
Proceedings on Privacy Enhancing Technologies ; 2022 (3):516–537

Jeremiah Blocki* and Wuwei Zhang

DALock: Password Distribution-Aware Throttling
Abstract: Large-scale online password guessing attacks
are widespread and pose a persistant privacy and se-
curity threat to users. The common method for mit-
igating the risk of online cracking is to lock out the
user after a fixed number (K) of consecutive incorrect
login attempts. Selecting the value of K induces a clas-
sic security-usability trade-off. When K is too large, a
hacker can (quickly) break into a significant fraction of
user accounts, but when K is too low, we will start to
annoy honest users by locking them out after a few mis-
takes. Motivated by the observation that honest user
mistakes typically look quite different from an online
attacker’s password guesses, we introduce DALock, a
distribution-aware password lockout mechanism to re-
duce user annoyance while minimizing user risk. As the
name suggests, DALock is designed to be aware of the
frequency and popularity of the password used for login
attacks. At the same time, standard throttling mecha-
nisms (e.g., K-strikes) are oblivious to the password dis-
tribution. In particular, DALock maintains an extra “hit
count" in addition to “strike count" for each user, which
is based on (estimates of) the cumulative probability of
all login attempts for that particular account. We em-
pirically evaluate DALock with an extensive battery of
simulations using real-world password datasets. In com-
parison with the traditional K-strikes mechanism, our
simulations indicate that DALock offers a superior sim-
ulated security/usability trade-off. For example, in one
of our simulations, we are able to reduce the success
rate of an attacker to 0.05% (compared to 1% for the 3-
strikes mechanism) whilst simultaneously reducing the
unwanted lockout rate for accounts that are not under
attack to just 0.08% (compared to 4% for the 3-strikes
mechanism).

Keywords: Authentication Throttling; Password; Dic-
tionary Attack

DOI 10.56553/popets-2022-0084
Received 2021-11-30; revised 2022-03-15; accepted 2022-03-16.

*Corresponding Author: Jeremiah Blocki: Purdue Uni-
versity, E-mail: jblocki@purdue.edu
Wuwei Zhang: Purdue University, E-mail:
zhan1015@purdue.edu

1 Introduction
An online password attacker repeatedly attempts to lo-
gin to an authentication server submitting a different
guess for the target user’s password on each attempt.
Online attacks pose a significant risk to user privacy
and security as the human tendency to pick weak (“low-
entropy”) passwords has been well documented, e.g.,
see [6]. An untargeted online attacker will typically sub-
mit the most popular password choices consistent with
the password requirements (e.g., “Password1”). In con-
trast, a targeted attacker [45] might additionally incor-
porate background knowledge about the specific tar-
get user (e.g., birthdate, phone number, anniversary,
etc.). To protect users against online attackers, most
authentication servers incorporate some form of throt-
tling mechanism. In particular, the K-strikes mecha-
nism temporarily locks a user’s account ifK-consecutive
incorrect passwords are attempted within a predefined
time (e.g., 24 hours). Setting the lockout parameter K
induces a classic security-usability trade-off. Selecting
small values of K (e.g., K = 3) provides better protec-
tion against online attackers but may result in many
unwanted lockouts when an honest user miss-types (or
miss-remembers) their password. Brostoff et al. [8] ad-
vocated for a larger value of K (e.g., K = 10) to reduce
the unwanted lockout rate but this may increase the
vulnerability to online attacks. Renaud et al. [33] sug-
gested the intermediate threshold K = 5 to achieve a
better balance between security and usability.

Bonneau et al. [7] considered many proposed re-
placements for password authentication, finding that all
proposals have some drawbacks compared with pass-
words. For example, passwords are easier to revoke than
biometrics. Similarly, hardware tokens are expensive
and require users to carry them around. By contrast,
passwords are easy to deploy and do not require users to
carry anything around. Put simply, we have not found a
“silver bullet” replacement for passwords. Thus, despite
all of their shortcomings (and many attempts to replace
them), passwords will likely remain entrenched as the
dominant form of authentication on the internet [24].
Thus, for the forseeable future, protecting passwords
against online attacks without locking out legitimate
users remains a crucial challenge for usable privacy and
security.

DALock: Password Distribution-Aware Throttling 517

One approach to protect users against online guess-
ing attacks is to adopt strict password composition poli-
cies to prevent users from selecting weak passwords.
However, it has been well documented that users dis-
like restrictive policies and often respond in predictable
ways [26]. Another defense is to store cookies on the
user’s device to prove that the next login attempt comes
from a known device. Similarly, one can also utilize fea-
tures such as IP address, geographical location, device,
and time of day [19, 34] to help distinguish between
malicious and benign login attempts. While these fea-
tures can be helpful indicators, they are not failproof
and their usage can raise privacy concerns. Honest users
will sometimes login from different devices, different ge-
ographical locations (e.g., during travel) and at times
which can occasionally deviate from their normal sched-
ule [19]. Similarly, an attacker may attempt to mimic the
login patterns of legitimate users. The online attacker
can also submit guesses from a wide variety of IP ad-
dresses and geographical locations, e.g., using a botnet.
Contributions We introduce DALock, a novel
Distribution-Aware throttling mechanism that can
achieve a better balance between usability and secu-
rity. The key intuition behind DALock is to base lockout
decisions on the popularity of the passwords that are
being guessed. An online attacker will typically want
to attempt the most popular passwords to maximize
their chances of success. By contrast, when an honest
user miss-types (or miss-remembers) their password,
the attempt is less likely to be a globally popular pass-
word. In addition to keeping track of Ku (the number
of consecutive incorrect login attempts), DALock keeps
track of a “hit count” Ψu for each user u, where Ψu in-
tuitively represents the cumulative probability mass of
all incorrect login attempts for user u’s account. When
Ψu exceeds the hit count threshold Ψ, we decide to lock
the account.
Example 1: Usability Figure 1 describes an example
schenario where a user, who would have been locked out
under the standard 3-strikes mechanism, is able to suc-
cessfully authenticate with DALock. In this example sce-
nario, our user John Smith registers an account with the
somewhat complicated password “J.S.UsesStr0ngpwd!”
based on the story “John Smith uses a strong password.”.
Later, when John tries to login into his account, John
remembers the basic story, but not the exact password.
Did he use his first name and his last name? With or
without abbreviation? Did he add a punctuation mark
at the end? Which letters are capitalized? If we use
the 3-strikes mechanism, John Smith will be locked
out quickly, e.g., after trying the incorrect password

guesses “JohnUseStrongPassword,” “JohnUsesStrong-
Password,” and “JohnUsesStrongpwd.” However, since
none of these passwords is overly popular we will not
reach the hit count threshold and DALock would allow
our user to continue attempting to login until he remem-
bers the correct password.
Example 2: Security/Privacy Figure 1 also com-
pares DALock with the 10-strikes mechanism. In this
scenario, our user registers an account with a weak pass-
word “letmein.” Because the password is globally popu-
lar, it is likely that an online attacker will attempt this
password within the first 10 guesses and break into the
account. By contrast, DALock will quickly lock down the
account after the attacker submits two globally popular
passwords.

Fig. 1. Security(Bottom) & Usabilty(Top) Illustration

To deploy DALock, we need a frequency oracle to
estimate the strength of each incorrect login attempt to
update Ψu. We propose two implementations: password
strength models (e.g., ZXCVBN [47]) and a differentially
private count sketch data structure. Of course, no fre-
quency oracle will perfectly estimate the true strength
of a password and the attacker may try to exploit pass-
words that are over/underestimated by the frequency
oracle. We introduce the password knapsack problem to
model the optimal (untargeted) attack against DALock.
Intuitively, the attacker will try to find a subset of pass-

DALock: Password Distribution-Aware Throttling 518

words to check which maximizes his success rate subject
to the constraint that the total estimated hit count does
not exceed the threshold Ψu. While password knapsack
is NP-Hard, we show that a simple heuristic algorithm
works well on empirical datasets.

We then evaluate DALock empirically by simulat-
ing an authentication server in the presence of an on-
line password attacker comparing DALock with the tra-
ditional K-strikes mechanism for K ∈ {3, 10}. In our
simulations, we use the password knapsack problem
to model the behavior of the attacker and our model
of honest user login attempts/mistakes is informed by
prior empirical studies of password typos [12, 13]. Our
simulations show that when the hit count threshold
Ψ is tuned appropriately, DALock significantly outper-
forms K-strikes mechanisms. In particular, when user
accounts are under attack in our simulation, we find that
the fraction of accounts that are compromised is signif-
icantly lower for DALock than classic K-strikes mecha-
nisms — even for the strict K=3 strikes policy. We also
find that the unwanted lockout rate for DALock is much
lower compared to K=3 strikes mechanism when user
accounts are not under attack in our simulation. The
simulated usability1(unwanted lockout rate) for DALock
and the more lenient (less secure) K=10 strikes mech-
anism were comparable. We also evaluate the perfor-
mance of DALock when the organization bans the top
B most popular passwords to encourage users to select
stronger passwords. We find that DALock continues to
outperform the traditional K=3 strikes mechanism in
terms of both usability and security — DALock substan-
tially outperforms the K = 10 strikes mechanism from
a security standpoint without adversely impacting us-
ability. A more detailed description of our experiments
can be found in section 6.

