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Abstract: Internal site search is an integral part of how
users navigate modern sites, from restaurant reserva-
tions to house hunting to searching for medical solu-
tions. Search terms on these sites may contain sensitive
information such as location, medical information, or
sexual preferences; when further coupled with a user’s
IP address or a browser’s user agent string, this infor-
mation can become very specific, and in some cases pos-
sibly identifying.
In this paper, we measure the various ways by which
search terms are sent to third parties when a user
submits a search query. We developed a methodology
for identifying and interacting with search components,
which we implemented on top of an instrumented head-
less browser. We used this crawler to visit the Tranco
top one million websites and analyzed search term leak-
age across three vectors: URL query parameters, pay-
loads, and the Referer HTTP header. Our crawler found
that 512,701 of the top 1 million sites had internal site
search. We found that 81.3% of websites containing in-
ternal site search sent (or leaked from a user’s perspec-
tive) our search terms to third parties in some form. We
then compared our results to the expected results based
on a natural language analysis of the privacy policies
of those leaking websites (where available) and found
that about 87% of those privacy policies do not mention
search terms explicitly. However, about 75% of these pri-
vacy policies seem to mention the sharing of some infor-
mation with third-parties in a generic manner. We then
present a few countermeasures, including a browser ex-
tension to warn users about imminent search term leak-
age to third parties. We conclude this paper by making
recommendations on clarifying the privacy implications
of internal site search to end users.
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1 Introduction
Internal site search is integral to how users discover
and interact with a wide range of web content includ-
ing shopping, travel planning, medical information, and
social network features. Internal search is increasingly
being used by businesses to drive revenue, since 30%
of e-commerce website visitors use internal site search
which contributes to 14% of all revenue [71].

Users may use these search boxes to type in highly
personal terms expressing racial identity, sexual or re-
ligious preferences, and medical conditions. Prior work
has shown how easy it is to de-anonymize users based
on their search terms [30, 75]. Alarmingly, Guha et al.
found that advertisers collect and use sensitive data
such as sexual preference for ad personalization: for ex-
ample, nursing college degree ads appeared to target
gay users exclusively [27]. In 2006, after AOL published
a large amount of anonymized search queries, several
participants were completely de-anonymized based on
the uniqueness and specificity of their search terms [5].
Therefore, the secrecy of search terms is paramount to
any reasonable definition of privacy on the web.

A parallel trend shows the increasing proliferation
of third-party scripts and fingerprinting techniques (in-
cluding persistent cookies, tracking pixels, and other
technologies - collectively called trackers) on the web,
mostly for advertising purposes [80]. A 2014 crawl of the
top 1 million websites1 showed ubiquitous user track-
ing: 62.9% of sites spawned third-party cookies, 83.0%
loaded third-party JavaScript libraries (potentially for
browser fingerprinting), and 88% of all sites made a
third-party network request in some form [38]. A follow-
up study in 2019 found the percentage of sites which
track users increased to 90%, despite the introduction
of privacy-protecting legislation in the European Union
at that time [67].

In this paper, we explore the question of search pri-
vacy in a novel way, by investigating search term leak-

* All three authors contributed equally to this work as first
authors.
1 using the Alexa top 1 million list [2]
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ages to third-parties via internal site search (whereas
previous work had focused on user interests being leaked
via links provided by generic search engines [37]). Our
concern is indeed not with man-in-the-middle actors but
with third-parties with resources on a first-party web
page. Another novel contribution of this work is the
analysis of the wording of such a practice in privacy
policies, which extends previous work that had simply
focused on determining whether third-parties were men-
tioned in privacy policies [39]. Specifically, we visited the
Tranco top 1 million websites [36] and performed an au-
tomated internal site search. We developed a crawler on
top of a headless browser which can handle dynamically
generated websites, identify search inputs, and capture
outgoing requests. We then analyzed the content of out-
going requests to determine whether our search terms
appeared in the data or metadata. In particular, we ex-
amine search term leakage along three vectors:
1. Leakage via Referer2. Presence of search terms

in the HTTP Referer request header sent to third
parties.

2. Leakage via URL. Presence of search terms in
third-party URLs and query parameters.

3. Leakage via payload. Presence of search terms in
HTTP request payloads sent to third parties.

We discover that 81.3% of visited websites send search
terms to third parties in some form, representing a po-
tential privacy threat to users, without being the equiv-
alent to leakage from web-wide search. Additionally, de-
spite many websites having privacy policies, we found
the topic of search term processing was not explicitly
covered by the privacy policies (about 87% of the time
when we were able to recover a privacy policy).

The contributions of this paper are as follows:
1. We present the first large-scale measurement study

on the leakage of search terms via internal web
search, visiting one million websites, intercepting
over 68 million network requests, and discovering
512,701 unique domains that seem to include an in-
ternal search functionality.

2. We build a crawling methodology (validated using
human annotators) to identify search inputs across
a range of natural languages during a large-scale
crawl, collecting search input and search-related el-
ement selectors for each domain. We then open-
source the crawler and this labeled dataset of dis-

2 Referer is the original spelling

covered search inputs per domain to the community
for further study3.

3. We perform an analysis of natural-language privacy
policies to determine if these privacy policies men-
tion processing search terms or sharing some infor-
mation with third parties.

4. We provide a framework to characterize the vari-
ous vectors for leaking search terms to third par-
ties. Using this framework, we found that 81.3% of
sites send search terms in some form to third par-
ties. By breaking this down according to our vec-
tors, we find that 75.8% of websites send data via
the Referer header (72.5% directly and 10.6% indi-
rectly); 71% via URL query parameters; and 21.2%
via the payload. Additionally, 87.4% of websites had
the potential to send sensitive query terms to a new
third-party if a link on the page was clicked by the
user. Finally, this framework allowed us to identify
those third parties that are actively involved in pro-
viding search results.

5. We develop a browser extension to inform users
about potential privacy leaks via internal search,
based on our findings, which we release 4.

2 Background
This section provides additional information on the
leakage vectors defined in the previous section, focus-
ing on the leakages via the Referer since it is the most
subtle. It also provides an explanation of what is con-
sidered as a third-party in this study.

2.1 Referer HTTP Header

The Referer HTTP request header is automatically set
by the client (browser) to indicate to a website how a
user found that website. The Referer header has been
a feature in HTTP since at least HTTP 1.0 [56]. This
first RFC stipulates that the Referer header may be
useful in debugging broken links, cache optimization,
and logging. It also contains a warning about the pri-
vacy implications, and suggests that users should have
the option to control this value. This recommendation is
also made in the RFC for HTTP 1.1 [57]. To our knowl-

3 https://jellybeans-paper.com/
4 under review, which should be complete by the time of the
symposium
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edge, no major browser allows users to easily configure
this value as suggested.

2.2 Referrer-Policy HTTP Header

The Referrer-Policy response header is set by the web-
site owner, and specifies how the Referer header will
be set upon requests originating from that site. The
Referrer-Policy header has several acceptable values,
which are shown in Table 1. The referrer policy can
be set either in the HTTP header, in a <meta> tag in
the header section of the document, or as a noreferrer
attribute for a particular link on the site. It may also
be set implicitly via inheritance.

As can be seen from this table, a significant amount
of attention has been paid to not sending Referer values
over insecure (non-HTTPS) channels. It was observed
by the early writers of the specification that the Referer
values may contain sensitive information that man-in-
the-middle attackers may want to steal. Our concern in
this study is not with man-in-the-middle actors but with
third-parties with resources on a first-party web page.

