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Abstract: Super-Resolution Convolutional Neural Net-
works (SRCNNs) with their ability to generate high-
resolution images from low-resolution counterparts, ex-
acerbate the privacy concerns emerging from automated
Convolutional Neural Networks (CNNs)-based image
classifiers. In this work, we hypothesize and empirically
show that adversarial examples learned over CNN image
classifiers can survive processing by SRCNNs and lead
them to generate poor quality images that are hard to
classify correctly. We demonstrate that a user with a
small CNN is able to learn adversarial noise without re-
quiring any customization for SRCNNs and thwart the
privacy threat posed by a pipeline of SRCNN and CNN
classifiers (95.8% fooling rate for Fast Gradient Sign
with ε = 0.03). We evaluate the survivability of adversar-
ial images generated in both black-box and white-box
settings and show that black-box adversarial learning
(when both CNN classifier and SRCNN are unknown)
is at least as effective as white-box adversarial learning
(when only CNN classifier is known). We also assess our
hypothesis on adversarial robust CNNs and observe that
the supper-resolved white-box adversarial examples can
fool these CNNs more than 71.5% of the time.
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1 Introduction
Single-image Super-Resolution Convolutional Neural
Networks (SRCNNs) [27, 49, 64] are designed to gen-
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Fig. 1. Privacy threat posed by SRCNNs. Left: LR image of
16 × 16 pixels. Center: the super-resolved HR image (128 × 128
pixels), generated using Deep Face SRCNN (×8) [26]. Right:
the original HR image. Both HR images are classified correctly
by Clarifai.com’s celebrity face recognition model, while the LR
image is not.

erate/recover a High Resolution (HR) image from its
Low Resolution (LR) counterpart. While SRCNNs have
legitimate and beneficial applications in different do-
mains [46, 54, 60], they raise serious privacy concerns.
Previously, low resolution images were considered to
provide some level of image privacy against recogni-
tion by humans and machine classifiers (e.g., thumbnail-
preserving image encryption methods [18, 29, 53, 58]).
However, SRCNNs’ ability to generate High Resolution
(HR) images from Low Resolution (LR) ones to enable
face recognition [5, 44, 66] poses a serious privacy threat
(see Figure 1).

The privacy threat posed by face recognition CNNs,
and AI-based face-recognition in general, is real as ev-
idenced by the emergence of image search applications
such as Clearview AI Facial Recognition App [16] with
the ability to match photos with a database of more
than 3 billion images scraped from Facebook, YouTube
and millions of other websites. Due to the current chal-
lenges in learning large robust CNNs (with ability of
thwarting all types of adversarial noise) [45], adver-
sarial perturbation-based image privacy schemes have
emerged as a potential defense against this threat of
unauthorized automated face recognition [4, 11, 19, 40].

However, these schemes do not explicitly consider
low-resolution images or take SRCNNs into account,
and learn adversarial noise/perturbation(s) over CNN
classifiers only. Regardless of vulnerability of SRCNNs
to adversarial noise, adversarial noise learnt on SRC-
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NNs alone leads only to quality degradation in super-
resolved HR images [6] and the effectiveness of such
noise against image classification by CNNs is unknown.
While it is possible to learn adversarial noise through
joint optimization over both SRCNNs and classification
CNNs [61], this approach requires knowledge of both
target SRCNN and CNN, which is not realistic.
Contributions: In this paper, we hypothesize and
empirically show that adversarial perturbations learnt
against CNN classifiers (alone) can survive the process-
ing by unknown SRCNNs. Specifically, we introduce two
approaches for generating adversarial LR images using
local CNNs and evaluate the survivability of both white-
box and black-box adversarial perturbations through
the state-of-the-art SRCNNs. The first approach of
down-scaling learned HR adversarial images is moti-
vated by the observation that SRCNNs are optimized
to recreate the original HR version of a given LR im-
age as closely as possible. It investigates whether down-
scaled adversarial examples carry sufficient amount of
adversarial noise to make SRCNNs recreate adversarial
images. The second approach of directly learning LR ad-
versarial using small local CNNs is exploratory and in-
vestigates whether LR perturbations are translated into
effective HR perturbations by SRCNNs.

Our findings demonstrate that adversarial pertur-
bations against SRCNNs can come free with adversar-
ial perturbations against classification CNNs (see Fig-
ure 2). Our evaluation of the proposed adversarial ap-
proaches against potential countermeasures such as ro-
bust CNNs [10, 28] and input filtering show that the
adversarials were able to resist them reasonably. Briefly,
we make the following contributions:
– This is the first work to study the impact of super-

resolution on adversarial perturbations.
– We define and hypothesize the survivability of ad-

versarial images learned only on CNN classifiers
through unknown SRCNNs (see Section 5).

– We show that both (i) down-scaled HR adversar-
ial images (learned on HR images) and (ii) LR
perturbations directly learned using a small local
CNN (trained on low resolution images), can survive
through state-of-the-art SRCNNs and contribute
to defense against the privacy threat posed by
SRCNN-CNN pipelines (see Sections 6.2 and 6.3).

– We empirically evaluate how well HR adversarial ex-
amples that can fool robust CNN classifiers survive
through SRCNNs. We found that such adversarial
images cause robust CNNs to misclassify even after
being down-scaled and super-resolved by SRCNNs.

The rest of this paper is organized as follows: We present
some preliminaries in Section 2, and describe our as-
sumptions and the system model in Section 3. We dis-
cuss potential solutions in Section 4. We define surviv-
ability of adversarial images and introduce our method-
ology for generating and evaluating LR adversarial im-
ages in Section 5. We present our evaluation and results
in Section 6. We discuss the implications of our work and
future directions in Section 7. We cover related work in
Section 8, and conclude in Section 9.

2 Preliminaries
In this section, we first introduce convolutional neural
network (CNN) classifiers and super-resolution convo-
lutional neural networks (SRCNNs). We then briefly in-
troduce the notion of adversarial examples and pertur-
bations on these networks.
Convolutional neural network (CNN) classifiers:
Convolutional Neural Networks (CNNs) as modern deep
learning models are able to achieve nearly human-level
performance on several computer vision tasks such as
face detection [52], optical character recognition [14],
object recognition [50], and object detection [41, 42]. A
CNN consists of a series of convolution, pooling, and
non-linear activation layers that are followed by a few
fully connected layers. For a K-class classification task,
usually a CNN is terminated by a softmax activation
layer to map the logit layer (with K outputs) into condi-
tional class probabilities. Concretely, a CNN can be de-
noted by a function F (.; θ) : X → Y, where X = [0, 1]D

and Y = [0, 1]K are input and output spaces respec-
tively, with θ compactly denoting parameters of the
CNN. Upon feeding a CNN (i.e., F (., θ)) with an in-
put sample x ∈ [0, 1]d, it returns a vector of conditional
class probabilities over K classes s.t.

∑K
k=1 Fk(x; θ) = 1.

To learn the parameter θ, cross-entropy loss function
J(., .; θ) : (X ×Y)→ R+ is minimized over N i.i.d. train-
ing samples, i.e. (xi, y∗i)Ni=1, where y∗

i ∈ {0, 1}K , as the
true class associated with i-th input, is a binary vector
with a single one bit at its k-th element. Formally, the
cross-entropy is defined for a given sample (x, y∗)1 as
follows:

J(x, y∗; θ) = −
K∑
k=1

y∗k logFk(x; θ) (1)

1 For simplicity in notation, the superscript i is dropped from
(xi, y∗i)
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Super-resolution convolutional neural networks
(SRCNNs): Super-Resolution Convolutional Neural
Networks (SRCNNs) are deep convolutional neural net-
works that generate HR images from their LR counter-
parts [9] with the aim of increasing the visual quality of
HR images. In general, SRCNNs optimize Peak Signal
to Noise Ratio (PSNR), Minimum Square Error (MSE),
or Structural Similarity Index (SSIM) between original
HR images and the super-resolved HR images as an ob-
jective function. Here we use hr(.) to denote an SRCNN
function which takes an LR image I (Ilr) and returns a
super-resolved HR version.
Adversarial examples and perturbations: Adver-
sarial generation methods find and add a small adver-
sarial noise (δ) to an image that causes the target CNN
to misclassify it.

min
δ
‖δ‖2 − J(F (x, θ))

s.t. argmax F (x+ δ) 6= y∗, x+ δ ∈ [0, 1]d
(2)

where δ, x, y∗, and J(.) are the adversarial noise, given
input image, the true label of the input image, and the
loss function, respectively. Since this noise is impercep-
tible to the human eye, a benign image with adversarial
noise is called an adversarial example. Many methods
have been proposed to generate a small adversarial noise
for a known CNN (e.g., [3, 13, 31, 51]), but they suffer
from low transferability to unknown CNNs. Transfer-
able perturbation generation methods [24, 30] proposed
to address this issue by producing adversarial noise that
is typically perceptible, called adversarial perturbation.
Images perturbed with adversarial perturbation are still
recognizable to human eyes but can fool CNN classifiers
(including unknown ones) with high probability. The
detection adversarial example defenses can detect these
adversarial images [1, 2, 39, 59], but these defenses can-
not help the classifiers to classify them correctly.