2 Related Work and Background
Feature-Based Throttling Mechanism Modern
throttling mechanisms [23, 34] often use features such as
geographical location, IP-address, device information,
etc., to detect unusual activities. These features can be

1 Our usability evaluation is based entirely on simulated user
behavior. To avoid cumbersome notation we will write typically
write “usability" instead “simulated usability” in the remainder
of the paper. We acknowledge that one would need to conduct
a longitudinal user study to rigorously evaluate the usability of
DALock in practice.

used to train sophisticated machine learning models to
help distinguish between malicious and benign login at-
tempts [19]. DALock takes an orthogonal approach and
relies instead on the popularity of the password guesses
instead of potentially confidential user profiles. One can
combine those models with a rigorous throttling system
for better performance.
Password Distribution-Aware Throttling In an
independent line of work, Tian et al. [36] developed
an IP-based throttling mechanism called StopGuessing
that exploits differences between the distribution of hon-
est login attempts and malicious guesses. In particular,
they propose to “silently block” login attempts from a
particular IP address ip if the system detects too many
popular passwords being submitted from ip. In more de-
tail, StopGuessing uses a data structure called the bino-
mial ladder filter [37] to (approximately) track the fre-
quency F (pw) of each incorrect password guess pw. For
each IP address ip, the StopGuessing protocol maintains
an associated counter Iip =

∑
pw∈P

F (pw) where P is a list

of incorrect password guesses that have been (recently)
submitted from ip— Iip can be updated without storing
P explicitly. Intuitively (and oversimplifying a bit) if Iip
exceeds a predefined threshold T , then login attempts
from address ip are silently blocked, i.e., even if the at-
tacker (or honest user) submits a correct password, the
system will respond that authentication fails. The au-
thors also suggest protecting accounts with weak pass-
words by setting a user-specific threshold T (F (pwu))
based on the strength F (pwu) of the password pwu of
user u. Now, if Iip > T (F (pwu)), the system will silently
reject any password from address ip. Both StopGuessing
and DALock exploit differences between the distribution
of user passwords and attacker guesses. One of the key
differences is that StopGuessing focuses on identifying
malicious IP addresses (by maintaining a score Iip for
each IP address ip) while DALock focuses on protecting
individual accounts by maintaining a “hit-count” pa-
rameter Ψu for each user u. There are several other key
differences between the two approaches as well. First,
in DALock, the goal of our frequency oracle (e.g., count
sketch, password strength meter) is to estimate the total
fraction of users who have actually selected that partic-
ular password — as opposed to estimating the frequency
with which that password has been recently submitted
as an incorrect guess. Second, DALock does not require
silent blocking of login attempts, which could create
usability concerns if an honest user is silently blocked
when they enter the correct password.

DALock: Password Distribution-Aware Throttling 519

Password Distribution To analyze online statis-
tical guessing attacks it is important to understand
the distribution of user passwords. Password distri-
butions have been extensively studied since the last
decades [6, 18, 28]. Wang et al. [42–44] observed that
Zipf’s law distributions nicely fit leaked password cor-
pora and Blocki et al. [4] later found that the same
for the differentially private Yahoo! password frequency
corpus [3, 6]. Other work has used password cracking
models and/or statistical techniques to characterize the
password distribution.
Password Typos Recent studies [12, 13] from Chat-
terjee et al. have summarized probabilities of making
(various types of) typos when one enters his or her
password based on users’ studies. Based on the empir-
ically measured data, they proposed two typo-tolerant
authentication mechanisms and demonstrate that typo-
correction does not come at the cost of security — sim-
ilar mechanisms have already been deployed in the in-
dustry [20]. In our usability simulations for DALock we
leverage the findings of [12, 13] to help simulate honest
user mistakes during authentication.
Increasing Cost of Authentication Pinkas and
Sanders [31] proposed using puzzles (e.g., CAPTCHAs)
as a way to stop online password crackers. CAPTCHAs
are hard AI challenges meant to distinguish people from
bots [40]. For example, reCAPTCHA [41] has been
widely deployed, e.g., Google, Facebook, Twitter, CNN,
etc. If we assume that CAPTCHAs are only solvable
by people, it is possible to mitigate automated on-
line attacks without freezing users’ accounts [9, 10].
Nevertheless, an attacker can always pay humans to
solve CAPTCHA challenges [32]. Besides, sophisticated
CAPTCHA solvers [48] powered by neural networks
make it increasingly challenging to design CAPTCHA
puzzles that are also easy for a human to solve. Golla
et al. [21] proposed a fee-based password verification
system where a small deposit is necessary to authenti-
cate, which is refunded after successful authentication.
A password cracker risks losing its deposit if it is not
able to guess the real password.
Eliminating Popular Passwords One mediation for
dictionary attacks is eliminating the existence of weak
or popular passwords. Password composition policy is
a common approach, but efforts to force users to pick
strong passwords by requiring users to include numbers,
capital letters, and/or special symbols have shown lim-
ited success [5, 26]. An alternate approach of Schechter
et al. [35] is to ban passwords if and only if too many
users have picked them using a count-sketch data struc-
ture for frequency estimation. A theoretical model by

Blocki et al. [5] shows that this is the optimal approach
to boost the minimum entropy of the password distri-
bution.

3 Preliminaries

3.1 Notation Summary

In this section, we summarize frequently used notations
in this paper across all sections in Table 3, Appendix.

We use U = {u1, . . . , uN} to denote a set of N
users and DU = {pwu1 , . . . , pwuN } to denote the cor-
responding multiset of user passwords i.e., pwu ∈ P
denotes the password selected by user u ∈ U . We
typically view DU as N independent samples from an
underlying distribution over P and use P (pw) to de-
note the probability that a user selects the password
pw ∈ P. It will be convenient to assume that all pass-
words P = {pw1, pw2, . . .} are sorted in descending order
of probability, i.e., so that P (pw1) ≥ P (pw2) We use
F (pw,DU) = |{i : pwui = pw}| to denote the number
of times the password pw was observed in our sample —
when the dataset is clear from context we will sometime
drop DU and simply write F (pw).

We remark that P (pw) = E[F(pw,DU)]
N and thus for

popular passwords we expect that the estimate P (pw) ≈
F(pw,DU)

N will be accurate as long as our sample size
N is sufficiently large. However, because the underly-
ing password distribution is unknown and an authenti-
cation server cannot store a plaintext encoding of DU
we will often use other techniques to estimate P (pw)
and/or F (pw,DU). In particular, we consider a count
sketch data structure CS trained on DU (or a small sub-
sample of DU), which allows us to generate an estimate
p(pw) for the true probability P (pw) of each password
pw. Similarly, we can also use password strength meters
to compute an estimate p(pw) for P (pw).

3.2 Count Sketch

The count sketch [11] is a succinct data structure which
allows for one to quickly obtain an approximation of
the frequency of any item in a dataset. Intuitively, the
count sketch data structure supports four operations:
Initialize, Add, Estimate and TotalFreq. The operation
Add takes as input an item x (password) and updates
the internal state σ of the count-sketch. Similarly, the
Estimate operation takes as input an item x (password)
and outputs an estimate of the number of times that this

DALock: Password Distribution-Aware Throttling 520

particular item x has been added to the count sketch
and TotalFreq outputs the total number of items added
to the count-sketch. In our implementation, the state
σ : Rd×w × R of a count sketch (CS) is represented by a
two-dimensional d×w array CS.ARRAY where d (depth)
and w (width) are parameters of the count-sketch which
can be tuned to balance accuracy and space usage, and
a total frequency counter CS.T. More formally the API
for a count sketch can be defined as follows:
σ0 ← Initialize(d,w) : This function takes as input the
count sketch parameters depth/width parameters d and
w and outputs an initial state σ0 = 0d×w×0, i.e., an all-
zero table. Intuitively, we expect that TotalFreq(σ0) = 0
and that Estimate(pw, σ0) = 0 for each item/password
pw since no items have been added yet.
σnew ← Add(pw, σ): This function takes as input the
current state σ and an item/password pw to add and up-
dates the state of the count sketch to σnew. Intuitively,
we expect that TotalFreq(σnew) = TotalFreq(σ) + 1 and
that Estimate(pw, σnew) = Estimate(pw, σ) + 1 i.e., the
total count and the count for pw are incremented by
1. Because the data-structure is succint it is possible
that the operation slightly interferes with the estimates
for other items/passwords pw′ 6= pw besides the one
we are adding i.e., we may have Estimate(pw′, σnew) 6=
Estimate(pw′, σ). For our purposes we do not need to
describe the precise details of how the state σ is up-
dated. However, we remark that in our count me-
dian sketch implementation the L1 distance between
σ and σnew is upper bounded by ‖σ − σnew‖1 ≤
d + 1 — this observation will be used later to tune
noise levels for differential privacy. Given a multiset
DU = {pw1, · · · , pwdN}, we use σDU = Add(DU , σ0) =
Add(pw1,Add(pw2,Add(pw3, · · ·Add(pwN , σ0))) to de-
note the final state of the count sketch after all pass-
words in the dataset DU have been added. When the
context is clear we also omit the subscript DU and sim-
ply use σ to denote σDU .
Estimate(pw, σ) : This function takes as input an
item/password pw and the current count sketch state σ
and outputs an estimate for the frequency of pw without
updating the count sketch state σ. Intuitively, we want
the estimator to have the following correctness property:
Estimate(pw, σ) ≈ F (pw,DU), where F (pw,DU) denotes
the actual frequency of pw in DU .
TotalFreq(σ) : this operation takes as input the cur-
rent count sketch state σ and outputs the total number
of items that have been added to the count sketch e.g.,
if σ0 = Initialize(D,w) and σDu

= Add(Du, σ0) then
TotalFreq(σ) returns |Du|. The state σ is not updated.

We denote the estimated popularity of a password
pw by σ with p(pw, σ) = Estimate(pw,σ)

TotalFreq(σ) . For the rest of the
discussion, we sometimes omit σ when there is no ambi-
guity to simplify the presentation. e.g. p(pw) = p(pw, σ).
In addition, we allow the above APIs to take a set of
passwords as an argument and return the summed re-
sults. i.e. p(S) =

∑
pw∈S

p(S).

We elect to use the count (median) sketch [11]
data structure in this work as it is invariant to
the order in which passwords are added (e.g.,
Add({pw1, . . . , pwdN}, σ) = Add({pwN , . . . , pw1}, σ)),
and because it can easily be modified to preserve dif-
ferential privacy. StopGuessing[36], used an alterna-
tive data-structure called a binomial ladder to identify
“heavy hitters” (popular passwords) though the data-
structure does not provide any formal privacy guaran-
tees such as differential privacy. The binomial ladder is
not suitable for DALock for two reasons. First, DALock
requires a fine-grained estimate of each password’s pop-
ularity while a binomial ladder was designed to pro-
vide a binary classification i.e., either the password is
a “heavy hitter” or it is not. Second, the binomial lad-
der is not invariant to the order in which passwords are
added e.g., it can overestimate the frequency of recently
popular passwords.

