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Differentially Private Simple Linear Regression
Abstract: Economics and social science research often
require analyzing datasets of sensitive personal informa-
tion at fine granularity, with models fit to small subsets
of the data. Unfortunately, such fine-grained analysis
can easily reveal sensitive individual information. We
study regression algorithms that satisfy differential pri-
vacy, a constraint which guarantees that an algorithm’s
output reveals little about any individual input data
record, even to an attacker with side information about
the dataset. Motivated by the Opportunity Atlas, a high-
profile, small-area analysis tool in economics research,
we perform a thorough experimental evaluation of dif-
ferentially private algorithms for simple linear regression
on small datasets with tens to hundreds of records—a
particularly challenging regime for differential privacy.
In contrast, prior work on differentially private linear
regression focused on multivariate linear regression on
large datasets or asymptotic analysis. Through a range
of experiments, we identify key factors that affect the
relative performance of the algorithms. We find that al-
gorithms based on robust estimators—in particular, the
median-based estimator of Theil and Sen—perform best
on small datasets (e.g., hundreds of datapoints), while
algorithms based on Ordinary Least Squares or Gradi-
ent Descent perform better for large datasets. However,
we also discuss regimes in which this general finding
does not hold. Notably, the differentially private ana-
logues of Theil–Sen (one of which was suggested in a
theoretical work of Dwork and Lei) have not been stud-
ied in any prior experimental work on differentially pri-
vate linear regression.
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1 Introduction
The analysis of small datasets, with sizes in the dozens
to low hundreds of records, is crucial in many social
science applications. For example, neighborhood-level
household income, high-school graduation rate, and in-
carceration rates are all studied using sensitive datasets
that are subdivided into small, local units to allow
for fine-grained inspection (e.g., [12]). As datasets get
larger, they are subdivided more finely. Handling small
samples automatically and reliably is therefore crucial
even for working with big data. However, the release of
statistical estimates based on these data quantities—if
too many and too accurate—can allow reconstruction of
the original dataset [17]. The possibility of such attacks
led to differential privacy [19], a rigorous mathematical
definition used to quantify privacy loss. Differentially
private (DP) algorithms limit the information that is
leaked about any particular individual by introducing
random distortion. The amount of distortion, and its ef-
fect on utility, are most often studied for large datasets,
using asymptotic tools. When datasets are small, one
has to be very careful when calibrating differentially pri-
vate statistical estimates to preserve utility.

In this work, we focus on the prominent statisti-
cal task of simple (i.e., one-dimensional) linear regres-
sion, which is a workhorse of analysis in many social
science fields [16]. Our goal is to provide methodology
for performing differentially private linear regression in
practical applications. In particular, we are motivated
by the small-area regressions that underpin the high-
profile Opportunity Atlas [13]. We show that differen-
tially private linear regression can be accurate even on
small datasets. We will provide insight and guidance
into how to choose a DP algorithm for simple linear re-
gression in a variety of realistic parameter regimes. Our
work differs from previous work on differentially pri-
vate linear regression in its emphasis on small datasets
(previous works mostly focus on asymptotic theoretical
analysis) and in our evaluation on a real application.
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Even without a privacy constraint, small sample
sizes pose a problem for statistical inference, since the
variability from sample to sample, called the sampling
error, can overwhelm the signal about the underlying
trend. A reasonable concrete goal for a DP mechanism,
then, is that it not introduce substantially more uncer-
tainty into the estimate than the sampling error. Specif-
ically, we compare the noise added in order to maintain
privacy to the standard error of the nonprivate esti-
mate, obtained using Ordinary Least Squares (OLS).
Our experiments indicate that for a wide range of re-
alistic datasets and moderate values of the privacy pa-
rameter, ε, it is possible to choose a DP linear regression
algorithm that introduces distortion less than the stan-
dard error. In particular, in our motivating use-case,
the Opportunity Atlas [13], we provide a differentially
private algorithm, DPTheilSen, that matches or outper-
forms the heuristic method currently deployed, which
does not formally satisfy differential privacy.

We focus on univariate linear regression because,
as shown by the Opportunity Atlas deployment, choos-
ing the right algorithm for this basic task when data is
limited is a challenge. This problem remains a barrier to
adoption of differential privacy for many practical appli-
cations. While the univariate case may seem much sim-
pler than the higher dimensional cases studied in many
previous works, the algorithms that we show are com-
monly the best performing in the small dataset regime,
DPTheilSen and its variants, were not considered in
prior experimental work, including in the systematic
empirical evaluation conducted by Wang [29]. Prior
work focuses almost exclusively on the large dataset
regime, and our work shows that there is a fundamental
shift in the types of algorithms that should be consid-
ered in the small versus large dataset regimes. One of the
variants of Theil-Sen we consider, DPTheilSen1Match,
was proposed by Dwork and Lei [18], who gave a theo-
retical, asymptotic analysis of its accuracy. We are not
aware of any prior experimental evaluation of any of the
DPTheilSen variants.

2 Preliminaries

2.1 Differential Privacy

The algorithms in this paper satisfy differential privacy
(DP). Since our algorithms often include hyperparam-
eters, we state a definition of DP for algorithms that
take as input not only the dataset, but also the desired

privacy parameters and any required hyperparameters.
Let X be a data universe (e.g., R2 for simple linear re-
gression) and Xn be the space of datasets. Two datasets
d, d′ ∈ Xn are neighboring, denoted d ∼ d′, if they differ
on a single record. Let H be a hyperparameter space
and Y be an output space.

Definition 1 ((ε, δ)-Differential Privacy [19]). A ran-
domized mechanism M : Xn × R≥0 × [0, 1] × H → Y
is differentially private if for all datasets d ∼ d′ ∈ Xn,
privacy-loss parameters ε ≥ 0, δ ∈ [0, 1], hp ∈ H, and
events E ⊆ Y,

Pr[M(d, ε, δ, hp) ∈ E]
≤ eε · Pr[M(d′, ε, δ, hp) ∈ E] + δ,

where probabilities are taken over M ’s random coins.

For strong privacy guarantees, the privacy-loss param-
eter is typically taken to be a small constant less than
1 (note that eε ≈ 1 + ε as ε → 0), but we will some-
times consider larger constants such as ε = 8 to match
what was used in our motivating application (described
in Section 3).

2.2 Simple Linear Regression

In this paper, we consider the most common model
of linear regression: we are given n observations
x1, . . . , xn ∈ R of an explanatory variable and cor-
responding observations y1, . . . , yn ∈ R of a response
variable. We wish to find a slope α ∈ R and an in-
tercept β ∈ R such that, yi is well-approximated by
α · xi + β. Specifically, we consider the Ordinary Least
Squares (OLS) objective characterized by the following
optimization problem:

(α̂, β̂) = arg min
α,β∈R

‖y− αx− β1‖2, (1)

where x = (x1, . . . , xn)T , y = (y1, . . . , yn)T , and 1 is
the all-ones vector. This is the most commonly used
linear regression formulation in practice. Indeed, when
y is generated according to the model yi = α · xi + β +
ei,∀i ∈ [n] for i.i.d. Gaussian noise ei, then the OLS
solution is the maximum likelihood estimator for the
“ground truth” parameters α, β. Moreover, OLS has a
simple closed form solution:

α̂ = ncov(x,y)
nvar(x) and β̂ = ȳ − α̂x̄, (2)

where x̄ = 1
n

∑n
i=1 xi, ȳ = 1

n

∑n
i=1 yi, ncov(x,y) = 〈x−

x̄1,y− ȳ1〉, and nvar(x) = 〈x− x̄1,x− x̄1〉.
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In this paper, we focus on predicting the (mean of
the) response variable y at a single value of the explana-
tory variable x. For xnew ∈ R, the prediction at xnew is
defined as:

pxnew = αxnew + β

Let p̂xnew be the prediction at xnew computed using
the OLS estimates α̂ and β̂. The corresponding DP es-
timates will be denoted by p̃xnew . The quantities p̂xnew

and p̃xnew are random variables, where the randomness
is due to the sampling process and/or the noise added
to ensure privacy. After normalizing the independent
variable to lie in the interval [0, 1], we will be primarily
concerned with the predicted values at xnew = 0.25 and
0.75, which for ease of notation we denote as p25 and
p75, respectively. Correspondingly, we will use p̂25, p̂75
to denote the OLS estimates of the predicted values and
p̃25, p̃75 to denote the DP estimates. Note that comput-
ing both of these predicted values allows one to derive
the full simple linear regression model. In this paper, we
focus on the error on the predicted values rather than
the slope itself in order to compare directly with the Op-
portunity Atlas tool [12], described in Section 3, which
releases estimates of p25 and p75 for certain regressions
done for every census tract in each state. However, we
also discuss how the error on these predicted values re-
lates to the error on the slope.

2.3 Error Metric

In measuring the performance of different algorithms,
we will focus on high probability error bounds that can
be accurately estimated through Monte Carlo experi-
ments. Providing tight theoretical error bounds for DP
linear regression is an important direction for future
work. Since the relationship between the OLS estimate
p̂xnew and the true value pxnew is well-understood, we
focus on measuring the difference between the private
estimate p̃xnew and p̂xnew Specifically, we define the pre-
diction error at xnew to be |p̃xnew − p̂xnew |.

Note that the slope α can be computed as (p75 −
p25)/(0.75 − 0.25), and thus if we estimate the slope α̃
using differentially private estimates p̃75 and p̃25, the
error (compared to the OLS estimate α̂) will be at most
a constant factor larger than the prediction errors at .25
and .75:

|α̃− α̂| ≤ 2 · (|p̃75 − p̂75|+ |p̃25 − p̂25|).

Furthermore, in Section 7.3.2, we also experimentally
evaluate the error on the slope and find that the com-

parison between algorithms is very similar to what we
see for the point estimate errors.

For a dataset d ∈ Xn, xnew ∈ R, and q ∈ [0, 1], we
define the q error bound as

C(q)(d) = min {c : P(|p̃xnew − p̂xnew | ≤ c) ≥ q} ,

where the dataset d is fixed, and the probability is taken
over the randomness in the DP algorithm.

We empirically estimate C(q) by running many tri-
als of the algorithm on the same dataset d:

Ĉ(q)(d) = min{c : for at least q fraction of trials,
|p̃xnew − p̂xnew | ≤ c}.

We term Ĉ(q)(d), the q empirical error bound. We will
often drop the reference to d from the notation, but
note that the error metric |p̃xnew − p̂xnew | only accounts
for the randomness in the algorithm, not the sampling
error.