2.3 Leaking Search Terms via the Referer

The Referer header can therefore accidentally (or in-
tentionally) leak search terms to third parties. This at-
tack has been previously documented by Libert [37], Kr-
ishnamurthy [34], Malandrino [43], and several others.
A real-world attack scenario is as follows: A user per-
forms a search for “pancreatic cancer” on the WebMD
website.5 The WebMD server returns a webpage with
the results, which then loads a variety of third-party
JavaScript tracking scripts, including one from Google
Ad Services. When the request is made to fetch that
script from the Google server, the default behaviour
(and the one observed in the wild) is sending the URL
together with the query string, which contains the sen-
sitive search term. The raw request header values can
be seen below6:

GET /pagead/conversion_async.js HTTP/2
Host: www.googleadservices.com
User-Agent: Mozilla/5.0 XXX Firefox/80.0

5 WebMD’s privacy policy includes language suggesting that
search terms are collected byWebMD and that some information
may be collected by, or transmitted to, third parties
6 some values were redacted to protect the author’s privacy

Referer: https://www.webmd.com/search/search_results/
default.aspx?query=pancreatic%20cancer

A similar attack scenario involves a user brows-
ing the WebMD website and after following a few
links, landing on a page whose URL contains re-
vealing words (e.g., such as “what-to-do-when-getting-
pancreatic-cancer”). The main difference between these
two scenarios, however, is that the user may be unaware
of the words present in the URLs when clicking on links,
so some of the pages visited may be irrelevant. However,
when a user enters a search term in a box, there is an
explicit intent to obtain results about a specific topic.

In this paper, we use the term search term leak-
age to refer to the transmission of search terms to third
parties. We note this transmission might be either inten-
tional or accidental with respect to the website owner.
It may be accidental because the website owner may
rely on default settings that are not privacy-oriented
or because they place too much trust on third-parties,
which may be collecting and/or sharing more informa-
tion than they should. It may be intentional if the web-
site owner has put in place some contractual agreements
with third parties to handle such information (e.g., to
provide the actual search service, to record requests
for security or analytics purposes, or to serve person-
alized ads). When search term leakages are intentional,
users are extremely unlikely to be aware of them, with
the exception of potential visual cues being placed in
the search box (e.g., “powered by ServiceX”). However,
a previous study found that most sites tend to prefer
seamless integrations with third-party services (for in-
stance, when embedding forms) [72].

2.4 What is a Third Party?

What constitutes a first party and a third party can be
difficult to define. In this study, we rely on effective Top-
Level Domains as defined in the Public Suffix List [53],
specifically the eTLD+1, so we consider domains that
do not share the same eTLD+1 third parties.

Previous studies have tried to refine this definition
by considering a third-party as “a subdomain of the
main domain whose IP address is registered to a dif-
ferent autonomous system (AS) than the IP address of
the first-party website.” [72] While this approach would
catch those tracking entities that do not want to be de-
tected, we accept that in some cases our third-party re-
sults might be slightly lower that what they might be in
reality. However, we think that this might be balanced
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Value Description Prevents leakage via re-
ferrer to third party

no-referrer Referer will be empty Yes
no-referrer-when-downgrade (default
for most browsers)

sends full Referer header value if both this and the target page
are HTTPS otherwise sends nothing

No when both pages are
HTTPS

same-origin same origin requests contain full Referer information while no
Referer is sent for cross-origin requests

Yes

origin only the origin, not path or query information, are sent Yes
strict-origin same as above, but only for HTTPS pages. Non-HTTPS pages

result in no Referer being sent
Yes

origin-when-cross-origin cross-origin requests behave as if origin was the specified pol-
icy while same-origin requests behave as if same − origin was
specified

Yes

strict-origin-when-cross-origin
(default for Safari and Chrome v85+)

same as above, but only for HTTPS pages. Non-HTTPS pages
result in no Referer being sent

Yes

unsafe-url Full Referer is sent in all contexts. This is generally advised
against

No

Table 1. Referrer-Policy header valid values, derived from the W3C specification [78]. no-referrer-when-downgrade is the default
policy for Firefox, Chrome versions 84 and below, and Edge. strict-origin-when-cross-origin is the default policy for Safari and
Chrome versions 85 and higher [55].

by the fact that in other cases, two domains that do not
share the same eTLD+1 might actually be owned by the
same entity. As mentioned by editors from the W3C Pri-
vacy Community Group’s First-Party Sets work group,
“the website the user is interacting with may be de-
ployed across multiple domain names” [64]. So ideally,
when identifying third-party requests, we would like to
exclude those domains that may be owned by the en-
tity that also owns the site that is being analyzed (e.g.
datahug.com and sap.com are part of the same entity af-
ter SAP’s acquisition of DataHug but nothing in their
respective WHOIS records can link one to the other).
While this violates the Origin concept, it is closer to a
user’s mental model of what a website is and its asso-
ciated trust relationship. However, we may not be able
to reliably identify such relationships, since domain sets
which claim to provide this information are not com-
pletely reliable (e.g. WHOIS) or exhaustive (e.g. Dis-
connect’s Tracker Protection lists [17]). So for the pur-
pose of this study, we rely solely on eTLD+1 and define
search term leakage as any transmission of the search
string between different eTLD+1 entities.

2.5 Privacy Policies

To determine whether website operators explicitly in-
form users about sharing their search queries with third-
parties, we examine the privacy policies of leaking web-
sites (where possible). While some jurisdictions do not
mandate the posting of privacy policies, “many individ-

ual [US] states do have this type of legislation. Addi-
tionally, the countries within the European Union (EU)
have also enacted similar legislation that requires web-
sites that collect personal or identifiable data to post
privacy policies regarding its use.” [63] A recent study
focusing on a set of 6,579 popular websites found that
84.5% of these had privacy policies [16]. This number
should be interpreted as an upper bound since this study
used a hybrid data collection approach (automated, fol-
lowed by manual validation), which does not scale too
well for larger data sets. Besides, one would expect pop-
ular sites to include privacy policies whereas less known
sites (such as personal pages) are less likely to do so.

3 Data Collection
In this section, we describe in detail the crawling envi-
ronment used to simulate user searches over the Tranco
top 1M domains7 [36]. We also provide a high-level
overview of our privacy policy collection methodology.
In order to complete this task, we instrumented a head-
less Chromium-based browser to visit each domain and
detect the presence of all search inputs contained on
the landing webpage. For each detected search input,
the crawler simulates a real user search by typing the

7 We used the list created on April 27, 2020. Available at https:
//tranco-list.eu/list/NYJW.

https://tranco-list.eu/list/NYJW
https://tranco-list.eu/list/NYJW


Who Knows I Like Jelly Beans? An Investigation Into Search Privacy 430

keyword “JELLYBEANS” into the search input box one
character at a time. While doing so, the crawler simul-
taneously intercepts all inbound and outbound network
traffic, request redirection chains, payloads, and HTML
content. We can then search for our dummy search
string in the intercepted outbound network request data
and metadata to detect search string sharing with third-
party entities.

3.1 Web Crawler

Considering the trade-offs from the crawler categories
minutely discussed in [1], we developed a User Layer
based crawling system built on top of the Puppeteer
headless browser [11], written in TypeScript, which we
call SlicedPie. This architecture was chosen to maxi-
mize the overall accuracy, coverage, and completeness
levels of the crawling process while allowing for some
moderate extensibility. SlicedPie’s design facilitated
simulating real users’ interactions with the browser and
enabled (i) driving Chromium as a full-fledged browser
capable of handling dynamically generated content;
(ii) launching on-demand JavaScript execution tasks;
and still (iii) benefiting from lower level access to the
Chrome Development Tools (CDP) [10] API (through
CDP sessions [12] instantiation).

In terms of computational power, the underly-
ing system was configured with 64 CPU cores run-
ning 128 threads and 800 GB RAM running Ubuntu
18.04LTS and Linux kernel version 4.15.0-72-generic.
This setup was used to handle more than 100 concur-
rent worker-thread [58] instances. Each worker-thread
was initially assigned to process a single input domain
URL, and during its execution process it could run mul-
tiple parallelized browser instances.

