AI -11.3216 0.0000 0.0000
1 AE BL 0.9595 0.3385 0.3761
2 AE OT -4.1972 0.0000 0.0001
3 AE WH 0.5655 0.5724 0.5724
4 AI BL 24.1213 0.0000 0.0000
5 AI OT 6.1285 0.0000 0.0000
6 AI WH 25.4526 0.0000 0.0000
7 BL OT -6.4301 0.0000 0.0000
8 BL WH -1.2845 0.2005 0.2506
9 OT WH 6.1996 0.0000 0.0000

First, suppose that Z /∈W . Consider the following set:

C , {w | gap(w) > 0} = {w | µ1(w) > µ0(w)}

For a given z, the set C is a union of two other disjoint
sets A and B; C = A ∪B:

A = {w | µ1,z(w) ≤ µ0,z(w) ∧ µ1(w) > µ0(w)}
B = {w | µ1,z(w) > µ0,z(w) ∧ µ1(w) > µ0(w)}

Thus, the sum in Eq. 14 can be decomposed into∑
A gapz(w) +

∑
B gapz(w), where∑

A

gapz(w) =
∑

gapz(w)≤0∧···

gapz(w) ≤ 0

0 ≤
∑
B

gapz(w) ≤
∑

gapz(w)>0

gapz(w) = 1
2 ||µ1,z − µ0,z||1

The last equality is by Proposition 7. Applying this
bound to Eq. (14) we obtain the sought Eq. (5).

Second, suppose that Z ∈ W . Let w = (· · · , z′).
If z′ 6= z, then gapz(w) = 0, and so we only need to
consider the case z′ = z. In this case:

1[gap(w) > 0] = 1[µ1(w) > µ0(w)]
= 1

[
µ1,z(w) · Pr[z] > µ0,z(w) · Pr[z]

]
= 1[gapz(w) > 0].

After plugging this into Eq. (14), we obtain the equality
in Eq. (6) by Proposition 7.

A.3 Bounds on Disparity From
Algorithmic Fairness

Proof of Proposition 4. First, observe that a combina-
tion of the two conditions implies:

gapφW = dTV(µ0,z, µ0,z′) ≤ γ + δ

By this implication and the triangle property of total
variation we have that:

dTV(µ0,z′ , µ1,z′) ≤ dTV(µ1,z′ , µ0,z) + dTV(µ0,z, µ0,z′)

≤ dTV(µ1,z′ , µ0,z) + γ + δ

Applying the triangle inequality to the underlined term:

dTV(µ1,z′ , µ0,z) ≤ dTV(µ0,z, µ1,z) + dTV(µ1,z, µ1,z′)

≤ dTV(µ0,z, µ1,z) + γ

Combining the two,

dTV(µ0,z′ , µ1,z′)− γ − δ ≤ dTV(µ1,z′ , µ0,z)

≤ dTV(µ0,z, µ1,z) + γ

Implying:

Rz′(φW , dTV)−Rz(φW , dTV) ≤ 2γ + δ

If we apply the previous steps analogously we can also
obtain:

dTV(µ0,z, µ1,z)− γ − δ ≤ dTV(µ1,z, µ0,z′)
≤ dTV(µ0,z′ , µ1,z′) + γ

Thus,

Rz(φW , dTV)−Rz′(φW , dTV) ≤ 2γ + δ

Combining the inequalities, we get:

|Rz(φW , dTV)−Rz′(φW , dTV)| ≤ 2γ + δ

By Corollary 3, we obtain the sought bound.
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A.4 Differential Privacy Bounds Subgroup
Vulnerability and Disparity

Proof of Proposition 6. Observe that the following
probability distributions are equivalent:

Pr
S′∼Dn−1

x∼(D|z)

[φW (AS′∪{x}, x)] ≡ Pr
S∼Dn

x∼(S|z)

[φW (AS , x)]

Pr
S′∼Dn−1

x∼(D|z)
x′∼D

[φW (AS′∪{x′}, x)] ≡ Pr
S∼Dn

x∼(D|z)

[φW (AS , x)] (15)

Notice that datasets S′ ∪ {x} and S′ ∪ {x′} differ by
the records of at most one individual. Therefore, for
any fixed dataset S′, the post-processing property of
differential privacy applies:

Pr
x∼(D|z)

[φW (AS′∪{x}, x)] ≤

≤ exp(ε) Pr
x∼(D|z)
x′∼D

[φW (AS′∪{x′}, x)]

Taking expectation over S′ of both sides, we obtain:

Pr
S′∼Dn−1

x∼(D|z)

[φW (AS′∪{x}, x)] ≤

≤ exp(ε) Pr
S′∼Dn−1

x∼(D|z)
x′∼D

[φW (AS′∪{x′}, x)]

By equivalence in Eq. (15):

Pr[W |M = 1, Z = z] ≤ exp(ε) Pr[W |M = 0, Z = z]

To get the bound on subgroup vulnerability, recall that
by Proposition 3 it is upper bounded by the total vari-
ation. Thus, for any set of feature values T :

Vz(A∗W ) ≤ sup
T⊆W

|Pr[W ∈ T |M = 1, Z = z]

− Pr[W ∈ T |M = 0, Z = z]|
≤ exp(ε)− 1

Applying Corollary 2, we also get the bound on disparity.