When the ground truth slope α and intercept β
are known (e.g., for synthetically generated data), we
can compute error bounds compared to the ground
truth, rather than to the non-private OLS estimate. So,
let Ctrue(q)(d) and Ĉtrue(q)(d) be similar to the error
bounds described earlier, except that the prediction er-
ror is measured as |p̃xnew − pxnew |. This error metric
accounts for the randomness in both the sampling and
the algorithm.

The standard error σ̂(p̂xnew ) is an estimate of the
standard deviation of p̂xnew , σ(p̂xnew ). We use the
following formula, which is an unbiased estimate of
σ(p̂xnew ) in the case where yi = α · xi + β + ei for all
i ∈ [n] and for i.i.d. Gaussian ei (see [30], for example):

σ̂(p̂xnew ) = ‖y− α̂x− β̂‖2√
n− 2

√
1
n

+ (xnew − x̄)2

nvar(x) . (3)

Even for non-Gaussian ei, it can be shown that the vari-
ance of (p̂xnew − pxnew )/σ̂(p̂xnew ) approaches 1 as n in-
creases.

When we say the noise added for privacy is less
than the sampling error, we are referring to the tech-
nical statement that Ĉ(0.68) is less than the standard
error, σ̂(p̂xnew ). 1 We stress that the methods we develop
do not require that the noise distribution be Gaussian;
the noise model assumption is only used to derive the
formula for the non-private standard deviation (Equa-
tion 3) that we use as a benchmark to compare against.

1 Note that without privacy and under an assumption of nor-
mally distributed noise, we expect Ĉ(0.68) to be roughly equal
to σ̂(p̂xnew ).
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3 Motivating Use-Case:
Opportunity Atlas

The Opportunity Atlas, designed and deployed by the
economics research group Opportunity Insights, is an
interactive tool designed to study the link between the
neighbourhood a child grows up in and their prospect
for economic mobility [12]. The tool provides valuable
insights to researchers and policy-makers, and has re-
ceived much press since its release (e.g., see coverage
by the New York Times [5]). It is built by linking two
data sources: Census data, protected under Title 13
and authorized by the Census Bureau’s Disclosure Re-
view Board, and federal income tax returns from the
US Internal Revenue Service. The Atlas provides indi-
vidual statistics on each census tract in the country,
with tract data often being refined by demographics to
contain only a small subset of the individuals who live
in that tract. The resulting datasets typically contain
100 to 400 datapoints, but can be as small as 30 data-
points. The response variable yi ∈ [0, 1] is the child’s
income percentile at age 35 and the explanatory vari-
able xi ∈ [0, 1] is the parent’s income percentile, each
with respect to the national income distribution. The
coefficient α in the model yi = α · xi + β + ei is a
measure of economic mobility for that particular Cen-
sus tract and demographic. The Atlas releases sepa-
rate estimates of p25 and p75 (the predicted values at
xnew = 0.25 and 0.75) for each census tract. The small
size of the datasets used in the Opportunity Atlas are
the result of Chetty et al.’s desire to study inequality at
the neighbourhood level. This fine granularity is crucial
to the predictive power of the tool, and for providing
insight for local policy makers. According to Chetty et
al., “the estimates permit precise targeting of policies
to improve economic opportunity by uncovering specific
neighborhoods where certain subgroups of children grow
up to have poor outcomes. Neighborhoods matter at a
very granular level: conditional on characteristics such
as poverty rates in a child’s own Census tract, char-
acteristics of tracts that are one mile away have little
predictive power for a child’s outcomes” [12].

This type of highly local and fine-grained analysis is
typical of social sciences, where one often wants to sub-
divide the population as finely as possible, subject to the
units having enough size for some particular statistical
analysis. Working at that sample size limit poses pri-
vacy risks, which makes it a challenging but important
regime for DP.

4 Robustness and DP Algorithm
Design

Simple linear regression is one of the most fundamental
statistical tasks with well-understood convergence prop-
erties in the non-private literature. However, finding a
differentially private estimator for this task that is ac-
curate across a range of datasets and parameter regimes
is surprisingly nuanced.

While there has been a significant amount of prior
work on differentially private linear regression, often
in even more general settings than we consider (such
as multivariate regression or even general convex op-
timization), our work appears to be unique in its fo-
cus on achieving high utility on small datasets. In-
deed, prior work has focused on asymptotic perfor-
mance (as the sample size n grows), giving either the-
oretical bounds with large or unspecified constants
(e.g., [6, 11, 18, 25, 26]) or experimental evaluation on
datasets of size at least n = 1, 000 (e.g., [25, 29]2). This
type of analysis makes it difficult to compare the rela-
tive performance of these algorithms on small datasets.
In contrast, we provide a thorough experimental evalua-
tion on datasets of size in the range n = 30 to 400 data-
points for the Opportunity Atlas use-case and n = 30 to
10, 000 on synthetically generated data. This regime re-
quires a fundamental change in the types of algorithms
that are considered.

As a first attempt to construct a differentially pri-
vate estimator for this task, one might consider the
global sensitivity [19]:

Definition 2 (Global Sensitivity). For a query
f : Xn → Rk, the global sensitivity is

GSf = max
d∼d′

‖f(d)− f(d′)‖1.

One can create a differentially private mechanism by
adding noise proportional to GSf/ε. Unfortunately, the
global sensitivity of p̂25 and p̂75 are both infinite (even
if we clip each (x, y) datapoint to lie within a bounded
range, like in the Opportunity Atlas use-case, the point
estimates p̂25 and p̂75 are unbounded). For the type
of datasets that we typically see in practice, however,
changing one datapoint does not result in a major
change in the point estimates. For such datasets, where

2 Wang [29] conducts one experiment with n = 506, but the
rest of the experiments use tens of thousands of datapoints.
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the point estimates are reasonably stable, one might
hope to take advantage of the local sensitivity:

Definition 3 (Local Sensitivity [23]). The local sen-
sitivity of a query f : Xn → Rk with respect to a
dataset d ∈ Xn is

LSf (d) = max
d∼d′

‖f(d)− f(d′)‖1.

Unfortunately, adding noise proportional to the local
sensitivity is typically not differentially private, since
the local sensitivity itself can reveal information about
the underlying dataset d ∈ Xn. There are several ap-
proaches in the DP literature that instead add noise
proportional to an appropriate upper bound on the lo-
cal sensitivity, such as through the smooth sensitivity
framework [23], a DP high-probability upper bound on
the local sensitivity [18], or more recent variants. It is an
interesting open problem to design a smooth sensitivity
algorithm for linear regression or to derive DP upper
bounds on the local sensitivity of linear regression that
are not too loose for our setting.

The Opportunity Insights (OI) algorithm takes a
heuristic approach by adding noise proportional to a
non-private, heuristic upper bound on the local sensi-
tivity of data from tracts in any given state. However,
their heuristic approach does not satisfy the formal re-
quirements of differential privacy, leaving open the pos-
sibility that there exists a realistic attack.

The OI algorithm incorporates a “winsorization”
step in their estimation procedure (e.g., dropping the
top and bottom 10% of data values). This sometimes
has the effect of greatly reducing the local sensitivity
(and also their upper bound on it) due to the possi-
ble removal of outliers. This suggests that for finding
an effective differentially private algorithm, we should
consider differentially private analogues of robust lin-
ear regression methods rather than of OLS. Specifically,
we consider Theil-Sen, a robust estimator for linear re-
gression proposed by Theil [28] and further developed
by Sen [24]. Similar to the way in which the median is
more robust to changes in the data than the mean, the
Theil-Sen estimator is more robust to changes in the
data than OLS .

Motivated by the above conditions, we consider
three differentially private algorithms based on both ro-
bust and non-robust methods:

DPSuffStats is the DP mechanism that most closely
mirrors OLS. It involves perturbing the sufficient statis-
tics ncov(x,y) and nvar(x) from the OLS computation.
This algorithm is related to the “Analyze Gauss” tech-

nique [20], which is the basis of some of the algorithms
considered by [25] and [29]. However, we deviate from
prior work in using Laplace noise, rather than Gaus-
sian noise, to ensure pure differential privacy rather than
approximate differential privacy. DPSuffStats has two
main benefits: it is as computationally efficient as its
non-private analogue, and it allows us to release DP
versions of the sufficient statistics with no extra privacy
cost.

DPTheilSen is a DP version of Theil-Sen. The
non-private estimator computes the p25 estimates
based on the lines defined by all pairs of datapoints
(xi, yi), (xj , yj) for all i 6= j ∈ [n], then outputs the
median of these pairwise estimates. To create a differ-
entially private version, we replace the median compu-
tation with a differentially private median algorithm.
We consider three DP versions of this algorithm which
use different DP median algorithms: DPExpTheilSen,
DPWideTheilSen, and DPSSTheilSen. We also consider
more computationally efficient variants that pair points
according to one or more random matchings, rather
than using all

(
n
2
)
pairs. A DP algorithm obtained by

using one matching was previously considered by Dwork
and Lei [18] (their “Short-Cut Regression Algorithm”).
Our algorithms can be viewed as updated versions of
their approach, reflecting improvements in DP median
estimation since [18], as well as incorporating benefits
accrued by considering more than one matching.

DPGradDescent is a DP mechanism that uses DP
gradient descent to solve the convex optimization prob-
lem that defines OLS: argminα,β ‖y−αx−β1‖2.We use
the private stochastic gradient descent technique pro-
posed by [6]. Versions that satisfy pure, approximate,
and zero-concentrated differential privacy are consid-
ered.

While a variant of DPTheilSen does appear in [18],
to the best of our knowledge it does not appear in any
experimental studies exploring differentially private al-
gorithms for linear regression. We find that DPTheilSen
is particularly effective in the small dataset regime, and
can significantly outperform other DP algorithms in this
regime.

5 Related Work
Linear regression is one of the most prevalent statisti-
cal methods in the social sciences, and hence has been
studied previously in the differential privacy literature.
These works have included both theoretical analysis and
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experimental exploration, with the majority of work fo-
cusing on large datasets.

One of our main findings — that robust estimators
perform better than parametric estimators in the differ-
entially private setting, even when the data come from
a parametric model — corroborate insights by Dwork
and Lei [18] with regard to the connection between ro-
bust statistics and differential privacy, and by Couch et
al. [15] in the context of hypothesis testing.