3.2 Crawling Stages

The crawling process encompasses four interdependent
crawling stages. Each stage contains additional inter-
mediate steps where data validation and information
extraction tasks are performed in order to reduce error
rates, improve performance, and maximize results cov-
erage. Crawls are scheduled and subsequently parsed by
a crawler manager (main thread).

Preflight Request (Stage I ) In this stage we per-
form a preflight request using Node fetch [49] to con-
firm the URL’s availability. Common system errors such
as DNS failures are captured at this stage and therefore

prevent further stages from executing. Additionally, we
implement a mechanism to handle timeouts to circum-
vent the fetch API’s inability to perform as expected
[73].

Extracting HTML (Stage II ) During this stage
the HTML text is extracted and analysed in order to:
– Detect additional natural languages. The

HTML language attribute [51] is extracted from the
HTML text body in an attempt to identify addi-
tional languages present in the page structure. Each
additional language found (apart from English) is
used in Stage III to generate additional selectors.

– Detect embedded search functionalities.Web-
sites may contain embedded search capabilities that
are defined using the Schema.org vocabulary [79]
or for a small number of sites the OpenSearch de-
scription format [52]. For instance, the Schema.org
SearchAction type defines a common URL structure
that can be detected using a regular expression and
parsed into a search URL.8. This is the pattern that
search engine services rely on to offer search boxes
directly in their search results pages. [26] Thus, as
an additional step of this crawling stage we try to
identify and extract the search endpoint URL from
the HTML string. Using this method, we discover
that 8.5% of crawled sites rely solely on the search
functionality defined using the Schema.org vocabu-
lary.

– Collect all hyperlinks found in the page, in-
cluding those pointing to privacy policies, whose
identification is described in Section 3.5.

Detecting Search Functionality (Stage III ) In or-
der to detect search functionalities that users interact
with on a site (either providing by the site itself or by a
third party), we first rely on a list of query selectors [48]
to identify all elements on a Web page that contain the
keyword search as part of their attributes. While En-
glish is the default language used, the keyword varies
according to any additional language detected during
stage I. In order to use quality translations for the term
search, we leveraged translations from Mozilla’s Firefox
Translation Project [50].

The list of elements is subsequently filtered and
bucketed into two unique query selector lists of search
inputs and search-related elements. Search inputs repre-
sent all elements into which it is possible to enter text. In
the search-related inputs category fall all other HTML

8 For instance, http://example.com/?s={search-term-string}

http://example.com/?s={search-term-string}
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elements (for example: div, li, span, etc.) that can-
not be used to perform a search but indicate via their
attributes that they are somehow related to search func-
tionality.

Simulating User Search (Stage IV ) All infor-
mation gathered during previous stages is used here to
define a strategy to simulate a search. There are two
base approaches to do so:
1. Search Inputs. If the element is of type input, the

approach is to visit the page, locate the element,
simulate the user typing the keyword “JELLY-
BEANS” followed by the return key.

2. Embedded Search URL. If an embedded search
URL has been identified and extracted during Stage
II, it is used to conduct a search. In this case the
keyword is added as an input parameter while the
page is visited using a URL in the format of http:
//example.com?s=JELLYBEANS.

3.3 Crawl Summary

Table 2 outlines the results of our crawl. In summary,
we tried to crawl 1 million sites using a crawling node
located in the US-West region. However, 15.7% of those
sites generated errors preventing us from determining
whether the site might contain a search component. For
32.9% of the remaining sites, we were unable to detect
any search component. This left us with 512,701 sites,
where our search simulations seem to succeed 92.1% of
the time. However, this number must be interpreted as
an upper bound because for 1.57% of the 472,333 sites
labelled as success, we were unable to detect any net-
work traffic. Our methodology may also have identified
some fields that were not actual search inputs, so we
present some validation tests in Section 3.4.

The SlicedPie crawler can deal with a number of
challenging situations that arise in the wild including
dynamically-generated element attributes, interstitials,
hidden search inputs, and search results displayed in
another tab. The mechanics of our solutions for these
are detailed in Appendix 1.

3.4 Crawl Validation

In order to validate our data collection approach, we
considered two approaches: using an existing ground
truth dataset or performing some manual annotation to
build our own validation dataset. Since we are not aware
of any dataset providing a list of sites containing search

Code Description Domains

PREFLIGHT ERR Preflight request failures due to
DNS, invalid HTTP Status Code
(4xx or 5xx), and timeouts.

157,357

NO INPUTS FOUND No elements suggesting the
presence of search functionality
on the page were detected.

329,942

INVALID INPUTS Search was attempted but dis-
covered elements were not inter-
active (could not input text and
simulate user interaction).

40,368

SUCCESS At least one interactive element
was found and used to attempt
to complete the search simula-
tion.

472,333

Total 1,000,000

Table 2. Crawl Summary.

input boxes (on the site’s main page), the only dataset
that could be considered was a list of sites using ei-
ther schema.org’s action search [79] or OpenSearch [52].
As described in Section 3.2, our detection methodol-
ogy considers schema.org’s action search inputs, so to
avoid any bias, we turned our focus on OpenSearch. We
were able to detect 17,321 sites that included a reference
to OpenSearch, and 84.2% of these sites were labelled
as success in our crawl results. Examining manually a
few sites using such technology, however, revealed two
issues: first, a site may make use of OpenSearch with-
out providing users a visual component to search the
site from their main page. For instance, the HTML of
nationalgeographic.org contains a link to https://www.
nationalgeographic.org/opensearch.xml. In this partic-
ular example, a search mechanism is made available to
users after clicking on an “Education” tab. As men-
tioned in Section 3.2, navigating away from the site’s
main page to locate search components is not something
that our crawler currently supports. The second prob-
lem we discovered is that the search URL that may be
provided using the OpenSearch’s format may be stale.
Based on this analysis, we concluded that it would not
be possible to assume that the presence of OpenSearch
on a site would guarantee the successful execution of a
search using a visual component.

Therefore we decided to manually inspect some sites
in order to build our own ground truth dataset by check-
ing for the presence of search inputs. To do so, we ran-
domly selected from our initial crawl dataset 200 sites
that had been labelled as “success” by our crawler, 100
sites that had been labelled as “not found” and 100
sites that had been labelled as “invalid” (as described

http://example.com?s=JELLYBEANS
http://example.com?s=JELLYBEANS
https://www.nationalgeographic.org/opensearch.xml
https://www.nationalgeographic.org/opensearch.xml
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in Table 2). To select these 400 sites, we used a stratifi-
cation approach to make sure that sites were evenly rep-
resented across 20 site categories and 10 Tranco ranking
buckets. In order to perform validation on these sites,
we first had to re-crawl them (since their status could
have changed since they had initially been crawled), and
could do so for 387 of them (13 of them generating pre-
flight errors). In order to annotate them, we decided to
use 3 human annotators, who were given each 155-157
sites to validate, 40 of these sites being common to all
three annotators.

The annotation task took place in a custom desk-
top application (whose interface is shown in Appendix 2.
The task given to the annotator was to look for the pres-
ence of search input that they could interact with (and
perform a search). Once the site was successfully loaded
using a Webview, annotators could select one of the
following three possible values: “Search input present”,
“No search input present”, or “Unsure”. “Unsure” was to
be selected in those potentially ambiguous cases, where
a search form contained a specific text input field to
search for (e.g., an IP address), which is much more
specific than internal site search, or when the user had
to navigate away from the main page to find the search
input box. The three annotators strongly agreed during
the annotation task, reaching a Fleiss kappa score of
0.64 [15]. Most of the disagreements occurred because
of the “Unsure” category. The annotation results are
shown in Table 3, broken down by the labels of our
crawler.

We then used this manually annotated dataset to
validate the performance of our crawler. Excluding sites
annotated as “Unsure” or “Not loading”, this valida-
tion dataset contained 214 sites where a search input
was present and 127 sites where a search input was not
present. Based on this sample of 337 sites, the accuracy
of our crawler is 75.7% (with a precision of 88.6% and
a recall of 69.1%).

