
Proceedings on Privacy Enhancing Technologies ; 2022 (2):304–324

Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk

Efficient Set Membership Proofs using
MPC-in-the-Head
Abstract: Set membership proofs are an invaluable part
of privacy preserving systems. These proofs allow a
prover to demonstrate knowledge of a witness w corre-
sponding to a secret element x of a public set, such that
they jointly satisfy a given NP relation, i.e. R(w, x) = 1
and x is a member of a public set {x1, . . . , x`}. This
allows the identity of the prover to remain hidden, eg.
ring signatures and confidential transactions in cryp-
tocurrencies.
In this work, we develop a new technique for efficiently
adding logarithmic-sized set membership proofs to any
MPC-in-the-head based zero-knowledge protocol (Ishai
et al. [STOC’07]). We integrate our technique into an
open source implementation of the state-of-the-art, post
quantum secure zero-knowledge protocol of Katz et al.
[CCS’18]. We find that using our techniques to construct
ring signatures results in signatures (based only on sym-
metric key primitives) that are between 5 and 10 times
smaller than state-of-the-art techniques based on the
same assumptions. We also show that our techniques
can be used to efficiently construct post-quantum se-
cure RingCT from only symmetric key primitives.

Keywords: Zero-Knowledge, Disjunctions, Ring Signa-
tures, RingCT, Set Membership

DOI 10.2478/popets-2022-0047
Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

Aarushi Goel: Johns Hopkins University, E-mail:
aarushig@cs.jhu.edu
Matthew Green: Johns Hopkins University , E-mail:
mgreen@cs.jhu.edu
Mathias Hall-Andersen: Aarhus University, E-mail:
ma@cs.au.dk
Gabriel Kaptchuk: Boston Univeristy, E-mail:
kaptchuk@bu.edu

1 Introduction
Zero-knowledge proofs and arguments of knowl-
edge1 [28] allow a prover to convince a verifier that
they possess a witness for an NP statement, without
revealing anything about the witness itself. The flexi-
bility and power of zero-knowledge protocols have made
these primitives a key building block in larger privacy-
preserving protocols, supporting a wide array of practi-
cal applications. This has spurred interest in the devel-
opment of more concretely efficient protocols that can
improve the performance characteristics of deployed ap-
plications.

An important sub-component of many practi-
cally useful NP statements is set membership. Prov-
ing set membership consists of demonstrating that a
secret element x is a member of a publicly-known set
{x1, x2, . . . , x`}, i.e. there exists a 1 ≤ j ≤ ` such that
x = xj . This sub-component allows a prover to then
demonstrate some property of the value x without re-
vealing which element x is. The prover will then prove
that it has some witness w such that R(x,w) = 1,
where R is a public NP relation. For example, ring sig-
natures [47] can be formulated as a proof in which the
signer’s task is to convince the verifier that it knows a
signature that verifies against some public key pk that
is part of a “ring” of public keys {pk1, . . . , pk`}. In this
case, the proof is composed of demonstrating member-
ship of the chosen public key in the correct set and
demonstrating that the prover knows a valid signature
under this public key.

Membership proofs are an invaluable part of privacy
preserving systems. Standard zero-knowledge proofs
hide the witness from the verifier, but this may not be
sufficient to hide the identity of the prover. Consider
the case where it is well-known that only the prover
holds a witness to a certain statement. In this case,
any verifying proof can be directly linked back to the
prover. A privacy-conscious prover can use membership
proofs to “hide in the crowd,” proving that it knows

1 In this work we will use the terms proofs and arguments inter-
changeably, as has become commonplace for practically oriented
work in this area.

Efficient Set Membership Proofs using MPC-in-the-Head 305

a witness from a large set of relevant statements, each
of which relates to someone else. Ring signatures are
the quintessential example of this paradigm, as the ver-
ifier only learns that the signer is a member of a set.
This anonymity property has recently been leveraged
by privacy-focused cryptocurrencies, like Monero [43]
and ZCash [41], to protect the identities of payers, even
when all transactions are recorded in a public ledger.
Evaluating a function represented as a lookup table can
also be represented as a set membership problem: se-
lecting the correct output value o given an input value
i from a set of mappings {(i1, o1), . . . , (i`, o`)}.

Given the importance of set membership proofs,
finding efficient set membership proving techniques is
a critical research direction. While there are generic
techniques to prove such statements, generic approaches
often result in concretely inefficient constructions. To
be of practical interest, membership proofs should sat-
isfy the following properties: (1) The set membership
must compose well with a larger zero-knowledge proof.
This is because simply proving membership alone is not
interesting; the prover will likely want to use the val-
ues in the set as input to some other arbitrary relation
R. (2) The communication complexity of set member-
ship proofs must not grow quickly with the size of the
set, as large sets are what provide provers meaningful
anonymity. Ideally, the proof size should be logarithmic
in the set size with small concrete constants. (3) Be-
cause of the use in blockchain applications, set mem-
bership proofs should be amenable to non-interactivity
transformations like Fiat-Shamir [23]. And finally, (4) It
would be desirable for any techniques to be plausibly
post-quantum secure so that privacy cannot be violated
by future adversaries with access to quantum compu-
tation. The recent NIST Post-Quantum Cryptography
competition has demonstrated the importance that new
cryptographic techniques adapt to the post-quantum
setting.

In this work we design a novel technique for seam-
lessly integrating membership proofs into generic MPC-
in-the-head [32] zero-knowledge proofs. While member-
ships have a long research history, they have largely been
overlooked in the context of efficient and versatile MPC-
in-the-head protocols.2

2 As we discuss later, Katz et al. [35] is one of the few works
to address this shortfall; they construct ring signatures using
MPC-in-the-head by adding a Merkle tree membership check to
the circuit, a sub-component that dominates the overall circuit
size.

The most significant benefit of focusing on MPC-
in-the-head protocols is the ease with which the set
membership proof can be integrated with another NP
relation. Because the secure multiparty computation
(MPC) protocol being used can easily operate over any
domain, there is no need to “match” the set member-
ship approach and the NP relation, which could result
in either a less efficient membership proof or less ef-
ficient representation of the relation. Additionally, our
membership proofs introduce only a logarithmic (in the
size of the set) communication overhead to the cost
of proving the relation circuit R, they are Fiat-Shamir
friendly, and post-quantum secure. Applying our tech-
niques is highly efficient, producing the smallest post-
quantum ring signatures from symmetric key primitives
when used in conjunction with the signature scheme ini-
tially proposed by Chase et al. [15].

Applications. We integrate our membership proof
technique into an open source implementation of the
MPC-in-the-Head protocol proposed by Katz et al. [35].
We use our implementation to implement the small-
est post-quantum ring signatures from symmetric key
assumptions. The signature sizes are approximately
42KB + 1.5KB× log(`), where ` is the ring size. This is
dramatically smaller than previous ring-signature con-
structions from similar assumptions, and is competitive
with lattice-based ring signature constructions (see Ta-
ble 1 for a comparison of ring signature sizes).

Additionally, there has recently been a sequence of
work showing how to leverage lattice-based cryptogra-
phy to create post-quantum secure RingCT, the tech-
nique used to create privacy preserving cryptocurrency
transactions for Monero [21, 52–54]. In our work, we
show how to efficiently instantiate RingCT using our
set membership proofs. Our construction is elegant, sim-
ple, and efficient, with the same asymptotic size as the
lattice-based constructions, but different constants. Our
construction also illustrates the benefits of an efficient
set membership proof that naturally integrates with a
generic zero-knowledge proof system: no technical dif-
ficulties arise when getting different parts of the state-
ment to fit together. For instance, our construction re-
quires no range proofs, which are necessary when sub-
components are arithmetizatized for compatibility.

1.1 Our Contributions

We now give an overview of the contributions we present
in this work.

Efficient Set Membership Proofs using MPC-in-the-Head 306

Efficient Set Membership Proofs using MPC-
in-the-head. We present an efficient, novel set mem-
bership proof that can be used with any MPC-in-the-
head [32] protocol. Our protocol introduces a input-
independent pre-processing phase to the simulated
MPC protocol (similar to the work of Katz et al. [35]3)
in which the simulated parties prepare secret shares of
the elements in the set. Composing a membership proof
for a set of size ` with an MPC-in-the-head proof in-
creases the communication complexity by only O(log(`))
and increases computation complexity by O(`).
Implementation. We integrate our techniques into
Reverie [1], an open source implementation of the Katz
et al. [35] MPC-in-the-head protocol. In our implemen-
tation, membership proofs only incur an additional com-
munication overhead of around 1.5KB × log(`) + |x| at
128 bits of post-quantum security, where |x| is the size
of the elements of the set.
Post-Quantum Ring Signatures. We use our modi-
fied version of Reverie to implement post-quantum ring
signatures. Our ring signatures, based on the post-
quantum signatures presented in [15, 34, 35], are the
smallest known post-quantum ring signatures from sym-
metric key assumptions, and can be nearly an order of
magnitude smaller than those based on the same as-
sumptions generated in [35].
Post-Quantum RingCT. We give a simple and el-
egant construction of post-quantum RingCT based on
symmetric key primitives and MPC-in-the-head. Due to
our efficient set membership proofs, we are able to make
use of generic zero-knowledge and still arrive at an ef-
ficient construction. Our work diversifies the assump-
tions from which we now know efficient post-quantum
RingCT, minimizing the reliance on lattice-based primi-
tives. Our construction is more efficient than prior work
for the most important kind of transaction: small num-
bers of inputs and outputs, but a large sender anonymity
set. This offers a different tradeoff from prior work,
which scales poorly with the size of the anonymity, but
better with the numbers of inputs and outputs.

1.2 Intuition

As discussed earlier, we make use of the MPC-in-the-
head paradigm introduced by Ishai et al. [32]. Since its
inception, a sequence of papers including (but not lim-

3 See Section 1.3 for a full comparison of our work at that of
Katz et al.

ited to) ZKBoo [25], ZKB++ [15], and the work of Katz
et al. [35] have developed new techniques in this regime
to construct concretely efficient zero-knowledge proofs.
In this section, we begin by briefly recalling some of
these techniques, and then discuss our main ideas.

MPC-in-the-Head. MPC-in-the-head [32] is a tech-
nique used for designing three-round, public-coin, zero-
knowledge proofs of knowledge using MPC protocols
(also called Σ-protocols). At a high level, the prover sim-
ulates an n-party MPC protocol Π virtually on the re-
lation circuit R(x, ·), that has the statement hard-wired
in it. The input to this MPC is the witness w (which is
shared among the virtual parties) corresponding to the
statement x, such that R(x,w) = 1. In the first round of
the protocol, the prover commits to the views of all the
parties in this MPC execution. In the second round, an
honest verifier then selects a random subset of the views
to be opened. In the third round, the prover opens to
the views of the selected players. The verifier then veri-
fies that those views are consistent with each other and
with an honest execution, where the output of Π is 1.

The computation and communication complexity of
such a protocol depends on the complexity of the un-
derlying MPC protocol which depends on the size of the
relation circuit |R(x, ·)|. Since this technique yields a
public-coin honest verifier zero-knowledge (HVZK) pro-
tocol, it can be made non-interactive, in the Random
Oracle Model via the Fiat-Shamir transformation [23].
This approach was first made practical using MPC pro-
tocols with very few parties — e.g. in ZKBoo [25] and
ZKB++ [15] — which require many parallel iterations
to achieve negligible soundness error.