As discussed earlier, systematic studies of DP linear
regression have been performed in several prior works.
Sheffet [25] considered differentially private ordinary
least squares methods and estimated confidence inter-
vals for the regression coefficients. When we plug in pa-
rameters from our experiments3, Sheffet’s main algo-
rithm (OLS over projected data) requires n to be larger
than 431 at a minimum. Sheffet runs experiments on
synthetic datasets with sizes ranging from n = 103 to
n = 105, and on real datasets with sizes ranging from
n = 30, 000 to n = 70, 000. Sheffet’s algorithms per-
form well (i.e., they correctly reject the null hypothe-
sis with high probability) only once the dataset size n
is at least 10, 000. Wang [29] considered private ridge
regression, using techniques similar to output pertur-
bation [11]. Wang runs some experiments on synthetic
data with n ranging from 50 to 107 datapoints, but the
real dataset evaluations included are focused on large
datasets with n ranging from 500 to 583, 250 datapoints.
These previous works on DP linear regression present
methods and experiments for multi-dimensional data
(e.g., the datasets used in [29] contain at least 13 ex-
planatory variables), whereas we are concerned with the
one-dimensional setting and the small dataset regime.

A Bayesian approach to DP linear regression is
taken by Bernstein and Sheldon [7] which, unlike ours,
requires a prior on the distribution of both the regres-
sion coefficients and the independent variables. Zhang
et al. [31] and Awan and Slavkovic [4] study the func-
tional mechanism for linear regression, and Cai et al.
[10] provide sharp minimax bounds for linear regres-
sion under (ε, δ)-differential privacy constraints. But
these works do not pertain to the small dataset one-
dimensional regime.

In all of the works mentioned above, the theoretical
utility guarantees are asymptotic, and the experimental
results are focused on large datasets (i.e., with tens of
thousands of datapoints), so it is difficult to ascertain
the utility in the small dataset regime. None of the pre-

3 We set σx = 0.08, B = 1, ε = 1, δ = 10−6, and r = n.

vious experimental works have considered DPTheilSen
and its variants, which we find to be the best performing
set of algorithms in this challenging regime.

6 Algorithms
In this section we detail the practical differentially pri-
vate algorithms we will evaluate experimentally. Pseu-
docode for all efficient implementations of each algo-
rithm described can be found here or later on in the
Appendix, and real code can be found in our GitHub
repository: https://github.com/anonymous-conf/dplr.

6.1 DPSuffStats

In DPSuffStats (Algorithm 1), we add Laplace noise,
with standard deviation approximately 1/ε, to the OLS
sufficient statistics, ncov(x,y), nvar(x), and then use
the noisy sufficient statistics to compute the predicted
values. Note that this algorithm fails if the denominator
for the OLS estimator, the noisy version of nvar(x), be-
comes 0 or negative, in which case we output ⊥ (failure).
The probability of failure decreases as ε or nvar(x) in-
creases. DPSuffStats is the simplest and most efficient
algorithm that we will study. In addition, the privacy
guarantee is maintained even if we additionally release
the noisy statistics nvar(x) + L1 and ncov(x,y) + L2,
which may be of independent interest to researchers. We
also note that the algorithm is biased due to dividing
by a Laplacian distribution centered at nvar(x).

Lemma 4. For 0 ≤ rl ≤ ru, Algorithm 1
(DPSuffStats) is (ε, 0)-DP.

6.2 DP TheilSen

The non-private Theil-Sen estimator is a robust estima-
tor for linear regression. It computes the p25 estimates
based on the lines defined by all pairs of datapoints
(xi, yi), (xj , yj) for all i 6= j ∈ [n], then outputs the
median of these pairwise estimates. To create a differ-
entially private version, we can replace the median com-
putation with a differentially private median algorithm.
We implement this approach using three DP median al-
gorithms; two based on the exponential mechanism [21]
and one based on the smooth sensitivity of [23] and the
noise distributions of [9].

https://github.com/anonymous-conf/dplr
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Algorithm 1: DPSuffStats: (ε, 0)-DP Algo-
rithm
Data: {(xi, yi)}ni=1 ∈ (R× R)n

Privacy params: ε
Hyperparams: rl, ru
For all i ∈ [n], clip each xi, yi to [rl, ru]
Define ∆1 = ∆2 = r2

u· (1− 1/n)
Sample L1 ∼ Lap(0, 3∆1/ε)
Sample L2 ∼ Lap(0, 3∆2/ε)
if nvar(x) + L2 > 0 then

α̃ = ncov(x,y)+L1
nvar(x)+L2

∆3 = ru/n · (1 + |α̃|)
Sample L3 ∼ Lap(0, 3∆3/ε)
β̃ = (ȳ − α̃x̄) + L3
p̃25 = 0.25 · α̃+ β̃

p̃75 = 0.75 · α̃+ β̃

return p̃25, p̃75

else
return ⊥

In the “complete” version of Theil-Sen, all pair-
wise estimates are included in the final median com-
putation. A similar algorithm can be run on the point
estimates computed using k random matchings of the
(xi, yi) pairs. The case k = 1 amounts to the differ-
entially private “Short-cut Regression Algorithm” pro-
posed by Dwork and Lei [18]. This results in a more
computationally efficient algorithm.

We will focus mainly on k = n − 1, which we will
refer to simply as DPTheilSen and k = 1, which we will
refer to as DPTheilSenMatch. For any other k, we denote
the algorithm by DPTheilSenkMatch. In the following
subsections we discuss the different differentially private
median algorithms we use as subroutines. The pseudo-
code for DPTheilSenkMatch is found in Algorithm 2.

The lemma below relates the privacy guarantee of
Algorithm 2 to the privacy guarantee of the DP median
sub-algorithm, DPmed.

Lemma 5. If DPmed(z(p25), ε, (n, k, hp) =
M(z(p25), hp)) for some (ε/k, 0)-DP mechanism M,
then Algorithm 2 (DPTheilSenkMatch) is (ε, 0)-DP.

4 A maximal matching here is a subset of the edges of Kn such
that no two edges share a vertex and no edge can be added.

Algorithm 2: DPTheilSenkMatch: (ε, 0)-DP
Algorithm
Data: {(xi, yi)}ni=1 ∈ (R× R)n

Privacy params: ε
Hyperparams: n, k, DPmed, hp
z(p25), z(p75) = [ ]
Let τ1, · · · , τn−1 be n− 1 maximal matchings of
Kn, the complete graph on n vertices.4Each
τh is a vector of bn/2c pairs corresponding to
edges. There are many possible choices for
τ1, · · · , τn−1; one example is for each
h ∈ [n− 1], let πh be an independent random
permutation of [n− 1]. Then, for i ∈ bn/2c, let
τh[i][0] = π(i) and τh[i][1] = π(i+ bn/2c).
for k iterations do

Sample (without replacement) h ∈ [n− 1]
for 0 ≤ i < bn/2c do

j = τh[i][0]
l = τh[i][1]
if (xl − xj 6= 0) then

s = (yl − yj)/(xl − xj)
z

(p25)
j,l = s

(
0.25− xl+xj

2

)
+ yl+yj

2

z
(p75)
j,l = s

(
0.75− xl+xj

2

)
+ yl+yj

2

Append z(p25)
j,l to z(p25) and z(p75)

j,l to
z(p75)

p̃25 = DPmed
(
z(p25), ε/2, (n, k,hp)

)
p̃75 = DPmed

(
z(p75), ε/2, (n, k,hp)

)
return p̃25, p̃75

6.2.1 DP Median Using Exponential Mechanism

The first differentially private algorithm for the median
that we will consider is an instantiation of the exponen-
tial mechanism [21], a differentially private algorithm
designed for general optimization problems. The expo-
nential mechanism is defined with respect to a utility
function u, which maps (dataset, output) pairs to real
values. For a dataset z, the mechanism aims to output
a value r that maximizes u(z, r).

Definition 6 (Exponential Mechanism [21]). Given
dataset z ∈ Rn and the range of the outputs, [rl, ru],
the exponential mechanism outputs r ∈ [rl, ru] with
probability proportional to exp

(
εu(z,r)
2GSu

)
, where

GSu = max
r∈[rl,ru]

max
z,z′neighbors

|u(z, r)− u(z′, r)|.
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One way to instantiate the exponential mechanism to
compute the median is by using the following utility
function. Let

u(z, r) = − |#above r −#below r|

where #above r and #below r denote the number of
datapoints in z that are above and below r in value
respectively, not including r itself. An example of the
shape of the output distribution of this algorithm is
given in Figure 1. An efficient implementation is given
in the Appendix. We will write DPExpTheilSenkMatch
to refer to DPTheilSenkMatch where the DP median
function is the DP exponential mechanism described
above with privacy parameter ε/k. Again, we write
DPExpTheilSenMatch when k = 1 and DPExpTheilSen
when k = n− 1.

Lemma 7. DPExpTheilSenkMatch is (ε, 0)-DP.

6.2.2 DP Median Using Widened Exponential
Mechanism

When the output space is the real line, the standard
exponential mechanism for the median has some nu-
anced behaviour when the data is highly concentrated.
For example, imagine in Figure 1 if all the datapoints
coincided. In this instance, DPExpTheilSen is simply the
uniform distribution on [rl, ru], despite the fact that the
median of the dataset is very stable. To mitigate this is-
sue, we use a variation on the standard utility function.
(Concurrently to our work, Asi and Duchi [3] consid-
ered a similar utility function, for a special case of their
“inverse sensitivity mechanisms.”)

For a widening parameter θ > 0,
the widened utility function is u(z, r) =
−min {|#above a−#below a| : |a− r| ≤ θ}, where
#above a and #below a are defined as before. This
has the effect of increasing the probability mass around
the median, as shown in Figure 2.

Fig. 1. Unnormalized distribution of outputs of the exponential
mechanism for differentially privately computing the median of
dataset z.

Fig. 2. Unnormalized distribution of outputs of the θ-widened
exponential mechanism for differentially privately computing the
median of dataset z.

The parameter θ needs to be carefully chosen. All
outputs within θ of the median are given the same utility
score, so θ represents a lower bound on the expected
error. Conversely, choosing θ too small may result in the
area around the median not being given sufficient weight
in the sampled distribution. We defer the question of
optimally choosing θ to future work.

An efficient implementation of the θ-widened expo-
nential mechanism for the median can be found in the
Appendix. We will use DPWideTheilSenkMatch to refer
to DPTheilSenkMatch where the DP median mechanism
is the θ-widened exponential mechanism with privacy
parameter ε/k. Again, we use
DPWideTheilSenMatch when k = 1 and DPWideTheilSen
when k = n− 1.

Lemma 8. DPWideTheilSenkMatch is (ε, 0)-DP.

6.2.3 DP Median Using Smooth Sensitivity Noise
Addition

The final algorithm we consider for releasing a differen-
tially private median adds noise scaled to the smooth
sensitivity – a smooth upper bound on the local sen-
sitivity function. Intuitively, this algorithm should per-
form well when the datapoints are clustered around the
median; that is, when the median is very stable.