3.5 Collecting Privacy Policies

To determine whether users are notified about the leak-
age of their search terms to third parties, we also col-
lected the natural-language privacy policies (where pos-
sible). To collect natural-language policies, we followed
a two-step approach: First, privacy policy links are iden-
tified (by checking page links in reverse order, and us-
ing English terms or detected language terms if re-
quired). Second, privacy policy documents are retrieved
(by performing a simple GET request or using a head-

less browser if the simple GET request fails to retrieve
enough content, and perform PDF to text conversion if
required). Our first step follows the approach proposed
in [39]. However, our keywords are not limited to En-
glish. While English is the default language used, the
keywords vary according to any additional language de-
tected during the HTML extraction step, once again
leveraging translations from Mozilla’s Firefox Transla-
tion Project [50].

4 Results
In Section 3, we successfully executed a search for our
dummy query string, “JELLYBEANS”, on 472,333 web-
sites and captured the outgoing network requests with
our crawler. In this section, we analyze the collected
data and categorize the observed privacy leakages using
the ontology presented in Figure 1, inspired by Starov
et al. [72].

Fig. 1. Types of privacy leakages analyzed

While Starov et al. categorized privacy leakages as
intentional or accidental, we think it is quite difficult
to be confident whether a leakage is one or the other.
Instead, we analyze leakages using several criteria. First,
we focus on the mechanism by which the search query
was leaked, be it via the Referer HTTP request header,
via a URL query parameter or via the actual payload
of the HTTP request. We further classify Referer-based
leakages depending on whether our dummy query string
appears in a Referer header that was either directly sent
by the analyzed site or indirectly by one of the site’s
third-parties.

Finally, we classify leakages depending on whether
they actually occurred during our crawl, or whether
they could potentially occur if the crawl’s scope was
expanded. Since we analyze the document containing
the search results, we inspect all links present on that
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Crawl Status Number Search input present No search input present Unsure Not Loading

success 176 147 [83.52%] 19 [10.80%] 9 [5.11%] 1 [0.57%]
not_found 98 10 [10.20%] 82 [83.67%] 4 [4.08%] 2 [2.04%]
invalid 113 57 [50.44%] 37 [32.74%] 13 [11.50%] 6 [5.31]%
unreachable 13 0 0 0 0

total 400 214 138 26 9

Table 3. Distribution of annotations per crawl status

page to determine whether further leakages might oc-
cur if these links were followed. Also, we break down
the results in the payload category using additional cri-
teria. Since we observed some large request payloads in
our dataset, we suspect some of them may contain our
search query, but that is not necessarily easy to confirm
since some of these payloads are encoded.

All of our results are based on the number of sites
where our crawler was able to execute a search without
encountering any error. As presented in Table 2, this
number is 472,333. It should be noted that two or more
sites may redirect to the same domain. While the fi-
nal number of distinct response domains is 447,428, we
report all of our results based on a total of 472,333.

4.1 Leakage via Referer

Our dummy query was leaked via the Referer header by
75.8% of the sites, be it directly or indirectly. The exam-
ple in Figure 2 shows both scenarios when conducting
a search on the www.autoguide.com site.

Fig. 2. Example (shortened) of referrer-based leakages.

The first part of the example shows a request
to a third party domain (ib.adnxs.com) with our
search query present in the Referer header. Subse-
quently, our query string appears in the Referer header
of a request to sync.placelocal.com even though this
third party domain was never contacted directly by
www.autoguide.com. This flow is visualized in Figure 3.

Direct Leakage 72.5% of sites directly send our
query string to at least one third party domain via the
Referer header. Unsurprisingly one of Google’s domains
is almost always present whenever this phenomenon is
observed. The other entities (and associated domains)
that are contacted the most frequently reveal of mix
of advertizers, analytics solutions, CDNs and Consent
Management Platforms. This suggests that some of the
leakages observed are probably accidental (e.g., CDNs
do not need access to query strings to deliver their assets
successfully).

Direct leakage via referrers is due to the fact that
most sites do not set any page-level Referrer-Policy, be
it using a response header or an HTML directive (using
a meta element). The most frequently observed pairs of
policy values are shown in Table 4.

Rank Header Policy Meta Policy Freq.

1 None None 93.6%
2 no-referrer-when-downgrade None 3.2%
3 (empty string) None 1.4%
4 None always 0.6%
5 None unsafe-url 0.4%
6 unsafe-url None 0.2%

Table 4. Most frequent page-level Referrer-Policies, as specified
in the HTTP response header and the HTML meta element.

It is interesting to note that the most frequently
used values are ineffective at preserving users’ privacy.
no-referrer-when-downgrade is often never relevant,
as most of today’s traffic is relying on HTTPS and
downgrades are uncommon. always is not a valid policy
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Fig. 3. Crawler searches for “JELLYBEANS” on site A. A then passes this search query to A’s child iframe B. A then makes a net-
work request to C and “JELLYBEANS” is leaked to C via the Referer header. B makes a request to D, where B inserts “JELLY-
BEANS” into the URL. Thus in this example “JELLYBEANS“ is leaked to three domains (B, C, D) via two different methods (Referer
header and URL).

and unsafe-url is discouraged except in specific use-
cases, as shown in Table 1.

Indirect Leakage As shown in Figure 2, leaks via
Referer can also occur indirectly when a third-party do-
main is contacted by another third-party domain. This
situation was observed for 10.6% of the sites, with the
most prevalent entities (based on the Disconnect list
[17] of domains/entities) shown in Table 5. While enti-
ties involved in direct leakage were quite diverse, those
that are involved in indirect leakages appear to be linked
most often to the advertizing industry, suggesting that
this type of query sharing is intentional.

Entity Frequency

Google 7.8%
Moat 1.8%
Quantcast 1.6%
Facebook 1.3%
The Trade Desk 1.1%
VerizonMedia 0.9%
Integral Ad Science 0.7%
AK 0.7%
DoubleVerify 0.7%
Flashtalking 0.6%

Table 5. Most frequent entities whose domains are present in
indirect referrers

This table shows that many of these domains are
classified as tracking entities according to the Discon-
nect list. However, some domains, such as those asso-
ciated with Google, may be more ambiguous as they
might deliver actual search results via a custom search
engine (cse.google.com) [25]. This possibility is explored
in Section 4.2.

Potential Leakage To conclude this analysis of
Referer-based leakages, we are interested in examining
the links present on the pages obtained after submit-
ting the search (i.e. most likely search results pages).
This link analysis is not limited to search results links:
all links present on the resulting page are inspected.

We want to find out whether any of these links could
leak the search query to a third-party domain if they
were clicked by the user (if the query was not previ-
ously leaked to any of these third-party domains). To
determine whether a link could leak or not, we ana-
lyzed the page-level referrer policies (as shown in Table
1 but also element-level policies that may be present.
We found that 87.4% of sites with search functionality
had links that had potentially leaking referrer policies.

Domain Entity Frequency

twitter.com Twitter 44.8%
facebook.com Facebook 38.3%
instagram.com Facebook 34.2%
youtube.com Google 29.2%
linkedin.com LinkedIn 15.8%
pinterest.com Pinterest 9.0%
google.com Google 8.8%
wordpress.org Wordpress 5.7%
apple.com Apple 4.0%
vk.com VKontakte 2.0%
t.me Telegram 1.9%
bit.ly Bitly 1.8%
vimeo.com Vimeo 1.5%
flickr.com Yahoo! 1.5%

Table 6. Most frequent domains from links on resulting pages.

The results in Table 6 show that the most prevalent
domains in links on resulting pages are linked with so-
cial media services (e.g. Facebook, Twitter, Instagram,
Youtube, Linkedin and Pinterest). For instance, 44% of
sites included at least one link pointing to twitter.com,
possibly in the page footer or via a widget. A generic
link shortening service is also present in that list (bit.ly).