Set Membership using MPC-in-the-head. A naïve
use of this approach for set membership will result in a
protocol where the prover simulates an MPC execution
for the following circuit, that takes witness w as input:

(R(x1, w) = 1) ∨ . . . ∨ (R(x`, w) = 1)

Here x1, . . . , x` are elements of the publicly known set
andR is the relation circuit. Complexity of the resulting
Σ-protocol in this case is dependent on `×|R(·, ·)|, which
is highly inefficient.

It would be far better to treat both w and x as
part of the witness, so R need only be executed once.
However, in this case, the chosen value of x remains
hidden. To guarantee that x used in the proof is indeed
valid, we can explicitly check its membership using the
underlying MPC protocol. In other words, consider the
following circuit that takes an element x and a witness

Efficient Set Membership Proofs using MPC-in-the-Head 307

Ring size: 27 210 213 Assumption
Derler et al. [18] 982 KB 1352 KB 1722 KB Symmetric Key
Katz et al. [35] 285 KB 388 KB 492 KB Symmetric Key

This Work 52 KB 56 KB 60 KB Symmetric Key
Ring size: 23 26 212 Assumption

Libert et al. [37] 52 MB 94 MB 179 MB SIS
Torres et al. [53] > 124 KB > 900 KB 61 MB Ring-SIS
Esgin et al. [20] 41 KB 58 KB 256 KB M-LWE & M-SIS
Esgin et al. [21] 29 KB 34 KB 148 KB M-LWE & M-SIS

Lyubashevsky et al. [39] < 16 KB < 18 KB < 19 KB Ex-M-LWE & M-SIS
This Work 46 KB 50 KB 59 KB Symmetric Key

Table 1. Performance of our post-quantum ring signature scheme compared to prior works, all for 128 bits of post-quantum security.
The performance of the lattice-based signatures come from Esgin et al. [20]; these bodies of literature use different benchmarks, so we
include both. Our ring signatures outperform the best known work relying on symmetric key assumptions by a factor of 5 to 8 and is
competitive with the best known lattice-based approaches.

w as input:

(R(x,w) = 1) ∧ (x = x1 ∨ . . . ∨ x = x`)

It is easy to see that the complexity of an MPC-
in-the-head protocol for this relation is dependent on
|R(·, ·)|+ `|x|. While this is a significant asymptotic im-
provement, it still has a linear dependence on the size
of the set. As discussed in the introduction, it would be
ideal to design a protocol where the proof size is loga-
rithmic in the size of the set.

Logarithmic Dependence on Size of the Set. Lin-
ear dependence on the size of the set in the previous
approach is a result of the explicit membership check
done inside the MPC protocol. A simple idea to opti-
mize this check is to use known techniques such as using
a Merkle hash to succinctly accumulate all the members
of the set and using a logarithmic sized Merkle proof to
prove membership. While the size of such a membership
proof is asymptotically logarithmic in the size of the set,
the computation and communication is concretely very
high. This is because verifying a Merkle proof inside the
MPC requires expressing the hash function as a circuit,
adding a significant number of gates to the simulated
MPC. This approach can easily dominate the commu-
nication cost of the overall protocol. For example, Katz
et al. [35] use this approach for constructing ring signa-
tures; the circuitry to verify the Merkle proof in their
construction is bigger than the actual relation circuit
R(·, ·) by a multiplicative factor of log(`).

Our Idea. To reduce the practical cost of this Merkle
proof, we aim to move the Merkle proof verification out-
side the MPC protocol. In other words, use MPC-in-
the-head approach to only prove that ∃x,w, such that
R(x,w) = 1 and give a separate (cleartext) Merkle proof

to prove that x ∈ {x1, . . . , x`}. This would accomplish
two goals: First, the communication complexity of the
resulting proof would no longer rely on the circuit rep-
resentation of the hash function. Second, verifying the
Merkle proof could be done directly on hardware, mak-
ing both prover time and verification time faster.

However, in order to securely implement this idea,
we need to overcome the following obstacles:

– Soundness: We need to tie the two proofs together
to make sure that the same x is used in the Merkle
proof as well as in the MPC-in-the-head protocol.

– Zero-Knowledge:Moreover, we need to make sure
that the Merkle Proof does not leak x.

To overcome the first issue, recall that the inputs
to the MPC in an MPC-in-the-head protocol are (se-
cret) shared amongst the parties. The prover must con-
vince the verifier that the shares of input x correspond
to a valid sharing of one of the elements in the set
{x1, . . . , x`}. Therefore, instead of simply accumulating
the set {x1, . . . , x`} using a Merkle tree (or any accu-
mulator), the prover first computes shares of these set
elements, accumulates these shares and commits to the
accumulated value. It can then use the Merkle proof
to show that the shares of x assigned to the parties
whose views were opened in the MPC-in-the-head pro-
tocol are members of the accumulated values. While
this idea helps create a dependency between the shares
used inside the MPC and the Merkle proof, it does not
guarantee that the shares committed inside the Merkle
tree were indeed honestly computed shares of the set
{x1, . . . , x`}.

We observe that the privacy-free nature of
{x1, . . . , x`} can be leveraged to use the well-known cut-

Efficient Set Membership Proofs using MPC-in-the-Head 308

and-choose technique to ensure that the prover com-
putes the shares honestly. In more detail, the prover
computes multiple copies of the Merkle tree. The verifier
then chooses to open a subset of these. Because the veri-
fier already knows x1, . . . , x`, they can check whether or
not the x′is were honestly secret shared and committed.
The remaining task is to selectively assign shares of the
correct x to the parties without revealing its index.

This can be solved by allowing the prover to accu-
mulate the shares in a random order. In particular, the
prover selects an independent random permutation for
the secret sharings of x1, . . . , x` for each iteration. This
permutation is revealed during cut-and-choose, so the
verifier can check that the shares are still honest. When
the simulated parties now use shares from the actual
x, the random permutation prevents the verifier from
detecting the value to which the shares correspond.

Adapting To Concrete MPC-in-the-head Proto-
cols. For the sake of simplicity, we kept the above dis-
cussion oblivious to the exact specifications of the MPC-
in-the-head protocol and its underlying MPC protocol
(e.g. privacy threshold, number of “input-bearing” par-
ties, etc. . .). However, the particularities of concrete
MPC-in-the-head protocols may impact the efficiency of
the above techniques. As such, we design ways to ensure
that our techniques are flexible and widely applicable.

In a generic MPC-in-the-head protocol, the prover
shares the witness among the input-bearing parties us-
ing an additive sharing. The soundness argument of the
resulting protocol relies on the verifier’s ability to iden-
tify a cheating computational party, but is agnostic to
the behavior of the input-bearing parties. Therefore, the
number of input-bearing parties relative to the proto-
cols privacy threshold is irrelevant. In our case, how-
ever, the verifier must check that the input parties act
honestly with respect to their inputs. Thus, the sound-
ness error also depends on the probability with which
the verifier catches a misbehaving input-bearing party.
Using additive secret sharing in this case results in very
poor soundness, as a single malicious input party can
effectively change the MPC inputs. To improve sound-
ness, we secret share the statement x amongst the input-
bearing parties using a threshold secret sharing, where
the threshold is the same as the privacy threshold of
the underlying MPC.4 This allows the soundness error
of our techniques only depend on the soundness error

4 We however, note that this optimization can only be applied
when the number of input-bearing parties is higher than the
privacy threshold of the underlying MPC. While this assumption

of the underlying MPC-in-the-head protocol and on the
failure probability of the cut-and-choose step.

Concrete MPC-in-the-head protocols often require
different numbers of parallel repetition to amplify
soundness. The number of repetitions, which we denote
τ , can vary from 1 to a linear function of the security pa-
rameter. The most direct—if wasteful—way to extend
the above approach for repetitions would be to run the
above set membership idea separately for each of the
τ repetitions. We instead propose a more flexible ap-
proach: the prover can independently decide the value
of τ and the number of Merkle trees (say M) that it
must generated for set membership, based on the sound-
ness required in each phase. In order to minimize the
failure probability of cut and choose, the verifier then
randomly asks to open M/2 Merkle trees (to check for
correctness). The prover can then run a separate on-
line phase using each of the remaining M/2 unopened
Merkle Trees. However, if M/2 > τ this approach leads
to unnecessary repititions in the online phase. To avoid
this, our idea is to use multiple Merkle trees for a single
online phase execution and check that all selected values
are the same in each Merkle Tree, within the MPC cir-
cuit of the underlying protocol. On the other extreme,
if the number of unopened preprocessings remaining af-
ter the cut-and-choose phase is τ , a single preprocessing
can be used for each MPC emulation.

Communication Complexity. Using some simple ad-
ditional optimizations such as deriving the randomness
used for secret sharing and for accumulation from a
small seed using PRGs and using compressive commit-
ments, the above techniques will yield a proof size5 of
O(n|x| + log(`)) + CCΣ(R), where n are the number of
parties used in the emulation of the MPC protocol and
CCΣ(R) is the communication complexity of the under-
lying MPC-in-the-head protocol when used to prove the
relation circuit R. We discuss this in detail in Section 3.
Finally, we note that while we described the high level
idea using Merkle trees, we note that any accumulator
can be used.

Round Complexity. The above approach results in a
5 round protocol, where the first two-rounds are used
for cut-and-choose (henceforth, we will refer to the gen-
eration each set of shares for the cut-and-choose as a

is not universal, it is extremely common among proposed MPC-
in-the-head protocols.
5 Here we are ignoring linear multiplicative factor in the secu-
rity parameter for simplicity. A more detailed calculation of our
complexity appears in Section 3

Efficient Set Membership Proofs using MPC-in-the-Head 309

pre-processing) and the next three rounds are for ex-
ecuting the MPC-in-the-head protocol. However, note
that this is still a public-coin proof and can be made
non-interactive in the random oracle model using the
Fiat-Shamir transform. We also note that in many cir-
cumstances it would be possible to use our approach
to construct a three-round protocol in the plain model
with slightly higher communication costs. We elaborate
more on this in the technical sections.

Implementation and Applications. We integrate
our membership proof techniques into Reverie, an open
source, Rust implementation of Katz et al. [35]. Our im-
plementation supports both boolean and arithmetic cir-
cuits. We use this implementation to evaluate the con-
crete efficiency of our techniques in two contexts: post-
quantum ring signatures and post-quantum RingCT.

We implement post-quantum ring-signatures based
on the post-quantum signatures of [15]. These signa-
tures use only symmetric key primitives to achieve post-
quantum security. In short, the signer’s public key is
PRF(K, 0) where K is the signer’s private key. Signa-
tures are non-interactive proofs that the signer knows
K that are tightly bound to the signed message m. The
size of our signatures can be seen in Table 1. For a signer
set of 213, our signatures are only 60 KB, 8 times smaller
than [35] and 5 times smaller than [20].

Additionally, we present a simple construction of
post-quantum RingCT [21, 43, 44, 51–54, 57] based on
symmetric key primitives. Our technique replaces the
ring signatures, balance proof, and range proofs com-
mon in prior approaches with a single zero-knowledge
proof that provides assurances of all the necessary prop-
erties at once. We note that this approach is only
efficient when the prover has access to an efficient
set membership proof that can easily integrate into a
larger proof. The resulting transaction sizes are com-
petitive with prior work, while removing the need for
lattice-based assumptions. Specifically, our construction
is more efficient when there are few inputs and outputs,
but the spender wants a large anonymity set.