Definition 9 (Smooth Upper Bound on LSf [23]).
For t > 0, a function Sf,t : Xn → R is a t-smooth upper
bound on the local sensitivity of a function f : Xn → R
if:

∀z ∈ Xn : LSf (z) ≤ Sf,t(z);

∀z, z′ ∈ Xn, d(z, z′) = 1 : Sf,t(z) ≤ et · Sf,t(z′).

where d(z, z′) is the distance between datasets z and z′.

Let Zk : {(xi, yi)}ni=1 ∈ (R × R)n → Rkn/2 denote the
function that transforms a set of point coordinates into
estimates for each pair of points in our k matchings. The
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function that we are concerned with the smooth sensi-
tivity of is med◦Zk. We will use the following smooth
upper bound to the local sensitivity:

Lemma 10. Let z1 ≤ z2 ≤ · · · ≤ z2m be a sorting of
Zk(x,y). Then

Skmed◦Z,t((x,y)) = max
{
zm+k − zm, zm − zm−k,

max
l=1,...,n

max
s=0,··· ,k(l+1)

e−lt(zm+s − zm−(k(l+1)+s)
}
,

is a t-smooth upper bound on the local sensitivity of
med◦Zk.

Proof. Proof in the Appendix.

The algorithm then adds noise proportional to
Skmed◦Z,t((x,y))/ε to med◦Z(x,y). Pseudo-code is
given in the Appendix.The noise is sampled from the
Student’s T distribution. There are several other valid
choices of noise distributions (see [23] and [9]), but we
found the Student’s T distribution to be preferable as
the mechanism remains stable across values of ε

6.3 DP Gradient Descent

Ordinary Least Squares (OLS) for simple 1-dimensional
linear regression is defined as the solution to the op-
timization problem in Equation 1.There has been an
extensive line of work on solving convex optimization
problems in a differentially private manner. We use the
private gradient descent algorithm of [6, 27] to provide
private estimates of the 0.25, 0.75 predictions (p25,p75).
This algorithm performs standard gradient descent, ex-
cept that noise is added to a clipped version of the gra-
dient at each round (clipped to range [−τ, τ ]2 for some
setting of τ > 0).

6.4 DPIntercept

We also compare the above DP mechanisms to sim-
ply adding noise to the average y-value. For any given
dataset (x,y), this method clips the datapoints to a
given range [rl, ru], computes ȳ = 1

n

∑n
i=1 yi and out-

puts a noisy estimate ỹ = ȳ + Lap
(
0, ru−rl

εn

)
as the

predicted p̃25, p̃75 estimates. This method performs well
when the slope α is very small.

6.5 A Note on Hyperparameters

We leave the question of how to choose the optimal hy-
perparameters for each algorithm to future work. Un-
fortunately, since the optimal hyperparameter settings
may reveal sensitive information about the dataset, one
cannot simply tune the hyperparameters on a subset
of the sensitive data. However, we found that for most
of the hyperparameters, once a good choice of hyperpa-
rameter setting was found, it could be used for a variety
of similar datasets. Thus, one realistic way to tune the
parameters may be to tune on a public dataset similar
to the dataset of interest. For example, for applications
using census data, one could tune the parameters on
previous years’ census data.

7 Experiments and Results
In our experiments, we evaluate the following algo-
rithms: DPSuffStats, DPIntercept, DPExpTheilSen,
DPWideTheilSen, DPSSTheilSen, DPGradDescent,
and OpportunityInsights (OI). We will present re-
sults on a simulated version of the data used by the
Opportunity Insights team in creating the Opportu-
nity Insights tool, a real UCI dataset, and synthetically
generated datasets that allow us to explore how prop-
erties of the data affect relative performance of the
algorithms. Our experiments indicate that for a wide
range of realistic datasets, and moderate values of ε, it
is possible to choose a DP linear regression algorithm
where the error due to privacy is less than the standard
error. In our motivating use-case of the Opportunity
Atlas, we can design a differentially private algorithm
that outperforms the heuristic method used by the Op-
portunity Insights team. This is promising, since the
error added by the heuristic method was deemed ac-
ceptable for deployment of the Opportunity Atlas, and
for use by policy makers.

One particular differentially private algorithm of the
robust variety, called DPExpTheilSen, emerges as the
best algorithm in a wide variety of settings for this
small-dataset regime. This algorithm uses the exponen-
tial mechanism [21] for the differentially private median
computation to be used in the Theil-Sen method. We
will discuss some reasons for DPExpTheilSen’s strong
performance, and identify some regimes in which other
algorithms perform better.
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7.1 Experimental Setup

We will focus on data with values bounded between 0
and 1, so 0 ≤ xi, yi ≤ 1 for i = 1, . . . , n. This bound-
edness assumption is inherited from our main use-case,
the Opportunity Atlas tool. Not all our methods require
this assumption. Note that the independent variables xi
in all the datasets listed below are drawn from different
distributions.

7.1.1 Simulated Opportunity Atlas Datasets

The first set of datasets we consider is a simulated
version of the data used by the Opportunity Insights
team in creating the Opportunity Atlas tool described
in Section 3. These datasets are valuable for our evalua-
tion because they mimic a real-world release of privacy-
protected statistics. The independent variables xi of
the simulated datasets follow a lognormal distribution.
Each datapoint, (xi, yi) ∈ [0, 1]2, corresponds to a pair,
(parent income percentile rank, child income percentile
rank). In the data, every state in the United States is
partitioned into small neighborhood-level blocks called
tracts. As each individual exists in only one tract, the
privacy loss on the entire release is only the maximum
privacy loss of the per-tract releases (by the parallel
composition theorem of differential privacy [22]). We
perform the linear regression on each tract individually.
Each of the tracts can look very different, as the distri-
bution of income both across tracts and inside each tract
varies in different states. For example, in Illinois, more
than 90% of residents have incomes above the national
median income. In North Carolina, on the other hand,
about 50% of residents have incomes below the national
median income. The “best” differentially private algo-
rithm differs from state to state, and even tract to tract.
We display results for Illinois (IL) which has a total of
n = 219, 594 datapoints divided among 3,108 tracts. The
individual datasets (corresponding to tracts in the Cen-
sus data) each contain between n = 30 and n = 400
datapoints. The statistic nvar(x) ranges between 0 and
25, with the majority of tracts having nvar(x) ∈ [0, 5].

7.1.2 Stock Exchange UCI Dataset

Next, we consider a real dataset that studies the re-
lationship between the Istanbul Stock Exchange and
the USD Stock Exchange [2]. It compares {xi = Istan-
bul Stock Exchange national 100 index} to {yi = the

USD International Securities Exchange}. The indepen-
dent variables xi in this dataset follow a normal distri-
bution. This dataset has n = 250 datapoints.

7.1.3 Other Real Datasets

In the full version of this paper, we evaluate the DP
algorithms on two additional real datasets – a Wash-
ington DC Bikeshare UCI dataset and a Carbon Nan-
otubes UCI dataset. The Washington DC Bikeshare
UCI dataset is a family of 288 small datasets (with sizes
ranging from 45 to 62 datapoints) that contain the tem-
perature (xi) and user count of a bikeshare program
(yi) for a fixed time period. The independent variables
xi have a normal distribution. The Carbon Nanotubes
dataset is a larger dataset (with 10, 683 datapoints),
where xi is the u-coordinate of the initial atomic co-
ordinates of a molecule and yi is the u-coordinate of the
calculated atomic coordinates after the energy of the
system has been minimized. The independent variables
xi have a uniform distribution. Due to space constraints
and for clarity of exposition, we only briefly mention the
results on these additional real datasets.

7.1.4 Synthetic Datasets

Finally, we construct synthetic datasets by sampling
xi ∈ R, for i = 1, . . . , n, independently from a uniform
distribution with x̄ = 0.5 and variance σ2

x. For each xi,
the corresponding yi is generated as yi = αxi + β + ei,
where α = 0.5, β = 0.2, and ei is sampled from N (0, σ2

e).
The (xi, yi) datapoints are then clipped to the box
[0, 1]2. The DP algorithms estimate the prediction at
xnew using privacy parameter ε.

The values of n, σ2
x, σ2

e , xnew, and ε vary across
the individual experiments. The synthetic data exper-
iments are designed to study which properties of the
data and privacy regime determine the performance of
the private algorithms. Thus, in these experiments, we
vary one of parameters listed above and observe the im-
pact on the accuracy of the algorithms and their relative
performance to each other. Since we know the ground
truth on this synthetically generated data, we plot em-
pirical error bounds that take into account both the
sampling error and the error due to the DP algorithms,
Ĉtrue(0.68)/σ(p̂xnew ). We evaluate DPTheilSenkMatch
with k = 10 in the synthetic experiments rather than
DPTheilSen, since the former is computationally more
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efficient and still gives us insight into the performance
of the latter.

7.1.5 Privacy Parameters and Hyperparameters

A note on the privacy parameters in the experiments:
We will state the privacy budget used to compute the
pair (p25,p75), but we will only show empirical error
bounds for p25. The empirical error bounds for p75 dis-
play similar phenomena. The algorithms DPSuffStats
and DPGradDescent inherently release both point esti-
mates together so the privacy loss is the same whether
we release the pair (p25,p75) or just p25. However,
DPExpTheilSen, DPWideTheilSen, DPSSTheilSen and
the OI algorithm use half their budget to release p25
and half their budget to release p75, separately.

Our experiments explore a range of privacy parame-
ters. The synthetic data experiments show results using
moderate to small privacy loss parameters (Figures 5a,
5b, and 6 use ε = 1, and Figure 5c tests ε values ranging
from 0.01 to 10). The evaluation on the Stock Exchange
UCI dataset uses a moderate privacy loss parameter of
ε = 2. For the simulated Opportunity Atlas data, we
used a large privacy loss parameter ε = 8 (ε = 16 for
both p̃25 and p̃75) in order to match what was used in
the real-world deployment.

Hyperparameters were tuned on the semi-synthetic
Opportunity Insights data by experimenting with many
different choices, and choosing the best. The hyperpa-
rameters are listed in Table 1. We leave the question
of optimizing hyperparameters in a privacy-preserving
way to future work. Hyperparameters for the synthetic
datasets were chosen according to choices that seemed
to perform well on the Opportunity Insights datasets.
We empirically observe that good parameter choices
tended to be good for a wide variety of datasets. (In
particular, our synthetic data and our two real dataset

Table 1. Hyperparameters used in experiments on OI data, UCI
datasets, and synthetic data.