3 System and Adversary Model
CNN classifiers do not perform well on LR images. For
example, recent CNNs achieved more than 98% top-5
accuracy on ImageNet dataset containing images with
resolution of 256× 256 pixels [36], while top-5 accuracy
for the images from the same dataset down-scaled to
a resolution of 16 × 16 pixels is less than 65% [7]. In
this paper, we consider a situation where an adversary
has access only to LR images and aims to classify them
using their convolutional neural network classifier. In or-

Fig. 2. Users only share their LR images. Adversary uses an SR-
CNN to super-resolve such LR images before applying face detec-
tion and recognition models.

der to improve their classification performance, the ad-
versary first passes the low resolution images through a
super resolution convolutional neural network (SRCNN)
to generate a higher resolution image, and then uses a
CNN classifier on the super-resolved image [66]. Figure 2
depicts such an adversary’s classification pipeline. We
assume that the adversary’s image classification CNN
is pre-trained (e.g., using images scraped from the In-
ternet; or using images previously stored or shared by
users on online storage or sharing platforms).

Our goal is to help owners of the (low resolution)
images (e.g., users’ of social networks or image sharing
platforms) thwart these unauthorized automated clas-
sification pipelines using image perturbation. Here per-
turbations that cause SRCNNs to generate high resolu-
tion images that will be misclassified by the CNN classi-
fier need to be learned and applied to the low resolution
image. However, it is unlikely that the image owners
have any prior knowledge of the SRCNNs and classifi-
cation CNNs that may be used against their images in
an adversary’s pipeline. Thus, we assume that users do
not have any knowledge about the CNN(s) that an ad-
versary might use. For the image classification CNN, we
consider the following two scenarios:
Black-box attacks: In this scenario,end users do not
have any knowledge about the adversary’s image clas-
sification CNN. This is a more likely case in real-world
use. For example, in image sharing platforms, end users
do not know what classifiers may be used by service
providers or other curious users. This scenario requires
perturbations for the images to be learned in a black-
box setting. Since the adversary uses publicly shared im-
ages, the images used for target classes could be similar
for both user and the adversary. These assumptions are
consistent with the black-box adversarial setting used
in machine learning literature [34].
White-box attacks: We also consider the scenario
where there is access to the target CNN or the
target CNN’s function can be estimated by sending
queries [35]. In this case, perturbations for images can be
learned using white-box adversarial learning techniques.
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While this scenario is not quite realistic, we consider
this to study whether white-box perturbations have an
advantage compared to black-box perturbations against
SRCNNs.

4 Potential Solutions
Adversarial perturbations have been explored as a po-
tential privacy defense against unauthorized image clas-
sification [4, 19, 40]. However, the previous work did not
consider the use of SRCNNs in the adversary’s pipeline
(see Figure 2). In this section we discuss some plausi-
ble ways to extend previous work to address the privacy
threat posed by SRCNNs.
Learning jointly over both the SRCNN and CNN
classifier: One way to defeat an adversary’s pipeline
shown in Figure 2 is to learn image perturbations op-
timized jointly over both the target SRCNN and CNN.
This approach was explored in [61], where a joint opti-
mization was proposed to learn an imperceptible noise
that leads a known SRCNN to generate adversarial HR
images against a known target CNN. In this approach,
full knowledge of both the target SRCNN and CNN is
necessary which makes it impractical for use in our set-
ting where end-users may not have such knowledge. To
address this, one could potentially try to learn transfer-
able adversarial perturbations (e.g., using ensemble of
models [24] or universal perturbation generation meth-
ods [30]) that are jointly optimized over both a local
CNN(s) and a local SRCNN(s). This approach is likely
to be computationally expensive for end users given the
joint optimization over both CNN(s) and SRCNN(s).
Learning transferable perturbations against SR-
CNNs: Another potential approach to defend against
unauthorized classification by neural network pipelines
involving SRCNNs, is to learn and embed a perturba-
tion just against the SRCNNs. Learning adversarial im-
ages to degrade the quality of super-resolved HR images
generated by the SRCNN has been explored recently [6].
However the transferability of those adversarial images
to other SRCNNs is undetermined. While this may be
addressed by employing transferable adversarial pertur-
bation generation methods proposed for CNN classi-
fiers [24, 30], it is not clear how effective just degrad-
ing the quality of super-resolved images will be against
the target CNNs employed for recognition. It has been
shown that CNNs can be robust to noise [12, 40] and
therefore simply degrading the quality of super resolved
images is unlikely to be sufficient.

Learning transferable adversarial images over
CNN(s): The last alternative approach is to try to
subvert the image classification CNN in the adversary’s
pipeline by learning transferable adversarial images that
can fool the CNN. There are several methods for learn-
ing transferable adversarial images against CNN clas-
sifiers [24, 30, 31, 40]. However, perturbations in such
adversarial images have to survive the super-resolution
processing by the SRCNN in the adversary’s pipeline.
To the best of our knowledge, there has been no work
investigating the impact of super-resolution on adver-
sarial perturbations. In this work we explore this third
approach and investigate the survivability of adversarial
images learned over CNNs through SRCNN processing.
We discuss details of this approach and the intuition
behind it in the following section.

5 Survivable Adversarial Images
Our goal is to learn adversarial images against the clas-
sification CNN in the adversary’s pipeline (see Figure 2)
that can survive the processing by the SRCNN. In this
section, we first describe our approach for generating
such adversarial images and the intuition behind the
approach. We then define the notion of survivability for
such adversarial images, and finally the metrics for as-
sessing their survivability.

5.1 Generating Survivable Low Resolution
Adversarial Images

There are several adversarial attack models for learning
adversarial images against a CNN both in a black-box
or a white-box setting [3, 13, 30, 31]. If a user has ac-
cess to the adversary’s target CNN or can estimate the
target CNN [35] by sending queries, white-box adversar-
ial approaches are a better choice as they can generate
adversarial images with imperceptible noise. However,
black-box attacks that generate perceptible perturba-
tions are more suitable (compared to white-box adver-
sarial noise) for image privacy, since they are designed
to fool unknown CNNs with high probability. But ei-
ther approach is only useful against an SRCNN-CNN
pipeline shown in Figure 2 if the resulting adversarial
images can survive the processing by SRCNNs. This is
because end users can only modify their LR images and
cannot directly access or perturb the super-resolved im-
age generated by the adversary’s SRCNN.
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Down-scaling HR adversarial images: We propose
to generate adversarial images that can survive SR-
CNN processing by using the success of SRCNNs against
them. Specifically, SRCNNs are optimized to generate
HR images from LR images that are as close to the orig-
inal HR images as possible. Using this observation, we
propose to learn adversarial images (using either white-
box or black-box approaches) corresponding to the HR
user images and down-scale them to generate the LR ad-
versarial images. Specifically, we use block-averaging for
down-scaling the HR adversarial image. Since the own-
ers only share LR images, they can deploy any down-
scaling approach that preserves adversarial noise. Here,
we find that a simple block-averaging approach is suf-
ficient and can preserve the adversarial noise. This ap-
proach is depicted in Figure 3. The intuition behind this
approach is that when an adversary takes such a down-
scaled LR adversarial image and feeds it into their SR-
CNN it will produce a super-resolved HR image that is
as close to the original HR adversarial image as possible
which can then fool the adversary’s classification CNN.
Directly learning LR adversarial images: We also
explore and evaluate an alternate and a more direct ap-
proach to generating potentially survivable LR adver-
sarial images. As shown in Figure 3 (b), black-box ad-
versarial perturbations are learned directly on the LR
user images using transferable learning techniques. Such
an approach is useful when end users only have access
to LR images or do not have sufficient training data or
computational resources 2 needed to learn adversarial
images on HR images. However, it is not clear at the
outset whether such perturbations can survive the pro-
cessing by SRCNNs.

5.2 Survivability of Adversarial Images
Through SRCNNs

Intuitively, super-resolving the LR adversarial images
created by down-scaling HR adversarial images, as pro-
posed in the preceding section, will lead to HR images
that are very similar to the original HR adversarial im-
ages. However, perceptual similarity doesn’t necessarily
imply that the adversarial nature and CNN fooling ef-
ficacy of the image are preserved. In order to assess the
effectiveness of proposed approaches for generating ad-

2 Learning adversarial images on LR images is computationally
cheaper.

versarial images that can survive SRCNNs We define
the notion of survivability as follows:

Definition 5.1 (Survivability). An LR adversarial im-
age is considered to have survived through an SRCNN
if the corresponding super-resolved HR image (i) is able
to fool the target CNN, and (ii) perceptually preserves
the true class 3, i.e., visually similar.