3.3 Differential Privacy

While the succinct count-sketch data structure is a use-
ful tool to approximate the freqeuncy of a particular
password in the dataset, its usage raises a natural pri-
vacy concern. Could the attacker infer anything about a
particular user’s password from the count-sketch σ if the
authentication server was breached? We address these
concerns by using a differentially private count sketch.
Differential privacy [15] is a compelling mathematical
definition of privacy that has begun to see industrial
deployment[17]. It is often viewed as a gold standard
for data privacy. In this work, we adopt differentially
private count sketches to reduce the risk of privacy leak-
age. In our password context we can define differential
privacy as follows.

Definition 1 (ε-Differential Privacy [15]). A random-
ized mechanism M gives ε-differential privacy if for
any pair of neighboring datasets DU and D′U , and any
σ ∈ Range(M), Pr [M(DU) = σ] ≤ eε ·Pr

[
M(D′U) = σ

]
.

DALock: Password Distribution-Aware Throttling 521

We consider two datasets DU and D′U to be neighbors
i.f.f. either DU = D′U + pwu or D′U = DU + pwu, where
DU + pwu denotes the dataset resulted from adding the
password pwu to the dataset DU . We use DU ' D′U
to denote two neighboring datasets. Differential privacy
protects the privacy of any individual password in the
dataset DU because adding or removing any single pass-
word results in eε-multiplicative-bounded changes in the
probability distribution of the output. If an adversary
can make a certain inference about a password based on
the output, then the same inference is also likely to oc-
cur even if the password does not appear in the dataset.
Laplace Mechanism The Laplace mechanism is a
classic tool to achieve differential privacy i.e., given any
function f(x) ∈ Rwd+1 the mechanism M(x) = f(x) +
(Z1, . . . , Zwd+1) is ε-differentially private where for each
i ≤ wd + 1 the random variable Zi is sampled from
the Laplace Distribution with PDF ε

2·GSf
exp

(
−ε|Zi|
GSf

)
.

Here, GSf denotes the global sensitivity of the function
f and the noise distribution also depends on the privacy
parameter ε. In our particular case the global sensitiv-
ity of the function f(DU) = Add(DU , Initialize(d,w)) is
GSf ≤ d + 1 i.e., given any two neighboring datasets
DU and D′U we have ‖f(DU) − f(D′U)‖1 ≤ d + 1 . For-
mally, we use σdp ← DP(ε, σ) to denote a function
which (1) samples laplace noise (Z1, . . . , Zwd+1) accord-
ing to the PDF ε

2(d+1) exp
(
− ε|Zi|
d+1

)
, and (2) outputs

σdp = σ + (Z1, . . . , Zwd+1) to obtain a ε-differentially
private count sketch state σdp. The noise can be added
during initialization i.e., we can equivalently set σ0 =
(Z1, . . . , Zdw+1) instead of σ0 = (0, . . . , 0) during initial-
ization and then compute the final count-sketch state as
σ = Add(DU , σ0).
Differentially Private Count Sketch: Threat
Model In our threat model we consider an adversary
who obtains a single snapshot of the count-sketch state
e.g., σ = Add(DU , Initialize(d,w))+(Z1, . . . , Zwd+1). In-
tuitively, differential privacy ensures that the attacker
will not be able to use the snapshot σ to draw infer-
ences about any individual password pwu. However, we
do not provide privacy guarantees against an attacker
who can continuously monitor the state of the count
sketch as passwords are added over time e.g., if the at-
tacker learns the initial state σ0 = (Z1, . . . , Zwd+1) as
well as the final state σ = Add(DU , σ0) then the attacker
can easily compute σ − σ0 = Add(DU , Initialize(d,w))
to remove the noise that we added to preserve differen-
tial privacy. We could adopt a stronger privacy notion
such as pan-privacy [16] to protect against an attacker
who can obtain multiple snapshots of the count sketch

state. However, we note that an attacker who is continu-
ously present on the authentication server would (most
likely) also be able to observe the plaintext passwords
directly. Thus, the practical privacy benefits of using a
pan-private count sketch may not be significant.
Differential Privacy in Passwords Naor et al.[30]
designed a locally differentially private mechanism to
identify the most popular passwords in a distribution.
Blocki et al. [3] developed a differentially private mech-
anism for integer partitions and used this to release a
private summary of the Yahoo! password dataset.

4 The DALock Mechanism
In this section, we present the DALock mechanism, dis-
cuss how DALock might be implemented, and the strate-
gies an attacker might use when DALock is deployed.
Intuitively, DALock bases lockout decisions on the pop-
ularity of incorrect password guesses so that an online
attacker attempting to use popular passwords will be
locked out more quickly while honest typos are pun-
ished less severely.

4.1 DALock

Recap: K-Strikes Mechanism As briefly discussed in
the introduction theK-strikes mechanism keeps track of
a single parameter Ku for each user u, which represents
the number of consecutive incorrect login attempts on
u’s account. Ku is incremented by 1 upon each failed
login attempt and reset to Ku = 0 upon a successful
login. Whenever we exceed the threshold Ku ≥ K the
throttling mechanism kicks in and the authentication
server locks the account until the user u takes corrective
action e.g., reset password by phone/e-mail or solve a
CAPTCHA challenge.
Extending the K-Strikes Mechanism The key-idea
behind DALock is to additionally maintain an extra
“hit count” variable Ψu for each user u. Intuitively,
Ψu measures the total probability mass of all incor-
rect guesses submitted on u’s account. Initially, when
a new user u registers, we will have Ψu= 0 (and Ku=
0). After each failed attempt with an incorrect password
pw 6= pwu, the hit count variable Ψu and strike count
variable Ku will be increased by p(pw) and 1, respec-
tively. i.e., Ψu += p(pw), and Ku += 1. Here, p(pw)
denotes (an estimate of) the probability of the pass-
word pw. For example, suppose that the (estimated)

DALock: Password Distribution-Aware Throttling 522

probability of the passwords “aaa," “bbb," and “ccc”
were 3%, 1.7% and 0.8%, respectively. If a user reg-
isters with password “ddd” and then attempts to lo-
gin with the previous three passwords, Ψu will be set
to 0.055 = 0.03 + 0.017 + 0.008. Unlike the consecutive
strikes parameter Ku the hit count Ψu is not reset upon
each successful authentication. DALock throttles u’s ac-
count if the “hit count” exceeds Ψ (i.e., Ψu ≥ Ψ) or if
there are too many consecutive mistakes (i.e., Ku ≥ K).
If an incorrect password guess pw is overly popular this
will cause Ψu to rapidly reach the threshold so that the
account can by locked.

Now the throttling mechanism will kick if either
the hit count or the consecutie strike count reaches our
thresholds i.e., Ψu ≥ Ψ or if Ku ≥ K and the user will
be required to take corrective action(s) to unlock the
account. DALock is fully compatible with a wide variety
of policies. For example, we could require the user to
resend their password, authenticate a request to unlock
the account via e-mail/phone and/or solve CAPTCHA
challenges. We stress that when a user attempts to lo-
gin with a password pw the authentication server is able
to distinguish between the following cases (1) Account
locked/throttled: if Ψu ≥ Ψ or if Ku ≥ K, (2) Correct
Login: if the guessed password matches the user pass-
word i.e., pw = pwu and the account is not locked2, or
(3) Incorrect Password: the account is not locked but
the password is incorrect. We remark that StopGuess-
ing [36] necessarily blurs the distinction between cases
(1) and (3), but this can induce a usability cost, e.g.,
an honest user might be annoyed if they were repeat-
edly informed that their password is incorrect when, in
reality, the account is actually locked.

We use the notation (K,Ψ)-DALock to denote
DALock instantiated with hit-count threshold Ψ and
consecutive strike threshold K. Observe that when Ψ =
∞, the authentication server is actually running the
classical K-strikes lockout policy. In most of our exper-
iments we will set K = 10 when instantiating DALock
and tune Ψ to balance security and usability. The hope
is that by tuning Ψ we can achieve (1) stronger security
than both the classical K = 3-strikes mechanism and
K = 10-strikes mechansim, and (2) usability superior to

2 To ease presentation, we omit the description of the password
hashing algorithm when we describe the authentication server.
In practice, we recommend that the authentication server only
stores salted password hashes using a moderately expensive key
derivation function to increase guessing costs for an offline at-
tacker.

the K = 3 mechanism and comparable to the K = 10
mechanism.

To deploy DALock with a finite hit-count parame-
ter Ψ, an authentication server needs to use a frequency
oracle to update the hit count after each failed login
attempt. In this work, we consider two concrete ap-
proaches the authentication server might adopt: (differ-
entially private) count sketch estimator and password
strength models. We use p(pw,Estimator) to denote the
estimated popularity (probability) of a password pw es-
timated by the estimator Estimator, e.g., given a count
sketch σ we would use p(pw, σ) = Estimate(pw,σ)

TotalFreq(σ) .
Remark: One could optionally consider initializing the
hit count parameter Ψu based on the strength of the
user’s password. For example, if u registers with a
weak password, then we might initialize Ψu = Ψ/2 for
stronger protection, i.e., so that the account is locked
down faster when Ψu reached Ψ. Similarly, a user with
a strong password might be awarded by setting Ψu = 0
so that the throttling mechanism will not be activated
as quickly. However, because Ψu and Ku are stored on
the authentication server, this would signal information
about the strength of pwu to an offline attacker. While
this seems undesirable, a recent counter-intuitive result
showed that noisy strength signals can actually help de-
ter a rational utility maximizing password cracker [1]
if the signaling scheme is tuned appropriately. Thus,
it is possible that a noisy (randomized) mechanism to
tune Ψu based on the strength of the user’s password
could help deter offline attackers. Alternatively, if one is
willing to implement a silent lockout policy where the
user cannot distinguish between an incorrect guess and
a locked account, it would be possible to encrypt the
hit-count Ψu using a key derived from the user’s pass-
word [13, 36].