Algorithms OI data Synthetic data
DPSuffStats rl = 0, ru = 1 rl = 0, ru = 1
DPIntercept rl = 0, ru = 1 N/A

DPExpTheilSen rl = −0.5, ru = 1.5 rl = −2, ru = 2
DPWideTheilSen rl = −0.5, ru = 1.5, rl = −2, ru = 2

θ = 0.01 θ = 0.01
DPSSTheilSen rl = −0.5, ru = 1.5, rl = −2, ru = 2

d = 3 d = 3
DPGradDescent τ = 1, T = 80 τ = 1, T = 80

examples all have different x distributions. This ensures
that the hyperparameters were not tuned to the specific
datasets, but also leaves some room for improvement in
the performance by more careful setting of hyperparam-
eters.) As mentioned above, one realistic way to tune the
parameters may be to tune on a public dataset similar
to the dataset of interest.

7.2 Results on Simulated and Real
Datasets

7.2.1 Simulated Opportunity Atlas Datasets

Figure 3 shows the results of all the DP linear regression
algorithms, as well as the heuristic mechanism used by
the Opportunity Insights team (labeled OI), on the Op-
portunity Insights simulated data for the state of Illinois
For each algorithm, we build a cumulative distribution
function of the empirical error bounds set over the tracts
in that state. The vertical dotted line in Figures 3 in-
tercepts each curve at the point where the noise due to
privacy exceeds the standard error.

The privacy-loss parameter of ε = 16 used in the
Atlas was selected by the Opportunity Insights team
and a Census Disclosure Review Board by balancing
the privacy and utility considerations. Although we use
the same value in our experiments for sake of compar-
ison, we stress that we generally do not recommend or
endorse using such a large privacy-loss parameter in ap-
plications.

Figure 3 shows that there exist differentially pri-
vate algorithms that are competitive with, and in many
cases more accurate than, the algorithm currently de-

Fig. 3. Empirical CDF for the Empirical 0.68 error bounds,
Ĉ(0.68), normalized by empirical OLS standard error when eval-
uated on Opportunity Insights data for the state of Illinois. Pri-
vacy parameter ε = 16 for the pair (p̃25, p̃75).
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ployed in the Opportunity Atlas, such as DPExpTheilSen
and DPSSTheilSen. Additionally, we note that the meth-
ods used by Opportunity Insights are highly tailored to
their setting; as discussed in Section 4, the computa-
tion of an upper bound on the local sensitivity relies
on coordination across Census tracts. (This is why we
are not able to include this algorithm in our stock ex-
change data or synthetic data experiments – there is no
natural analogue for this algorithm in the context of a
single dataset.) The differentially private methods, on
the other hand, are general-purpose and do not require
any coordination across tracts.

7.2.2 Results on Stock Exchange UCI Dataset

Next, we provide experimental results of all the DP lin-
ear regression algorithms on the Stock Exchange UCI
dataset. We use the same hyperparameter settings for
these datasets that were used for the OI dataset, shown
in Table 1. Figure 4 shows the empirical cumulative den-
sity function of the output distribution on the Stock
Exchange dataset. This has a different form from that
of the empirical CDF which appears in Figure 3. On
this real dataset, for a moderate ε value of 2, the ad-
ditional noise due to privacy using DPExpTheilSen is
less than the standard error. Similar to Figure 3, Fig-
ure 4 shows that DPExpTheilSen is generally the best
performing algorithm, followed by DPWideTheilSen and
DPSSTheilSen.

7.2.3 Results on Additional Real Datasets

The results on the Washington DC Bikeshare dataset
and the Carbon Nanotubes dataset corroborate our
findings on the Opportunity Atlas and Stock Exchange
datasets. For a range of realistic ε values, the addi-
tional noise due to privacy, in particular when using
DPExpTheilSen, remains less than the standard error.
The full version of our paper contains detailed analysis
of the results on these additional real datasets, but we
will not include any further discussion here due to space
constraints and for clarity of exposition.

Fig. 4. Stock Exchange UCI Data. Empirical cdf of the output
distribution of the estimate of p25 after 100 trials of each algo-
rithm with ε = 2. The grey region includes all the values that are
within one standard error of σ̂(p̂25). The curve labelled “standard
error“ shows the non-private posterior belief on the value of the
p25 assuming Gaussian noise.

7.3 Robustness vs. Non-robustness:
Guidance for Algorithm Selection

The DP algorithms we evaluate can be divided into
two classes, robust DP estimators based on Theil-Sen
— DPSSTheilSen, DPExpTheilSen and DPWideTheilSen
— and non-robust DP estimators based on OLS —
DPSuffStats and DPGradDescent. Experimentally, we
found that the algorithms’ behaviour tends to be clus-
tered in these two classes, with the robust estimators
outperforming the non-robust estimators in a wide va-
riety of parameter regimes. In the experiment we saw in
the previous section (Figure 3), DPExpTheilSen was the
best performing algorithm, followed by DPWideTheilSen
and DPSSTheilSen. In our experiments on synthetic
data, however, we will see that the non-robust estima-
tors outperform the robust estimators in some parame-
ter regimes.

7.3.1 DPSuffStats and DPExpTheilSen

In Figure 5, we investigate the relative performance
(Ĉtrue(0.68)/σ(p̂25)) of the algorithms in several param-
eter regimes of n, ε, and σ2

x on synthetically generated
data. For each parameter setting and for each algo-
rithm, we plot of the average value of Ĉtrue(0.68)/σ(p̂25)
over 50 trials on a single dataset, and average again
over 500 independently sampled datasets. Across ranges
for each of these three parameters (n ∈ [31, 15848];
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σ2
x ∈ [0.003, 0.08]; ε ∈ [0.01, 10], all varied on a loga-

rithmic scale), we see that DPExpTheilSen10Match5 or
DPSuffStats is consistently close to the best perform-
ing algorithm. We see that DPGDzCDP and DPSuffStats
trend towards taking over as the best algorithm as ε, n,
and σ2

x increases.
For parameter regimes in which the non-robust algo-

rithms outperform the robust estimators, DPSuffStats
is preferable to DPGDzCDP since it is more efficient, re-
quires less hyperparameter tuning (except for the clip-
ping bound [rl, ru] on the inputs xi and yi for all i ∈ [n]),
satisfies a stronger privacy guarantee (“pure DP" in-
stead of “concentrated DP"), and releases the noisy suf-
ficient statistics with no additional cost in privacy. Ex-
perimentally, we find that the main indicator for de-
ciding between robust estimators and non-robust esti-
mators is the quantity εnvar(x) (which is a proxy for
εnσ2

x). Roughly, when εnvar(x) and σ2
e are both large,

we conclude that DPSuffStats is the best choice among
the DP algorithms tested; otherwise, the robust esti-
mator DPExpTheilSen10Match typically has lower error.
Hyperparameter tuning and the quantity |xnew− x̄| also
play minor roles in determining the relative performance
of the algorithms.

7.3.2 Slopes vs. Point Estimates

In Figure 7, we show error bounds with respect to the
slopes instead of point estimates as we vary ε. The slopes
here are computed directly (e.g., for the Theil-Sen algo-
rithms, we compute the DP median of many estimates
of the slope); we could also compute the slopes using the
p25 and p75 estimates. We observe similar relative per-
formance of the algorithms between the slopes and point
estimates (i.e., between Figure 7 and Figure 5c). We
note that for the Theil-Sen based algorithms, it can be
more difficult to choose hyperparameters for the slopes
as these can be unbounded while the point estimates are
bounded between 0 and 1 in our setting of data normal-
ized to [0, 1]. As we show in the full version of the paper,
however, the Theil-Sen algorithms are less sensitive to
the choice of hyperparameters than DPSuffStats.

5 DPExpTheilSen10Match is DPExpTheilSen where instead of
considering all pairs of points, we use 10 random matchings of
the points. We use it in the synthetic experiments since it is
more computationally efficient than, but similarly performing
to, DPTheilSen.

(a) Varying n

(b) Varying σ2
x

(c) Varying ε

Fig. 5. Relative error (Ĉtrue/σ(p̂25)) of DP and non-private algo-
rithms on synthetic data as n varies from 31 to 15, 848, σ2

x from
0.003 to 0.08, and ε from 0.01 to 10.

7.3.3 Role of εnvar(x)

In the experiments of Figure 6, we control the quan-
tity εnσ2

x, which combines the three parameters varied
separately in Figure 5 — the size of the dataset, how
concentrated the independent variable of the data is
and how private the mechanism is, and is a “ground
truth" analogue of the empirical quantity εnvarx that
appears in OLS. It appears to be a better indicator of
the performance of DP mechanisms than any of the
individual statistics ε, n, or σ2

x in isolation. In Fig-
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(a) εnσ2
x = 40; varying σ2

e

(b) εnσ2
x = 216; varying σ2

e

(c) εnσ2
x = 800; varying σ2

e

Fig. 6. Comparing DPSuffStats and DPExpTheilSen10Match
on synthetic data as σ2

e varies from 0.005 to 0.05. Plotting
Ĉtrue/σ(p̂25). OLS and TheilSen10Match included for reference.

ure 6, we compare the performance of DPSuffStats
and DPExpTheilSen10Match when we hold εnσ2

x con-
stant and vary σ2

e , the variance of the noise ei in the
linear relationship yi = αxi + β + ei. The error is com-
puted as the average error over 20 trials and 500 inde-
pendently sampled datasets. Notice that the periwinkle
line presents the error of the non-private OLS estimator,
which is our baseline. In all of our synthetic data exper-
iments, in which the ei’s are Gaussian, once εnσ2

x > 400
and σ2

e ≥ 0.03, DPSuffStats is the better performing al-
gorithm. It is also important to note that once εnvar(x)

Fig. 7. Relative error of DP and non-private algorithms as ε
varies. In this figure, the error is measured with respect to the
slopes not point estimates.

is large, both DPSuffStats and DPExpTheilSen perform
well.

The error, as measured by Ĉtrue(0.68), of both non-
private OLS and Theil-Sen estimators converges to 0
as n → ∞ at the same asymptotic rate. However,
OLS converges a constant factor faster than Theil-Sen,
which can be seen by the fact that the Theil-Sen and
TheilSen10Match lines are strictly above the OLS line
in Figures 5 and 6. As εnσ2

x increases, DPSuffStats and
DPGD approach the performance of non-private OLS, and
hence outperform both the non-private and private ver-
sions of Theil-Sen.