Note that the second requirement of perceptually pre-
serving the true class by the super-resolved image is a
strong requirement and is not necessary for thwarting
unauthorized classification by SRCNN-CNN pipelines.
However, meeting this requirement demonstrates that
adversarial images can truly survive processing by SR-
CNNs and is of independent interest. Our evaluation
will demonstrate that imperceptible noise learned over
just CNN(s) can indeed survive SRCNNs, i.e., retains
its adversarial nature while still preserving recognizabil-
ity (perceptually belongs to true class) for humans.

Fig. 3. Proposed approaches for generating LR adversarial exam-
ples for unknown SRCNNs using only a local CNN(s). a) Adver-
sarial examples are learnt over clean HR images and down-scaled
to produce LR adversarial examples. b) Adversarial examples are
directly learnt on clean LR images. Adversarial learning can be
either black-box (unknown target CNN) or white-box (known tar-
get CNN). No knowledge is assumed for the SRCNN (unknown).

5.3 Metrics

In this section, we introduce the metrics used for eval-
uating the survivability of adversarial images through
SRCNNs. As defined, survivability has two properties.
To assess the first property, namely, the ability to fool
target CNNs, we measure transferability (see below).

3 The adversarial image belongs to the class of original (clean)
HR image perceptually
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To evaluate the second property, perceptually preserv-
ing the true-class, we use three image similarity metrics
of (i) Peak Signal to Noise Ratio (PSNR), (ii) Structural
Similarity Index(SSIM) [21], and (iii) Perceptual Sim-
ilarity (PerSim) [63]. PSNR estimates the pixel-value
similarity between two images, while the other two met-
rics focus on the visual similarity between images.
Transferability (TR): To measure the transferability
of super-resolved HR images, we consider the misclassi-
fication rate which is defined as follows:

TR = 1
N

N∑
i=1

I(argmaxF (hrk(I ′i)) 6= Y ∗I′
i
)

where I ′i, hrk(I ′i), and Y ∗I′
i
are the ith perturbed im-

age, the super-resolved images by kth super resolution
convolutional neural network (SRCNN) and the true la-
bel of the perturbed image, respectively. F (x) returns
the probability vector generated by a CNN classifier for
image x and I(t) is the identity function which returns
one when t is true, and zero otherwise. In other words,
TR measures the misclassification rate of the CNN on
super-resolved adversarial images.
Peak signal to noise ratio (PSNR): This metric
uses the normalized Minimum Square Error (MSE) be-
tween two images. Unlike MSE that depends on the
scale of pixels’ value of images, PSNR considers the ra-
tio of the maximum possible value for a pixel to the
difference between pixels as described below:

PSNR = 10 log10
R2

MSE
, MSE = 1

M ×N
‖I1 − I2‖22

where I1 and I2 are the images being compared, M
and N are the dimensions (number of pixel rows and
columns) of the image, and R is the maximum pixel
value. For two identical images MSE converges to 0 and
therefore PSNR value converges to infinity. In other
words, if two image pixel values are very close, their
PSNR would have a very large value.
Structural similarity index (SSIM) [21]: Unlike
PSNR, SSIM is based on visible structures in the im-
age, since human visual perception depends on struc-
tural information existing in an image and not just on
pixel values. Therefore, this metric focuses on the local
pattern of pixel intensities that have been normalized for
luminance and contrast. SSIM metric returns a value in
the range of [0, 1] where two identical images will return
an SSIM value of 1. Increasing the difference between
the two images will cause their SSIM similarity value to
decrease and approach zero.

Perceptual similarity (PerSim) [63]: Both PSNR
and SSIM are susceptible to noise and even a small
amount of noise could cause a significant degradation
on these metrics, while the images would not change
perceptually. To address this problem, the perceptual
similarity was proposed in [63], which measures the sim-
ilarity not in the image space (similarity between pixel
values), but rather in a feature space. Feature space is
the output of intermediate layers of a CNN. This met-
ric considers two images similar if for a given CNN they
have similar values in feature space. This metric returns
a value in the range of [0, 1]. For two identical images,
the PerSim value will be zero. We use all three metrics
as they are all commonly used by designers to assess
SRCNN performance, and since no one metric is per-
fect.

6 Evaluation
In this section, we evaluate the survivability of adversar-
ial images through SRCNNs. We consider both white-
box and black-box adversarial learning settings, and
both methods of generating LR adversarial images de-
scribed in Section 5.1 (see Figure 3). We describe our
evaluation setup next including SRCNNs, CNN classi-
fiers, datasets, and the adversarial learning approaches
deployed.

6.1 Evaluation Setup

SRCNNs: We selected four state-of-the-art super-
resolution convolutional neural networks, namely: (i)
RCAN [22, 64], (ii) CAR [49] which obtained the best
PSNR, (iii) SPSR [27] whose objective function mini-
mizes PerSim, and (iv) DeepFace super-resolution [26]
which is trained specifically for faces. SPSR is trained
for a scale of 4 4 and Deep Face SRCNN is trained for
scales of 4 and 8. Both CAR and RCAN support scales
of 2, 4 and 8.
Datasets: The different SRCNNs we selected impose
different restrictions on the datasets that can be used.
For example, DeepFace super-resolution can only work
with CelebA for scaling up by a factor of 8. Keeping such
constraints in mind we chose three different datasets:
(i) Facescrub dataset [33], (ii) a CelebA dataset [25],

4 An SRCNN with a scale of 4 generates a HR image with
resolution of 4M×4N from a LR image with resolution ofM×N .
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Fig. 4. Two approaches for selecting a reference image for similar-
ity metrics: (i) original HR adversarial image, and (ii) perturbed
super-resolved (from clean LR image) HR image.

and (iii) ImageNet dataset [43]. These datasets are
well-known and commonly used for image classification
tasks. However, they are very large datasets (e.g., Ima-
geNet dataset contains more than 1000 classes and 1M
images). So we sampled a set of 1000 images at random
from each of the three datasets to train local CNNs used
for learning adversarial images. For ImageNet dataset
sampled from 10 classes which are known to be less sen-
sitive to noise and consequently more difficult to mis-
classify.
Classifiers: To measure the transferability of the adver-
sarial noise and perturbation, we consider a state-of-the-
art online face recognition model for celebrities called
clarifai.com and pre-trained ImageNet [43] classifiers
ResNet101 and ResNet152 with accuracy of 75.6% and
80.8%, respectively. ResNet101 and ResNet152 are the
state-of-the-art CNN structures for large datasets [15].

To train LR adversarial images using small local
CNNs, we used VGG-11 (a CNN with 11 layers) [48]
on the 10 easiest classes of ImageNet dataset. VGG-11
could obtain high accuracy on CIFAR-10 dataset with
10 classes and it is suitable for small datasets [48]. We
used 10 classes as it has been demonstrated that using
small CNNs with 10 classes is sufficient to learn trans-
ferable perturbations [40]. We selected the 10 easiest
classes since samples from these classes are less sensi-
tive to noise and thus difficult to misclassify. We also
used pre-trained robust CNNs from the robustness pack-
age of Python [10] trained for the large dataset of Ima-
geNet [43].
Adversarial learning approaches: To train adver-
sarial images with imperceptible noise we use Fast Gra-
dient Sign (FGS) attack [13] when target CNN is known
(white-box attacks). This attack is computationally in-
expensive and fast. In addition, we evaluate the sur-
vivability of transferable (black-box attacks) adversarial
perturbation trained using universal ensemble perturba-

tion [40] and universal perturbation [30] methods (see
Section A in Appendix for more details).
Evaluating survivability: We assess the ability of
survivable adversarial images to fool the target classi-
fication CNN using the transferability metric. Also, we
assess if the true class is preserved perceptually using
the image similarity metrics discussed in Section 5.3. In
other words, we assess whether super-resolved images
are perceptually in the same class as their corresponding
HR clean images. However, to be able to interpret the
image similarity results, we need to establish a baseline
and account for the noise introduced by the SRCNNs as
discussed next.
Baseline: Similarity of original HR images to super-
resolved clean LR images. First, as a baseline we evalu-
ate the performance of SRCNNs in reconstructing orig-
inal HR images from their clean LR counterparts i.e.,
how similar super-resolved LR images are to their cor-
responding original HR images without any adversarial
perturbations or noise. To this end, we measure the sim-
ilarity between original HR images and super-resolved
clean LR images (Sim(I, hrk(T (I)) using the metrics dis-
cussed in Section 5.3.
Visual similarity: Similarity between original HR adver-
sarial images and super-resolved LR adversarial images.
We expect a super-resolved LR adversarial image to be
similar to the original HR adversarial counterpart and
belong to the true-class of HR clean image perceptually.
To this end, we measure the similarity between super-
resolved LR adversarial image and its original HR ad-
versarial counterpart (Sim(I + δ, hrk(T (I + δ))), using
image similarity metrics discussed in Section 5.3.
Noise adjusted visual similarity: Similarity between di-
rectly perturbed HR images super-resolved from clean
LR images, and super-resolved LR adversarial images.
SRCNNs are not able to reconstruct the exact origi-
nal HR images of their LR inputs, and add a small
amount of noise. As shown in Figure 4, to adjust for
any degradation in the visual similarity introduced by
the SRCNNs, we measure the similarity between di-
rectly perturbed super-resolved (from clean LR image)
HR images and super-resolved LR adversarial images
(Sim(hrk(T (I)) + δ, hrk(T (I + δ))). In our evaluation,
we show that this latter measurement gives a better
estimation of adversarial images’ survivability. Here,
Sim, I, hrk, T and δ denote a similarity metric function
(PSNR, SSIM or PerSim), an original HR image, the
krh SRCNN function, a down-scaling function, and an
adversarial noise/perturbation respectively.
Evaluation scenarios: As shown in Table 1, we con-
sider 3 different scenarios: i) down-scaling of HR ad-
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Learning LR
Adversarial Images