1.3 Comparison to Prior Work

Comparison to Katz et al. [35]. Katz et al. [35] de-
sign an efficient MPC-in-the-head non-interactive zero-
knowledge (NIZK) protocol and use it to build ring sig-
natures. While [35] made significant contributions to
the state of MPC-in-the-head NIZKs, their work does
not substantially contribute to the state-of-the-art in

set membership (as this was not their goal). Their sig-
natures are direct descendants of the NIZK-based signa-
tures that Chase et al. [15] constructed from symmetric-
key primitives. To avoid linear dependence on the ring
size, [35] embed a Merkle tree inside the relation cir-
cuit, a technique established in prior work (eg. [48]).
This non-black box use of the hash function produces
a massive subcircuit that dwarfs the size of the base
signature. Our approach is black box in the hash func-
tion, improving inefficiency. Another benefit of our work
is that we are able to us standard hash functions with
large multiplicative complexity (eg. SHA256) instead of
a poorly analyzed hash function with low multiplicative
complexity (Davies-Meyer on LowMC).
Set Membership Proofs. Camenisch et al. [14]
achieve set membership by having the verifier sign the
set such that the prover need only show that it knows
a signature over the element. More recently Benarroch
et al. [7] build succinct non-interactive arguments of
knowledge (SNARKs) for set membership and set non-
membership proofs. To our knowledge, there has been
no work looking at optimizing set membership proofs in
the context of MPC-in-the-head techniques. Set mem-
bership is also a subset of disjunctive statements, for
which there has recently been significant work on zero-
knowledge [4, 26, 31]. The key improvement of these
works is that the communication complexity of the re-
sulting proof system is proportional to the size of (the
relation circuit corresponding to) the largest clause in
the disjunction, but the proof computation and verifi-
cation times in these systems still depend on the size of
all the clauses.
Ring Signatures and RingCT. We focus on apply-
ing our set membership techniques to post-quantum
ring signatures and post-quantum RingCT. Ring Signa-
tures were initially proposed by Rivest, Shamir and Tau-
man [47] and have been the subject of a significant body
of research [9, 11, 17]. More recently, post-quantum
ring signatures have been proposed from plausibly post-
quantum assumptions like symmetric key primitives [18,
35] and lattice-based assumptions [10, 20, 21, 37, 39, 53].
Post-quantum RingCT has also been the focus of recent
work [21, 52–54] as enthusiasm for post-quantum cryp-
tography grows. We give a more in-depth comparison of
our techniques in Section 6.
Generic Zero Knowledge. There has been a tremen-
dous amount of recent work on concretely efficient zero-
knowledge proof systems, e.g. [2, 6, 12, 15, 16, 24, 25,
29, 33, 35, 40, 49, 56]. Broadly, these constructions can
be classified either as (1) systems where the proof is

Efficient Set Membership Proofs using MPC-in-the-Head 310

succinct i.e., sublinear in the length of the witness (e.g.
zero-knowledge SNARKs [24, 29, 46]) and (2) systems
where the proof size is a function of the size of the rela-
tion circuit (e.g. [2, 15, 25, 33, 35]). Succinct proof sys-
tems generally suffer from prohibitively large computa-
tion times. On the other hand, concretely efficient non-
succinct proof systems have communication and compu-
tation complexity that are both dependent on the size of
the relation circuit. This is prohibitive for set member-
ship proofs, as membership is a heavy-weight primitive
when explicitly represented as a circuit.

2 MPC-in-the-Head Based
Σ-Protocols

In this section, we recall the template of an MPC-in-
the-Head Σ-protocol [32] and establish some notation
that will be useful in future sections.

Let Π be an n-party MPC protocol. Let P be the
set of parties. Let Vi be the view of a party Pi ∈ P
in Π. Let Pinp ⊆ P be the set of input-bearing parties
in this MPC. Let C be the set of all admissible corrupt
party sets. Let L be an NP-language andR be the corre-
sponding NP-relation. An MPC-in-the-head style zero-
knowledge protocol, where both parties get a statement
x ∈ L and the prover gets a witness w, s.t. R(x,w) = 1
proceeds as follows:

– Round 1: The prover additively secret shares w
amongst the virtual parties in Pinp. Let {wi}i∈Pinp

be this set of shares. It then emulates an execu-
tion of Π in its head for the following function:
F({wi}i∈Pinp) = R(x,

⊕
i∈Pinp

wi). Let {Vi}i∈[n] be
the views of the respective parties in this execution.
The prover computes Com = Commit({Vi}i∈[n])
and sends Com to the verifier. Depending on
the efficiency requirements, Commit here could be
any generic or a specific tailor-made commitment
scheme.

– Round 2: The verifier randomly selects a set of
parties from the set of all admissible corrupt party
sets, i.e., I ∈ C and sends it to the prover.

– Round 3: The prover sends an opening Open to
the verifier, that would enable the verifier to only
obtain the {Vi}i∈I .

– Verify: The verifier computes {Vi}i∈I using Com
and Open. It then checks if these views are consis-
tent amongst each other. If the checks succeed, the
verifier outputs 1, else it outputs 0.

Security. It is easy to see that completeness of the
above protocol would follow from the completeness of
the underlying MPC protocol and the commitment
scheme used by the prover to commit to the views of
the virtual parties. To show zero-knowledge, one can
construct a simulator that constructs the opened virtual
parties in a consistent way, but has the unopened virtual
parties cheat. Finally, the soundness error of the proto-
col follows from the corruption threshold and robustness
of the underlying MPC protocol. For more details, along
with a formal descriptions of these properties, see [32].

3 Set Membership using
MPC-in-the-head

In this section, we describe our generic compiler that
transforms any MPC-in-the-head style Σ-protocol into
a five round public coin protocol for set membership
with only an additive overhead in the communication
complexity that is logarithmic in the size of the set. As
discussed in the introduction, we first present an opti-
mized version for the case where the number of input
parties in the underlying MPC protocol is more than
its privacy threshold and later discuss how it can be
extended for any MPC-in-the-head protocol.

Notation and Building Blocks. Let κ be a tunable
security parameter. We use ‖ to denote concatenation.
We will use φ to denote a permutation. We will de-
note the number of parallel repetitions of the prepro-
cessing (i.e., generation of shares of the set) by M . Let
{x1, . . . , x`} be the publically known set and R be an
NP-relation. The prover wants to convince the verifier
that there exists an element x ∈ {x1, . . . , x`} and a wit-
ness w such that R(x,w) = 1. Let xα denote the active
element in the set, i.e., the element for which the prover
has a corresponding witness.

Our protocol uses the following primi-
tives: (1) Pseudorandom generator PRG :
{0, 1}κ → {0, 1}poly(κ) (used implicitly to
sample random values), (2) An Accumulator
(Acc.Gen,Acc.Eval,Acc.Proof,Acc.Verify) (see Appendix
A), (3) A hiding and binding non-interactive commit-
ment scheme Com(m; r), (4) a threshold secret sharing
scheme (Share(m,n, t; r),Recon({si}i∈[n], n, t)) [50], and
(5) An MPC-in-the-head based Σ-protocol (see Section
2).

For simplicity, we assume that all parties in the
MPC protocol used in Σ are input-bearing parties.

Efficient Set Membership Proofs using MPC-in-the-Head 311

Looking ahead, it will be obvious from context, that
this protocol can be trivially extended to accommodate
scenarios where only a subset of the parties might be
input-bearing.

Overview. As discussed in the technical overview, the
proof proceeds in two phases: (1) demonstrating cor-
rectness of the witness independent preprocessing of
the public set {x1, . . . , x`} using cut-and-choose, and (2)
demonstrating that the MPC-in-the-head protocol has
been executed honestly with respect to the preprocess-
ing. For succinctness, as much information as possible is
generated by expanding small seeds using a PRG. The
protocol is split over two figures; first, the prover and
verifier participate in an interactive protocol described
in Figure 1, and then the verifier runs the algorithm
from Figure 2 to verify validity of the transcript ob-
tained from Figure 1.

For each of the M parallel iterations of the prepro-
cessing step, the prover begins by sampling a random
mask. It then uses a threshold secret sharing scheme to
compute shares of this mask using the privacy thresh-
old t of the underlying MPC protocol. It also computes
the ∆s between the random mask and every element
in the set, where we denote the ∆ corresponding to the
kth element in the jth iteration by ∆j,k. The prover then
computes commitments to these n shares of the random
mask (one for each party) and the ` ∆ values (one for
each element in the set). It then randomly permutes the
commitments to the ` ∆ values and accumulates these
permuted commitments using an accumulator. Finally,
it computes a hash of the accumulated value and the n
commitments to the respective seeds assigned to each
party. This hash value is sent over to the verifier.

The verifier then partitions the M preprocessings
into two types: (1) a subset S that will be opened and
checked for correctness, and (2) preprocessings that will
be used to execute the MPC-in-the-head protocol. The
verifier further subdivides this second type of prepro-
cessing into τ equally sized subsets C1, . . . , Cτ , each of
which will be used to execute a single MPC-in-the-head
instance. Note that value of τ comes directly from the
number of repetitions required by the underlying MPC-
in-the-head protocol, and is not a newly variable intro-
duced by our techniques. For example, if the MPC-in-
the-head protocol does not require repetition, then the
prover can simply set τ = 1.

In the third round, the prover responds with all the
randomness used to compute the preprocessings in S.
Then the prover runs τ parallel copies of the the un-
derlying MPC-in-the-head protocol using the remain-

ing “unopened” preprocessing. In particular, for each
copy, the prover computes random additive shares for
the witness w and a random additive secret sharing for
the statements xα. the witness shares and random mask
shares (computed in the preprocessing phase) form the
inputs of the parties. The prover computes the views of
all the virtual parties in the underlying MPC for the
following functionality:

F
(
{{[maskj]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R

 ∑
m∈[n]

[xα]m,
∑
m∈[n]

[w]m

 ∧ ∀j ∈ Ci :

Recon
(
{[maskj]m}m∈[n], n, t

)
+ ∆j,α =

∑
m∈[n]

[xα]m

This functionality contains the following parts:

(1) reconstructs the additive secret sharings of the ac-
tive statement xα and witness w supplied as input;

(2) executes the relation circuit R(xα, w); and
(3) ensures that statement encoded in each preprocess-

ing is the same and matches xα.

We assume w.l.o.g., that the reconstruction algorithm
Recon outputs ⊥ if all the n input shares are not con-
sistent. The prover commits to these resulting views ex-
actly as it would in the underlying protocol.

Finally, the verifier chooses a subset of the parties
for each execution of the MPC. The prover responds by
sending the views of those parties (which include the in-
puts assigned to those parties). The prover additionally
sends the ∆ value corresponding to the active element
in the unopened preprocessing and the randomness used
to commit to it. It then gives a proof of inclusion (using
the accumulator) to prove that this commitment was
part of the accumulated values.

Completeness of the protocol follows trivially from
the correctness of the underlying primitives used in this
protocol. We argue zero-knowledge and soundness of
this protocol in Appendix B.

Remark. Since the above approach requires us to secret
share the mask amongst all the input-bearing parties
using the privacy threshold of the underlying MPC pro-
tocol, this approach only works if the number of input-
bearing parties is more than the privacy threshold in
the underlying MPC protocol. For all other protocols,
we can simply use an additive secret sharing scheme to
secret share the masks. However, as discussed in the in-
troduction, the soundness error of the resulting protocol
in this case will depend both on the soundness error of

Efficient Set Membership Proofs using MPC-in-the-Head 312

Set Membership Proof using MPC-in-the-Head

Public Inputs: Statements x1, . . . , x`, Accumulator Parameters pp
Prover Inputs: Active Statement xα, Witness w
Protocol Parameters: Number of Preprocessings M , Number of MPC Parties n, MPC Corruption Threshold t,
Number of Online Phases τ , Numer of Preprocessings Consumed by Each Online Phase η

– Round 1: For each j ∈ [M], the prover computes the following:
– Share a Random Mask Among the Players:

1. Sample a random mask maskj
$←− F.

2. For each k ∈ [`], compute ∆j,k = xk −maskj ∈ F.
3. Share the mask: r(share)

j

$←− {0, 1}κ; [maskj]1, . . . , [maskj]n ← Share(maskj , n, t; r(share)
j).