4.2 DALock Authentication Server

To implement DALock, we need an efficient way to es-
timate the probability p(pw) of each incorrect pass-
word pw. We consider several instantiations of this fre-
quency oracle. One option is to use password strength
meters such as ZXCVBN [47] or more sophisticated
password cracking models [29, 39]. e.g., Markov Mod-
els, Probabilistic Context-Free Grammars, or Neural
Network. Another naive approach would be to main-
tain a plaintext list of all user passwords along with
their frequencies. However, this approach is inadvis-
able due to the risk of leaking this plaintext list. Her-
ley and Schechter [35] proposed using the count sketch

DALock: Password Distribution-Aware Throttling 523

data-structure, which would allow us to estimate the
frequency of each password without explicitly storing
a plaintext list. However, there are no formal privacy
guarantees for this approach. We chose to adopt a dif-
ferentially private count sketch to address privacy con-
cerns. The authentication server initializes the count
sketch σdp ← DP(ε, σ) by adding Laplace Noise to pre-
serve ε-differential privacy. Each time a new user u reg-
isters with a new password pwu, it would be added to
the count sketch.

We remark that maintaining a differentially private
count sketch has many other potentially beneficial ap-
plications, e.g., one could use the count sketch to ban
weak passwords [35] and/or to help identify IP addresses
associated with malicious online attacks [36]. One dis-
advantage is that the attacker will also be able to view
the count sketch if the data structure is leaked. The us-
age of differential privacy helps to minimize these risks.
Intuitively, differential privacy hides the influence of any
individual password, ensuring that an attacker will not
be able to use the count sketch data-structure to help
identify any unique password. However, an attacker may
still be able to use the data-structure to learn that a
particular password is globally popular (without linking
that password to a particular user). We argue that this
is not a significant risk as most attackers will already
know about globally popular passwords, e.g., from prior
breaches.

5 Experimental Design
We evaluate the performance of DALock through an ex-
tensive battery of empirical simulations. In this section,
we describe the modeling choices we made when de-
signing our experiments. To simulate the authentication
ecosystem, we need to simulate honest users’ behavior,
the authentication server running DALock, and an on-
line attacker.

Briefly, when simulating users, we need to model the
distribution over users’ passwords, the distribution over
honest login mistakes (e.g., typos or recall errors), and
the user’s login schedule. When simulating the distri-
bution over users’ passwords, we use multiple empirical
datasets to define the underlying password distribution.
We use a Poisson arrival process to model the frequency
of user login attempts [2]. Our model for users’ mis-
takes is informed by recent empirical studies of pass-
word typos [12, 13] and is augmented to simulate other
mistakes, i.e., recall errors. The key question for simu-

lating an authentication server running DALock is how
the (password) frequency oracle p(·) is implemented.
We consider two concrete implementations: password
strength models [29, 39, 47] (e.g., ZXCVBN, Markov
Models, Neural Networks) and (differentially private)
count sketches. When simulating the attacker, we con-
sider an untargeted one who knows the distribution over
user passwords as well as the DALock mechanism — in-
cluding the frequency oracle p(·). We leave the ques-
tion of tuning DALock to protect against targeted on-
line attackers [45] as an important direction for future
research. We elaborate on each of these key model com-
ponents below. We begin with an overview of the em-
pirical datasets DU that we used in our experiments.

5.1 Experimental Datasets

In this work, we use multiple real-world password
datasets. See Table 1 for a summary of each dataset in-
cluding (1) the total number of unique passwords in the
dataset, (2) the total number of user accounts in the
dataset, (3) the probability of the most popular pass-
word, and (4) the cumulative probability of the top 10
passwords. Except for the differentially private Yahoo!
frequency corpus, which was collected [6] and publicly
released [3] with permission from Yahoo!, each dataset is
the result of a data breach. We remark that the Yahoo!
frequency corpus does not contain any plaintext pass-
words, so we did not use password strength models in
our experiments involving this dataset.

Dataset Passwords Accounts P (pw1) P (pw1−10)
Yahoo 33,895,873 69,301,337 1.1% 1.9%

RockYou 14,341,564 32,603,388 0.89% 2.1%
000webhost 10,587,915 14,960,642 0.081% 0.48%
LinkedIn 6,840,885 68,361,064 1.53% 2.82%
CSDN 4,037,268 5,908,494 1.29% 3.72%
clixsense 1,628,297 2,195,900 0.15% 0.7%
brazzers 587,934 925,614 0.58% 1.13%
bfield 416,034 539,434 0.48% 1.97%

Table 1. Summary of dataset

Each dataset defines an empirical password distri-
bution. In each of our experiments, we assume that
this distribution matches the real (unknown) user pass-
word distribution from which these datasets were sam-
pled. While the empirical distribution may not precisely
match the real one, we stress that our analysis focuses
on the most popular passwords in the distribution —
the ones that an attacker will try to guess. Because

DALock: Password Distribution-Aware Throttling 524

the datasets are all quite large (the smallest dataset
has over 0.5 million passwords), standard concentration
bounds imply that the true probability of a popular
password in the distribution will almost certainly closely
match the empirical probability.
Ethics: The datasets we used contain passwords that
were previously stolen and subsequently leaked online.
The use of such data raises critical ethical considera-
tions; however, such password lists are already publicly
available online, so our use of the data does not exacer-
bate the prior harm to users. We did not crack any new
user passwords. Furthermore, the datasets we use have
been cleaned of all identifying information beyond the
passwords themselves. In summary, we believe that our
use of the leaked data will not exacerbate prior harm to
users, and the lockout mechanism we develop and eval-
uate may help to protect user passwords in the future.

5.2 Modeling Users

Our model to simulate honest users’ behavior consists
of three key components: user password selection, login
frequency, and mistake model.

5.2.1 Simulating Users’ Password Choices

In each simulation, we fix a dataset that is used
to simulate user password selection. In particular, a
dataset consists of a multiset DU = {pw1, · · · , pwN}
of N passwords which can be compressed into pairs
(pw,F (pw,DU)) where F (pw,DU) denotes the number
of times the password pw occurs in the dataset DU . Each
dataset DU induces an empirical distribution over users’
passwords where the probability of sampling each pass-
word pw is simply F(pw,DU)

N .
Simulating Password Choices Each simulated user
u in our experiment samples 6 different passwords
pw0

u, . . . , pw
6
u from the empirical distribution and regis-

ters with the first sampled password pw0
u. The remain-

ing five passwords pw1
u, . . . , pw

5
u intuitively represent the

user’s password for other websites and will be used to
simulate recall errors (see Section 5.2.3).
Ban-list We additionally consider the setting where
the authentication server chooses to ban users from se-
lecting the top B passwords, e.g., top 10 passwords. We
use the normalized probabilities model [5] to simulate
users’ password selections under this restriction. In par-
ticular, we use rejection sampling to avoid sampling one
of the top B passwords. Equivalently, we can let DU,B

denote the dataset DU with the B most common pass-
words removed and sample from the empirical distribu-
tion corresponding to the updated dataset DU,B .

5.2.2 Simulating User’s Login Patterns

To simulate users, we need to model the frequency
with which our honest user attempts to login to the
authentication server. In particular, we aim to sim-
ulate the login behaviors over a 180-day time span.
For each user u, we want to generate a time sequence
0 < tu1 < tu2 < · · · < 4320 = 180× 24 where each tui ∈ N
represents the time (in hours) of the ith user visit. Fol-
lowing prior works (e.g., see [2, 25]), we use a Poisson
arrival process to generate the sequence. The Poisson
arrival process is parameterized by an arrival rate Tu
(hours), which encodes the expected time between con-
secutive login attempts Tu = E[ti+1 − ti]. The arrival
process is memoryless, so the actual gap ti+1 − ti is in-
dependent of ti. Since some users are more active than
others, we pick a different arrival rate Tu for each user
u where each Tu is sampled uniformly at random from
{12, 24, 24 × 3, 24 × 7, 24 × 14, 24 × 30}. The parameter
Tu = 12 (hours) corresponds to users who login to their
accounts twice per day on average, while the parame-
ter Tu = 24 × 30 corresponds to a user who visits the
site once per month. We assume that users continue at-
tempting to login for each user visit until they succeed
or get locked out.

5.2.3 Simulating Users’ Mistakes

The last component of our user model is a mechanism
to simulate users’ honest mistakes during the authenti-
cation process. Our model relies upon recent empirical
studies of password typos [12, 13] and additionally incor-
porates other common user mistakes, e.g., recall errors.
The aforementioned studies show that roughly 7.5% of
login attempts are mistakes, and at least 68% of them
are (most likely) typos, i.e., within edit distance 2 of the
original passwords.

Accordingly, in our simulation we set the mistake
rate to be 7.5%, i.e., when simulating each login at-
tempt, the user will enter the correct password with
probability 92.5%. Otherwise, we simulate the user’s er-
ror(s) — either a recall error or a typo or both. In our
simulations of user errors we first flip a biased coin to de-
termine whether to simulate a typo (68%) or a recall er-
ror (32%). To simulate a recall error, we randomly select

DALock: Password Distribution-Aware Throttling 525

one of the user’s five alternate passwords to model a user
who forgot which of their passwords was associated with
this particular account (the user may additionally mis-
stype this password). When simulating different types
of typos (captalization errors, substitution errors, inser-
tion/deletion errors) we rely on empirical password typo
data from [12, 13]. We refer an interested reader to Ap-
pendix A for a more detailed discussion of our mistake
model, including a flow chart (see Figure 6) and more
fine-grained typo statistics. If the login attempt is in-
correct the simulated user will repeat the above process
until s/he is successful or until the account is locked.
Remark: To study the throttling effects of DALock, we
do not simulate users who completely forget their pass-
words (i.e., meaning that the probability of remember-
ing the correct password is non-zero during each login
attempt) as these users will need to reset their pass-
words independently of the deployed throttling mech-
anism. In addition, we do not simulate a client device
that automatically attempts to login on the user’s be-
half using a stored password. It may be desirable to
have the authentication server stores the (salted) hash
of the user’s previous password(s) to avoid locking the
user’s account in settings where a client device might
repeatedly attempt to login with an outdated password
incrementing both the hit-count Ψu and the strike count
Ku. Alternatively, the authentication server could store
an encrypted cache [13] of failed login attempts us-
ing public-key cryptography. The encrypted cache could
only be decrypted when the user authenticates with the
correct password and could be used to avoid uncessar-
ily incrementing Ψu due to repeated mistakes with the
same outdated password.