Down-Scaling HR
Adversarial Images

Black
Box

FGS (Section 6.3)
UP (Section 6.3)

UEP (Section 6.2) &
FGS (Section 6.2)

White
Box NA FGS (Section 6.2)

Table 1. Our 3 different evaluation scenarios. We consider two
attack models of white-box and black-box with our two different
approaches of generating LR adversarial images.

versarial images in white-box setting, ii) down-scaling
of HR adversarial images in black-box setting, and iii)
learning LR adversarial images on small CNNs in black-
box setting. We do not consider a white-box setting for
directly learning LR adversarial images as it is not ap-
plicable given the difference in size of the target and the
local CNNs.

For learning HR adversarial images in a white-box
attack, we use ImageNet dataset [43] with 1000 classes
and two classifiers, ResNet101 and ResNet152, as lo-
cal and target CNN classifiers. Also, we use the FGS
attack approach to train HR adversarial images on the
local CNN and test the super-resolved versions of down-
scaled HR adversarial images on the target CNN (same
as local in white-box setting and different in black-box
setting).

We also use down-scaled UEP adversarial perturba-
tion trained on 3 local CNNs [40] and test the super-
resolved images (through different SRCNNs) on face
recognition model of clarifai.com (black-box setting).
We used FaceSrcub dataset for this scenario, since UEP
is designed for image privacy against automated face
recognition [40]. However, for the super-resolution with
the scale of 8 we used CelebA dataset since the Deep-
Face SRCNN is trained on this dataset and can work
well on this dataset for that scale. Evaluation of the
down-scaled HR adversarial approach is discussed in
Section 6.2, except for UEP evaluation with the scale
8 which is included in the Appendix B.

For directly learning LR adversarial images on a
small local CNN, we use VGG-11 CNN with 10 classes
and train adversarial images with imperceptible noise
using FGS attack [13], and create transferable per-
turbations using the universal perturbation(UP) at-
tack [30]. We use ImageNet dataset for both the at-
tack approaches and pre-trained ImageNet CNNs as
unknown target CNNs. This evaluation scenario is dis-
cussed in Section 6.3. Finally, we evaluate the surviv-
ability of these adversarial approaches on robust CNNs
in Section 6.4.

6.2 Down-Scaled HR Adversarial Images

In this section, we evaluate the survivability of down-
scaled HR adversarial images generated using universal
ensemble perturbation (UEP) [40], designed for preserv-
ing image privacy (black-box setting), and Fast Gradi-
ent Sign [13], a fast and inexpensive adversarial attack
model which generates adversarial images with imper-
ceptible noise (both black-box and white-box).
Universal ensemble perturbation (UEP): To eval-
uate the survivability of UEP through SRCNNs, we
use Facescrub dataset, since this perturbation was de-
signed for image privacy and is learned on faces. We
use clarifai.com’s celebrity face recognition model as
the adversary’s CNN classifier since it provides large,
highly accurate models for different classification tasks
and the models and pre-processing steps are unknown.
clarifai.com’s models were previously used in the lit-
erature to evaluate the transferability of black-box ad-
versarial perturbations [24, 40].
Transferability: We use the 1000 sampled face images
from Facescrub dataset which are all recognizable by
clarifai.com and provided the down-scaled images
to SRCNNs. Table 2 presents the accuracy (= 100 −
Transferability for adversarials) of clarifai.com on
super-resolved images by SRCNNs for scales of 2 and
4. SRCNNs we used could not reconstruct classifiable
high resolution images for the larger scale 8 for this
dataset 5. As shown, 86.16% of the super-resolved (using
CAR (×4)) LR images are recognized by the celebrity
face recognition model of clarifai.com. However, clar-
ifai.com face recognition model could only recognize
about 33.05% of HR images super-resolved from clean
LR images using RCAN (×4). We then perturbed the
original HR images using UEP with β = 3 (as suggested
in [40]). To generate perturbed LR images, we down-
scaled the UEP perturbed HR images using block aver-
aging. We then used the SRCNNs to super-resolve the
resulting perturbed LR images. As shown in Table 2, at
least 98%(< 100%− 1.79%) of super-resolved UEP per-
turbed LR images can fool the face recognition model of
clarifai.com successfully across all the SRCNNs con-
sidered.
Baseline: As discussed in Section 6.1, to baseline the
performance of SRCNNs on generating HR resolution
images, we measure the similarity between the super-
resolved images and original HR clean images. We use

5 SRCNNs usually do not work well at larger scales for images
that they have not seen during training.
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Fig. 5. The density distributions for a similarity metric to compare (i) Baseline: the super-resolved clean LR images and original HR
images, (ii) Visual Similarity: super-resolved UEP perturbed LR images and original HR UEP perturbed images, and (iii) Noise Ad-
justed Visual Similarity: super-resolved UEP perturbed LR images and super-resolved clean LR images perturbed with UEP.

Accuracy on Super-resolved
HR Images from clean LR images

Accuracy on Super-resolved HR Images
from UEP perturbed LR Images

SRCNNs (scale) Face Detection Face Recognition Face Detection Face Recognition
CAR (x2) 100% 87.44% 99.8% 1.72%
CAR (x4) 100% 86.16% 99.75% 0.5%

RCAN (x2) 99.26% 71.74% 99.8% 1.61%
RCAN (x4) 88.73% 33.05% 100% 0.4%
SPSR (x4) 100% 69.25% 99.65% 0.129%

DeepFace SRCNN (x4) 100% 71.82% 99.61% 1.66%

Table 2. Accuracy of clarifai.com celebrity face detection and recognition models for super-resolved clean LR images (Baseline) and
super-resolved UEP perturbed LR images.

the 3 similarity metrics of PSNR, SSIM and PerSim
introduced in Section 5.3. As shown in Figure 5, we
measure the density for each similarity metric. The first
row in Figure 5 shows the similarity between an orig-
inal HR image and the super-resolved HR image cre-
ated from the clean LR counterpart. CAR (×2), Deep
Face SRCNN and CAR (×4) SRCNNs reconstruct bet-
ter than the others i.e., the super-resolved images are
more similar to their original counterparts. These re-
sults are compatible with the face recognition model’s
accuracy presented in Table 2.

As we expect, CAR (×2) which obtained highest
accuracy on clarifai.com model has larger PSNR and

SSIM values and smaller values for PerSim metric. For
the scale of 8, none of CAR, RCAN and Deep Face SR-
CNNs could generate recognizable images for the face
recognition model on FaceScrub dataset. Therefore, we
use CelebA dataset with Deep Face SRCNN for evalu-
ating the survivability of UEP for the larger scale of 8,
as discussed later in the section.
Visual similarity: To assess how well survivable adver-
sarial images preserve the true-class perceptually, we
compare the similarity of the super-resolved LR per-
turbed images with directly perturbed HR images us-
ing metrics of PSNR, SSIM and PerSim. As shown in
Figure 5, CAR (×2) and RCAN (×2) reconstruct origi-
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nal adversarial images better. For example, the average
value of PerSim between super-resolved LR UEP per-
turbed images by CAR (×2) and the original HR ad-
versarial images (perturbed with UEP) is less than 0.15
for more than 75% of them (see graph in second row
and the last column).
Noise adjusted visual similarity: recall that SRCNNs
add noise and cannot reconstruct original HR images
exactly. This noise leads similarity metric values to de-
grade. To adjust for any degradation in the visual sim-
ilarity introduced by the SRCNN noise we consider a
directly perturbed super-resolved HR image generated
from a clean LR image as reference image for the vi-
sual similarity evaluation (see Figure 4). As shown in
the last row of Figure 5, when using this noise adjusted
measurement, we can see that the similarity metrics for
survivable adversarial images have similar distributions
as the baseline case. Note that since both reference im-
ages and super-resolved images have SRCNNs’ noise,
the similarity metrics have better values when compared
to the case in which original HR adversarial images are
used as reference images.