– Committing to Shares and Deltas:
1. For each i ∈ [n], commit to the share: r(mask-com)

j,i

$←− {0, 1}κ; com(mask)
j,i = Com([maskj]i; r(mask-com)

j,i).

2. Sample r(∆-com)
j

$←− {0, 1}κ and compute {r(∆-com)
j,k

}k∈[`] ← PRG(r(∆-com)
j).

3. For each k ∈ [`] commit to the delta: com(∆)
j,k

= Com(∆j,k; r(∆-com)
j,k

).
– Permuting and Accumulating Delta Commitments:

1. Randomly sample a permutation φj from the space of all permutations of size `.
2. Accumulate permuted commitments: (auxj , accj) = Acc.Eval(pp, com(∆)

j,φj(1), . . . , com(∆)
j,φj(`)

).

3. Let Rj = (com(mask)
j,1 , . . . , com(mask)

j,n , accj)
Finally, send (R1, . . . ,RM) to the verifier.

– Round 2: The verifier randomly partitions [M] into (τ + 1) subsets: C1, . . . , Cτ and S such that |Ci| = η for i ∈ [τ] and
|S| = M − τη.

– Round 3: The prover (1) opens all repetitions in S, and (2) runs the MPC for the remaining repetitions:
1. For each j ∈ S, the prover sends ({r(mask-com)

j,i }i∈[n], r
(∆-com)
j , r

(share)
j ,maskj , φj) to the verifier.

2. For each i ∈ [τ]:
(a) Additively secret share w: pick random [w]1, . . . , [w]n st. w =

∑
m∈[n][w]m

(b) Additively secret share xα: pick random [xα]1, . . . , [xα]n st. xα =
∑

m∈[n][xα]m
(c) Let {∆j,α}j∈Ci be (public) constants in the MPC protocol, each party Pm is assigned input

({[maskj]m}j∈Ci , [xα]m, [w]m). The prover computes the ‘MPC-in-the-head’ for the following relation:

F
(
{{[maskj]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R
(∑

m∈[n][xα]m,
∑

m∈[n][w]m
)
∧ ∀j ∈ Ci : Recon

(
{[maskj]m}m∈[n], n, t

)
+ ∆j,α =

∑
m∈[n][xα]m

Let Vi,m be the resulting view of party Pm.
(d) For each m ∈ [n], commit to each view: r(view-com)

i,m

$←− {0, 1}κ; com(view)
i,m = Com(Vi,m; r(view-com)

i,m)
(e) For j ∈ Ci compute the membership proof for ∆j,α: πj ← Acc.Proof(pp, accj , com(∆)

j,φj(α), auxj).

(f) Send {(πj ,∆j,α, r
(∆-com)
j,α)}j∈Ci , and {com(view)

i,m }m∈[n] to the verifier.
– Round 4: For each i ∈ [τ], the verifier picks a random t-sized subset of the parties Ii ⊆t [n].
– Round 5: The prover opens the parties specified in I1, . . . , Iτ . For each i ∈ [τ]:

1. Send {Vi,m, r(view-com)
i,m , {r(mask-com)

j,m }j∈Ci}m∈Ii to the verifier.

Fig. 1. A general compiler to obtain an efficient set membership proof from any MPC-in-the-head based Σ-protocol.

the underlying MPC-in-the-head protocol and on the
number of parties.

Complexity Analysis. Let CCΣ(F) be the communi-
cation complexity of a single run underlying MPC-in-
the-head protocol when used to give a proof for the
relation circuit F . Then the communication complex-
ity of a single run of the protocol described in Figure 1
is: M(n + 1)κ + (nκ + 3κ + |x|)(M − τη) + τηκ(log ` +

2) + CCΣ(F) = O(Mn(κ+ |x|) +Mκ log `) + CCΣ(F) The
computation complexity of this protocol is O(Mn(κ +
|x|) + (κ+ |x|)M`) + CCΣ(F), where CCΣ(F) is the com-
putation complexity of a single run of the underlying
MPC-in-the-head protocol when used to give a proof
for the relation circuit F .

Set Membership for Multiple Values. It is easy to
see that the above ideas can be trivially extended to ob-

Efficient Set Membership Proofs using MPC-in-the-Head 313

Verification for the Set Membership Proof

The verifier proceeds as follows:

– Verifying Correctness of Opened Preprocessing: For each j ∈ S, compute the following:

1. Receive ({r(mask-com)
j,i }i∈[n], {r

(∆-com)
j,k

}k∈[`], r
(share)
j ,maskj , φj) from the prover.

2. Compute [maskj]1, . . . , [maskj]n ← Share(maskj , n, t; r(share)
j).

3. For each i ∈ [n], recompute the commitments to the shares com(mask)
j,i

′
= Com([maskj]i; r(mask-com)

j,i).

4. For each k ∈ [`], recompute the deltas ∆j,k = xk −maskj ; com(∆)
j,k

′
= Com(∆j,k; r(∆-com)

j,k
)

5. Recompute the accumulator (_, acc′j) = Acc.Eval(pp, com(∆)
j,φj(1)

′
, . . . , com(∆)

j,φj(`)
′
).

6. Perform the following checks: ∀i ∈ [n], com(mask)
j,i

?= com(mask)
j,i ; ∀k ∈ [`], com(∆)

j,k

?= com(∆)
j,k

′
; accj

?= acc′j .

– Verify Consistency of MPC-in-the-head Execution and Delta Memberships: For each i ∈ [τ]:

1. Receive ({(πj ,∆j , r
(∆-com)
j)}j∈Ci , {com(view)

i,m }m∈[n], {Vi,m, r
(view-com)
i,m , {r(mask-com)

j,m }j∈Ci}m∈Ii) from the prover.
2. Recompute commitment to provided delta: com(∆)

j = Com(∆j ; r(∆-com)
j)

3. Recompute commitments to the opened views, for m ∈ Ii: com(view)
i,m

′
= Com(Vi,m; r(view-com)

i,m)

4. Verify commitments to player views: Check, for m ∈ Ii: com(view)
i,m

′ ?= com(view)
i,m

5. Verify the accumulator inclusion proofs: Check ∀j ∈ Ci : Acc.Verify(pp, accj , com(∆)
j , πj)

?= 1.
6. Verify commitments to opened player’s masks: Check, for m ∈ Ii, j ∈ Ci: com(mask)

j,m = Com([maskj]m; r(mask-com)
j,m),

where [maskj]m is part of Vi,m.
7. Check consistency of the opened MPC views against the function:

F
(
{{[maskj]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R
(∑

m∈[n][xα]m,
∑

m∈[n][w]m
)
∧ ∀j ∈ Ci : Recon

(
{[maskj]m}m∈[n], n, t

)
+ ∆j =

∑
m∈[n][xα]m

Parameterized by the constants {∆j}j∈Ci .

If all the above checks succeed, the verifier outputs 1, else it outputs 0.

Fig. 2. Verification algorithm for our Set Membership Proof from Figure 1.

tain a set membership proof for multiple values (say k
values), i.e., where the prover would want to prove that
∃x′1, . . . , x′k, w such that {x′1, . . . , x′k} ⊂ {x1, . . . , xn} and
R(x′1, . . . , x′k, w) = 1. This can be done using the above
protocol with the only modification that the underly-
ing MPC-in-the-head protocol will be used to prove the
relation

F
(
{{[maskj]m}j∈Ci , [x1]m, . . . , [xk]m, [w]m}m∈[n]

)
:=

R

 ∑
m∈[n]

[x1]m, . . . ,
∑
m∈[n]

[xk]m,
∑
m∈[n]

[w]m

∧
∀j ∈ Ci, β ∈ [k] :

Recon
(
{[maskj]m}m∈[n], n, t

)
+ ∆j,β =

∑
m∈[n]

[xβ]m

where ∆j,β are public constants for β ∈ [k] and the
prover will be required to give a proof of inclusion in

the accumulator for each ∆j,β value. Looking ahead,
this will be useful in our construction of RingCT.

Optimizations. In Appendix C we include several ad-
ditional optimizations for our protocol. Specifically, we
discuss optimizations for secret sharing based MPC pro-
tocols, optimizing the number of parallel repetitions, re-
ducing the round complexity to 3 rounds (as in [35]),
and using pseudorandom generators to compress the
seed information.

4 Compiling Non-Standard
MPC-in-the-head Protocols

The compiler described in the previous section works
seamlessly with any MPC-in-the-head based Σ proto-
col that follows the template presented in Section 2.

Efficient Set Membership Proofs using MPC-in-the-Head 314

However, some recent protocols in this regime slightly
deviate from this template in order to get better effi-
ciency. In this section, we demonstrate the versatility of
our main ideas by showing how they can extend to two
such protocols. Additionally, we implement our compiler
as applied to the second example.

4.1 Integrating Into Ligero

Ligero is a MPC-in-the-head protocol with sub-linear
communication complexity that leverages a highly non-
traditional MPC protocol. In the first phase, a special
“sender” party evaluates the relation circuit using the
witness in the clear, and computes

√
|C| packed secret

sharings of the values induced on all the intermediate
wires of this relation circuit, where |C| is the size of the
circuit and each sharing holds a block of

√
|C| values.

These sharings are distributed to n virtual servers. In
the second phase, the servers obtain a public random
string r sampled via a coin flipping oracle, and perform
only local computation. Finally, each server sends a sin-
gle message to a “receiver.”

In the 5 round MPC-in-the-head protocol based on
this MPC protocol, the verifier supplies the value r and
chooses to see a subset of the views of the servers and
the verifier, but is not allowed to see the sender’s view,
as this would trivially violate zero-knowledge. At a high
level, the first phase of the underlying MPC protocol
transforms the circuit into a set of polynomial encod-
ings. The verifier then uses the second phase of the
MPC to check that these encodings satisfy low degree
constraints derived from the structure of the relation
circuit.

The Ligero protocol does not require repetition,
as a single iteration of the protocol already has neg-
ligible soundness error. Thus, when instantiating our
set membership techniques with Ligero, we set τ=1
and η = M/2. Because the sender party’s view can-
not be opened, the inputs for xα must be provided to
the servers instead and be appropriately encoded into
packed secret shares. The remaining protocol can be run
without further modification.

4.2 Integrating Into Katz et al.

Katz et al. [35] presented an efficient zero-knowledge
protocol using MPC-in-the-head technique. The goal
of their approach is to increase the number of vir-
tual players participating in the MPC protocol (and

thereby reduce the number of parallel repetitions re-
quired for soundness) without increasing the size of re-
sulting proofs. To accomplish this, they design a special-
purpose MPC protocol consisting of two phases: (1) a
circuit dependent pre-processing phase that is indepen-
dent of the parties’ inputs to the MPC and (2) an online
phase that depends on the output of the pre-processing
phase and the parties’ inputs. Using several clever op-
timizations, the size of the resulting proof is (mostly)
independent of the number of virtual players.