Additional experiments we ran, which we were not
able to include here to due to space constraints, confirm
that εnσ2

x is a strong indicator of the relative perfor-
mance of DPSuffStats and DPExpTheilSen as long as
σe is not too small, even as other variables in the OLS
standard error equation (3) – including the difference
between xnew and the mean of the x values, |xnew − x̄|
– are varied.

7.3.4 The Role of Hyperparameter Tuning

A final major distinguishing feature among
the DPTheilSen algorithms, DPSuffStats and
DPGradDescent is the amount of prior knowledge needed
by the data analyst to choose the hyperparameters ap-
propriately. Notably, DPSuffStats does not require
any hyperparameter tuning other than a bound on the
data. The DPTheilSen algorithms require some reason-
able knowledge of the range that p25 and p75 lie in.
DPGradDescent requires some knowledge of where the
input values lie so it can set its hyperparameters τ , T .
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7.3.5 Which Robust Estimator?

In the majority of the regimes we have tested,
DPExpTheilSen outperforms all the other private algo-
rithms. However, another variation on DP TheilSen,
DPWideTheilSen, can outperform DPExpTheilSen when
the standard error is small. When there is little noise
in the data we expect the set of pairwise estimates to
be highly concentrated. As discussed in Section 6.2,
this is a difficult setting for DPExpTheilSen; we designed
DPWideTheilSen to address this problem.

8 Conclusion
It is possible to design DP simple linear regression al-
gorithms where the distortion added by the private al-
gorithm is less than the standard error, even for small
datasets. In this work, we found that in order to achieve
this we needed to switch from OLS regression to the
more robust linear regression estimator, Theil-Sen. We
identified key factors that analysts should consider when
deciding whether DP methods based on robust or non-
robust estimators are right for their applications.

This work is the first to experimentally evaluate the
performance of robust algorithms for differentially pri-
vate linear regression. Prior theoretical work has high-
lighted the strong connection between robust statistics
and differential privacy [15, 18], but experimental eval-
uations of differentially private algorithms for linear re-
gression (such as the systematic study by Wang [29])
have failed to include robust algorithms in their com-
parisons. In addition, we are the first to consider the
winning algorithm from our experiments, DPTheilSen,
under privacy constraints. This algorithm is a general-
ization of the “Short-Cut Regression Algorithm" that
was analyzed theoretically (but not experimentally) by
Dwork and Lei [18].

The focus of this work has been on DP univariate
regression releases for small datasets. The challenge of
selecting an algorithm with good utility for this setting
remains a barrier to adoption of differential privacy for
many practical applications. Prior work on DP linear re-
gression has focused on multiple linear regression (i.e.,
where there are several or many independent variables),
albeit in an asymptotic or large-dataset setting. Our
results show that even in the setting of simple linear
regression, the story is already quite nuanced. The al-
gorithm that performs best depends on properties of the
dataset, such as nvar(x), which cannot be directly used

without violating differential privacy. One has to make
the choice based on guesses (e.g., using similar public
datasets) or develop differentially private methods for
selecting the algorithm, a problem which we leave to
future work. However, our experimental evaluation of-
fers valuable heuristics for choosing a suitable algorithm
in practice – in particular, our experiments demonstrate
that DPTheilSen performs well across many regimes (in-
cluding with small dataset sizes, when the data range
is unknown and when knowledge of the output range is
limited) compared to DPSuffStats, and is therefore a
reliable choice for most applications. Our findings high-
light important directions for future work, such as gen-
eralizing DPTheilSen to cover multivariate regression,
providing uncertainty estimates such as confidence in-
tervals, and developing theoretical explanations for its
superior performance in the small dataset regime.

9 Acknowledgements
AS and AM were supported by NSF awards CCF-
1763786 and IIS-1447700, a research award from the
Sloan Foundation, and (for AM) the Hariri Institute
for Computing. At Northeastern, AM was supported by
a Fellowship from the Cybersecurity & Privacy Insti-
tute and NSF grant CCF-1750640. SV was supported
by a Simons Investigator Award. DA was partially sup-
ported by a Fellowship from Facebook. SV, DA, JS,
AM and AS were supported by Cooperative Agreement
CB16ADR0160001 with the Census Bureau. The views
expressed in this paper are those of the authors and not
those of the U.S. Census Bureau or any other sponsor.

References
[1] Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. 2016.

Perturbation techniques in online learning and optimization.
Perturbations, Optimization, and Statistics (2016), 233.

[2] Oguz Akbiligic, Hamparsum Bozdogan, and M. Erdal Bala-
ban. 2013. A novel Hybrid RBF Neural Networks model as a
forecaster. Statistics and Computing (2013). This dataset
was collected from imkb.gov.tr and finance.yahoo.com.

[3] Hilal Asi and John C Duchi. 2020. Instance-optimality in
differential privacy via approximate inverse sensitivity mech-
anisms. Advances in Neural Information Processing Systems
33 (2020).

[4] Jordan Awan and Aleksandra Slavković. 2020. Structure
and sensitivity in differential privacy: Comparing k-norm
mechanisms. J. Amer. Statist. Assoc. just-accepted (2020),
1–56.



Differentially Private Simple Linear Regression 199

[5] Emily Badger and Quoctrung Bui. 2020. Detailed
Maps Show How Neighborhoods Shape Children for Life.
https://www.nytimes.com/2018/10/01/upshot/maps-
neighborhoods-shape-child-poverty.html. Online; accessed
15 October 2020.

[6] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta.
2014. Private Empirical Risk Minimization: Efficient Algo-
rithms and Tight Error Bounds. In 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014. 464–473.

[7] Garrett Bernstein and Daniel R Sheldon. 2019. Differentially
Private Bayesian Linear Regression. In Advances in Neural
Information Processing Systems 32. 523–533.

[8] Mark Bun and Thomas Steinke. 2016. Concentrated differ-
ential privacy: Simplifications, extensions, and lower bounds.
In Theory of Cryptography Conference. Springer, 635–658.

[9] Mark Bun and Thomas Steinke. 2019. Average-Case Aver-
ages: Private Algorithms for Smooth Sensitivity and Mean
Estimation. In Advances in Neural Information Processing
Systems 32. 181–191.

[10] Tony Cai, Yichen Wang, and Linjun Zhang. 2019. The Cost
of Privacy: Optimal Rates of Convergence for Parameter
Estimation with Differential Privacy. CoRR abs/1902.04495
(2019). http://arxiv.org/abs/1902.04495

[11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sar-
wate. 2011. Differentially Private Empirical Risk Minimiza-
tion. Journal of Machine Learning Research 12 (2011),
1069–1109.

[12] Raj Chetty, John N Friedman, Nathaniel Hendren, Maggie R
Jones, and Sonya R Porter. 2018. The opportunity atlas:
Mapping the childhood roots of social mobility. Technical
Report. National Bureau of Economic Research.

[13] Raj Chetty, Nathaniel Hendren, Patrick Kline, and Em-
manuel Saez. 2014. Where is the land of opportunity?
The geography of intergenerational mobility in the United
States. The Quarterly Journal of Economics 129, 4 (2014),
1553–1623.

[14] Graham Cormode. [n. d.]. Building Blocks of Privacy: Differ-
entially Private Mechanisms. ([n. d.]), 18–19.

[15] Simon Couch, Zeki Kazan, Kaiyan Shi, Andrew Bray, and
Adam Groce. 2019. Differentially Private Nonparametric Hy-
pothesis Testing. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’19). 737–751.

[16] Alfred DeMaris. 2004. Regression with social data : mod-
eling continuous and limited response variables. Wiley-
Interscience, Hoboken, NJ.

[17] Irit Dinur and Kobbi Nissim. 2003. Revealing information
while preserving privacy. In Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 202–210.

[18] Cynthia Dwork and Jing Lei. 2009. Differential privacy and
robust statistics.. In STOC, Vol. 9. 371–380.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam D. Smith. 2006. Calibrating Noise to Sensitivity in
Private Data Analysis. In Theory of Cryptography, Third
Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings. 265–284.

[20] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li
Zhang. 2014. Analyze gauss: optimal bounds for privacy-

preserving principal component analysis. In STOC. 11–20.
[21] Frank McSherry and Kunal Talwar. 2007. Mechanism Design

via Differential Privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings. 94–103.

[22] Frank D McSherry. 2009. Privacy integrated queries: an
extensible platform for privacy-preserving data analysis. In
Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of data. 19–30.

[23] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith.
2007. Smooth sensitivity and sampling in private data anal-
ysis. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June
11-13, 2007. 75–84.

[24] Pranab Kumar Sen. 1968. Estimates of the regression co-
efficient based on Kendall’s tau. Journal of the American
statistical association 63, 324 (1968), 1379–1389.

[25] Or Sheffet. 2017. Differentially Private Ordinary Least
Squares. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017. 3105–3114. http://proceedings.mlr.
press/v70/sheffet17a.html

[26] Adam Smith. 2011. Privacy-preserving statistical estimation
with optimal convergence rates. In Proceedings of the forty-
third annual ACM symposium on Theory of computing.
813–822.

[27] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate.
2013. Stochastic gradient descent with differentially pri-
vate updates. In IEEE Global Conference on Signal and In-
formation Processing, GlobalSIP 2013, Austin, TX, USA,
December 3-5, 2013. 245–248.

[28] Henri Theil. 1950. A rank-invariant method of linear and
polynomial regression analysis, 3; confidence regions for the
parameters of polynomial regression equations. Indagationes
Mathematicae 1, 2 (1950), 467–482.

[29] Yu-Xiang Wang. 2018. Revisiting differentially private linear
regression: optimal and adaptive prediction & estimation
in unbounded domain. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI
2018, Monterey, California, USA, August 6-10, 2018. 93–
103.

[30] Xin Yan and Xiao Gang Su. 2009. Linear Regression Analy-
sis: Theory and Computing. World Scientific Publishing Co.,
Inc., USA.

[31] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and
Marianne Winslett. 2012. Functional Mechanism: Regression
Analysis under Differential Privacy. Proc. VLDB Endow. 5,
11 (2012), 1364–1375.

A Some Results in Differential
Privacy

In this section we will briefly review some of the fun-
damental definitions and results pertaining to general
differentially private algorithms.

https://www.nytimes.com/2018/10/01/upshot/maps-neighborhoods-shape-child-poverty.html
https://www.nytimes.com/2018/10/01/upshot/maps-neighborhoods-shape-child-poverty.html
http://arxiv.org/abs/1902.04495
http://proceedings.mlr.press/v70/sheffet17a.html
http://proceedings.mlr.press/v70/sheffet17a.html


Differentially Private Simple Linear Regression 200

For any query function f : Xn → RK let
GSf = maxd∼d′ ‖f(d)− f(d′)‖, called the global sensi-
tivity, be the maximum amount the query can differ on
neighboring datasets.