In summary, UEP survives through the SRCNN and
the super-resolved images are not classifiable for the
clarifai.com face recognition model, however, given
the scaling level the super-resolved perturbed images are
not perceptually similar to the original (See Figure 8 in
Appendix). While without UEP, generated high resolu-
tion images are well-recognizable both for humans and
automated classifiers. Loss of visual similarity however
does not impact the privacy protections against SRC-
NNs provided by UEP as the super-resolved images are
not accessed by end-users.
Fast gradient sign: To generate HR adversarial im-
ages on ImageNet dataset, we first select 1000 images
classified correctly by the target CNN (ResNet101).
Among those, we select images whose super-resolved
HR images (from their LR counterpart) are classified
correctly as well. Our experiments show that the super-
resolved HR images by CAR (x2), RCAN (x2) and
CAR (x4) have 86%, 69.9% and 39% accuracy on the
ImageNet ResNet101 CNN classifier, respectively, and
SPSR (x4) and RCAN (x4) could not generate classi-
fiable images. We then learn adversarial examples (im-
perceptible noise) for these images against ResNet101
using Fast Gradient Sign method for different values of
step size (ε ∈ {0.001, 0.01, 0.02, 0.04, 0.05}).
Transferability: We measure transferability for both
white-box settings in which the both local and target
CNN are ImageNet classifier trained on ResNet101 and
black-box setting in which the target CNN is ImageNet

classifier trained on ResNet152. We also consider two
cases (i) transferability of super-resolved LR adversarial
examples (real-setting in which users do not have access
to SRCNNs and can only perturb their LR image), and
(ii) transferability of directly perturbed super-resolved
LR clean images (idealized setting in which users can
perturb the output of the SRCNNs). As shown in Ta-
ble 3, for black-box setting the transferability is slightly
lower (i.e., values in column 3 are lower than values
in column 5 on average) as adversarial example gen-
eration methods add less adversarial noise at cost of
losing transferability. Also, the transferability of super-
resolved LR adversarial images (when SRCNNs are not
known) is actually better than the transferability of di-
rectly perturbed super-resolved LR clean images (i.e.,
values in column 3(5) are better than values in col-
umn 4(6)). In other words, it shows having access to
SRCNNs to directly perturb their output did not in-
crease transferability. Our results in Table 3 show that
the directly perturbed super-resolved images from clean
LR images have lower transferabilities. Note that super-
resolved images from LR images contain the SRCNNs’
noise which may mitigate the transferability of the ad-
versarial noise trained on clean HR images (i.e., SR-
CNN’s noise cancels out some part of adversarial noise).

Black-Box
(ResNet152)

White-Box
(ResNet101)

ε TRR

x TRI

x TRR

x TRI

x

C
A

R
(x

4)

0.01 29.2% 24.78 % 28.31% 19.76%
0.02 43.95% 26.55% 42.3% 26.54%
0.03 56.63% 28.02% 58.7% 28.61%
0.04 66.37 % 29.45% 69.32% 31.56%
0.05 75.51 % 31.27% 76.7% 37.46%

C
A

R
(x

2)

0.01 27.86% 16.9% 38.32% 23.96%
0.02 39.05 % 23.96% 52.43 % 38.81 %
0.03 50.85% 28.47% 59.97% 47.32%
0.04 57.29% 35.89 % 64.84% 52.92%
0.05 64.72% 41.24% 69.09% 57.42%

R
C

A
N

(x
2) 0.01 50.33% 48.82% 55.03% 55.87%

0.02 66.78 % 66.61% 68.79% 71.14%
0.03 57.05 % 56.71% 57.88% 62.08%
0.04 68.28 % 66.94% 70.80% 69.46%
0.05 77.68 % 77.18% 77.18% 77.34%

Table 3. Transferability of super-resolved LR adversarial examples
(TRR) and transferability of directly perturbed super-resolved LR
clean images(TRI) for both black-box (ResNet152) and white-
box setting (ResNet101)

As before, to evaluate perceptual preservation of
the true class, we use similarity metrics using (i) the
directly perturbed original HR adversarial examples
(Visual Similarity), and (ii) directly perturbed images
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Fig. 6. The first row shows the LR image. The second row shows the original HR image. The third row shows the super-resolved HR
image using CAR(×4). The first column of each row shows the clean image and the rest of the columns show the adversarial examples
generated for benign HR images with FGS attack and different ε values.

super-resolved from clean LR images (Noise Adjusted
Visual Similarity) as reference images.
Visual similarity: As shown in Table 4, for the small
values of ε, the adversarial noise does not transfer well.
However, the larger ε values have higher transferability
(misclassification rate) but lead to more distortion in
super-resolved images even though the adversarial noise
in low resolution images is imperceptible (see Figure 6).
Consequently, larger values of ε lead the similarity met-
rics to degrade. For example, the LR adversarial images
generated for ε = 0.01 and ε = 0.03 (the first image row
(LR) in Figure 6) are perceptually similar but the super-
resolved images (the third image row (Super-resolved)
in Figure 6) are different. As shown in Table 4, the Per-
Sim values of CAR (x4) for ε = 0.01 and ε = 0.03 are
0.276 and 0.446 on average.
Noise adjusted visual similarity: As expected, since both
reference images and super-resolved LR adversarial ex-
amples (hr(T (I + δ))) have SRCNN’s noise, similarity
metric values for PSNR and SSIM are higher and Per-
Sim value is lower compared to the case above. For ex-
ample, for ε = 0.03 and CAR (x4), the average of PerSim
reduces to 0.273 from 0.446.

6.3 Directly Learning LR Adversarial
Images

As discussed in Section 5, we aim to evaluate if one can
train a small CNN on low-resolution images to directly
learn LR adversarial images which can survive through
SRCNNs. To this end, we train a small CNN (VGG-
11) on low resolution images of the 10 easiest classes of
ImageNet. This local CNN with a few classes (small) is
used by the end-user to learn adversarials directly on
LR images. These LR adversarial images are then eval-
uated against the adversary’s pipeline for effectiveness.
We assume that the adversary uses publicly available
images of the end-user to train their CNN and hence
we allow for overlap in the training data for common
classes but the adversary is assumed to have a much
larger CNN. To learn a small CNN, we reduce the res-
olution of the images to 56 × 56 and use CAR (x4) as
a target SRCNN. Here, we assume that an adversary
has a large ImageNet classifier (the ResNet152 classi-
fier learned on ImageNet dataset one with 1000 classes
with input size of 224x224) and that she wants to clas-
sify the users’ images. We use images from 10 easiest
classes. Here we assume that the user uses her publicly
shared images to train her local CNN. In other words,
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Visual Similarity: Original HR adversarial
Image as Reference

Noise Adjusted Visual Similarity: Directly Perturbed
Super-Resolved Clean LR as Reference

FGS(ε)
PSNR

(avg (std))
x SSIM

(avg (std))
x PerSim

(avg (std))
y PSNR

(avg (std))
x SSIM

(avg (std))
x PerSim

(avg (std))
y

C
A

R
(x

2)

0.01 26.65 (2.97) 0.869 (0.034) 0.1 (0.024) 33.07 (2.09) 0.946 (SSIM) 0.027 (0.018)
0.02 25.84 (2.34) 0.82 (0.03) 0.12 (0.024) 28.92 (1.46) 0.87 (0.04) 0.055 (0.024)
0.03 24.77 (1.83) 0.78 (0.034) 0.143 (0.029) 26.48 (1.16) 0.82 (0.047) 0.09 (0.035)
0.04 23.64 (1.45) 0.742 (0.038) 0.167 (0.034) 24.65 (0.98) 0.775 (0.05) 0.124 (0.042)
0.05 22.53 (1.166) 0.712 (0.04) 0.189 (0.039) 23.16 (0.84) 0.7396 (0.05) 0.156 (0.047)

C
A

R
(x

4)

0.001 20.22 (3.23) 0.677 (0.105) 0.231 (0.059) 47.9 (2.76) 0.999 (0.0004) 0.0008 (0.0005)
0.01 20.07 (3.12) 0.638 ( 0.086) 0.276 (0.056) 29.41 (2.23) 0.91 (0.023) 0.067 (0.041)
0.02 19.62 (2.77) 0.564 (0.056) 0.366 (0.079) 325.22 (1.74) 0.785 (0.058) 0.1762 (0.089)
0.03 19.02 (2.36) 0.50 (0.047) 0.446 (0.096) 22.88 (1.39) 0.688 (0.079) 0.273 (0.114)
0.04 18.36 (1.98) 0.457 (0.047) 0.51 (0.104) 21.18 (1.146) 0.616 (0.088) 0.353 (0.12)
0.05 17.69 (1.66) 0.422 (0.048) 0.562 (0.11) 19.83 (0.97) 0.56 (0.09) 0.418 (,0.132)

R
C

A
N

(x
2)

0.01 18.73 (4.41) 0.61 (0.153) 0.356 (0.186) 24.44 ( 8.82) 0.85 (0.159) 0.072 (0.077)
0.02 16.58 (4.22) 0.552 (0.164) 0.446 (0.2) 19.79 (6.47) 0.778 (0.15) 0.0958 (0.066)
0.03 18.68 (4.69) 0.572 (0.164) 0.333 (0.2) 22.69 (6.3) 0.852 (0.094) 0.092 (0.07)
0.04 17.63 (4.3) 0.55 ( 0.155) 0.35 (0.17) 19.1 (5.78) 0.7 (0.17) 0.147 (,0.09)
0.05 15.39 (3.41) 0.47 (0.134) 0.41 (0.173) 16.64 (4.68) 0.649 (0.16) 0.183 (0.086)

Table 4. Similarity metrics for evaluating the survivability of adversarial examples through SRCNNs. We measure PSNR, SSIM and
perceptual similarity for super-resolved LR adversarial examples for two different cases of (i) original adversarial examples as reference
images, and (ii) directly perturbed super-resolved clean LR images as reference images.
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Fig. 7. The first column shows a clean low resolution image and its high resolution images by CAR (x4) and the rest columns show the
adversarial examples generated on low resolution images and their high resolution images by CAR (x4). As shown by increasing the ε
values leads the adversarial noise to increase and the quality of generated high resolution images to decrease.