A straightforward way to integrate our set member-
ship proof techniques into a Katz et al. proof would be to
use their protocol in a black-box way inside our compiler
(Figure 1), computing η based on the value of τ used in
Katz et al. However, this ignores the shared structure
of our compiler and Katz et al.’s protocol: both have
an input-independent pre-processing phase, followed by
an evaluation phase over secret inputs. A more natural
approach would be to run our set membership in par-
allel with Katz et al.’s protocol. Specifically, during the
pre-processing phase, the prover generates both corre-
lated randomness and secret shares of the set (as in the
compiler) and sets η = 1. The correctness of both can
be verified using a cut-and-choose approach. During the
online phase, the virtual parties run the MPC protocol
in Katz et al. leveraging the correlated randomness, us-
ing the secret shares of the secret element directly.

The benefits of this approach is that there is no
need to add extra rounds to the protocol.6 Moreover,
since their MPC protocol works in the dishonest ma-
jority, as discussed in the previous section, instead of
sampling a different seed for every party, we can use
a tree-based PRG to derive randomness for the parties
to further reduce the communication complexity. This
protocol is only based on symmetric key primitives and
is therefore post-quantum secure. The total communi-
cation complexity of this protocol is O(κ logn + |R| +
|x|+ |w|+ κ log `|).

Implementing Set Membership Proofs for Katz
et al. We implemented this optimized integration of set
membership techniques on top of Reverie, the only pub-
lic general purpose implementation of the Katz et al.
protocol. The entire code base is written in Rust and
supports parallel computation, proof streaming, and

6 Indeed, this five-round protocol for set-membership can then
be compressed into a three-round protocol (in the plain model)
using the ideas from [35]

Efficient Set Membership Proofs using MPC-in-the-Head 315

bit slicing, and is freely available under the GPLv3.7

Throughout our evaluation, we use this implementation.
Our implementation automatically applies Fiat-

Shamir to the three-round variant of [35]. Because the
input from the set membership proof needs to be treated
differently than standard input, we separate the input
into two tapes. Circuits are specified in the Bristol Fash-
ion [3]; whenever the prover encounters an INPUT gate,
it reads from the first (witness) tape and whenever it
encounters a BRANCH gate it reads from the (second)
membership proof tape.

The code base instantiates the cryptographic prim-
itives with ChaCha12[8] and Blake3[45] as follows:
The PRG is implemented with ChaCha12, including as
the length-doubling PRG inside the TreePRG. We use
Blake3 as the collision resistant hash function and to
instantiate the random oracle (in key derivation func-
tion mode)8. We instantiate our commitments with
hash-based commitments, also using Blake3 in keyed
mode. We use Blake3 without keying when commit-
ting to high entropy values, as in Katz et. al [35], but
note that this particular optimization cannot be ap-
plied when committing to the shares in the set member-
ship proof, as they are correlated. Our implementation
is generic: allowing instantiation of the non-interactive
zero-knowledge proof of knowledge (NIZKPoK) with
any ring and taking any algebraic circuit over said ring.
We use this to optimize the ring signature circuit for
the particular PRF instantiation as described below.

5 Post-Quantum Ring Signatures
Ring signatures are a privacy preserving version of sig-
natures introduced by Rivest, Shamir, and Tauman [47].
Ring signatures give the signer k−anonymity, in that
a signature can only be linked back to a set (or ring)
or public keys. We now show how to leverage our effi-
cient set membership techniques for MPC-in-the-head
to get the smallest constructions of post-quantum ring
signatures from symmetric key assumptions. Due to lack
of space, we omit formal definitions of ring signatures,
which can be found in [47].

7 Code is available at:
github.com/trailofbits/reverie/tree/stacked-ikos.
8 To provide domain separation from the collision resistant hash
function.

5.1 Construction and Implementation

The work of Chase et. al. [15], and later Katz et. al. [35],
construct post-quantum ring signatures in the random
oracle model that only depend on symmetric key prim-
itives. These signatures use random PRF keys as the
secret keys sk and the corresponding public key is de-
fined as PRFsk(0κ). The regular signatures constitute a
NIZKPoK{(sk) : PRFsk(0κ) = pk} in which the message
is fed into the random oracle during flattening. This
means that the simulated players execute the PRF and
that the public key is fed explicitly into the circuit at the
end to perform the equality check. Clearly, this reveals
the identity of the signer.

Katz et. al. [35] showed how to extend this template
to create both ring and group signatures by adding a
Merkle membership proof inside the circuit. More for-
mally, the signature would be of the form

NIZKPoK{(sk, pk) : (PRFsk(0κ) = pk)∧
pk ∈ {pk1, . . . , pk`}},

where the membership proof is implemented using a
Merkle tree. This introduced a multiplicative overhead
to the signature size proportional to the the logarithm of
the ring size, as each hash in the Merkle tree is the same
size as the relation itself. Taking a similar approach, but
we use the membership proof construction presented in
Section 4.2. Due to space constraints, we omit the proof
of security for this construction, as it is the same as the
proof in [35].

Implementation and Evaluation We implemented
our ring signatures using Reverie. We instantiate the
PRF using LowMC with the picnic-L5-full parame-
ters9 from the Picnic specification [58] offering an es-
timated 128 bits of post-quantum security. The un-
derlying MPC protocol is instantiated with n = 64,
M = 1662, τ = 44 to optimize for signature size at 256
bits of statistical security (yielding a NIZK with 128 bits
of security against Grover’s algorithm [30]). We bitslice
the LowMC circuit inside the MPC protocol10, by let-
ting the MPC protocol operate over vectors from (F2)85

(rather F2) to improve concrete prover/verifier time.
We find that our ring signatures are the small-

est post-quantum ring signatures currently known
from symmetric key assumptions. A single iteration of

9 LowMC with 255-bit state, 255-bit key, 4 rounds and full S-
Box layers.
10 As done in the optimized Picnic implementation.

Efficient Set Membership Proofs using MPC-in-the-Head 316

Table 2. Performance of the post-quantum ring signature scheme compared to prior works. |σ| is the size of the resulting signature. t
is the time for signing/verifying the signature. The average is taken over 1000 executions. The server consists of two Intel(R) Xeon(R)
CPU E5-2695 @ 2.10GHz. The laptop consists of a single Intel(R) i7-4510U CPU @ 2.00GHz. Derler et al. do not report runtime. The
experiments of Katz. el al. were run on a Intel Xeon E5-2666v3

Ring size: 27 210 213

|σ| t |σ| t |σ| t

Derler et al. [18] 982 KB — 1352 KB — 1722 KB —
Katz et al. [35] (Server w/ 10 cores) 285 KB 2000 ms 388 KB 2800 ms 492 KB 3600 ms

This Work (Server w/ 36 cores) 52 KB 126 ms 56 KB 210 ms 60 KB 1980 ms
This Work (Laptop w/ 2 cores) 52 KB 2163 ms 56 KB 3437 ms 60 KB 16080 ms

LowMC requires ≈ 42KB of communication, which is
linear in the number of non-linear gates in the the
LowMC circuit times the number of online repetitions.
The membership proof requires ≈ 1.5KB× log(`), where
` is the size of the ring. We present concrete sizes for
our signatures in Table 1. Additionally we report sig-
nature generation/verification time in Table 2. We note
that signature generation/verification is an embarrass-
ingly parallel problem, so computing on multiple cores
significantly increases the performance of the system.

6 Post-Quantum RingCT
RingCT [43, 44] is a protocol used by the cryptocur-
rency Monero to provide additional privacy to transac-
tions posted on the blockchain. RingCT provides two
primary benefits over more standard cryptocurrencies:
the identity of a transaction’s sender is obscured us-
ing an anonymity set of the sender’s choice, and the
amounts sent in each transaction are kept private to the
sender and receiver. These properties make it difficult
to track the flow of currency through the network, pro-
viding significantly improved privacy over blockchains
like Bitcoin [42] and Ethereum [13].

In order to provide these privacy properties,
RingCT augments standard blockchain transactions
with the following: (1) protect the identity of the sender
with a ring signature, rather than a traditional signa-
ture, (2) encapsulate the input and output balances of
transactions inside commitments, (3) prove that the in-
put balances sum to the output balances, and (4) prove
that all balances are well formed. Monero instantiates
these augmentations using ring signatures, homomor-
phic Pederson Commitments, and range proofs based
on Bulletproofs [12].

There has been recent interest in instantiating
RingCT using plausibly post-quantum secure primi-
tives [21, 52–54]. These works follow the classical con-
structions of RingCT closely, leveraging lattice-based

cryptography to create the required primitives. We im-
prove upon this work by reducing the assumptions to
only symmetric-key primitives.

6.1 Definition of RingCT

In this work, we adopt the definitions of RingCT
2.0 [51], as they are cleaner that subsequent formaliza-
tions [21, 36, 57] and are sufficient to capture the ap-
plication in which we are interested. A RingCT scheme
consists of the following algorithms:

– pp ← Setup(1κ): On input the security parameter,
generate any necessary public parameters. We let
these public parameters be an implicit input to the
algorithms below.

– (pk, sk) ← KeyGen(1κ) : On input the security pa-
rameter, generate a random public-private keypair
(pk, sk).

– (coin, ck) ← Mint(pk, ε) : On input a public key pk
and an amount ε, create a coin coin and a coin key
ck. In general, the coin can be thought of as a com-
mitment to the value ε under the randomness ck.

– (tx, π, S) ← Spend(Ks, As, A,R) : On input a set Ks
of private information tuples (pk, (ε, ck)) (where sk is
a secret key, ε is an amount, and ck is a coin key),
each of which is associated with an input account
(pk, coin) in the set As, a larger set of anonymizing
accounts A, and a set of output accounts R, generate
a transaction tx, a proof π that the transaction is well
formed, and a set of serial numbers S.

– {0, 1} ← Verify(tx, π, S) : On inputs a transaction tx,
a proof π and a set of serial numbers S, determine if
the bundle is valid.

We now give informal descriptions of the security prop-
erties that these algorithms must satisfy. We refer the
reader to [51] for a more formal definition of these prop-
erties:

Efficient Set Membership Proofs using MPC-in-the-Head 317

Post-Quantum RingCT from Symmetric Key Assumptions

Let PRF1,PRF2 : {0, 1}κ × {0, 1}κ → {0, 1}κ be a pseudorandom functions. Let Com : {0, 1}∗ → {0, 1}κ be a hash-based
commitment scheme.

– (pk, sk)← KeyGen(1κ) : Sample sk $←− {0, 1}κ and compute pk← PRF2(sk, 0)

– (coin, ck)← Mint(pk, ε) : Sample ck ← {0, 1}κ and compute coin = Com(ε; ck)

– (tx, π, S)← Spend(Ks, As, A,R) : // Ks = {(skin,i, (εin,i, ckin,i))}i∈[|Ks|] are secret key material to spend from As

// As = {(pkin,i, coinin,i)}i∈[|As|] are accounts from which the spender spends

// A = {(pkin,i, coinin,i)}i∈[|A|] is the anonymity set (ring) hiding input accounts AS
// Note that A may be represented succinctly using a random low degree polynomial

// R = {(pkout,j , εout,j)}j∈[|R|] are receiver’s public keys and amounts

• For (pkout,j , εout,j) ∈ R, compute (coinout,j , ckout,j)← Mint(pkout,j , εout,j)
• For (skin,i, (εin,i, ckin,i)) ∈ As, compute sni ← PRF1(skin,i, ckin,i)
• Let tx = (A, {(pkout,j , coinout,j)}j∈[|R|])
• Let S = {sni}i∈[|As|]
• Compute π as

π = NIZKPoK{(Ks, As, {εout,j , ckout,j}j∈|R|) :
(
{pkin,i = PRF2(skin,i, 0)}i∈[|As|]

)
∧ (As ⊆ A)

∧
(
{coinin,i = Com(εin,i; ckin,i)}i∈[|As|]

)
∧
(
{sni = PRF1(skin,i, ckin,i)}i∈[|As|]

)
∧

 ∑
i∈[|As|]

εin,i =
∑
j∈[|R|]

εout,j


∧
(
{coinout,j = Com(εout,j ; ckout,j)}j∈[|R|]

)
}

– {0/1} ← Verify(tx, π, S) : Return 1 if and only if:
• π verifies
• A is a subset of existing accounts
• No element of S appears previously

Fig. 3. A post-quantum RingCT construction based on symmetric key primitives.