Theorem 11 (Laplace Mechanism [19]). For any pri-
vacy parameter ε > 0 and any given query function
f : Xn → RK and database d ∈ Xn, the Laplace
mechanism outputs f̃L(d) = f(d) + (R1, . . . , RK), where
R1, . . . , RK ∼ Lap(0, GSf

ε ) are i.i.d. random variables
drawn from the 0-mean Laplace distribution with scale
GSf

ε . The Laplace mechanism is (ε, 0)-DP.

Theorem 12 (Exponential Mechanism [21]). Given
an arbitrary range R, let u : Xn × R → R be a util-
ity function that maps database/output pairs to utility
scores. Let GSu = maxr GSu(·,r). For a fixed database
d ∈ Xn and privacy parameter ε > 0, the exponential
mechanism outputs an element r ∈ R with probability
proportional to exp

(
ε·u(d,r)
2GSu

)
. The exponential mecha-

nism is (ε, 0)-DP.

The following results allow us to use differentially pri-
vate algorithms as building blocks in larger algorithms.

Lemma 13 (Post-Processing [19]). Let M : Xn → Y
be an (ε, δ) differentially private and f : Y → R be a
(randomized) function. Then f ◦ M : Xn → R is an
(ε, δ) differentially private algorithm.

Theorem 14 (Basic Composition [19]). For any k ∈
[K], let Mk be an (εk, δk) differentially private algo-
rithm. Then the composition of the T mechanisms M =
(M1, . . . ,MK) is (ε, δ) differentially private where ε =∑
k∈[K] εk and δ =

∑
k∈[K] δk.

Definition 15 (Coupling). Let z and z′ be two random
variables defined over the probability spaces Z and Z′,
respectively. A coupling of z and z′ is a joint variable
(zc, z′c) taking values in the product space (Z ×Z′) such
that zc has the same marginal distribution as z and z′c
has the same marginal distribution as z′.

Definition 16 (c-Lipschitz randomized transformations).
A randomized transformation T : Xn → Ym is c-
Lipschitz if for all datasets d, d′ ∈ Xn, there exists a
coupling (zc, z′c) of the random variables z = T (d) and
z′ = T (d′) such that with probability 1, H(zc, z′c) ≤
c ·H(d, d′) where H denotes Hamming distance.

Lemma 17. (Composition with Lipschitz transforma-
tions (well-known)) Let M be an (ε, δ)-DP algorithm,

and let T be a c-Lipschitz transformation of the data
with respect to the Hamming distance. Then, M ◦ T is
(cε, δ)-DP.

Proof. The lemma follows directly from the Lipschitz
property on adjacent databases and the definition of
(ε, δ)-differential privacy.

B Privacy Proof of DPSuffStats

Lemma 18. Suppose we are given dataset x,y ∈
[rl, ru]n where 0 ≤ rl ≤ ru. Let

ncov(x,y) = 〈x− x̄1,y− ȳ1〉

= (
n∑
i=1

xi · yi)−
(
∑n
i=1 xi)(

∑n
i=1 yi)

n
,

and

nvar(x) = 〈x− x̄1,x− x̄1〉 = (
n∑
i=1

x2
i )−

(
∑n
i=1 xi)

2

n
.

Also, let x̄, ȳ be the means of x and y respectively and 1
be the all ones vector.

Then if GSncov and GSnvar are the global sen-
sitivities of functions ncov and nvar then GSncov =(
1− 1

n

)
r2
u and GSnvar =

(
1− 1

n

)
r2
u.

Proof. Let z = 〈x,y〉 and z′ = 〈x′,y′〉 be neigh-
bouring databases differing on the nth datapoint 6.
Let a =

∑n−1
i=1 xi and b =

∑n−1
i=1 yi and note that

max{a, b} ≤ (n− 1). Then,

nvar(x)− nvar(x′)

= x2
n − x′2n −

2axn
n
− x2

n

n
+ 2ax′n

n
+ x′2n

n

= (1− 1
n

)(x2
n − x′2n ) + 2a

n
(x′n − xn).

If x′n − xn ≤ 0 then nvar(x) − nvar(x′) ≤ (1 − 1
n )(x2

n −
x′2n ) ≤ (1− 1

n )r2
u. Otherwise,

nvar(x)− nvar(x′)

≤ (1− 1
n

)(x2
n − x′2n ) + 2(n− 1)

n
(x′n − xn)

= (1− 1
n

)(x2
n − 2xn + 2x′n − x′2n )

= (1− 1
n

)((x2
n − 2xn)− (x′2n − 2x′n))

6 This is without loss of generality as we can always “rotate”
both databases until the index on which they differ becomes the
nth datapoint.
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Since xn ∈ [rl, ru] we have x2
n − 2xn ≤ max(rl(rl −

2), ru(ru − 2)), so nvar(x)− nvar(x′) ≤ (1− 1
n )r2

u.
Also,

ncov(x,y)− ncov(x′,y′)
= xnyn − x′ny′n+

a(y′n − yn) + b(x′n − xn) + x′ny
′
n − xnyn

n

≤ (1− 1
n

)(xnyn − x′ny′n)+

a(y′n − yn) + b(x′n − xn)
n

If y′n − yn ≤ 0 and x′n − xn ≤ 0 then ncov(x,y) −
ncov(x′,y′) ≤ (1− 1

n )(xnyn−x′ny′n) ≤ (1− 1
n )r2

u. If y′n−
yn ≤ 0 and x′n−xn > 0 then ncov(x,y)−ncov(x′,y′) ≤
(1− 1

n )(xnyn−x′ny′n + (x′n−xn)) ≤ (1− 1
n )r2

u. For simi-
lar sub-cases, we obtain that ncov(x,y)−ncov(x′,y′) ≤
(1− 1

n )r2
u.

Proof of Lemma 4: (DPSuffStats). By Lemma 18, we
have that the global sensitivity of both ncov(x,y) and
nvar(x) is bounded by ∆ = (1− 1/n) r2

u. Therefore, if we
sample L1, L2 ∼ Lap(0, 3∆/ε) then both ncov(x,y)+L1
and nvar(x) + L2 are (ε/3, 0)-DP estimates by Theo-
rem 11. By the post-processing properties of differential
privacy (Lemma 13), 1/(nvar(x) + L2) is a private re-
lease and the test nvar(x) + L2 > 0 is also private. As
a result, α̃ is a (2ε/3, 0)-DP release. Now to calculate
the private intercept β̃, we use the global sensitivity
of (ȳ − α̃x̄) which is at most ru/n · (1 + |α̃|), since the
means of x,y can change by at most ru/n. 7 The Laplace
noise we add ensures the private release of the intercept
is (ε/3, 0)-DP. By composition properties of differential
privacy (Theorem 14), Algorithm 1 is (ε, 0)-DP.

C DPExpTheilSen and
DPWideTheilSen

C.1 Privacy Proofs for DPExpTheilSen and
DPWideTheilSen

Lemma 19. Let T be the following randomized algo-
rithm. For dataset d = (xi, yi)ni=1, let Kn(d) be the
complete graph on the n datapoints, where edges denote

7 Alternatively, to estimate β̃, one could compute x̃, ỹ, private
estimates of x̄, ȳ by adding Laplace noise from Lap(0, ru/n) and
then compute β̂ = ỹ − α̂x̃.

points paired together to compute estimates in Theil-
Sen. Then, from Kn(d) we can randomly select k max-
imal matchings, τ1, . . . , τn−1, where each τi is a vector
of bn/2c vectors of size 2. Suppose T (d) uses these k

matchings to compute the corresponding pairwise esti-
mates (up to kbn/2c estimates). Then T is a k-Lipschitz
randomized transformation.

Proof. Let z = T (d) and z′ = T (d′) denote the multi-
sets of estimates that result from applying T to datasets
d and d′, respectively. We can define a coupling zc and
z′c of z and z′. First, use k matchings, τ1, . . . , τk, to com-
pute the multi-set of estimates zc = {z(pxnew)

j,l : (xj , xl) ∈
Σ1 ∪ . . . ∪ Σk}}. Now, using the same method of selec-
tion, choose the corresponding k matchings from Kn(d′)
to compute a multi-set of estimates z′c = {z(pxnew)

j,l :
(x′j , x′l) ∈ Σ1∪ . . .∪Σk}. This is a valid coupling because
the k matchings are randomly sampled using the same
process from the complete graphs Kn(d) and Kn(d′), re-
spectively, matching the marginal distributions of z and
z′. Notice that every datapoint xj is used to compute
exactly k estimates in zc. Therefore, for every datapoint
at which d and d′ differ, zc and z′c differ by at most k
estimates. Therefore, by the triangle inequality, we are
done.

Proof of Lemma 5. If
DPmed(z(p25), ε, (n, k,hyperparameters)) =
M(z(p25),hyperparameters)) then Algorithm 2 is a com-
position of two algorithms,M◦T , where by Lemma 19,
T is a k-Lipschitz randomized transformation, and M
is (ε/k, 0)-DP. By the Lipschitz composition lemma
(Lemma 17), Algorithm 2 (DPTheilSenkMatch) is (ε, 0)-
DP.

Proofs of Lemmas 7 and 8. The privacy of
DPExpTheilSenkMatch and DPWideTheilSenkMatch fol-
lows directly from Theorem 12 and Lemma 5.

C.2 Sensitivity to Hyperparameter

Choosing optimal hyperparameters is beyond the scope
of this work. However, in this section we present
some preliminary work exploring the behavior of
DPWideTheilSen with respect to the choice of θ. In par-
ticular, we consider the question of how robust this algo-
rithm is to the setting of the hyperparameter. Figure 8
shows the performance as a function the widening pa-
rameter θ on synthetic (Gaussian) data. Note that in
each graph both axes are on a log-scale so we see very
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large variation in the quality depending on the choice
of hyperparameter.

C.3 Pseudo-code for DPExpTheilSen and
DPWideTheilSen

In Algorithm 3, we give an efficient method for imple-
mentation of the DP median algorithm used as sub-
routine in DPExpTheilSen, the exponential mechanism
for computing medians. To sample efficiently from this
distribution, we implement a two-step algorithm follow-
ing [14]: first, we sample an interval according to the
exponential mechanism, and then we will sample an
output uniformly at random from that interval. To effi-
ciently sample from the exponential mechanism, we use
the fact that sampling from the exponential mechanism
is equivalent to choosing the value with maximum util-
ity score after i.i.d. Gumbel-distributed noise has been
added to the utility scores [1, 20].