Super-Resolved LR Adversarial Image &
Super-Resolved Clean LR Image

Clean LR Image &
Adversarial LR Image

ε TR
PSNR

(avg (std))
x SSIM

(avg (std))
x PerSim

(avg (std))
y PSNR

(avg (std))
x SSIM

(avg (std))
x PerSim

(avg (std))
y

0.01 88.8% 30.34(1.37) 0.86(0.04) 0.145 (0.079) 40.07(0.21) 0.988 (0.013) 0.003 (0.006)
0.15 90% 27.24 (1.05) 0.744 (0.07) 0.24 (0.10) 34.07 (0.23) 0.96 (0.04) 0.016 (0.03)
0.02 92.8% 25.02 (0.85) 0.64 (0.1) 0.32 (0.11) 34.07 (0.23) 0.96 (0.04) 0.016 (0.03)
0.03 95.8% 21.83 (0.67) 0.51 (0.11) 0.42 (0.11) 30.57 (0.25) 0.92 (0.0.7) 0.039 (0.05)
0.04 99.4% 19.57 (0.63) 0.413 (0.11) 0.48 (0.1) 28.09 (0.26) 0.88 (0.09) 0.069 (0.08)
0.05 99.7% 17.85(0.65) 0.35( 0.1) 0.52 (0.09) 26.18 (0.28) 0.84 (0.1) 0.10 (0.1)

Table 5. Evaluating the survivability of black-box FGS attacks learned on low resolution images using a VGG-11 CNN with 10 classes.
CAR (x4) SRCNN is used to scale up LR adversarial images and ResNet101 used for measuring the transferability. The first column
shows the ε value for FGS attack. The second column shows transferability of high resolution images generated from low resolution
adversarial examples. We measure similarity between the HR generated from clean LR image and the generated HR image from its LR
resolution adversarial example as well as between two clean perturbed LR images.
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the adversary has used the same images for the same
classes but the user does not have access to any im-
ages from other classes. We select 300 LR images for
which the target ImageNet classifier (ResNet101) clas-
sifies super-resolved images using CAR (×4) correctly.
Then, we learn LR adversarial images using FGS and
universal perturbation methods.
Fast gradient sign: To evaluate survivability of ad-
versarial images with imperceptible noise, we learn FGS
noise for different ε ∈ ( 0.01, 0.015, 0.02, 0.03, 0.04, 0.05)
values on those LR images. To measure the survivability,
we evaluate the misclassification rate on ImageNet clas-
sifiers (ResNet101, ResNet152) and measure similarity
between super-resolved clean LR images (as reference
images) and super-resolved LR adversarial examples. As
shown in Table 5, for even small values of ε(= 0.01),
the adversarial images learned on small CNN are trans-
ferred well through CAR (x4) and fooled the ResNet101
ImageNet classifier for > 88% of the time. Figure 7
shows that the super-resolved LR adversarial image for
ε = 0.01 has imperceptible noise. In Table 5, the super-
resolved LR adversarial example for ε = 0.01 has large
values for PNSR and SSIM metrics, and a low value
for PerSim metric which demonstrates that the super-
resolved LR adversarial images are perceptually close to
super-resolved HR images without noise/perturbation.
For larger values of ε, e.g., ε = 0.03, the PerSim value
when comparing clean and perturbed LR image is 0.039
on average, while the perceptual similarity between orig-
inal HR images and super-resolved LR adversarial im-
ages is 0.42 on average. Therefore, while increasing the
value of ε leads to super-resolved LR adversarial im-
ages to be unclassifiable, they also have lower perceptual
quality. We measure the similarity between the clean
and perturbed LR images. The low values of PerSim
metric (in Table 5) demonstrate that the clean and per-
turbed LR images are perceptually similar and conse-
quently if clean LR images are recognizable for humans,
then their adversarial LR images are expected to be rec-
ognizable for humans (also seen from Figure 7).
Universal perturbation: To evaluate the survivabil-
ity of transferable LR adversarial images learned on
a small CNN, we use universal adversarial perturba-
tion. We train a universal perturbation with ε = 0.03
which was able to fool the small CNN for 80.1% of im-
ages. Then we use CAR (x4) to generate high-resolution
images for ImageNet classifiers (both ResNet101 and
ResNet152). The super-resolved LR adversarial im-
ages could fool ImageNet classifiers of ResNet101 and
ResNet152 at least 92.4% and 91.8% of the times, respec-
tively. Since we learn an adversarial perturbation for

LR images, we do not have original HR adversarial im-
ages for comparison. Hence, we use super-resolved (from
clean LR images) HR images as reference images. The
average (std) of PSNR, SSIM and PerSim metric values
are 31.69(1.74), 0.915(0.19) and 0.06(0.04), respectively.
The high values of PSNR and SSIM similarity met-
rics and low value for PerSim indicate that the super-
resolved LR perturbed images will be perceptually rec-
ognizable. Also, the average (std) of PSNR, SSIM and
PerSim metric values between LR adversarial images
and LR clean images are 43.48(0.238), 0.995(0.005) and
0.0005(0.001), respectively. This indicates that LR ad-
versarial images are perceptually similar to clean LR
images which is more critical as the end-users only in-
teract with LR images in our setting.

6.4 Impact of Defense Knowledge

An adversary with knowledge of the users’ defense,
may use i) robust CNNs and ii) filtering techniques to
counter users’ defense. In this section, we show that the
adversarial noise trained to fool robust CNNs can sur-
vive well through SRCNNs. We also show the impact of
filtering on the defense.
Robust CNNs: To evaluate super-resolved adversarial
LR images against robust CNNs, we use the pre-trained
networks from robustness packages from Python [10].
We select CNNs trained on ImageNet dataset [43] with
robustness L2 = 3.0 and L∞ = 8 as our local and target
CNNs, respectively 6. Note that robust training against
adversarials causes the accuracy of the CNN classifiers
on clean data to drop. For example, our ImageNet CNN
without any robustness can achieve 76.13% accuracy
while L2 = 3 and Linf = 8 robustness caused the ac-
curacy to drop to 57.90% and 47.91%, respectively. We
train adversarial images on a local robust CNN, since
the HR adversarial images trained on naive CNNs with
a simple attack like FGS, cannot fool robust CNNs. To
train HR adversarial examples, we select 1000 images at
random such that both original HR and the correspond-
ing super-resolved LR images are classified correctly by
robust CNNs. To learn LR adversarial images, we learn
untargeted adversarial HR images on the CNN with the
robustness of L2 = 3 by setting the attack’s parameters
of ε, step size, and the number of iterations to {3, 6}, 0.5

6 The pre-trained networks and their specifications are available
at https://github.com/MadryLab/robustness

https://github.com/MadryLab/robustness
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ε SRCNN White-box Black-box
Original HR
Advesarial

Super-resolved
Adversarial LR

Original HR
Advesarial

Super-resolved
Adversarial LR

3
CAR(x2) 33.5% 31.4% 12.7% 27.4%
CAR(x4) 33.5% 27.6% 12.1% 22.3%

6
CAR(x2) 71.5% 71.6% 42.8% 47.7%
CAR(x4) 71.5% 63.6% 45.4% 52.2%

Table 6. Transferability of adversarial examples on robust CNNs. The local CNN (white-box) has the robustness of L2 = 3.0 and the
target CNN (Black-box) attack has the robustness of L∞ = 8. The attacker’s lower values of ε cause the adversarial examples to have
lower transferability. SRCNNs can blow up the adversarial noise in the images and increase the transferability.