– Correctness. A user can run the Spend algorithm
to produce a valid tuple (tx, π, S) spend from ac-
counts that they control to any set of (adversarial
chosen) receiver accounts and any (adversarial cho-
sen) anonymity set.

– Balance. A user should (1) only be able to spend
from accounts that they control, and (2) it should be
impossible to use transactions to fabricate more cur-
rency (i.e. the sum of the input amounts to a trans-
action should be at least as large as the sum of the
outputs of that transaction). Relatedly, it should only
be able to spend from accounts once.

– Anonymity. An observer should not be able to de-
termine which of the accounts in A are the input ac-
counts.

– Non-Slanderability. The non-slanderabiliy prop-
erty requires that a malicious user cannot slander
any honest user after observing an honestly generated
spending. It is infeasible for any malicious user to pro-

duce a valid spending that shares at least one serial
number with a previously generated honest spending.

6.2 Constructing RingCT From Symmetric
Key Primitives

Recall that the goal is to construct RingCT from only
symmetric key primitives. Adapting the intuition of
prior implementations, we choose to instantiate coins
as a commitment to the value using the coin key as ran-
domness. Specifically, we will use hash based commit-
ments, as they rely only on symmetric key primitives,
instantiated using LowMC and the Davies-Meyer trans-
formation11. Thus, the Mint algorithm is simply gener-

11 The Davies-Meyer transformation constructs a collision
resistant hash function from a block cipher E(k,m) as
H(m1‖m2) = E(m1,m2)⊕m2.

Efficient Set Membership Proofs using MPC-in-the-Head 318

ating a random string ck and then committing to the
input value. Additionally, we will make use of the signa-
tures discussed in the previous section and compute the
serial numbers for each coin as a deterministic, random-
looking function of ck. Because we use a pseudorandom
function both for the generation of serial numbers and
signatures, we separate the two pseudorandom functions
as PRF1 and PRF2 respectively.

Warmup. As a warmup, we start by showing the algo-
rithm Spend when |As| = |R| = 1. In this case, |As|
consists of a single account (pkin, coinin), and Ks is
the private information necessary to spend from this
account; namely, Ks contains skin, (εin, ckin) such that
coinin = Com(εin, ckin) and pkin = PRF2(skin, 0). With
only a single output, R consists of just (pkout, εout). Fi-
nally, A is an arbitrary set of accounts such that As ⊆ A.

In our construction, the proof π is a single zero-
knowledge proof that simultaneously provides most of
the required security properties. Namely, it is both
the signatures and balance checks. Concretely, for
our warmup case, Spend generates a new output coin
coinout containing value εout and returns (tx, πsingle, S),
where tx is (A, (pkout, coinout)), S is a set containing
the serial number sn, and πsingle is computed as

πsingle = NIZKPoK{(Ks, As, (εout, ckout)) :
(pkin = PRF2(skin, 0) ∧ (pkin, coinin) ∈ A)∧
(coinin = Com(εin; ckin) ∧ sn = PRF1(skin, ckin))
∧ (εin = εout ∧ coinout = Com(εout; ckout))}.

Intuitively, there are 3 parts of this proof, that
together provide the necessary security properties for
RingCT:

– Showing Authorization to Spend Input Coin.
First the prover uses a membership proof to show that
(pkin, coinin) is in A and a signature to show that the
prover has authorization to spend from that account.

– Proving Knowledge About Input Coin. Next,
the prover demonstrates that it knows an opening
to the coin and that the public serial number cor-
responds to the coin.

– Proving Output Coin is Well Formed. Finally,
the prover shows that the output coin holds the cor-
rect balance and is well formed.

Once these elements have been constructed, the
spender sends them to the blockchain. There, the min-
ers verify the correctness of the proof and check that
sn has not been seen before. If these checks pass, the
transaction will be included in the blockchain. Finally,

the spender will send εout and ckout to the receiver so
that they can spend in the future. We note that this ap-
proach is significantly simpler than prior constructions.
We emphasize that using a generic zero knowledge proof
in this way is only possible because of an efficient con-
struction of set-membership proofs.

Generalizing to Multi-input and Multi-output.
Using the blueprint from the warmup above, we now
present the construction for multi-input and multi-
output RingCT. The input sets Ks, As and R now
contain many elements each. The checks used in the
warmup are applied to each input account and output
coin, as appropriate. The only significant difference is
that the proof checks if the sums of the input accounts
equal the sums of the output accounts instead of doing a
direct equality check. This task is incredibly straightfor-
ward in the MPC-in-the-head setting. Specifically, if the
statement is represented as a boolean circuit, then sum-
ming the amounts just requires a cascade of full adders
of the appropriate width (3 AND gates per bit). Another
advantage of this representation is that no range proof
is necessary, as a boolean circuit can natively support
unsigned arithmetic. This is a big departure from prior
work, where the amounts had to be represented as arith-
metic values, which opens the possibility of “overflow-
ing” the ring in which they were being represented. The
full construction can be found in Figure 3.

As is expected from such a simple construction that
makes such heavy use of generic zero knowledge, se-
curity of this construction trivially follows from the
security of the underlying set membership proof sys-
tem. In particular, correctness follows from the correct-
ness of the PRF, commitment scheme and completeness
of the set membership proof system. Balance follows
from the soundness of the set membership proof sys-
tem. Anonymity follows from the zero-knowledge prop-
erty of the set membership proof system. It is well-
known [15] that the Fiat-Shamir transform yields non-
malleable NIZKPoKs, both in the classical setting [22]
and in the quantum setting [55]. Non-slanderability of
this RingCT construction follows from non-malleability
of our NIZKPoK for set membership.
Efficiency Analysis. We now compute the size of the
proof π in Figure 3 in terms of |A|, |As| and |R|. For
each input in As, the prover must prove the follow-
ing information: (1) that it knows a valid opening for
the input coin (1 commitment evaluation), (2) the se-
rial number is correctly computed as the output of the
PRF (1 PRF evaluation), (3) the prover knows the secret
key corresponding to the public key associated with the

Efficient Set Membership Proofs using MPC-in-the-Head 319

input coin (1 PRF evaluation), and (4) the public key
and input coin are indeed part of the ring (1 set mem-
bership proof). Thus, the total cost for each input is
3× |LowMC|+ |Membership Proof|. For each output in
R, the prover need only demonstrate that the coin is
well-formed with respect to the output value εout. The
sum check requires 3× b AND gates per addition, where
b is the bit width of the amount representation. With
b = 64 and τ = 44, this means each addition costs only
2.1KB of communication. Thus, the total cost for each
output is |LowMC|. Finally, the prover demonstrates
that the inputs and outputs sum correctly. In total, for
a transaction with |As| inputs, |R| outputs, and a ring
size of |As|, π is

(3|As|+ |R|)|LowMC|+ |As||Membership Proof|+
|Sum Check|.

Each iteration of LowMC, using the same parameter
choices from Section 5 costs 11.2KB12 with a baseline
overhead of 31KB.

31KB + (3|As|+ |R|)(11.2KB)+
|As| log(|A|)(1.5KB) + (|As|+ |R| − 2)(2.1KB)

Comparing our work to the most efficient recent
work on post-quantum RingCT [21], we find that our
techniques yield proof sizes that significantly more effi-
cient when the anonymity set is large.13 For instance,
when |A| = 215, |As| = 1, and |R| = 2, our proofs are of
size 111KB, which is half the size of [21] transactions,
which are ≈ 250KB. The relative performance of our
techniques improves as |A| grows. Once |A| = 221, the
proof size of [21] is already 400KB, whereas ours would
only be 120.6KB. Both of our techniques scale linearly
with |As|, but ours offers slightly worse constants. Our
proofs grow by ≈ 35KB per input. However, as noted
by [21], the most common kinds of transactions have
|As|, |R| ≤ 2. Finally, we note that the public keys in
our construction are only 256 bits, whereas the public
keys in [21] are 4.36KB.

12 Elements are in F85. There are 4 rounds, in which each bit
of the element in F85 is multiplied 3 times. Each MPC requires
2 bits per AND gate. Finally, there are 44 parallel iterations of the
online phase. Thus, in total, each instance of LowMC requires
89,760 bits = 11.2KB.
13 We note that extracting concrete proof sizes for [21] is diffi-
cult, as their work only includes the results in graph form. We
refer the reader to Figure 1 in their work.

7 Conclusion
In this work we presented an efficient set membership
proof method that can be used with any MPC-in-the-
head zero-knowledge proof system. We demonstrated
that this technique has meaningful applications to pri-
vacy preserving systems, including the smallest post-
quantum ring signatures from symmetric key primi-
tives. Additionally, we presented a simple construction
of post-quantum RingCT that showed the benefits of set
membership proofs that naturally integrate with generic
zero-knowledge.

8 Acknowledgments
The first and second authors are supported in part by
NSF under awards CNS-1653110, and CNS-1801479,
and the Office of Naval Research under contract
N00014-19-1-2292. The first author is also supported
in part by NSF CNS grant 1814919, NSF CAREER
award 1942789 and the Johns Hopkins University Cata-
lyst award. The second author is also funded by DARPA
under Contract No. HR001120C0084, as well as a Se-
curity and Privacy research award from Google. The
third author is funded by Concordium Blockhain Re-
search Center, Aarhus University, Denmark. The forth
author is supported by the National Science Founda-
tion under Grant #2030859 to the Computing Research
Association for the CIFellows Project and is supported
by DARPA under Agreements No. HR00112020021 and
Agreements No. HR001120C0084. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of the United States Government
or DARPA.

References
[1] Reverie (github project), 2020. https://github.com/

trailofbits/reverie.
[2] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakr-

ishnan Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

[3] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene,
Nele Mertens, Danilo Sijacic, and Nigel Smart. Bristol fash-
ion MPC circuits. https://homes.esat.kuleuven.be/~nsmart/

https://github.com/trailofbits/reverie
https://github.com/trailofbits/reverie
https://homes.esat.kuleuven.be/~nsmart/MPC/

Efficient Set Membership Proofs using MPC-in-the-Head 320

MPC/.
[4] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter

Scholl. Mac’n’cheese: Zero-knowledge proofs for arithmetic
circuits with nested disjunctions. Cryptology ePrint Archive,
Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410.

[5] Michael Ben-Or and Avinatan Hassidim. Fast quantum
byzantine agreement. In Harold N. Gabow and Ronald Fa-
gin, editors, 37th ACM STOC, pages 481–485. ACM Press,
May 2005.

[6] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev,
Nicholas Spooner, Madars Virza, and Nicholas P. Ward.
Aurora: Transparent succinct arguments for R1CS. In Yu-
val Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

[7] Daniel Benarroch, Matteo Campanelli, Dario Fiore, and
Dimitris Kolonelos. Zero-knowledge proofs for set member-
ship: Efficient, succinct, modular. Cryptology ePrint Archive,
Report 2019/1255, 2019. https://eprint.iacr.org/2019/1255.