5.3 Modeling the Authentication Server

We model an authentication server running
(K,Ψ)-DALock with various K and Ψ settings. Each
time a user u (or attacker pretending to be u) failed to
login, the authentication server updates the parameters
Ψu and Ku accordingly following the DALock mech-
anism. Notice that when Ψ = ∞, the authentication
server is actually running the classical K-strikes lock-
out policy. To deploy DALock with a finite hit-count
parameter Ψ, an authentication server needs to use a
frequency oracle to update the hit count after each failed
login attempt. In this work, we consider two concrete
approaches the authentication server might adopt: (dif-
ferentially private) count sketch estimator and password
strength models. We use p(pw,Estimator) to denote the

estimated popularity (probability) of a password pw es-
timated by the estimator Estimator, e.g., given a count
sketch σ we would use p(pw, σ) = Estimate(pw,σ)

TotalFreq(σ) .

5.3.1 Differentially Private Count Sketch Estimator

The first instantiation of p(·, ·) we consider is to build
a count sketch estimator σDU = Add(DU , σ) from the
dataset DU directly. The authentication server would
update the count sketch with the new password each
time a new user registers. When deploying the count
sketch estimator, there are several issues to consider:
memory efficiency, privacy, sample size, and accuracy.
Memory Efficiency We instantiate the count sketch
with parameters d = 5 and w = 106 so that the entire
data structure requires just 20 MB of space, which easily
fits in modern RAM.
Privacy As we discussed earlier, one concern about
storing a count sketch σDU on the authentication server
is that an offline attacker might steal this file and use
the data-structure to help identify users’ passwords. For
example, if our user John Smith selects (resp. does not
select) a rare password “J.S.UsesStr0ngpwd!” then we
would expect that the true frequency of this password
is F (pw,DU) = 1 (resp. F (pw,DU) = 0). If the count
sketch estimator is overly accurate, then the attacker
would be able to learn that one user (most likely John
Smith) picked this password. Without a way to address
these privacy concerns, an organization might be under-
standably wary of deploying a count sketch estimator.

To address these privacy concerns, we consider an
ε-differentially private estimator σdp = DP(ε, σ) in our
experiments. During initialization, we add Laplace noise
to the count sketch where the noise parameter scales
with d+1

ε . In our threat model an attacker can obtain a
single snapshot of the differentially private count sketch.
In above example, differential privacy ensures that — up
to a multiplicative advantage eε — an attacker cannot
use the count sketch to distinguish between a dataset in
which John Smith did (resp. did not) pick the password
“J.S.UsesStr0ngpwd!’. Notice that lower values of ε cor-
respond to stronger privacy guarantees and we can use
ε = ∞ to indicate no differential privacy guarantee. In
most of our experiments, we use small privacy param-
eters ε = 0.1, which is much smaller than the privacy
parameters used in most prior deployments of differen-
tial privacy, e.g., ε = 0.5 for releasing Yahoo! password
corpus[3], ε ≥ 2 for collecting users’ information [38],
and ε ≥ ln 81 for RAPPOR [17, 46].

DALock: Password Distribution-Aware Throttling 526

Sample Size and Accuracy In general, the accuracy
of a count sketch increases with the size of the pass-
word dataset. Suppose that the organization does not
have millions of users or the dataset size is decreased
because it allows users to “opt-out” of the data collec-
tion. One natural question is whether one would be able
to deploy a count sketch to obtain reliable frequency es-
timates under such circumstances. We investigate this
question by subsampling smaller datasets to train the
count sketch. Given a set U of N users, we use Ur%
to denote a randomly subsampled set of r% of users.
We use DUr% to denote the corresponding subsampled
password dataset and σr% = Add(DU , σ) to denote the
count sketch trained on the subsampled data. The ques-
tion is whether σr% can be as effective as σ for deploying
DALock.

In our experiments, we consider the following sam-
pling rates: 1%, 5%, and 10%. Our empirical results
show that using approx. 0.3 million passwords is suf-
ficient to train a reliable count sketch. A substantially
small sample like 1% rate can hurt the performance of
count sketch, especially when the original dataset DU is
already small. (e.g., bfield). On the positive side, if one
picks an adequate sampling rate r (e.g., 10%) or the orig-
inal dataset size is sufficiently large (e.g., 000webhost),
then σr% can perform nearly as good as σ.
Count Sketch with Ban-List In our simulations, we
also consider an authentication server that bans a list
of popular passwords from the dataset to help flatten
the password distribution and protect users against on-
line attacks. Theoretical analysis indicates that directly
banning the most popular passwords is one of the most
effective ways to increase the minimum entropy of the
password distribution [5]; On the other hand, banning
too many of them may raise a usability concern – a large
portion of users will not be able to select their preferred
password (see Figure 2). One additional benefit of us-
ing a count sketch data structure is that it can be used
to help implement such policy, i.e., if a user attempts
to register with password pw and p(pw, σ) is already
too high, then the user will be asked to pick a different
password [35].

We evaluate the performance of DALock in the pres-
ence of various sizes of ban lists. Recall that we let DU,B
denote the dataset DU with the B most common pass-
words removed. To model how affected users will update
their passwords in response to the ban-list, we follow the
normalized probabilities model of [5]. In particular, we
assume users who are affected by the policy will pick
new passwords following the empirical distribution in-

Fig. 2. Affected Users vs Ban-List size

duced by DU,B . We then train the count sketch based
on the updated dataset, i.e., σDU,B

= Add(DU,B).

5.3.2 Frequency Oracle from Password Models

As we previously discussed, there are several reasons
why an organization might prefer not to use a count
sketch for frequency estimation, e.g., privacy concerns
or insufficient users. One alternative approach is to in-
stantiate the frequency oracle with a password model.
This could be a heuristic password strength meter, a
more sophisticated model based on Neural Networks,
Probabilistic Context-Free Grammars, Markov Models,
or an empirical estimate based on Hashcat. The primary
advantage of this approach is that the model can be de-
ployed immediately even before an organization has any
users and there are no privacy concerns.

We adopted the ZXCVBN password strength me-
ter [47] as prior empirical studies demonstrate that it
is one of the most accurate password strength meters
[22]. In addition, we used the Password Guessing Service
(PGS) [29, 39] to obtain guessing numbers for Neural
Network, PCFG, Hashcat, and Markov Models — we
also considered the minimum guessing number across
all four models as suggested in [39]. For example, if a
password pw had a guessing number g, we might es-
timate that p(pwi) = 1/g. One challenge we need to
address is that the estimates we obtain do not always
yield a probability distribution. E.g., for ZXCVBN we
have

∑10000
i=1 p(pwi)� 1 where i ranges over the top 104

remaining passwords in the dataset. Thus, before de-
ploying the frequency estimator for DALock, we renor-
malized our estimates so that

∑max{104,B}
i=1 p(pwi) = 1

where B is the number of banned passwords. When B ≥
105 we avoid submitting too many requests to PGS by
sampling 20,000 users’ passwords from DU,B to estimate∑max{B}
i=1 p(pwi).

Service-Specific Passwords One advantage of a dif-
ferentially private count sketch is that it can properly
account for the popularity of service-specific passwords

DALock: Password Distribution-Aware Throttling 527

e.g., RockYou users who select a password like "my-
rockyou1." By contrast, password strength meters and
models tend to underestimate the popularity of server-
specific passwords. An attacker who knows that the fre-
quency of server-specific passwords is regularly under-
estimated can guess these passwords to maximize its
chances of success (see discussion of the password knap-
sack problem below).

5.4 Modeling the Attacker

The final component of our simulation is a model of the
attacker. We take a conservative approach and model
an untargeted attacker with complete knowledge of the
password distribution. Following Kerckhoff’s principle,
we also assume that the attacker has access to the com-
plete description of the DALock mechanism (e.g., K and
Ψ). In particular, for any password pw, we assume that
the attacker knows both the true probability P (pw) and
the estimated probability p(pw). We also assume that
the attacker is given the complete sequence of login
times tu1 ≤ tu2 ≤ . . . ≤ 24 × 180 for each user u over a
180-day time span as well as the outcome of each, e.g.,
at time tui user u will login successfully after 2 incorrect
attempts. Finally, we assume the attacker can infer the
strike threshold and hit count threshold for any user u
at any time t because they are given the complete se-
quence of login times and outcomes. We use Ku,t (resp.
Ψu,t) to denote the strike (resp. hit count) threshold on
user u’s account at time t, assuming that the attacker
does not submit any of their own guesses.

Remark: We conservatively aim to overestimate
the capabilities of an untargeted online attacker. In
practice, the online attacker will be able to approxi-
mate P (pw) and p(pw) over time by interacting with
the DALock server, e.g., by setting up dummy accounts
to test many times. Similarly, the attacker would not
necessarily know/predict the exact login times and out-
comes for a user. However, this conservative assumption
makes it feasible to precisely characterize the optimal
behavior of an attacker. In practice, an online attacker
might wait several days in between guesses to avoid acci-
dentally locking the user’s account based on the number
of consecutive incorrect login attempts.
Optimizing Attack Strategies The attacker aims
to maximize the probability of cracking each password
within the fixed 180-day time span. For example, the
attacker might try to find a popular password pw where
the ratio p(pw)

P(pw) is small so that the increased hit count is
smaller than intended when it fails. We formalize the at-
tacker’s optimal strategy in terms of the Password Knap-

sack problem (PK). Unsurprisingly, the password knap-
sack problem turns out to be NP-hard(see full version
of the paper), but there are several heuristic algorithms
the A can use to achieve nearly optimal results in prac-
tice.