and 500, respectively. We use CAR (x2) and CAR (x4)
to generate HR images from LR images.
White-box attacks: We first evaluate the adversarial ex-
amples trained on the CNN with robustness L2 = 3.0 on
itself. Only 33.5% of adversarial examples could cause
the robust CNNs to misclassify them. As shown in
Table 6, using a higher value of ε causes the adver-
sarial to fool CNNs more successfully. For example,
ε = 6.0 causes the CNN to misclassify 71.5% of the
generated adversarial examples. Note that increasing ε
value causes the amount of perturbation added to im-
ages to increase. For example, PSNR similarity between
clean HR images and original HR adversarial images for
ε = 3 and ε = 6 are 42.06 and 36.169 on average, respec-
tively. We trained the adversarial noise on HR images
(224 × 224). After down-scaling HR adversarial images
to resolutions of 112×122 and 56×56, we use SRCNNs of
CAR (x2) and CAR (x4) to super-resolve these images.
Our empirical study shows that the transferability of
the adversarial images supper-resolved by CAR (x2) and
CAR (x4) only drops from 33.5% to 31.4% and 27.6% re-
spectively for ε = 3 and from 71.5% to 71.6% and 63.6%
respectively for ε = 6.
Black-box attacks: To assess the survivability of adver-
sarial examples for black-box attacks, we assess the
transferability of adversarial examples trained on the
CNN with robustness L2 = 3.0 on the CNN with the
robustness of Linf = 8 (target robust CNN). As shown
in Table 6, the original HR resolution images have low
transferability. While SRCNNs can blow up the adver-
sarial noise in the images which leads the transferability
to improve. Also, using higher values of ε could improve
the transferability of the super-resolved adversarial ex-
amples at the cost of increasing the adversarial noise.
Filtering: Filtering techniques were shown to reduce
the impact of adversarial image perturbations and in-
crease the classification accuracy [59]. Therefore, we ap-
plied those filtering techniques on super-resolved im-
ages before passing them to the classifiers to evaluate
whether such filters can effectively thwart the impact of

our perturbations. To this end, we studied the impact
of applying average2D, blur, median blur, and bilateral
filters to the output of SRCNNs. Our experiments show
that for larger values of ε, median blur and bilateral fil-
ters may decrease the transferability but only insignif-
icantly. For example, for ε = 6 the bilateral filter (me-
dian blur) causes the transferability of CAR (x2) and
CAR (x4) to drop to 41.8% (44%) and 43.9% (46.3%),
respectively. For ε = 3 none of these filtering techniques
could reduce the transferability 7.

7 Discussion
Unauthorized image classification is a serious privacy
threat that is exacerbated by the advent of SRCNNs.
Adversarial perturbation is being proposed as a way to
address privacy concerns with scalable automated CNN-
based face recognition [4, 11, 19, 40]. In this work, we
considered adversarial learning as a potential defense
against unauthorized image classification pipelines that
use both an SRCNN and a CNN.

7.1 Findings and Implications

Adversarial images against SRCNNs are indeed
free: To the best of our knowledge, this is the first
work to investigate the effectiveness of adversarial im-
ages learned using only CNN classifiers in fooling SR-
CNNs. SRCNNs are optimized to return the original
HR of a given LR. Therefore, we expect that super-
resolved images from LR adversarial images are close
to their true corresponding HR images i.e., the original
HR adversarial examples. Our empirical study shows

7 Our code is available at https://github.com/rajabia/
Adversarial-Images-Against-Super-Resolution-Convolutional-
Neural-Networks-SRCNNs-for-Free

https://github.com/rajabia/Adversarial-Images-Against-Super-Resolution-Convolutional-Neural-Networks-SRCNNs-for-Free
https://github.com/rajabia/Adversarial-Images-Against-Super-Resolution-Convolutional-Neural-Networks-SRCNNs-for-Free
https://github.com/rajabia/Adversarial-Images-Against-Super-Resolution-Convolutional-Neural-Networks-SRCNNs-for-Free
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that down-scaled HR adversarial images carry adver-
sarial noise which leads SRCNNs to generate adversarial
images, and simply learning adversarial images against
CNNs is sufficient to effectively counter unauthorized
classification of images by ML pipelines with SRCNNs
without requiring any knowledge of such SRCNNs.
Both down-scaling perturbed HR images and di-
rectly perturbing LR images are effective: We in-
vestigated two approaches for creating LR adversarial
images to counter SRCNNs: (i) down-scaling HR adver-
sarial images, and (ii) directly learning LR adversarial
images. Our findings show that regardless of the ap-
proach used for generating the LR adversarial images,
these adversarial images can survive through SRCNNs
and fool the target CNN effectively.
Black-box learning is equally effective: While
white-box adversarial learning was found to exhibit
more success rate on the known target CNNs with less
adversarial noise, black-box adversarial learning was
equally effective on unknown CNNs when learning ad-
versarial perturbations. This shows it is possible to de-
fend against adversary pipelines without any detailed
knowledge of either the SRCNN or the CNN used.
SRCNNs might even make adversarial learning
based defense even more practical:We showed that
users only need a small local CNN (10 classes vs. 1000
classes for the target CNN) to learn LR adversarials and
do not need large training datasets. Using a small CNN
to learn adversarial images is computationally inexpen-
sive and consequently makes adversarial-based image
privacy more accessible than previously thought.
Practical viability: Despite CNNs’ proven vulnera-
bility to adversarial images, it is a long way before
adversarial-based image privacy schemes can be reli-
ably used for individual privacy. The development of
robust CNNs with the ability of classifying adversar-
ial images correctly is a potential threat, and devel-
oping such CNNs is currently a very active research
topic [45]. While, our experiments show that learn-
ing transferable adversarial examples with the ability of
fooling current state-of-the-art robust CNNs is possible,
their effectiveness does reduce and fooling future robust
CNNs is an open question. Also, while our experiments
demonstrate current filtering methods cannot counter
users’ defense significantly newer filtering techniques
may emerge. Given the lack of forward guarantees, un-
like with cryptographic techniques, perturbation-based
defenses may be more suitable for blunting the effective-
ness of unauthorized classification (e.g., across a popu-
lation) rather than for individual privacy protections.

7.2 Open Questions

Better understanding survivability: This is the
first work to study the impact of super-resolution on
adversarial perturbations. While the first approach for
generating survivable adversarials (i.e., down-scaling
perturbed HR images) is well supported by intuition,
the second approach (i.e., directly learning LR adversar-
ials) was exploratory and understanding the reasoning
for its effectiveness remains an interesting open problem.
Emerging work on scale-invariance of adversarials [23]
may provide a good starting point.
Survivability of adversarial images through ro-
bust SRCNNs: Several methods have proposed to im-
prove performance of SRCNNs on generating HR im-
ages from poor quality LR images (e.g., blurred, noisy
images, etc.,) [47, 57] but they have not considered
LR adversarial images with imperceptible noise which
aim to degrade the quality of super-resolved HR im-
ages. It has been shown that learning CNN classifiers
on both clean and adversarial images can improve their
robustness to adversarial images [28, 37]. Even though
these approaches do not guarantee robustness against
all kinds of adversarial examples [45], it is worth inves-
tigating robust SRCNNs trained using enriched dataset
with adversarial images.
Survivability of other adversarial attack models:
In this paper, to evaluate the survivability of adversar-
ial images, we considered three different adversarial at-
tack models; (i) UEP, a transferable perturbation de-
signed for image for image privacy, iii) UP, a univer-
sal perturbation approach and (iii) Fast Gradient Sign
(FGS), a simple and fast adversarial images generation
model. Assessing the survivability of other attack mod-
els [3, 31, 56] is an open problem. For example, adaptive
adversarial learning is proposed to bypass the state-of-
the-art adversarial detection methods [56], and conse-
quently is a good candidate for evaluation against ad-
versary countermeasures. Investigating the survivability
of such adversarial perturbation can be an interesting
future research direction.
Evaluating other down-scaling approaches: Even
when using the same adversarial learning models, it is
not clear how effective they would be if other "down-
scaling" methods (i.e., other than block-averaging) are
used. That is, further evaluating the impact of combin-
ing different adversarial learning methods with different
down-scaling approaches remains an open problem.
Impact of the accuracy of SRCNNs: Our approach
relies on the fact that SRCNNs try to super-resolve as
close to the original image as possible. How much impact
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does the accuracy of the SRCNNs have on the success
of the proposed approaches? Clearly reducing the accu-
racy of SRCNNs will impact accuracy of the adversary’s
pipeline, but is there a sweet spot for the adversary?
Survivability of random noise: Adversarial noise is
trained to fool CNNs with a minimum amount of noise
without provable privacy guarantees. Unlike this adver-
sarial noise, using Laplacian noise may provide a way to
argue for formal differential privacy guarantees for im-
ages. Therefore, an interesting direction is to investigate
whether such perturbations can survive SRCNNs.