4.2 Leakage via URL

71% of sites send our search query as part of URL
query parameters. As shown in Figure 2, however, a
URL query parameter may contain the full search page
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URL rather than the actual query. Distinguishing these
two scenarios seems important because some of our ob-
servations (that could be qualified as leakages) may be
absolutely necessary for the search functionality to be
delivered to the user. For instance, if a website is rely-
ing on a third-party search engine provider (be it Google
Custom Search Engine or any other service), our search
query may be passed on directly to that third-party us-
ing technologies such as AJAX. In order to address this
scenario, we try to identify those domains that receive
specific query parameters (such as q or query) with our
query string (or parts of it) as the value. By observ-
ing whether URL parameter values contain substrings
of “JELLYBEANS”, such as q=J or q=JE (which is the
case when services provide auto-complete suggestions),
we can reliably identify some actual third-party search
engine providers. Some examples are provided in Ap-
pendix 5.

4.3 Leakage via Payload

Finally we are interested in examining whether sites leak
search queries with third parties via the HTTP request
payload. We find that 21.2% of sites actually do, the
most prevalent third parties being listed in Table 7.

Domain Entity Frequency

facebook.com Facebook 7.1%
hotjar.com Hotjar 3.8%
adnxs.com AppNexus 2.6%
criteo.com Criteo 1.5%
pubmatic.com PubMatic 1.5%
twitter.com Twitter 1.0%
lijit.com Federated Media 0.6%
sumo.com None 0.6%
google-analytics.com Google 0.6%
flashtalking.com Flashtalking 0.6%
algolia.net None 0.5%

Table 7. Most frequent domains receiving query via payload.

This list is quite varied since it contains social media
entities (e.g. Facebook, Twitter), advertizers (Criteo),
analytics services (sumo.com, Google Analytics) and ac-
tual search service providers (algolia.net) identified us-
ing the methodology described in the previous section.
It is also worth highlighting the presence of hotjar.com,
which provides session replay capabilities to site own-
ers as reported in [20]. A deeper analysis of the request
payloads (as well as the responses) should allow us to

identify specific entities (e.g. search providers) as we did
in the previous section using specific query parameters.

To conclude this analysis, we report that 0.9% of
sites make use of third parties that rely on Base 64-
encoded payloads that we were able to decode in order
to detect our search query. We also report that some re-
quests contain unusually large payloads (over 10kb per
request), most often sent to entities that offer session re-
play services, like yandex.ru, hotjar.com, fullstory.com,
smartlook.cloud, clicktale.net, quantummetric.com, ses-
sioncam.com or inspectlet.com.

4.4 First Party Categorization

We used WebPulse [74] to group the domains according
to their content category to determine if privacy leak-
age varies across website categories. These results can be
seen in Figure 4. By and large, the worst offenders were
“Personal Sites” (92.2% Any), which is consistent with
the findings of [3]. The other categories of bad actors
were “Restaurants/Dining/Food” (88.1%) and “Shop-
ping” (86.7%), which might be consistent with sites that
are most likely to have the most advertising. Interest-
ingly, some of the most well-behaved sites were sites
categorized as “Piracy/Copyright Concerns” (77.6%),
“Suspicious” (77.5%), and “Pornography” (77.7%). This
may be because these sites exist outside the usual ad
ecosystem that powers the conventional web, as docu-
mented by [76]. Finally, the “Search Engines/Portals”
category ironically had the lowest value for Direct Re-
ferrer leaks (55.3%), possibly because these tend to be
large sites whose central focus is search, and are no
doubt aware of the sensitivity of search terms and are
careful against this data leaking into the hands of com-
petitors. These results also confirm that some sites leak
search queries across multiple vectors. As shown in Ta-
bles 5, 6 and 7, some entities like Google or Facebook
operate across all vectors.

4.5 Analysis of Privacy Policies

Now that we have observed how sites leak search queries
to third parties, we want to determine whether this is
a practice that website operators explicitly mention to
their users. In order to measure how often website oper-
ators in fact include this type of data leakage in privacy
policy documents, we analyze natural-language privacy
policies.
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Fig. 4. Leakage breakdown by category and leakage type

Identifying Privacy Policy Documents Using
our approach from Section 3.5, we were able to find pri-
vacy policy links on 50.5% of input domains (we only
considered those sites leaking our search query to at
least one entity). While this number may seem quite
low, it is not unexpected given we relied on a fully au-
tomatic link identification approach. Previous work has
shown that a word-list approach can work for specific
site types (such as news) but miss links on other sites,
thus requiring a complementary manual identification
step [16]. Using such a manual step was not feasible
based on the size of our dataset.

Using the identified links, we were able to retrieve
some content 96.5% of the time. However, while the key-
words used in our first step are generally a good indica-
tor that the linked content is an actual privacy policy,
there is no guarantee that this is always the case. For
example, some sites rely on intermediate pages to guide
users towards a relevant privacy policy if they have more
than one (e.g. one per product, or one per platform). So
while the link identified might point to a page contain-
ing the word privacy, there may actually not be any
actual privacy policy content in it.

Previous studies have used some heuristics such as
keyword spotting to justify their scraping [39], but we
think this is too prone to errors. We therefore decided to
train a classifier to filter out any content that does not
appear to contain any privacy policy content. To do so,
we used the sanitized OPP-115 corpus [82] as training
data and relied on a one-class SVM classifier (RBF ker-
nel with gamma set to auto) to perform outlier detection
using the Scikit-learn framework [61] whose implemen-
tation is based on Libsvm [8]. Using a very small nu
value (0.05) to reduce the number of training errors to

a minimum, we extracted TF-IDF features (n-grams in
the range 1-3) after removing English stopwords from
the content. The resulting model detected 4 documents
from our training set as outliers, and when applied to all
of the 127,996 English policies retrieved detects 37.9%
of them as outliers. This might be very conservative but
ensures that we are looking for search-related mentions
in the appropriate content.

To validate our model, we manually sampled 100 of
the 79,515 English documents labelled as privacy poli-
cies by our model and found that all of them were in-
deed privacy policy documents. Our pipeline is almost
directly comparable to the one described in [40] which
achieved a privacy policy link candidate detection rate
of about 43% (ours is 50.5% with duplicates and 44.7%
after removing duplicates) and an actual privacy pol-
icy document detection rate of about 15% using a CNN
(ours is 20.7%). Our results are summarized in Table 8.
We also make available all discovered privacy policy
links to future researchers 9.

Parsing Privacy Policies To investigate whether
websites inform users of the fact that their search
queries may be sent to third parties, we must parse
the extracted privacy policies and find sections rele-
vant to processing search terms. Since search queries
are instances of personal information (rather than per-
sonally identifiable information), we would expect pri-
vacy policies to mention them in sections pertaining to
personal data collection or handling. In order to ver-
ify this hypothesis, we manually check the annotations
from the OPP-115 corpus to find occurrences of phrases

9 https://jellybeans-paper.com
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Description Count

Input domains 384101
Domains with policy link identified 193815
Link found but scraping error 6703
Link found and scraping success 187112
Uniq. links with document 165139
Uniq. documents detected as English 127996
Uniq. English docs labelled as privacy policies 79515
Uniq. English docs including search-related terms 10914
Uniq. English docs including generic info. sharing 60212

Table 8. Analysis of privacy policies statistics. Only domains with
observed search term leakage were used as input domains.

containing the token search. While we find such men-
tions in the corpus (as shown in Table 9), we notice
that search queries collection is explicitly mentioned
in segments labelled as “First Party Collection/Use”
by the OPP corpus annotators more frequently than
segments labelled as “Third Party Sharing/Collection”
(24 vs. 11). A closer inspection of these “Third Party
Sharing/Collection” segments reveals that some vague
or generic phrases are used to inform the reader that
some of their information (without necessarily specify-
ing which) may be shared with third parties. Examples
of such generic phrasing is also shown in Table 9.