Supposing that the attacker wishes to avoid lock-
ing down the user’s account before a particular time
t, then the cumulative (estimated) probability of all
guesses submitted before that time should be at most
Ψ′u,t := Ψ−Ψu,t. Similarly, we letM(t) denote the max-
imum number of guesses that the attacker can sneak in
over the first t hours without locking down the account,
i.e., because Ku,t′ ≥ K at some time t′ ≤ t. (Recall Ku
resets whenever u login successfully).

Fixing a time parameter t, the attacker’s goal is to
find a subset St ⊆ P of M(t) passwords to guess such
that ∑

pw∈St

p(pw) ≤ Ψ′u,t . (1)

After checking the passwords in St the attacker can still
guess one more password pwhold 6∈ St before the account
is locked down. Given a set St and a holdout password
pwhold 6∈ St the probability that the attacker succeeds
is

P (pwhold) +
∑
pw∈St

P (pw) . (2)

Thus, the goal of the attacker is to find a subset St of
size |St| ≤M(t) maximizing their success rate (equation
2) subject to the constraints in equation 1.
Password Knapsack Problem Given a pass-
word dictionary {pw1, . . . , pwn} we formally define the
Password Knapsack(PK) problem as the following in-
teger program with indicator variables si ∈ {0, 1} and
li = {0, 1} for each password pwi. The attackers goal is
to select a holdout password and a separate subset of
M (= M(t)) passwords with total ‘weight’ (hit count)
at most Ψ′ (= Ψ′u,t)

max
∑
i

(si + li) · P (pwi)

s.t. (1)
∑
i si · p(pwi, σ)) ≤ Ψ′ (2)

∑
i si ≤M

(3)
∑
i li ≤ 1 (4) ∀i li + si ≤ 1

(5) ∀i, si, li ∈ {0, 1}

Intuitively, setting si = 1 means pwi is selected to be
placed in the “password knapsack" S ⊆ P, i.e., to be
used for dictionary attack. Setting li = 1 indicates that
password pwi is used as a holdout password. The con-
straints ensure that |S| ≤ M and we pick exactly one
holdout password that is not already in S.

DALock: Password Distribution-Aware Throttling 528

Solving the Password Knapsack To maximize the
number of cracked passwords, an online attacker can
compute M(t) and Ψ′u,t := Ψ − Ψu,t for each time t ≤
24×180 and solve the corresponding Password Knapsack
problem. Given optimal solutions (pw∗hold,t, S∗t) for each
time t, the attacker will pick the solution that maxi-
mizes the number of cracked passwords as in equation
2. Notice that the calculations above need to be repeated
for each user u since the valuesM(t) and Ψ′u,t may vary
due to different visitation schedules.

The Password Knapsack problem is NP-hard as we
prove in the full version of the paper via a straightfor-
ward reduction from Subset Sum. In all of the instances,
we considered we found that the holdout password’s op-
timal choice was simply pw1, the most likely password in
the distribution. Once we fix our holdout password, our
problem reduces to the two-dimensional knapsack prob-
lem. Assuming P 6= NP the two-dimensional knapsack
problem does not even admit a polynomial-time approx-
imation scheme (PTAS) [27] in contrast to the regular
knapsack problem, which has a fully polynomial-time
approximation scheme (FPTAS)). Thus, we consider two
heuristic approaches to solve PK: Dantizig’s Algorithm
Based[14] approach (DAB) and Feasible Most Promising
Password First approach(FMPPF).

DAB sorts passwords PΠ̃ = {pw2, . . . pwn} based on
the how much they are underestimated, i.e., P(pwi)

p(pwi) , and
selects guesses based on such sorted order until either
M passwords are selected or adding the next password
to the knapsack would exceed capacity Ψ′. FMPPF sorts
the passwords differently by using the true probability
P (pwi) and FMPPF simply selects password pw in sorted
order. More detailed discussion can be found in the full
version of our work. Intuitively, FMPPF (resp. DAB) will
perform better whenM (resp. Ψ′) is the (major) limiting
constraint.

We found that FMPPF generally performs better
than DAB despite its simplicity. Besides, our simulation
shows that FMPPF’s performance is close to optimal.
Practically speaking, one generally expects p(pwi) ≈
P (pwi), especially when pwi is a popular password.
Thus, DAB can hardly gain advantages from underesti-
mation. Furthermore, imagine one bucket of passwords
by probability ranges, there are plenty of passwords
in each bucket. Intuitively, picking passwords ordered
by P (pwi) should produce an (almost) optimal solution
(quickly). Thus, we choose to present the results based
on the FMPPF approach.

6 Experimental Results
We empirically evaluated the performance of DALock
under a variety of scenarios. During each simulation,
we had 106 honest users registered on an authentication
server running DALock. We simulate their login behav-
iors (see section 5.2) over a period of 180 days. To ana-
lyze simulated usability, we ran simulations without an
online password attacker and measured unwanted lock-
out rate, i.e., the fraction of user accounts locked due to
honest mistakes. To analyze security, we added an un-
targeted online attacker A (see section 5.4) to the sim-
ulation and measured the fraction of user passwords A
cracked. In our simulations, we do not consider other de-
fenses the authentication server might adopt (e.g., ban-
ning malicious IPs) since our goal is to focus on the
impact of the DALock mechanism.

Figure 3 directly compares the usability/security of
DALock for a fixed banlist size B = 104 as the hit count
threshold Ψ varies. Similarly, Figure 4 (resp. Figure 5)
highlights the security (resp. usability) of DALock as the
banlist size varies holding the DALock parameters k = 10
and Ψ constant. We repeat the simulation instantiating
the DALock frequency oracle with a differentially pri-
vate count sketch, ZXCVBN, HashCat, Markov, Neural
Networks, PCFG, and Min (a combination of HashCat,
Markov, Neural Networks, and PCFG).
Baseline We used the classical 3-strikes mechanism,
which offers great security and the 10-strikes mecha-
nism, which offers close-to-zero unwanted lockout, (rec-
ommend by Brostoff et al. [8] to improve usability) as
baselines for comparisons. We exclude the K=5-Strike
mechanism[33] from our results since K=3 offers strictly
better security and K=10 offers strictly better usabil-
ity than 5-Strikes. Our simulations demonstrate (10,Ψ)-
DALock achieves better security than 3-strikes and com-
parable usabilility as 10-strikes. Notice that these two
mechanisms are equivalent to (3,Ψ = ∞)-DALock and
(10,Ψ =∞)-DALock respectively.

6.1 Usability/Security Tradeoff

While decreasing the hit count parameter Ψ improves
security it also can have an adverse impact on usabil-
ity. Figure 3 directly compares the usability/security
of DALock fixing the banlist size B = 104, k = 10 and
varying Ψ to measure the % of cracked passwords (resp.
% locked users) when the simulation includes (resp. ex-
cludes) an online attacker. Legend entries are in the for-

DALock: Password Distribution-Aware Throttling 529

Fig. 3. Usability/Security Tradeoff of DALock with (B = 104)

Fig. 4. Security Measurement of DALock

Fig. 5. Usability Measurement of DALock

mat FrequencyOracle(k) where we fixed the strike pa-
rameter k = 10 in each of our simulations (excluding
the 3-strike mechanism). In the appendix we repeated
each simulations with different ban-list sizes to show
how DALock performs when the authentication server
requires users to pick stronger passwords — e.g., see
Appendix, Figures 7.

Our results indicate that one can improve both secu-
rity and usability by replacing the classic 3-strikes throt-
tling mechanism with (10,Ψ)−DALock with a properly
configured Ψ. Figure 3 demonstrates that DALock of-
fers a superior usability/security tradeoff when instan-
tiated with a suitable frequence oracle i.e., 0.1-CS-all
and ZXCVBN. Similarly, our results demonstrate that
(10,Ψ)-DALock achieves comparable usability to classic

10-strikes throttling mechanism while providing much
stronger security guarantees.

DALock performs best when instantiated with the
differentially private count sketch (0.1-CS-all). We use
the notation ε-CS-all(resp. ε-CS-X%) to refer to an ε-
differentially private count sketch trained on the entire
dataset DU (resp. a dataset DUX% obtained by sampling
X% of user passwords from DU). Training the differeren-
tially private count-sketch on 1% of the data is effective
for larger datasets such as RockYou and 000webhost,
but the usability/security curve is inferior for smaller
datasets such as bfield and brazzers. The performance
of DALock when instantiated with other frequency ora-
cles is incomparable to the classic 3-strikes mechanism

DALock: Password Distribution-Aware Throttling 530

i.e., we can always set Ψ to improve security, but this
occasionally results in inferior usability.

6.2 Impact of Ban-List Size

We demonstrate the usability/security impact of the
ban-list size B ∈ {0, 5, 10, 100, 1000, 10000, 100000} hold-
ing the other DALock parameters k = 10 and Ψ constant.
We restricted our attention to ban-list size B ≤ 105

as larger ones often require more than half of users to
change their password in response, e.g., see Figure 2
shows that banning 105 passwords will already annoy
approx. 10% to 50% of users during account creation.