A.5 A Note on Equalized Odds vs.
Demographic Parity

Let us define equalized odds (EO). With probabilities
over the data distribution, a classifier satisfies EO if:

Pr[Ŷ | Y, Z = z] = Pr[Ŷ | Y,Z = z′]

In these terms, demographic parity is defined as the
following requirement for a classifier:

Pr[Ŷ | Z = Z] = Pr[Ŷ | Z = Z′]

In general, these two notions are not equivalent. In our
synthetic data setup (Section 5.2), however, it holds that
(a) the distributions of classes are the same across sub-
groups: Pr[Y | Z = Z] = Pr[Y | Z = Z′], and (b) the two
classes are balanced: Pr[Y = 1] = Pr[Y = 0] = 1/2. It is
easy to see that in this case, EO implies demographic
parity.

B Additional Tables
The rest of the appendix contains additional tables.
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Table 4. Results of post-hoc tests on texas-50K models. See Table 3 caption for details.

NN-32 z z′ t p p-corr.

0 1 2 -3.4973 0.0006 0.0007
1 1 3 0.2056 0.8374 0.8374
2 1 4 4.2820 0.0000 0.0000
3 1 5 3.0576 0.0025 0.0028
4 2 3 10.0174 0.0000 0.0000
5 2 4 21.2727 0.0000 0.0000
6 2 5 17.4069 0.0000 0.0000
7 3 4 21.8804 0.0000 0.0000
8 3 5 13.2434 0.0000 0.0000
9 4 5 -8.1600 0.0000 0.0000

LR (Dem. Parity) z′ z′ t p p-corr.

0 1 2 -1.2485 0.2133 0.3326
1 1 3 -1.1910 0.2351 0.3326
2 1 4 -2.4808 0.0139 0.0348
3 1 5 -0.9385 0.3491 0.3879
4 2 3 0.3151 0.7531 0.7531
5 2 4 -3.4931 0.0006 0.0020
6 2 5 1.1152 0.2661 0.3326
7 3 4 -8.8594 0.0000 0.0000
8 3 5 1.6787 0.0948 0.1896
9 4 5 12.8701 0.0000 0.0000

Table 5. Results on adult, disaggregated by subgroups, for models with disparity F-test p < 0.01.

Test acc. Gen. gap Subgroup vuln.
avg std avg std avg std

Model z

32-Neuron NN Amer-Indian-Eskimo 0.9028 0.0139 0.0115 0.0253 1.1701 4.8259
Asian-Pac-Islander 0.8165 0.0119 0.0693 0.0195 5.7713 2.6300
Black 0.9043 0.0049 0.0138 0.0086 0.8200 1.6261
Other 0.8881 0.0179 0.0492 0.0295 3.2550 5.1807
White 0.8338 0.0021 0.0109 0.0035 0.9773 0.4496

8-Neuron NN Amer-Indian-Eskimo 0.9042 0.0151 0.0041 0.0281 0.3701 4.7177
Asian-Pac-Islander 0.8264 0.0119 0.0223 0.0214 2.1320 2.7965
Black 0.9066 0.0047 0.0035 0.0093 0.1878 1.6152
Other 0.8913 0.0165 0.0149 0.0309 1.2805 5.6344
White 0.8345 0.0020 0.0039 0.0036 0.3535 0.4314

Table 6. Results on texas-50K, disaggregated by subgroups, for models with disparity F-test p < 0.01.

Test acc. Gen. gap Subgroup vuln.
avg std avg std avg std

Model z

32-Neuron NN 1 0.8699 0.0380 0.0791 0.0451 8.5188 8.2829
2 0.8644 0.0153 0.1013 0.0180 10.7429 3.0129
3 0.8498 0.0085 0.0855 0.0106 8.3947 1.6121
4 0.8644 0.0066 0.0637 0.0063 6.0331 0.8261
5 0.8708 0.0063 0.0697 0.0074 6.7288 1.0840

Fair LR (Dem. Parity) 1 0.6932 0.0562 -0.0010 0.0839 0.0075 8.9200
2 0.6934 0.0203 0.0095 0.0295 0.8381 2.9201
3 0.7323 0.0084 0.0143 0.0099 0.7667 1.1361
4 0.7771 0.0027 0.0155 0.0048 1.5751 0.4952
5 0.7384 0.0068 0.0106 0.0088 0.5997 0.8448
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