8 Related Work
Image privacy: Solutions for image privacy like blur-
ring, mosaicing or redaction have been leveraged for a
long time (e.g., [20, 62, 65]). These approaches however
are typically not reversible and therefore they are not
practical in real-life applications [17]. To address this is-
sue, two reversible schemes are proposed which thwart
classifiers using false-color [8, 67]. Unfortunately these
schemes do not provide recognizable images. Crypto-
graphic image privacy techniques have been proposed
(e.g., [38, 55]), but they obfuscate the entire image and
as a consequence introduce usability barriers. Recently,
reversible image obfuscation approaches like thumbnail-
preserving encryption (TPE) [29, 53, 58] which only leak
pixelated version of the images, since it was thought LR
images are not usable for classifiers. However, advent
of single image deep super-resolution neural networks
(SRCNNs) with their ability to generate high quality
HR images from LR images threaten the security (or us-
ability if the size of leaked thumbnail is reduced to com-
pensate) of such schemes. Recently, due to the demon-
strated vulnerability of CNN classifiers to adversarial
noise, adversarial-based image privacy schemes received
attention in the research community [4, 19, 40]. These
schemes can fool unknown CNNs and provide recogniz-
able images for end-users. It has been shown that such
perturbations can be reversible [40]. Therefore, here we
focus on adversarial-based image privacy methods.
Adversarial examples for CNNs: Adversarial per-
turbation techniques have succeeded in fooling convolu-
tional neural network classifiers [3, 13, 31] and due to
the transferability of adversarial noise to other CNNs,
their are getting for privacy applications e.g., image pri-
vacy [4, 11, 19, 40], membership privacy [32], etc. Re-
cently, it has been shown that adversarial attack models
can be extended for other types of convolutional neural

networks e.g., SRCNNs. Here, we briefly discuss adver-
sarial learning approaches proposed for SRCNNs. Re-
cently, in [6], an attack model has been proposed for
generating adversarial noise on low resolution images
to decrease the quality of HR images generated by SR-
CNNs. Similar to FGS attack for CNN classifiers, this
method tends to learn a minimum adversarial noise on
LR resolution image on SRCNNs in order to maximize
the difference between a generated high resolution im-
age and its original high resolution counterpart.

This method assumes that the target SRCNN is
known to users. Moreover, the generated HR images
from perturbed low resolution images are not necessar-
ily able to fool a CNN, since their goal is degradation of
super-resolved image’s quality (not fooling a CNN clas-
sifier). To address this problem, a joint optimization has
been proposed for learning adversarial noise on low res-
olution images in [61], such that it will mislead the well-
trained and known image caption system (which is com-
posed of a CNN-based encoder and an RNN-based de-
coder) to generate wrong captions for the super-resolved
high resolution images by a given SRCNN. This method
finds an optimum adversarial noise for fooling a known
image caption system in the adversary pipeline, which
makes it impractical for real-world applications.

9 Conclusion
In this paper, we hypothesized and empirically showed
that adversarial images learned on CNN classifiers can
lead super resolution convolutional neural networks to
generate adversarial high resolution images. We evalu-
ated the survivability of adversarial images, generated
using well-known adversarial learning methods in both
white-box and black-box settings, through state-of-the-
art SRCNNs. We showed that even for imperceptible
white-box noise, the quality of generated high resolu-
tion images by SRCNNs downgrades significantly, and
that one can learn adversarial examples effective against
SRCNNs using a small local CNN classifier trained on a
limited number of images. We also found that our pro-
posed approaches can be effectively used against robust
CNN targets by using local robust CNNs for learning
the adversarials. Our work shows that while SRCNNs
pose a serious privacy threat, perturbation-based de-
fenses developed against image classification CNNs may
be leveraged to counter this threat.
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A Adversarial Learning
Approaches

We used the following three adversarial learning meth-
ods:
Fast gradient sign (FGS) [13]: This method aims to min-
imize the maximum changes in each pixel for an untar-
geted attack. More precisely, it tends to minimize L∞.
Therefore, it uses the sign of gradient of loss function
as follows:

xnew = x+ ε× sign(∇J(F (x, θ), y∗)) (3)

Here, y∗ is the true label and ε is a small constant coef-
ficient which controls the maximum changes of pixels.
Universal perturbation: Moosavi-Dezfooli et al. [30],
showed that it is possible to find a single (universal)
perturbation that can be applied to multiple images to
successfully fool a CNN into misclassifying all of them.
Specifically, universal perturbation is defined as a noise
pattern δ, which when added to input images leads a
CNN to misclassify the input images (x’s) with prob-
ability of p. Universal perturbations are shown to be

transferable to other CNNs with different structures,
but trained on the same dataset as the original.

Universal ensemble perturbation (UEP): This method
was proposed in [40] to generate a universal transferable
perturbation using only a few small local CNNs.

This approach allows parameterized control over the
level of perturbation to increase the transferability as
follows:

xi,pert = 1
2(tanh (arctanh(2× (xi − 0.5)) + β × δ)) + 0.5

(4)
where xi,pert is the perturbed version of the image

xi and δ is the learned perturbation. Here β is a weight-
ing factor that tunes transferability versus perturba-
tion amount. UEP perturbations have been shown to
thwart a state of the art face recognition model, called
clarifai.com, more than 85% of the time.

B UEP for the Scale of 8

To evaluate the survivability of very low resolu-
tion adversarial images, we used the DeepFace super-
resolution [26] trained on CelebA dataset [25] and were
able to scale up 16 × 16 pixel LR images to 128 × 128
pixel HR images (i.e., scale-up of 8). We used 1000 of
the test images and perturbed them with UEP.
Transferability: As before, to evaluate the transferabil-
ity, we utilize clarifai.com’s celebrity face recognition
model. We submit clean LR resolution images and their
super-resolved images by Deep Face SRCNN to this
model. The accuracy of those images were 0% and 100%,
respectively. In other words, this model could not rec-
ognize any faces in the very LR images. Then we down-
scaled the HR UEP perturbed images (to generate LR
adversarial images). After super-resolving these UEP
perturbed images, we submit them to clarifai.com’s
celebrity face recognition model. This model could not
recognize any of the super-resolved images generated
from perturbed images leading to a 100% transferabil-
ity or fooling rate.
Baseline: The first row in Table 7 presents similarity
metric values for baseline evaluation in which we com-
pare a HR image super-resolved from a clean LR image
with its original HR counterpart. As shown, SSIM and
PSNR metrics have large value and PerSim metric has
low value on average which shows that Deep Face super-
resolution can reconstruct the original high resolution
images well and is consistent with baseline face recogni-
tion accuracy discussed above. Both baselines for Deep
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Fig. 8. The first column (LR) shows clean and UEP perturbed LR images, respectively. The second column (LR ×8) shows the en-
larged versions of LR images from the first column. The third column (Ideal) shows what we expect the SRCNN to generate. For the
clean LR image, we expect an SRCNN to generate the original HR image and for perturbed LR image, we expect that an SRCNN
generates an HR image close to its adversarial HR image. And finally the last column (Super-resolved) shows the super-resolved HR
images generated by the Deep Face SRCNN from LR images (shown in the first column).

PSNR
(avg (std))

x SSIM
(avg (std))

x PerSim
(avg (std))

y
Baseline 25.69 (2.104) 0.822 (0.051) 0.183 (0.0578)
Visual

Similarity 18.76 (0.721) 0.558 (0.0478) 0.363 (0.054)
Noise Adjusted
Visual Similarity 19.716 (0.638) 0.622 (0.053) 0.32 (0.058)

Table 7. For the scale of 8, we use the celebA face dataset that
Deep Face SRCNN learned on. The similarity metrics (for both
Visual Similarity & Noise Adjusted Visual Similarity) for super-
resolved LR perturbed images is close to the baseline which shows
UEP perturbation survives well through Deep Face SRCNN.

Face SRCNN (×4) for Facescrub dataset and Deep Face
SRCNN (×8) for celebA dataset obtained similar values
for similarity metrics. For larger scale (8) value, we ex-
pected these values to degrade but since this SRCNN
learned on celebA dataset, it is able to reconstruct orig-
inal images well and obtain high values for SSIM and
PSNR and low values for PerSim.
Visual similarity: The second row shows the similar-
ity between super-resolved LR UEP perturbed images
and original HR images perturbed with UEP. As shown
SSIM, PSNR and PerSim metric values (the second row

in Tables 7) under perform the baseline similarity met-
rics (the first row in Tables 7) both due to the strength
of UEP perturbation and the scaling of the perturbation
by SRCNNs.
Noise adjusted visual similarity: The third row in Ta-
ble 7 shows the similarity between super-resolved LR
perturbed images and directly perturbed super-resolved
LR clean images. Both these images have the SRCNN’s
noise and therefore have slightly better similarity met-
ric values compared to the Visual Similarity in which
we use the original adversarial image as reference image
(See Figure 4). As shown in Table 7, the average PerSim
metric is 0.32 which is even less than the average Per-
Sim metric for Deep Face SRCNN (×4) and Facescrub
dataset which is 0.36. Since Deep Face SRCNN (×4)
trained on celebA dataset, so naturally it reconstructs
the images from this dataset better.
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