Our main simulation results are summarized in Fig-
ure 4 (for security) and Figure 5 (for usability). The
X-axis of each figure corresponds to the ban-list sizes
(where B = 0 means there is no ban-list). And the Y-
axis corresponds to the metric score (compromised user
accounts (%) / unwanted lockout rate (%)) measured
after 180 days.
Implementation Details In Figures 4 and 5 we
focus on the following (hand-picked) instantiations of
DALock: 3-strikes(k:3, Ψ: ∞), 10-strikes(k:10, Ψ: ∞),
0.1-CS-all(k:10, Ψ:2−10.0), 0.1-CS-5%(k:10, Ψ:2−10.0),
ZXCVBN(k:10, Ψ:2−9.0), Min(k:10, Ψ:2−7.0), Hash-
cat(k:10, Ψ:2−9.0), Markov(k:10, Ψ:2−8.0), Neural-
Net(k:10, Ψ:2−8.0), and PCFG(k:10, Ψ:2−8.0). Legend
entries are in the format FrequencyOracle(k,Ψ) where k
and Ψ are the DALock throttling parameters (with the
exception of the 3-strikes mechanism we fixed k = 10
in all other simulations). Figures 4 and 5 highlight the
performance of DALock for handpicked Ψ parameters
(e.g., Ψ = 2−10 for differentially private count sketch).
Additional plots in the appendix explore the impact of
the privacy budget ε on the Count-Sketch frequency ora-
cle as well the effect of smaller/larger subsampling rates.
To save space Figures 4 and 5 only show results for
the RockYou, 000webhost and bfield datasets while re-
sults for the brazzers, csdn and clixsense datasets can
be found in the appendix (see Figures 8 and 9).
Usability Firstly, Figure 5 clearly demonstrates the
unwanted lockout rate of (10,Ψ)-DALock is substan-
tially lower than the traditional 3-strikes mechanism.
This result held robustly across all datasets irrespective
of ban-list size and selection of frequency oracles. For
example, on the CSDN dataset, the unwanted lockout
rate is 4.0% for 3-strikes and just 0.5% for CS-all even
when no ban-list is used (B = 0).

Secondly, we find that increasing the ban-list size
B reduces the unwanted lockout rate for DALock. e.g.,

from 2.56% to 0.08% for 0.1-CS-all after banning 1000
passwords from bfield. Thus, while larger B values might
annoy users during the account creation process, they
positively impact the lockout rate. For instance, setting
B = 105 makes all DALock implementations achieve 10-
strikes level lockout rate, i.e., ≈ 0%. While the unwanted
lockout rate for DALock is negatively correlated with
B we note that the lockout rate for the traditional K-
strikes mechanism is uncorrelated with B since the hit-
count is ignored. The lockout rate was approximately
4% (3-strikes) and 0% (10-strikes) for all datasets and
ban-list sizes B.

Finally, we found that subsampling minimally af-
fects the usability of CS-based DALock especially when
trained on a larger dataset. In fact, when the dataset
is small, the usability is often improved. For instance,
based on the usability plot of bfield, the unwanted lock-
out rate of 0.1-CS-5% is 1.25%, which is marginally bet-
ter than 0.1-CS-all (1.34%). On larger datasets such as
csdn and 000webhost this difference becomes negligi-
ble (< 0.0001%). To understand why usability improves
on smaller datasets we remark that subsampling often
causes count sketches to underestimate password fre-
quency (for undersampled passwords) which means that
it will often take longer to reach the hit count threshold
Ψ. However, for the same reason, subsampling can neg-
atively impact security when the dataset was already
small (see section 6.1).
Security When we implement DALock with a dif-
ferentially private count sketch (ε=0.1-CS-all(k,Ψ) or
ZXCVBN, we find that the total number of compromised
accounts is strictly lower in comparison to the strin-
gent 3-strikes mechanism. This result holds robustly
for all datasets and all ban-list sizes. We further re-
mark that (10,Ψ)-DALock will always outperform the
traditional 10-strikes mechanism, which is equivalent
to (10, ∞)-DALock. As a concrete example, consider
the CSDN dataset. When B=0 and the authentica-
tion server adopts the 3-strikes mechanism, an attacker
compromises approximately 5.8% of user accounts com-
pared with 1.4% when adopting DALock (0.1-CS-all
with parameters) or 4.6% when we instantiate with
ZXCVBN. As a second concrete example, when we ban
the top B=1000 password from bfield, then the at-
tacker compromises 0.536% (resp. 0.08%) of user ac-
counts when adopting the traditional 3-strikes mech-
anism (resp. DALock with a differentially private count
sketch). Recall that the usability of DALock is also vastly
superior to our 3-strikes mechanism in this setting.

Secondly, we find that increasing the ban-list size B
decreases the percentage of cracked passwords. This re-

DALock: Password Distribution-Aware Throttling 531

sult holds whether we adopt DALock or the traditional
3-strikes mechanism though DALock (0.1-CS-ALL) con-
tinues to outperform 3-strikes even as the ban-list in-
creases to B=105. In fact, we found that DALock with
no ban-list (B=0) performs as well as 3-strikes with a
larger ban-list of size B=104. Thus, increasing B can
have a positive usability and security impact though this
policy might inconvenience more users during password
registration.

Thirdly, we find that 0.1-CS-5% usually performs as
well as 0.1-CS-all with an exception for smaller datasets
when the ban-list size B is larger. For example, when
we train our count sketch on bfield5%, the security of
DALock is slightly worse than the traditional 3-strikes
mechanism when B >10. This is because we do not have
enough data to build an accurate differentially private
frequency oracle and the attacker can exploit passwords
whose frequencies are underestimated. We also find that
other implementations of DALock (e.g., using frequency
oracles like Neural Networks or Markov Models) often
outperform 3-strikes, but as the ban-list size B grows
larger, this is not always the case.

An observant reader might notice that in Fig 4
(bfield) the % of compromised accounts increased in
some plots when the ban list size increased from B=104

to B = 105. The explanation for this anomolous re-
sult is twofold. First, the bfield dataset is small enough
(0.5 million accounts) that removing the top 100K pass-
words substantially increases the probability of the re-
maining passwords in the empirical distribution. Sec-
ond, as discussed at the bottom of Section 5.3.2 nor-
malization for model based frequency estimators also
shifts at B = 105.

6.3 Summary and Discussion

We find that CS/ZXCVBN-based DALock offers a supe-
rior security/usability tradeoff to the classical K-strikes
mechanism. DALock can also be reasonably instantiated
with password strength models such as Markov Mod-
els, Probabilistic Context-Free Grammars, and Neural
Networks to achieve a reasonable balance between se-
curity and usability. Our simulations also highlight the
security and usability benefits of banning overly popu-
lar passwords given an accurate ban-list. Our analysis
shows that the best security/usability tradeoffs can be
obtained when the most popular passwords are banned
and when the DALock frequency oracle is instantiated
with a differentially private count sketch or ZXCVBN
password strength meter. For large organizations with

at least 0.3 million users, we recommend using a ε=0.1
differentially private count sketch as the frequency or-
acle and deploying (10,Ψ)-DALock with K = 10 strikes
and hit count parameter Ψ ∈ [2−8, 2−10]. For smaller or-
ganizations, we recommend implementing DALock with
ZXCVBN e.g., ZXCVBN(K : 10,Ψ : 2−9).
Limitations Our empirical usability and security re-
sults are all based on simulations. While we aim to
model the authentication server, users, and a power-
ful attacker, there will inevitably be some differences
between the simulated/real-world behavior of the at-
tacker/users. We also remark that our simulations do
not model the behavior of targeted attackers. Extending
DALock to protect against targeted attackers is an im-
portant research question that is beyond the scope of the
current paper. Another future direction of study is to
conduct a longitudinal user studies to confirm the eco-
logical validity of the simulated usability results. Finally,
we remark that larger organizations might distribute the
workload across multiple authentication servers. In this
case maintaining a synchronized state (Ku,Ψu) for each
user u could be challenging. To address this challenge,
it may be necessary to define a relaxation of our DALock
mechanism where the states (Ku,Ψu) on each authen-
tication server are not always assumed to be perfectly
synchronized.
Locking Accounts vs Blocking IPs In our simulated
evaluation of DALock we assume that each user account
u is locked if the hit count Ψu exceeds the threshold
Ψ (or if the consecutive strike threshold K is reached).
An alternative (more lenient) implentation of DALock
would instead maintain the state (Ku,ip,Ψu,ip) for each
distinct user/IP pair (u, ip) where Ψu,ip (resp. Ku,ip)
tracks the total hit count (resp. consecutive incorrect
guesses) for all guesses submitted from the IP address
ip against user u. Under this alternate approach we
could block a (malicious) ip address from attemting to
login to account u once Ψu,ip exceeds the threshold Ψ.
One advantange of this approach is that it is less vulner-
able to denial of service attacks and we are less likely to
lockout the legitimate user who will (most likely) have
a different IP address. Furthermore, this approach may
be easier to implement in a distributed setting as the
servers do not need to synchronize the state (Ku,Ψu) for
each user — instead each authentication server would
independently maintain the value (Ku,ip,Ψu,ip) for IP
addresses in its service area. On the downside block-
ing individual IP addresses instead of accounts allows
an distributed online attacker to launch coordinated at-
tacks from multiple different IP addresses (e.g., through
botnets) increasing the the risk to each user account.

DALock: Password Distribution-Aware Throttling 532

Acknowledgements
Jeremiah Blocki was supported in part by NSF
CAREER Award #2047272 and by NSF Award
CNS#1755708. Wuwei Zhang was supported in part by
a grant from Purdue Research Foundation. A prelimi-
nary draft of this paper was presented at WAY 2019.
The authors thank anonymous PC members and shep-
herd Daniel Votipka for feedback that improved the pre-
sentation of this paper.

References
[1] Wenjie Bai, Jeremiah Blocki, and Ben Harsha. 2021. Pass-

word Strength Signaling: A Counter-Intuitive Defense
Against Password Cracking. In Decision and Game Theory
for Security, Branislav Bošanský, Cleotilde Gonzalez, Ste-
fan Rass, and Arunesh Sinha (Eds.). Springer International
Publishing, Cham, 334–353.