[8] Daniel Bernstein. Chacha, a variant of salsa20. 01 2008.
[9] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam

Ghadafi, Jens Groth, and Christophe Petit. Short ac-
countable ring signatures based on DDH. In Günther Per-
nul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, ES-
ORICS 2015, Part I, volume 9326 of LNCS, pages 243–265.
Springer, Heidelberg, September 2015.

[10] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and
Nicholas Spooner. Efficient post-quantum SNARKs for
RSIS and RLWE and their applications to privacy. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryp-
tography - 11th International Conference, PQCrypto 2020,
pages 247–267. Springer, Heidelberg, 2020.

[11] Zvika Brakerski and Yael Tauman Kalai. A framework for
efficient signatures, ring signatures and identity based en-
cryption in the standard model. Cryptology ePrint Archive,
Report 2010/086, 2010. https://eprint.iacr.org/2010/086.

[12] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poel-
stra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society Press, May 2018.

[13] Vitalik Buterin et al. A next-generation smart contract and
decentralized application platform. 2014.

[14] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient
protocols for set membership and range proofs. In Josef
Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS,
pages 234–252. Springer, Heidelberg, December 2008.

[15] Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel
Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842.
ACM Press, October / November 2017.

[16] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Frac-
tal: Post-quantum and transparent recursive proofs from
holography. Cryptology ePrint Archive, Report 2019/1076,
2019. https://eprint.iacr.org/2019/1076.

[17] Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and
Tsz Hon Yuen. Ring signatures without random oracles. In

Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Lin, Shiuhpyng
Shieh, and Sushil Jajodia, editors, ASIACCS 06, pages 297–
302. ACM Press, March 2006.

[18] David Derler, Sebastian Ramacher, and Daniel Slamanig.
Post-quantum zero-knowledge proofs for accumulators with
applications to ring signatures from symmetric-key prim-
itives. In Tanja Lange and Rainer Steinwandt, editors,
Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pages 419–440. Springer, Heidelberg,
2018.

[19] Jelle Don, Serge Fehr, Christian Majenz, and Christian
Schaffner. Security of the Fiat-Shamir transformation in
the quantum random-oracle model. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, vol-
ume 11693 of LNCS, pages 356–383. Springer, Heidelberg,
August 2019.

[20] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and
Dongxi Liu. Lattice-based zero-knowledge proofs: New tech-
niques for shorter and faster constructions and applications.
In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 115–
146. Springer, Heidelberg, August 2019.

[21] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld,
Joseph K. Liu, and Dongxi Liu. MatRiCT: Efficient, scal-
able and post-quantum blockchain confidential transactions
protocol. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
567–584. ACM Press, November 2019.

[22] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Mar-
son, and Daniele Venturi. On the non-malleability of the
Fiat-Shamir transform. In Steven D. Galbraith and Mridul
Nandi, editors, INDOCRYPT 2012, volume 7668 of LNCS,
pages 60–79. Springer, Heidelberg, December 2012.

[23] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[24] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, Heidelberg, May 2013.

[25] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZK-
Boo: Faster zero-knowledge for Boolean circuits. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016,
pages 1069–1083. USENIX Association, August 2016.

[26] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Stacking sigmas: A framework to com-
pose σ-protocols for disjunctions. Cryptology ePrint Archive,
Report 2021/422, 2021. https://eprint.iacr.org/2021/422.

[27] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[28] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs
that yield nothing but their validity or all languages in NP
have zero-knowledge proof systems. Journal of the ACM,
38(3):691–729, 1991.

[29] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2019/1255
https://eprint.iacr.org/2010/086
https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2021/422

Efficient Set Membership Proofs using MPC-in-the-Head 321

editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Heidelberg, May 2016.

[30] Lov K. Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the Twenty-Eighth An-
nual ACM Symposium on Theory of Computing, STOC ’96,
page 212–219, New York, NY, USA, 1996. Association for
Computing Machinery.

[31] David Heath and Vladimir Kolesnikov. Stacked garbling for
disjunctive zero-knowledge proofs. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume
12107 of LNCS, pages 569–598. Springer, Heidelberg, May
2020.

[32] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Zero-knowledge from secure multiparty computation.
In David S. Johnson and Uriel Feige, editors, 39th ACM
STOC, pages 21–30. ACM Press, June 2007.

[33] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi.
Zero-knowledge using garbled circuits: how to prove non-
algebraic statements efficiently. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 955–966. ACM Press, November 2013.

[34] Daniel Kales and Greg Zaverucha. Improving the perfor-
mance of the picnic signature scheme. Cryptology ePrint
Archive, Report 2020/427, 2020. https://eprint.iacr.org/
2020/427.

[35] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Im-
proved non-interactive zero knowledge with applications to
post-quantum signatures. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 525–537. ACM Press, October 2018.

[36] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique
Schröder, Sri Aravinda Krishnan Thyagarajan, and Jiafan
Wang. Omniring: Scaling private payments without trusted
setup. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
31–48. ACM Press, November 2019.

[37] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang.
Zero-knowledge arguments for lattice-based accumulators:
Logarithmic-size ring signatures and group signatures with-
out trapdoors. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 1–31. Springer, Heidelberg, May 2016.

[38] Qipeng Liu and Mark Zhandry. Revisiting post-quantum
Fiat-Shamir. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 326–355. Springer, Heidelberg, August 2019.

[39] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. SMILE: Set membership from ideal lattices with
applications to ring signatures and confidential transactions.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 611–640, Virtual
Event, August 2021. Springer, Heidelberg.

[40] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah
Meiklejohn. Sonic: Zero-knowledge SNARKs from linear-
size universal and updatable structured reference strings. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019.

[41] Ian Miers, Christina Garman, Matthew Green, and Aviel D.
Rubin. Zerocoin: Anonymous distributed E-cash from Bit-

coin. In 2013 IEEE Symposium on Security and Privacy,
pages 397–411. IEEE Computer Society Press, May 2013.

[42] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Technical report, 2008.

[43] Shen Noether. Ring signature confidential transactions for
monero. Cryptology ePrint Archive, Report 2015/1098,
2015. https://eprint.iacr.org/2015/1098.

[44] Shen Noether, Adam Mackenzie, and the Monero Re-
search Lab. Ring confidential transactions. Ledger, 1:1–18,
Dec. 2016.

[45] Jack O’Connor, Jean-Phillip Aumasson, Samuel Neves, and
Zooko Wilcox-O’Hearn. Blake3: One function, fast every-
where. 01 2020.

[46] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In 2013 IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society Press, May 2013.

[47] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 552–565. Springer, Heidelberg,
December 2001.

[48] Tomas Sander and Amnon Ta-Shma. Auditable, anonymous
electronic cash. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 555–572. Springer, Heidelberg,
August 1999.

[49] Srinath Setty. Spartan: Efficient and general-purpose zk-
SNARKs without trusted setup. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part III, vol-
ume 12172 of LNCS, pages 704–737. Springer, Heidelberg,
August 2020.

[50] Adi Shamir. How to share a secret. Communications of
the Association for Computing Machinery, 22(11):612–613,
November 1979.

[51] Shi-Feng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon
Yuen. RingCT 2.0: A compact accumulator-based (link-
able ring signature) protocol for blockchain cryptocurrency
monero. In Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes, editors, ESORICS 2017, Part II, volume 10493
of LNCS, pages 456–474. Springer, Heidelberg, September
2017.

[52] Wilson Abel Alberto Torres, Veronika Kuchta, Ron Stein-
feld, Amin Sakzad, Joseph K. Liu, and Jacob Cheng. Lattice
RingCT V2.0 with multiple input and multiple output wal-
lets. In Julian Jang-Jaccard and Fuchun Guo, editors, ACISP
19, volume 11547 of LNCS, pages 156–175. Springer, Hei-
delberg, July 2019.

[53] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad,
Joseph K. Liu, Veronika Kuchta, Nandita Bhattacharjee,
Man Ho Au, and Jacob Cheng. Post-quantum one-time
linkable ring signature and application to ring confidential
transactions in blockchain (lattice RingCT v1.0). In Willy
Susilo and Guomin Yang, editors, ACISP 18, volume 10946
of LNCS, pages 558–576. Springer, Heidelberg, July 2018.

[54] Wilson Alberto Torres, Ron Steinfeld, Amin Sakzad, and
Veronika Kuchta. Post-quantum linkable ring signature
enabling distributed authorised ring confidential transactions
in blockchain. Cryptology ePrint Archive, Report 2020/1121,
2020. https://eprint.iacr.org/2020/1121.

[55] Dominique Unruh. Post-quantum security of Fiat-Shamir.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-

https://eprint.iacr.org/2020/427
https://eprint.iacr.org/2020/427
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2020/1121

Efficient Set Membership Proofs using MPC-in-the-Head 322

ACRYPT 2017, Part I, volume 10624 of LNCS, pages 65–
95. Springer, Heidelberg, December 2017.

[56] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Char-
alampos Papamanthou, and Dawn Song. Libra: Succinct
zero-knowledge proofs with optimal prover computation.
In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages
733–764. Springer, Heidelberg, August 2019.

[57] Tsz Hon Yuen, Shifeng Sun, Joseph K. Liu, Man Ho Au,
Muhammed F. Esgin, Qingzhao Zhang, and Dawu Gu.
RingCT 3.0 for blockchain confidential transaction: Shorter
size and stronger security. In Joseph Bonneau and Nadia
Heninger, editors, FC 2020, volume 12059 of LNCS, pages
464–483. Springer, Heidelberg, February 2020.

[58] Greg Zaverucha. The picnic signature algorithm. Technical
report, 2020. https://github.com/microsoft/Picnic/raw/
master/spec/spec-v3.0.pdf.

A Accumulators
Let κ be the security parameter. A secure accumula-
tor for inputs in Y is tuple of the 4 PPT algorithms
(Acc.Gen, Acc.Eval, Acc.Proof, Acc.Verify) defined as fol-
lows:

– Acc.Gen(1κ, n): On input κ and the number of values
that can be securely accumulated n, this algorithm
returns a key key.

– Acc.Eval(key, Y): On input the key and accumulation
set Y = {y1, . . . , yn′} ∈ Yn

′ , where n′ ≤ n, this algo-
rithm returns an accumulated value z and auxiliary
information aux.

– Acc.Proof(key, y, z, aux): On input key, a value y, an
accumulated value z of some set Y , and some auxil-
iary information aux, this algorithm returns a proof
π if y ∈ Y , else it returns the special symbol ⊥.

– Acc.Verify(key, y, z, π): This is a deterministic algo-
rithm that takes in a key key, a value y, a proof
π, and an accumulated value z, and returns a bit
b ∈ {0, 1}.

These algorithms satisfy the following properties:

– Completeness: For any input set Y =
{y1, . . . , yn′} ∈ Yn

′ , and and i ∈ [n], it holds that:

Pr[Acc.Verify(key, y, z, w) = 1 |
key← Acc.Gen(1κ)z, aux ← Acc.Eval(key, Y),

w ← Acc.Proof(key, y, z, aux)] = 1

– Soundness: No PPT adversary Adv, can win the
following game with more than negligible probabil-
ity (in κ):

1. The challenger samples key ← Acc.Gen(1κ) and
sends to Adv.

2. Adv responds with ({yj}j∈[n′]).
3. The challenger computes z, aux ←

Acc.Eval(key, Y = {y1, . . . , yn} and sends (z, aux)
to Adv.

4. Adv responds with a pair (y′, w), and wins if
Acc.Verify(key, y′, z, w) = 1 and y′ 6= yi for every
i ∈ [n].

B Security of Our Set
Membership Proof System

In this section, we prove zero-knowledge and soundness
of the protocol presented in Section 3.