Based on this discovery, we decided to manually re-
view all 672 segments (originating from 112 distinct pri-
vacy policies of the OPP-115 corpus) to identify those
that seem to mention (either explicitly or implicitly) the
collection by a third party of information (such as search
queries) or the sharing of such information with a third
party when the user interacts with the site. The results
of this manual review are as follows: 116 segments seem
to mention such a practice (labelled as “yes”) while 462
do not (labelled as “no”) and for 94 segments, we are
unable to decide (labelled as “unsure”).

We further examined these 116 “yes” segments to
extract the sentences (or parts of sentences) that refer
to the sharing of information with a 3rd party. Once
these parts were identified, we defined patterns using
morphological and syntactic information with a view to
create detection rules of such mentions in newly col-
lected privacy policies. We use rules instead of a ma-
chine learning approach due to the small amount of la-
belled data (116 sentence parts). These rules were im-
plemented using Spacy’s entity ruler [29] so that a sen-
tence was deemed to mention information sharing with a
third party if it contained the following elements: a third
party (which may also be described using words such as
vendor or partner, a verb describing the act of sharing

or collecting, such as disclose or gather, and a reference
to information or data. In order to avoid some false
positives in specific contexts (such as information shar-
ing with law enforcement entities or information trans-
fer in the event of a corporate merger), we penalized
sentences containing specific terms. These rules showed
an accuracy of 89% when run on the annotated seg-
ments from the OPP-115 corpus. We then used these
rules on the 79,515 privacy policies we collected and
found that 60,212 of them (about 75%) contained at
least one mention of information sharing with a third
party. An example of detection of a generic mention is:
“These third-party ad servers or ad networks can use
technology which displays the advertisements that ap-
pear on our site directly to your browser, enabling them
to collect information.”10 10,914 of these policies (about
13%) did mention search terms explicitly, an example
being: “We and our service providers and third-party
advertising partners also use these technologies to track
your activities on our Site and other websites, includ-
ing the websites and web pages that you visited, the
ads or content that you clicked on, any items you may
have purchased and the search terms you used, in order
to deliver tailored advertising to you.”11 These results
must be considered as upper bounds since our detection
rules can still be prone to false positives. To validate
our detection results, we read 12 of the 100 validation
documents manually and confirmed our automated ap-
proach did not find any mention of users’ search terms
in this sample. However, 2 of these 12 documents con-
tained some mention of user interaction with some ser-
vices and 8 other documents in the sample did mention
users’ usage of the site/services, which could encompass
the use of the search functionality.

5 Discussion
In this section, we summarize our findings, provide a dis-
cussion on how privacy policies handle search term pro-
cessing, introduce some countermeasures, and list the
limitations of our study.

10 http://www.miicharacters.com/privacy.php
11 https://www.audi-forums.com/help/privacy

http://www.miicharacters.com/privacy.php
https://www.audi-forums.com/help/privacy
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Source Category Text Match type

1703_sports-reference.com.csv First Party Collection
and Use

SRL may record information identifying the visitor or link-
ing the visitor to the search performed.

explicit

1300_bankofamerica.com.csv Third Party Sharing and
Collection

certain information about your activities on our Sites,
such as pages visited and search key words entered

explicit

1070_wnep.com.csv Third Party Sharing and
Collection

We may share your information with third-party adver-
tisers and advertising networks or others with which we
have a contractual relationship

generic

175_mlb.mlb.com.csv Third Party Sharing and
Collection

A permitted network advertiser may use cookies, web
beacons or similar technologies to collect information
about your interaction with our Services

generic

Table 9. Examples of relevant OPP-115 corpus fragments.

5.1 Findings

As mentioned in Section 4, we executed a search for our
dummy query string, “JELLYBEANS”, on 472,333 web-
sites. 81.3% of these leak search terms to third parties
in some form, according to our definition of leakage in
Section 2.4. 75.8% of websites leaked data via the Ref-
erer header (72.5% directly and 10.6% indirectly); 71%
via URL query parameters; 21.2% via the payload. Ad-
ditionally 87.4% of websites had the potential to leak
sensitive query terms to a new third-party if a link on
the page was clicked.

The high incidence of leakage via the Referer header
is likely related to the fact that over 93.6% of sites
did not explicitly specify a Referrer-Policy, and when
they did it was either at the same level or worse
than the default. After we completed our crawl, the
Google Chrome team announced that starting with
Chrome version 85, the default Referrer-Policy will be
strict-origin-when-cross-origin [54]. This change
should have a significant positive change on the privacy
of users on the web, especially if adopted by the other
major browsers.

Most sites (~80%) leaked search terms through more
than one vector, with ~20% of sites leaking queries via
at least three vectors. This is extremely concerning, as
often times these search terms refer to sensitive topics
such as medical conditions, sexual preferences, racial
identity, or financial situation. Even for seemingly in-
nocuous cases such as shopping, products can reveal
sensitive information about users - consider products
such as pregnancy tests, wedding bands, or anti-anxiety
medication.

5.2 Privacy Policies

The concept of consumers receiving clear notice about
privacy is key to many privacy frameworks, such as the
OECD’s 1980 privacy guidelines [59], the U.S. Federal
Trade Commission’s Fair Information Practice Princi-
ples [13] and the European parliament’s latest regula-
tion (GDPR) [60]. However, most of these framework
do not mandate explicitly what should or should not be
included in privacy policy, which can lead to wide dif-
ferences, even within the same industry. For instance,
a previous study evaluated 6,191 U.S. financial insti-
tutions’ Web privacy notices and found large variance
in stated practices, even among institutions of the same
type [14]. In 2016 another study found that “the average
policy complies with 39% of the FTC guidelines issued
in 2012” [45]. While recent legislation such as the Cali-
fornia Consumer Privacy Act (CCPA) [7] has been at-
tempting to provide further guidance on how consumers
should be informed of personal information collection,
it mentions informing “consumers as to the categories of
personal information to be collected and the purposes
for which the categories of personal information shall
be used”, without listing what these categories are. This
situation provides some context for the results presented
in Section 4.5. Our results suggest that privacy policies
tend to be worded in such a way that search query han-
dling by a third party is very often described in a very
generic manner. This means that users who are looking
for an answer to the question are my search terms shared
with or collected by a third party? will have to carefully
read the entire privacy policy (or specific sections of it)
to find such information (instead of simply searching
for a keyword like search using a browser shortcut). In
practice, this means that most users will not have the
time to perform such a careful review and will be un-
aware that their search terms won’t be kept private by
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the site they are interacting with. This is something we
decided to address by designing a novel browser exten-
sion, as described in Section 5.3 on countermeasures.