The pseudo-code for DPWideTheilSen is given in Al-
gorithm 5. It is a small variant on Algorithm 3.

Algorithm 3: Exponential Mechanism for
Median: (ε/k, 0)-DP Algorithm
Data: z
Privacy params: ε
Hyperparams: n, k, rl, ru
ε = ε/k

Sort z in increasing order
Clip z to the range [rl, ru]
Insert rl and ru into z and set n = n+ 2
Set maxNoisyScore = −∞
Set argMaxNoisyScore = −1
for i ∈ [1, n) do

logIntervalLength = log(z[i]− z[i− 1])
distFromMedian = d|i− n

2 |e
score =
logIntervalLength− ε

2 · distFromMedian
N ∼ Gumbel(0, 1)
noisyScore = score +N

if noisyScore > maxNoisyScore then
maxNoisyScore = noisyScore
argMaxNoisyScore = i

left = z[argMaxNoisyScore-1]
right = z[argMaxNoisyScore]
Sample m̃ ∼ Unif [left, right]
return m̃

Fig. 8. Experimental results exploring the sensitivity of the hy-
perparameter choices for DPWideTheilSen. For each dataset
n = 40, and n datapoints are generated as xi ∼ N (0, σ2),
yi = 0.5 ∗ xi + 0.5 + N (0, τ2). The parameters of the data are
fixed at σ = 10−3 and τ = 10−4. The datapoints are then trun-
cated so they belong between 0 and 1. Note that both axes are
on a log scale.

Algorithm 4: DPTheilSen: (ε, 0)-DP Algo-
rithm
Data: {(xi, yi)}ni=1 ∈ (R× R)n

Privacy params: ε
Hyperparams: n, DPmed, hp
z(p25), z(p75) = [ ]
for 1 ≤ i < j ≤ n do

if (xj − xi 6= 0) then
s = (yj − yi)/(xj − xi)
z

(p25)
i,j = s

(
0.25− xj+xi

2

)
+ yj+yi

2

z
(p75)
i,j = s

(
0.75− xj+xi

2

)
+ yj+yi

2

Append z(p25)
i,j to z(p25) and z(p75)

i,j to
z(p75)

p̃25 = DPmed
(
z(p25), ε/2, (n,hp)

)
p̃75 = DPmed

(
z(p75), ε/2, (n,hp)

)
return p̃25, p̃75

D DPSSTheilSen

Suppose we are given a dataset (x,y). Consider a neigh-
boring dataset (x′,y′) that differs from the original
dataset in exactly one row. Let z be the set of point
estimates (e.g., the p25 or p75 point estimates) induced
by the dataset (x,y), and let z′ be the set of point es-
timates induced by dataset (x′,y′) by Theil-Sen. For-
mally, for N = kn/2, we let Zk : [0, 1]n × [0, 1]n → RN

denote the function that transforms a set of point co-
ordinates into estimates for each pair of points. Then
z = Z(x,y), z′ = Z(x′,y′). Notice that changing one
datapoint in (x,y) changes at most k of the point es-
timates in z. Assume that both z and z′ are in sorted
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Algorithm 5: θ-Widened Exponential Mech-
anism for Median: (ε/k, 0)-DP Algorithm
Data: z
Privacy params: ε
Hyperparams: n, k, θ, rl, ru
ε = ε/k

Sort z in increasing order
Clip z to the range [rl, ru]
if n is even then

Insert m, the true median, into z
Set n = n+ 1

for i ∈ [0, bn2 c] do
z[i] = max(zl, z[i]− θ)
z[n− i− 1] = min(zu, z[i] + θ)

Insert zl and zb into z and set n = n+ 2
Set maxNoisyScore = −∞
Set argMaxNoisyScore = −1
for i ∈ [1, n) do

logIntervalLength = log(z[i]− z[i− 1])
distFromMedian = d|i− n

2 |e
score =
logIntervalLength− ε

2 · distFromMedian
N ∼ Gumbel(0, 1)
noisyScore = score +N

if noisyScore > maxNoisyScore then
maxNoisyScore = noisyScore
argMaxNoisyScore = i

left = z[argMaxNoisyScore-1]
right = z[argMaxNoisyScore]
Sample m̃ ∼ Unif [left, right]
return m̃

order. Recall the definition of Skmed◦Z,t((x,y)):

Skmed◦Zk,t
((x,y))

= max
{
zm+k − zm, zm − zm−k,

max
l=1,...,n

max
s=0,··· ,k(l+1)

e−lt(zm+s − zm−(k(l+1)+s)
}
,

Let LSkmed(z) = maxz′∈RN ,Ham(z,z′)≤k |med(z) −
med(z′)| be the distance k local sensitivity of the
dataset z with respect to the median. In order to prove
that Skmed◦Zk,t

((x,y)) is a t-smooth upper bound on
LSmed◦Zk

, we will use the observation that

LSmed◦Zk
(x,y) ≤ LSkmed(z).

Now Figure 9 outlines the maximal changes we can make
to z. For l ≥ 1 and any interval of lk + k + 1 points
containing the median, we can move the median to one
side of the interval by moving kl points, and to the other

side by moving an additional l points. Therefore, for
l ≥ 1,

max
z′:d(z,z′)≤lk

LSmed(z′) = max
s=0,··· ,lk+k

{zm+s−zm−(lk+k)+s}

(4)
so Skmed,t(z) = maxl=0,...,n e

−lt maxz′:d(z,z′)≤lk LS
k
med(z′).

Algorithm 6: Smooth Sensitivity Student’s
T Noise Addition for Median: (ε, 0)-DP Algo-
rithm
Data: z, {(xi, yi)}ni=1 ∈ (R× R)n

Privacy params: ε
Hyperparams: k, n, rl, ru, d
Set t = ε

2(d+1) and s = ε
√
d

d+1
Smedian = Skmed,t((x,y))
Sample N ∼ Student’s T(d)
Set m̃ = median(z) + 1

s · Smedian ·N
return m̃

Proof of Lemma 10. We need to show that
Skmed◦Zk,t

((x,y)) is lower bounded by the local sen-
sitivity and that for any dataset (x′,y′) such that
d((x,y), (x′,y′)) ≤ l, we have Skmed◦Zk,t

((x,y)) ≤
etlSkmed◦Zk,t

((x′,y′)).
By definition of Skmed,t, we see that

Skmed◦Zk,t
((x,y)) ≥ LSkmed (e.g., when l = 0 in the

formula for Skmed,t). Next, we see that

Skmed,t(z) = max
l=0,...,n

e−lt max
z′:d(z,z′)≤lk

LSkmed(z′) (5)

≤ et · max
l=1,...,n

e−lt max
z′′:d(z′,z′′)≤lk

LSkmed(z′′)

(6)

≤ et · Skmed,t(z′), (7)

which completes our proof.
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Fig. 9. A brief proof by pictures of Equation 4.

Lemma 20. Let M(x) = median(x) + 1
sS

k
med,t(x) ·

N , where N, s and t are computed according to Algo-
rithm 6.Then, M is (ε, 0)-DP.

Proof. Let D∞(P ||Q) = supx∈supp(Q) log p(x)
q(x) denote

the max-divergence for distributions P and Q. Let N
be a random variable sampled from StudentsT(d), where
d > 0 is the degrees of freedom. From Theorem 31 in [9],
we have that for s, t > 0,

D∞(N ||etN + s)
D∞(etN + s||N)

}
≤ |t|(d+ 1) + |s| · d+ 1

2
√
d

The parameters s and t correspond to the translation
(shifting) and dilation (scaling) of the StudentsT(d) dis-
tribution.

Setting s = 2
√
d
(
ε′−|t|(d+1)

d+1

)
as in Algorithm 6, we

have that for |t|(d+ 1) < ε′,{
D∞(N ||etN + s)
D∞(etN + s||N)

≤ ε (8)

If Equation 8 is satisfied, then by Theorem 46 in [9],
the mechanism in Algorithm 6, M(z) = median(z) +
1
sS

t
median(·)(z) +N , is (ε, 0)-DP.

E DPGradDescent

There are three main versions of DPGradDescent we con-
sider: (1) DPGDPure: (ε, 0)-DP; (2) DPGDApprox: (ε, δ)-
DP; and (3) DPGDzCDP: (ε2/2)-zCDP. The three algo-
rithms are each given by an instantiation of Algorithm 7.
As with traditional gradient descent, there are several

Algorithm 7: DPGD outline
Data: {(xi, yi)}ni=1 ∈ (R× R)n

Privacy params: ζ
Hyperparams: n, T, τ, p̃0

25, p̃
0
75

for t = 0 : T − 1 do
ζt = ζ/T

for i = 1 : n do
ỹ = 2(p̃t25 ∗ (3/4− xi) + p̃t75(xi − 1/4))

∆i,t =
(

[2(yi − ỹ)(3/4− xi)]τ−τ ,
[2(yi − ỹ)(xi − 1/4)]τ−τ

)

Update Option 1:
∆t =

∑n
i=1 ∆i,t + Lap2 (0, 4τ/ζt)

Update Option 2:
∆t =

∑n
i=1 ∆i,t +N2

(
0, (2τ/

√
ζt)2)

γt = 1√∑t

l=0
∆2

l

[p̃t+1
25 , p̃t+1

75 ] = [p̃t25, p̃
t
75]− γt ∗∆t

return 2
T

∑T
t=T/2[p̃t25, p̃

t
75]

choices that have been made in designing this algorithm:
the step size, the batch size for the gradients, how many
of the estimates are averaged to make our final estimate,
how the privacy budget is distributed. We have included
this pseudo-code for completeness to show the choices
that were made in our experiments. We do not claim to
have extensively explored the suite of parameter choices,
and it is possible that a better choice of these parame-
ters would result in a better performing algorithm. Dif-
ferentially private gradient descent has received a lot of
attention in the literature. For a more in-depth discus-
sion of DP gradient descent see [6].

Lemma 21. For any ρ > 0, Algorithm 7 with ζ = ρ

and using update option 2 (DPGDzCDP) is ρ-zCDP. For
any ε > 0, Algorithm 7 with ζ = ε and using update
option 1 (DPPure) is (ε, 0)-DP. For any δ ∈ (0, 1] and
any ρ > 0, Algorithm 7 with ζ = ρ and using update

option 2 is (ε, δ)-DP where ε = ρ+
√

4ρ log
(√

πρ
δ

)
.

Proof. The proof of the first statement is a routine ap-
plication of Proposition 1.6 in [8], and the proof of the
second statement is a routine application of Theorem 11
and Theorem 14.
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