Zero-Knowledge. We can use the simulator of the un-
derlying MPC-in-the-head protocol to design a simula-
tor for the new protocol. Let SimΣ be the simulator that
exists from the zero-knoweldge property of the underly-
ing Σ protocol. The simulator proceeds as follows:

1. Sample a random α
$←− [`], and a random (M − τη)-

subset S ⊂ [M] and η-subsets C1, . . . , Cτ .
2. Use SimΣ to sample subsets (of appropriate size)
Ii ⊂ [n] (∀i ∈ [τ]) of the parties.

3. For each j ∈ [M] \ S, compute the preprocessing
exactly as described in the real protocol.

4. For j ∈ [M]\S, compute the preprocessings exactly
as described in the real protocol, except for each k 6=
α, compute com(∆)

j,k = Com(0; r(∆-com)
j,k) and for each

m /∈ Ii compute com(mask)
j,m = Com(0; r(mask-com)

j,m),
where i is such that j ∈ Ci.

5. Sample random values {wi}i∈I .
6. Shares of the active element for parties i ∈ I are

chosen exactly as described in the real protocol.
7. Use these shares and simulator SimΣ, to simulate

the remaining third round messages (which corre-
spond to the first round messages in the underlying
MPC-in-the-head protocol).

8. Last round messages of the underlying MPC-in-the-
head protocol are also computed using SimΣ.

We now proceed to show that the transcripts output
by the simulator is computationally indistinguishable
from transcripts of real executions of the protocol with
an honest verifier. We do this by constructing a sequence
of hybrids as follows:

https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

Efficient Set Membership Proofs using MPC-in-the-Head 323

– H0 : Real Transcript
– H1 : The simulator samples a random S ⊂ [M],

and a random subsets I1, . . . , Iτ . It behaves ex-
actly like an honest prover, except for each j ∈
[M] \ S and k 6= α, it computes com(∆)

j,k =
Com(0; r(∆-com)

j,k) and for each m /∈ Ii compute
com(mask)

j,m = Com(0; r(mask-com)
j,m),where i is such that

j ∈ Ci.

H0 ≈c H1 : Since these com(∆)
j,k and com(mask)

j,m are
never opened, indistinguishability of hybridsH0 and
H1 follows from the hiding property of the commit-
ment scheme.

– H2: The simulator proceeds exactly as in hybrid H1,
except that it samples uniform {wi}i∈I and runs
SimΣ along with preprocessing information to simu-
late the first and third round messages in the under-
lying MPC-in-the-head protocol (which correspond
to the third and fifth round messages (resp.,) in our
compiled protocol).

H1 ≈c H2 : Indistinguishability of hybrids H1 and
H2 follows from the zero-knowledge property of the
underlying Σ-protocol.

– H3: The simulator behaves exactly as in hybrid H2,
except that instead of using the actual α, it samples
a random α ∈ [`].

H2 ≈c H3 : Since we permute the set before accu-
mulating, H2 and H3 are identically distributed.

Soundness. Let the underlying MPC-in-the-head pro-
tocol have s-special soundness, require τ repetitions and
the soundness error in each reptition be 1/ε. Intuitively
a malicious prover P∗ can violate soundness of our com-
piled protocol, if each opened pre-processing commits
to the set {x1, . . . , x`} (otherwise the verifier will re-
ject), yet in each of the τ online executions either:
(1) the η consumed preprocessings Ci does not commit
to x1, . . . , x` (e.g. by replacing some xi by x′i). (2) P∗
successfully cheated in an instance of the underlying
MPC-in-the-head protocol.

We start by calculating the probability when the
above conditions hold true and the malicious prover P∗
is able to violate soundness. Later, we will show that
if the none of the above happens, then it is possible to
extract the valid witness from prover’s messages corre-
sponding to s+ 1 different verifier challenge messages.

Soundness Error: For notational convenience let
S(N,S) :=

∏N
i=0
(
S−iη
η

)
be the number of ways to sam-

ple N disjoint subsets, each of size η from a set with

S elements. Let A be the number of preprocessings
in which P∗ cheats (e.g. by committing to the wrong
set), to bound the probability of successfully cheat-
ing in the online execution we consider the probabil-
ity of at least k online executions being executed with
η malicious preprocessing (meaning P∗ does not need
to cheat in the underlying MPC-in-the-head protocol)
and P∗ successfully cheating in the underlying MPC-in-
the-head protocol for the remaining τ − k repetitions.
The latter is bounded by 1/ε(τ−k) while the former is
bounded S(k,A)·S(τ−k,τη−kη)/S(τ,τη). The probability of
passing the opening check is (M−AM−τη)/(M

M−τη). Using a
union bound, the soundness/knowledge error is there-
fore upper bounded by the maximum over A as

perr ≤ maxA
{

(M−AM−τη)
(M
M−τη)

·
∑bA/ηc
k=0

(
S(k,A)·S(τ−k,τη−kη)

S(τ,τη) · 1/ε(τ−k)
)}

Extracting the Witness: We know show that using
s + 1-transcripts of our compiled protocol, except
with probability perr, it is possible to extract the
witness from this protocol. In our case, for each
i ∈ [τ], this witness is ({maskj}j∈Ci , xα, w). From
soundness of the underlying protocol, it holds that
F
(
{{[maskj]m}j∈Ci , [xα]m, [w]m}m∈[n]

)
= 1. In order

to argue soundness of our compiled protocol, all that
is left to show is that xα is indeed a member of the set
{x1, . . . , x`}.

Let (S, {C1, . . . , Cτ}, I1), . . . , (S, {C1, . . . , Cτ}, Is)
be the S challenges whose corresponding transcripts
were used for extracting ({maskj}j∈Ci , xα, w). We rely
on an accepting transcript for one more challenge of the
form (S′, ∗, ∗), where S 6= S′. Given these transcripts,
unless the prover is able to guess c, the following holds:

1. On challenge (S′, ∗, ∗): The verifier gets the random-
ness used for computing the pre-processings for each
j ∈ S′. It uses this to reconstruct the preprocessings
for each j ∈ S′.

2. On challenge (S, {C1, . . . , Cτ}, I): The verifier gets
the randomness used for computing the pre-
processings for each j ∈ S. It uses this to reconstruct
the preprocessings for each j ∈ S. It also gets some
partial randomness to compute some commitments
in the remaining [M] \ S preprocessings.

From binding property of the commitment scheme,
we know that the transcripts obtained across the above
two challenges are consistent (in particular, the set
{x1, . . . , x`} was honestly used in the preprocessings and
the ∆·,α values computed using the pre-processing ran-
domness in one transcript is the same as the one ob-

Efficient Set Membership Proofs using MPC-in-the-Head 324

tained from the prover in the third round in the other
transcript). Moreover, from soundness of the accumu-
lator, we know that the ∆·,α values were indeed part
of the accumulated sets. It now trivially follows that
xα = maskj + ∆j,α (∀j ∈ Ci) is indeed a member of the
set {x1, . . . , x`}.

C Optimizations for Compiler in
Section 3

We now discuss some optimizations to improve the com-
munication of the above protocol.

Secret Sharing Based Protocols: In the above pro-
tocol we use the underlying MPC protocol to addition-
ally run the reconstruction algorithm of the threshold
secret sharing scheme in order to reconstruct shares
of the masks. However, if the underlying MPC proto-
col itself is based on a threshold secret sharing scheme
(e.g. [5, 27]), then this explicit reconstruction can be
avoided. This is because most such protocols maintain
an invariant that all the parties hold secret shares of all
the intermediate wire values in the circuit that they are
evaluating. As a result, we can simply have the parties
compute the following function inside the MPC, assum-
ing that they already have a secret sharing of the mask.

F
(
{maskj}j∈Ci , [xα]m, [w]m}m∈[n]

)
:=

R

 ∑
m∈[n]

[xα]m,
∑
m∈[n]

[w]m

∧
∀j ∈ Ci : maskj + ∆j,α =

∑
m∈[n]

[xα]m

Round Complexity: Recall that our five-round pro-
tocol is a public-coin protocol, since the verifier is only
required to send random values. Such a protocol can be
easily made non-interactive in the random oracle model
using the Fiat-Shamir transform in both the classical
setting [23] and the quantum setting [19, 38].

Additionally, notice that in the case where η = 1
(i.e. |Ci| = 1),14 the above protocol can also be slightly
modified to obtain a three-round protocol in the plain
model. This can be done by requiring the prover to com-
pute the first round messages in the underlying MPC-
in-the-head protocol for all M repetitions of the pre-
processing phase and committing to them in the first

14 As we will see in Section 4, this case matches the KKW
MPC-in-the-head protocol, and is thus of practical importance.

round itself. In the second round, the verifier chooses a
random S ⊂ [M]. In the third round, the prover only
send the third round messages of the MPC-in-the-head
protocol for the executions not in S. Put another way,
the prover pessimistically runs the full MPC-in-the-head
protocol for each preprocessing, and reveals only the
preprocessing for S and only the MPC-in-the-head pro-
tocol for the remainder. If we use a compressing com-
mitment to commit to all the first round messages, this
modification will not increase the communication com-
plexity by a lot, but it does significantly increase the
computation time, since the prover needs to execute the
first round of the underlying MPC-in-the-head protocol
M times.

Using Tree based PRGs: Instead of sampling an in-
dependent random seed for each repetition of the pre-
processing phase, we could simply sample a “master
seed” and derive all the other seeds using a Tree-based
PRG. When the verifier asks to open all but one pre-
processings, the prover can simply send a punctured
master seed (which is only logarithmic in the number
of the leaves in the tree) that allows the verifier to de-
rive all but one seed. However, if one of the above op-
timizations are used, where only a small subset of the
pre-processings are opened, we will have to puncture the
seed on multiple indices (which increases the size of the
punctured seed). In that case, one might have to care-
fully decide if it’s still worth using a Tree-based PRG
or if sampling an independent seed for each iteration is
better.

Similarly, if the underlying MPC protocol is in the
dishonest majority setting, we can again use a Tree-
based PRG to derive the seeds used to commit to the
shares of parties in each pre-proprocessing. When the
verifier asks to open the views of all but one party, the
prover can simply send a punctured seed.

Finally, we note that all of the above optimization
suggestions only try to cover some broad categories of
MPC-in-the-head protocols. Given the wide variety of
MPC-in-the-head protocols, it is impossible to suggest
a general technique that gives the best efficiency with all
protocols. Indeed, if one is willing to use the underlying
MPC-in-the-head protocol in a non-black box way, it
might be possible to further customize some of these
optimizations. In the next section, we explore some of
these choices in more detail when our compiler is used
in conjunction with the protocol of Katz et al. [35].

	Efficient Set Membership Proofs using MPC-in-the-Head
	1 Introduction
	1.1 Our Contributions
	1.2 Intuition
	1.3 Comparison to Prior Work

	2 MPC-in-the-Head Based -Protocols
	3 Set Membership using MPC-in-the-head
	4 Compiling Non-Standard MPC-in-the-head Protocols
	4.1 Integrating Into Ligero
	4.2 Integrating Into Katz et al.

	5 Post-Quantum Ring Signatures
	5.1 Construction and Implementation

	6 Post-Quantum RingCT
	6.1 Definition of RingCT
	6.2 Constructing RingCT From Symmetric Key Primitives

	7 Conclusion
	8 Acknowledgments
	A Accumulators
	B Security of Our Set Membership Proof System
	C Optimizations for Compiler in sec:compiler