5.3 Countermeasures

A few options are available to address the privacy leak-
ages identified in this paper (with a full comparison in-
cluded in Appendix 3.). First, some browsers such as
Chrome v85+ and Safari have changed their default
Referrer-Policy to the more secure “strict-origin-when-
cross-origin” value, which provides a solution to referrer-
based leakages. We would like other popular browsers
to adopt this default, and have standards bodies such
as W3C change the guidance for browsers to make this
the default value. We would also like to see tracking
protection tools (such as those built into Firefox) flag
sites that downgrade the Referrer-Policy using a server-
side header or HTML, and prevent that behavior when
tracking protection has been turned on by the user. In
the meantime, we developed a browser extension which
displays our findings for each crawled site (two screen-
shots are included in Appendix 4). This extension also
links to the privacy policy where possible, providing
privacy-savvy users with a way to quickly identify which
third parties they are about to share their search queries
with. Besides providing some awareness to users, the
extension could also be responsible for dropping (or re-
placing with dummy placeholder terms) search queries
whenever these queries are found in Referrer values,
URL parameters or even payload fields that are about
to be sent to hosts that are not providing search func-
tionality. In Section 4.2, we showed that we were able to
identify some third-party search providers so an Allowed
List could be used and refined over-time. Modifying
leaking requests (by tweaking a specific parameter for
example) seems less risky than blindly blocking requests
as these requests may provide additional functionality
that could prevent the site from operating normally.
None of these countermeasures, however, solves the sit-
uation where third-party JavaScript gets included into
a first-party context, as it can access all first-party data,
perform arbitrary obfuscations to it, and export it. To
prevent this scenario, one could encourage website own-
ers to make sure that non-search third-party JavaScript
does not get included in first-party contexts, by leverag-
ing iframes for example. However, it is not clear that all
website owners would have the skills (or time) to deploy
such a solution (as suggested by the currently low de-
ployment of Referrer policies, which are quick and easy

to roll out). Alternatively, the browser extension could
also be tuned to re-implement native JavaScript APIs
methods (leveraging Proxies and Reflection) to prevent
access from third-parties found within first-party con-
texts (this is possible by throwing deliberate exceptions
and performing domain look-ups in the stack traces).
While this approach requires substantial implementa-
tion efforts it would guarantee fine-grained controls over
which entities are able to read values from search input
fields. Some of these techniques have been covered in
previous works, such as [42], [47], [77] and [19].

5.4 Limitations

Crawling Limitations. During the crawl process, we
failed to visit 15.7% of domains, which is roughly in line
with the expected results in [1]. Instead of relying on a
single crawling node (in the US West region), distribut-
ing the crawling to multiple regions may have improved
the coverage. However, we made few efforts to circum-
vent IP-blocking or solve CAPTCHAs during our crawl.
Some other teams use Tor to evade IP-blocking, while
others employ anti-crawling-detection stealth toolkits.
We do not believe such approaches are consistent with
the spirit of the web, and allowed for such failures. How-
ever, it may be the case that these 15.7% of websites
differ in some key characteristics from the ones that we
successfully visited.

We made every effort to locate the correct internal
search inputs on every website regardless of language.
However, our approach was not perfect. Our validation
tests show that our crawler was unable to detect any
search input for less than 5% of the sites that actu-
ally contained a search input.12 For example, we only
visited the landing page of each webpage, and did not
navigate the site to search for the internal search feature
on other pages. In other cases, our detection approach
proved too aggressive so we executed some search using
some detected inputs that were not actual visible search
inputs. Our validation tests show that it happened for
14% of the sites that did not contain any search input.
We also made some effort to interact successfully with
the search inputs we detected. However, in some cases
the interaction was too complex and we failed to exe-
cute the search and obtain search results. Our validation

12 This number is derived from the 214 times annotators used
the label Search input present. 10 of out these 214 sites were
labeled as not_found by the crawler.
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tests show that we were unable to interact successfully
with a detected search input for 26% of the sites that
actually contained a search input. We anticipate future
work will improve on our approach and be able to find
and interact with more search inputs in a more reliable
manner. For this reason, we will release the labeled cor-
pus of detected search input selectors for each domain
under open source for other researchers to use.

Analysis Limitations. During our analysis, we
found some cases of large payloads sent to third party
sites, which appeared to be encrypted or encoded, and
which we suspected contained the “JELLYBEANS”
search string. We utilized Ciphey to try to decode all
large payloads, but sometimes were not successful [6].
Therefore, the payload leakage may in fact be higher
than reported in this paper. Using our approach from
Section 3.5, we were able to find (potential) privacy pol-
icy links on 50.5% of input domains. Using the identi-
fied links, we were able to automatically retrieve some
content 96.5% of the time. It is obvious that a manual
inspection of the sites and links would have helped us re-
covered more privacy policy links and content. However,
using such a manual step was not feasible based on the
size of our dataset. We then parsed the extracted privacy
policies to find sections relevant to processing search
terms, using rules derived from the OPP-115 corpus. It
is possible that the rules performed less effectively on
newly collected policies, so future work would be re-
quired to improve these rules. In addition to privacy
policies, some sites also have a cookie policy document
or a cookie banner. While we looked for mentions of
search term handling and information sharing in pri-
vacy policies, we did not analyze these cookie-related
documents. However, we do not believe that this would
substantially change our results.

6 Related Work
Crawling for Privacy Leaks. The use of web
crawlers to measure privacy leakages is ubiquitous in
the literature: a recent survey paper by Ahmad et. al. [1]
found that 350 papers published at top-tier venues from
2015-2020 relied on data gathered from web crawlers.
These web crawlers were most often implemented as
headless browsers on top of the PhantomJS [62], Se-
lenium [70], OpenWPM [22], or Puppeteer [11] frame-
works. Such crawlers were often deployed in large-scale
scans to discover privacy leakages around the web, of-
ten using either the Tranco or the Alexa [2] top domain

datasets as inputs. The resulting studies measured pri-
vacy leakages found in email tracking [21], link track-
ing [66], third-party cookies [67] (used on 70% of sites
for tracking purposes), the ad ecosystem [23], HTTP
headers [35], contact forms [72] (where 2.5% of the
total number of contact forms leaked the user’s PII
through the URL query string), and registration forms
[9]. Many other crawls characterized privacy leakages
(often by looking at domains of third-party requests)
more broadly on the web [3, 34, 38, 39, 69], or in specific
sectors such as adult websites [44, 76], health websites
[37], online collaboration services [31], and the financial
sector [65]. Ahmad et al. noted that challenges exist in
crawling the web in an automated way: only approxi-
mately 77-93% of the top 500 domains can be success-
fully reached by a crawler 13, including blocking due to
regional restrictions, IP-based blocking, and encounter-
ing CAPTCHAs.

Privacy of the Referer HTTP header. This
header has been known to be a potential source of pri-
vacy leakage since at least 2011 [18, 34]. The Referrer-
Policy HTTP header was specifically created for web-
site owners to control the leakage of the referrer [18].
The issue of potentially sensitive queries being leaked
in referrer values was showcased by Krishnamurthy et
al. using the example of searching for pancreatic can-
cer on a health information website, and having that
search string transmitted to third parties [34]. Similar
examples were shown in work done by Libert in 2014
[37]. Lavrenovs et al. demonstrated in 2018 that the
Referrer-Policy HTTP header was only explicitly set
in 0.05% of HTTP responses and 0.33% of HTTPS re-
sponses [35], though this work looked at HTTP headers
only, while the policy may also be set inside HTML. In
2017, Dolnak characterized the Referrer-Policy HTTP
header status of 7 million websites and suggested 56%
of those websites might leak sensitive queries via the
Referer HTTP header[18].

Search Privacy. Search queries, especially over a
longer time period and associated with a specific IP
address, are well-known to lead to significant loss of
user privacy. [24] investigated the network properties
of the third party referral structures used for the deliv-
ery of personalized ads. Jones et al. showed that search
queries can be used to efficiently de-anonymize users
[30]. White et al. showed that it was possible to use
search queries to diagnose neurodegenerative disorders
[81]. Libert showed that health terms in medical search

13 depending on the crawler used
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engines were leaked in 2014 [37]. However, Libert started
his analysis by searching for likely medical terms using
popular search engines, and then analyzed the resulting
80,142 pages for privacy leakage. Note that this set of
pages corresponds to a much smaller set of domains, as
Libert includes multiple pages per domain in his analy-
sis. In contrast to this approach, we focus on performing
an internal site search directly on each domain, which
requires a more complex crawler to correctly locate the
search input fields. We also scan a much larger set of
domains: 1 million in all, and do not restrict ourselves
to the health and medical field.

Privacy Policies. Privacy policies provide another
way to measure the intended privacy practices of a com-
pany [4], but previous work has shown that their use-
fulness can be limited due to their complexity [46]. The
adoption of privacy policies by companies has been mea-
sured in numerous studies [16, 41, 68, 83]. Some of these
studies have focused on specific platforms (such as mo-
bile apps [84] or specific categories of web sites, such as
adult sites [76] [44]. For instance, Maris et al. used the
webXray tool to crawl and analyze 22,484 adult websites
for privacy leakages.[44] They developed a tool called
policyXray to locate privacy policy links on the pages,
looking for links with text such as “privacy” and “pri-
vacy policy”. The privacy policy text was then extracted
using Google Chrome’s Readability.js library, and its
reading difficulty and time to read was assessed. Maris
et al. also extracted any explicitly disclosed third par-
ties in the privacy policy. In this work, Maris et al. did
not try to perform a more in-depth linguistic analysis of
the extracted privacy policies. Finally, privacy policies
have also been recently analyzed automatically using
deep learning so that they can be queried by users us-
ing natural language questions [28].

Users’ Perception of Search Privacy. Many
studies have been conducted to analyze users’ percep-
tion of privacy. For instance, standardized privacy pol-
icy information formats were designed to determine
whether users would find them more useful than tradi-
tional policies [33]. However, very few have specifically
analyzed the users’ mental models of online search activ-
ity. A recent study focusing on a tracking visualization
tool [80] did find that a majority of users did not want
to have their search activity tracked, while a previous
study found that lay people had simpler mental models
than technical people - their models omitting concepts
such as Internet levels and entities [32] (suggesting that
a very large number of users does not realize that their
search queries are shared with third parties).

7 Conclusions and Future Work
We showed how terms entered into the internal site
search feature of the Tranco top 1 million websites are
leaked to third parties, compromising user privacy, but
without necessarily allowing these third parties to have
a long-term or comprehensive picture of a user’s activity.
We developed a crawler which can interact with modern
dynamic websites, identify search inputs, and capture
outgoing network requests. Our crawler was able to lo-
cate an internal site search feature on 512,701 websites,
achieving 75.7% accuracy in executing actual search
queries on these sites. We analyzed privacy leakage
across three vectors: (i) Referer HTTP header; (ii) URL
including query parameters; (iii) request payload. We
detected 81.3% of these websites leaking the “JELLY-
BEANS” string to third-party domains through at least
one of these three vectors. We released a browser ex-
tension to inform users about potential privacy leaks
via internal search, based on our findings. We also de-
veloped a novel technique to analyze natural language
privacy policies and determine whether they mention
sharing search terms with third parties. We extracted
privacy policies from about 50% of the websites leaking
search queries, and found that only 13% of those pri-
vacy policies explicitly mentioned search terms. In most
privacy policies (about 75%), the sharing of information
(which may include search terms) is also described using
generic wording.

Future Work The present work has identified
a few areas that would require further investigation.
Specifically, we would like to improve the coverage of
our crawler to (i) detect those search inputs that require
more complex interaction and (ii) analyze payloads that
are not in plain text. We would also like to refine our
crawling framework to tackle other types of user input
(e.g., chat widgets). Finally, we would like to contrast
our results with users’ expectations of search privacy.
Previous work [80] has suggested that most users do
not want to have their search activity tracked. We would
like to know how they react when they are shown the
amount/type of entities receiving their search queries.
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Appendix 1: Crawler Challenges
and Edge Cases

Interacting with the Right Inputs

As part of Stage III results, inputs not related to search
are mistakenly matched because some of their attributes
erroneously trigger our input detection query selectors.
To anticipate and minimize the impact of triggering
non-search functionalities, we interact with each input
individually (one per headless browser visit) by follow-
ing these steps: (i) detect the presence of a single in-
put element via provided query selector; (ii) focus on
the input element; (iii) type “JELLYBEANS”; (iv) wait
for 500ms; and (v) type the return key. By doing so,
we avoid interacting with non-search-related function-
alities. For example, login forms require multiple fields
to be filled out before triggering a useful action when
the enter key is hit.

Dynamically Generated Attributes

Some websites dynamically generate random attribute
names for their elements for each page visit. We detect
these cases when Stage IV yields exceptions indicating
that none of the elements collected during Stage III are
found. To address the problem, we merge both stages in
a single fallback task.

Hidden Search Inputs

Other websites do not explicitly display the search func-
tionality to visitors, in some cases input elements are
not even detectable using JavaScript. To work around
this problem, we rely on the elements previously catego-
rized as search-related (captured in Stage III ). We can
then infer from its attributes values that a search box is
likely to be made available upon click. We validate the
hypothesis by instrumenting the crawler to simulate a
click and waiting for navigation until any elements of
type input are displayed or a timeout period is met.

Search Results Displayed Within Another
Tab

Some websites deliberately display search results within
a new browser tab. This situation requires the crawler

to specifically listen and intercept all new tab creation
events and capture any links associated with the on-
going search simulation. Whenever this happens a new
visit to the captured URL is independently performed.

Appendix 2: Annotation Tool
Figure 5 shows a website loaded in the custom anno-
tation environment that was specifically developed to
create our validation dataset. In this example, we man-
ually inserted a red rectangle to show what the annota-
tors had to look for (e.g., a magnifying glass that would
bring up an embedded search form after being clicked).
While the annotators did not have access to such vi-
sual components in the tool itself, we made annotated
screenshots (taken during the crawling step) available
to them to avoid missing search inputs. In some cases,
search inputs can be quite difficult to find in a page, so
having access to the screenshots when the crawler was
able to detect and interact with a search input proved
extremely useful.

Fig. 5. Example of a web site to be annotated based on the pres-
ence or absence of a search input.

The three annotators were the authors of this pa-
per, and their disagreements were resolved by consensus
after discussion. In these cases, the authors manually in-
spected the sites to achieve a high degree of confidence.
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Appendix 3: Comparison of
Countermeasures

Countermeasure Pros Cons

Raise awareness via
browser extension

Educates unaware
users.

Decision to proceed
with search is left to
the user.

Re-implement na-
tive JavaScript
APIs methods
(leveraging Proxies
and Reflection)

Provides fine-
grained access
controls to search
inputs; Can ef-
fectively prevent
3-party leakage via
payload.

Complex implemen-
tation. No guaran-
tee that first par-
ties will not be the
ones passing on the
search query.

Rewrite requests Easy to implement. Eventually we could
miss some parame-
ter or change the
wrong thing. Inef-
fective against pay-
load leakage.

Block requests Effectively stops all
kinds of third-party
leakage.

Dependent on a list
of domains in or-
der to avoid break-
ing user experience.

Implement a default
Referrer policy in
the browser

Follows the Web
standard. Easy to
enforce.

Server sides can
overwrite the policy
value.

Fit all search com-
ponents within iso-
lated iframes

Leverages native
browser protection
mechanisms (Same
origin policy) to
protect against all
kinds of leakage

Requires advanced
knowledge and ad-
min control access
to the Website’s in-
ternal structure.

Table 10. Countermeasures to prevent search terms leakage.

Appendix 4: Browser Extension
Screenshots

Fig. 6. JellyBeans browser plugin warning a user when they at-
tempt to use internal search.

Fig. 7. Extension popup on a popular business tool website.

Appendix 5: Search Providers

Domain Sites Frequency

google.com 5063 0.01%
yandex.ru 692 0.0014%
searchanise.com 609 0.0012%
wikipedia.org 453 0.0009%
wiktionary.org 444 0.0009%
ksearchnet.com 284 0.0006%
doofinder.com 260 0.0005%
mybcapps.com 241 0.0005%
nextopiasoftware.com 237 0.0005%
searchspring.net 236 0.0004%
addsearch.com 223 0.0004%
cludo.com 207 0.0004%
searchspring.io 166 0.0003%
swiftype.com 156 0.0003%
resultspage.com 151 0.0003%
... ... ...
algolia.net 18 0.00003%

Table 11. Most frequent domains identified as search results
providers after receiving query parts via specific URL query pa-
rameter
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