[2] Jeremiah Blocki, Manuel Blum, and Anupam Datta. 2013.
Naturally Rehearsing Passwords. In Advances in Cryptology
– ASIACRYPT 2013, Part II (Lecture Notes in Computer
Science, Vol. 8270), Kazue Sako and Palash Sarkar (Eds.).
Springer, Heidelberg, Germany, Bengalore, India, 361–380.
https://doi.org/10.1007/978-3-642-42045-0_19

[3] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau.
2016. Differentially Private Password Frequency Lists. In
ISOC Network and Distributed System Security Symposium
– NDSS 2016. The Internet Society, San Diego, CA, USA.

[4] Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. 2018.
On the Economics of Offline Password Cracking. In 2018
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, San Francisco, CA, USA, 853–871. https:
//doi.org/10.1109/SP.2018.00009

[5] Jeremiah Blocki, Saranga Komanduri, Ariel Procaccia, and
Or Sheffet. 2013. Optimizing password composition poli-
cies. In Proceedings of the fourteenth ACM conference on
Electronic commerce. ACM, 105–122.

[6] Joseph Bonneau. 2012. The Science of Guessing: Analyzing
an Anonymized Corpus of 70 Million Passwords. In 2012
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, San Francisco, CA, USA, 538–552. https:
//doi.org/10.1109/SP.2012.49

[7] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and
Frank Stajano. 2012. The Quest to Replace Passwords: A
Framework for Comparative Evaluation of Web Authenti-
cation Schemes. In 2012 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, San Francisco, CA,
USA, 553–567. https://doi.org/10.1109/SP.2012.44

[8] Sacha Brostoff and Angela Sasse. 2003. Ten strikes and
you’re out: Increasing the number of login attempts can
improve password usability. (07 2003).

[9] Elie Bursztein, Steven Bethard, Celine Fabry, John C.
Mitchell, and Daniel Jurafsky. 2010. How Good Are Hu-
mans at Solving CAPTCHAs? A Large Scale Evaluation. In

2010 IEEE Symposium on Security and Privacy. IEEE Com-
puter Society Press, Berkeley/Oakland, CA, USA, 399–413.
https://doi.org/10.1109/SP.2010.31

[10] Elie Bursztein, Matthieu Martin, and John C. Mitchell.
2011. Text-based CAPTCHA strengths and weaknesses.
In ACM CCS 2011: 18th Conference on Computer and Com-
munications Security, Yan Chen, George Danezis, and Vitaly
Shmatikov (Eds.). ACM Press, Chicago, Illinois, USA, 125–
138. https://doi.org/10.1145/2046707.2046724

[11] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton.
2002. Finding Frequent Items in Data Streams. In ICALP
2002: 29th International Colloquium on Automata, Lan-
guages and Programming (Lecture Notes in Computer Sci-
ence, Vol. 2380), Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan Eiden-
benz, and Ricardo Conejo (Eds.). Springer, Heidelberg, Ger-
many, Malaga, Spain, 693–703. https://doi.org/10.1007/3-
540-45465-9_59

[12] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari
Juels, and Thomas Ristenpart. 2016. pASSWORD tY-
POS and How to Correct Them Securely. In 2016 IEEE
Symposium on Security and Privacy. IEEE Computer
Society Press, San Jose, CA, USA, 799–818. https:
//doi.org/10.1109/SP.2016.53

[13] Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha
Chowdhury, and Thomas Ristenpart. 2017. The TypTop
System: Personalized Typo-Tolerant Password Checking. In
ACM CCS 2017: 24th Conference on Computer and Com-
munications Security, Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press,
Dallas, TX, USA, 329–346. https://doi.org/10.1145/3133
956.3134000

[14] George B Dantzig. 1957. Discrete-variable extremum prob-
lems. Operations research 5, 2 (1957), 266–288.

[15] Cynthia Dwork. 2011. Differential privacy. Encyclopedia of
Cryptography and Security (2011), 338–340.

[16] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N. Roth-
blum, and Sergey Yekhanin. 2010. Pan-Private Stream-
ing Algorithms. In ICS 2010: 1st Innovations in Computer
Science, Andrew Chi-Chih Yao (Ed.). Tsinghua University
Press, Tsinghua University, Beijing, China, 66–80.

[17] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
2014. RAPPOR: Randomized Aggregatable Privacy-
Preserving Ordinal Response. In ACM CCS 2014: 21st
Conference on Computer and Communications Secu-
rity, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.).
ACM Press, Scottsdale, AZ, USA, 1054–1067. https:
//doi.org/10.1145/2660267.2660348

[18] Dinei Florencio and Cormac Herley. 2007. A large-scale
study of web password habits. In Proceedings of the 16th
international conference on World Wide Web. ACM, 657–
666.

[19] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Big-
gio, and Giorgio Giacinto. 2016. Who Are You? A Statistical
Approach to Measuring User Authenticity. In ISOC Network
and Distributed System Security Symposium – NDSS 2016.
The Internet Society, San Diego, CA, USA.

[20] ghacks 2011. Amazon Login May Accept Password Variants.
https://www.ghacks.net/2011/01/31/amazon-login-may-
accept-password-variants/

https://doi.org/10.1007/978-3-642-42045-0_19
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1109/SP.2010.31
https://doi.org/10.1145/2046707.2046724
https://doi.org/10.1007/3-540-45465-9_59
https://doi.org/10.1007/3-540-45465-9_59
https://doi.org/10.1109/SP.2016.53
https://doi.org/10.1109/SP.2016.53
https://doi.org/10.1145/3133956.3134000
https://doi.org/10.1145/3133956.3134000
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://www.ghacks.net/2011/01/31/amazon-login-may-accept-password-variants/
https://www.ghacks.net/2011/01/31/amazon-login-may-accept-password-variants/

DALock: Password Distribution-Aware Throttling 533

[21] Maximilian Golla, Daniel V Bailey, and Markus Dürmuth.
2017. " I want my money back!" Limiting Online Password-
Guessing Financially.. In SOUPS.

[22] Maximilian Golla and Markus Dürmuth. 2018. On the Ac-
curacy of Password Strength Meters. In ACM CCS 2018:
25th Conference on Computer and Communications Secu-
rity, David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada,
1567–1582. https://doi.org/10.1145/3243734.3243769

[23] Ariel Gordon and Richard Allen Lundeen. 2014. Efficiently
throttling user authentication. US Patent 8,898,752.

[24] C. Herley and P. Van Oorschot. 2012. A Research Agenda
Acknowledging the Persistence of Passwords. IEEE Security
Privacy 10, 1 (Jan 2012), 28–36. https://doi.org/10.1109/
MSP.2011.150

[25] Dmitry Kogan, Nathan Manohar, and Dan Boneh. 2017.
T/Key: Second-Factor Authentication From Secure Hash
Chains. In ACM CCS 2017: 24th Conference on Computer
and Communications Security, Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM
Press, Dallas, TX, USA, 983–999. https://doi.org/10.114
5/3133956.3133989

[26] Saranga Komanduri, Richard Shay, Patrick Gage Kelley,
Michelle L Mazurek, Lujo Bauer, Nicolas Christin, Lor-
rie Faith Cranor, and Serge Egelman. 2011. Of passwords
and people: measuring the effect of password-composition
policies. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. ACM, 2595–2604.

[27] Ariel Kulik and Hadas Shachnai. 2010. There is no EPTAS
for two-dimensional knapsack. Inform. Process. Lett. 110, 16
(2010), 707–710.

[28] David Malone and Kevin Maher. 2012. Investigating the
distribution of password choices. In Proceedings of the 21st
international conference on World Wide Web. ACM, 301–
310.

[29] William Melicher, Blase Ur, Sean M. Segreti, Saranga Ko-
manduri, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cra-
nor. 2016. Fast, Lean, and Accurate: Modeling Password
Guessability Using Neural Networks. In USENIX Security
2016: 25th USENIX Security Symposium, Thorsten Holz
and Stefan Savage (Eds.). USENIX Association, Austin, TX,
USA, 175–191.

[30] Moni Naor, Benny Pinkas, and Eyal Ronen. 2019. How to
(not) Share a Password: Privacy Preserving Protocols for
Finding Heavy Hitters with Adversarial Behavior. In ACM
CCS 2019: 26th Conference on Computer and Commu-
nications Security, Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press,
1369–1386. https://doi.org/10.1145/3319535.3363204

[31] Benny Pinkas and Tomas Sander. 2002. Securing Pass-
words Against Dictionary Attacks. In ACM CCS 2002: 9th
Conference on Computer and Communications Security,
Vijayalakshmi Atluri (Ed.). ACM Press, Washington, DC,
USA, 161–170. https://doi.org/10.1145/586110.586133

[32] prowebscraper. 2019. Top 10 Captcha Solving Services
Compared. https://prowebscraper.com/blog/top-10-
captcha-solving-services-compared/

[33] Karen Renaud, Rosanne English, Thomas Wynne, and Flo-
rian Weber. 2014. You Have Three Tries Before Lockout.
Why Three?.. In HAISA. 101–111.

[34] Ravi Sandhu, Colin Desa, and Karuna Ganesan. 2005. Sys-
tem and method for password throttling. US Patent
6,883,095.

[35] Stuart Schechter, Cormac Herley, and Michael Mitzen-
macher. 2010. Popularity is everything: A new approach
to protecting passwords from statistical-guessing attacks. In
Proceedings of the 5th USENIX conference on Hot topics in
security. USENIX Association, 1–8.

[36] Stuart Schechter, Yuan Tian, and Cormac Herley. 2019.
StopGuessing: Using guessed passwords to thwart online
guessing. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 576–589.

[37] S Schecter and C Herley. 2016. The Binomial Ladder Fre-
quency Filter and its Applications to Shared Secrets. MSR-
TR-2018-18 (2016).

[38] Apple Differential Privacy Team. [n.d.]. Learning with Pri-
vacy at Scale. https://machinelearning.apple.com/2017/1
2/06/learning-with-privacy-at-scale.html Retrieved 25, Apr.
2019.

[39] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin,
Lorrie Faith Cranor, Saranga Komanduri, Darya Kurilova,
Michelle L. Mazurek, William Melicher, and Richard Shay.
2015. Measuring Real-World Accuracies and Biases in Mod-
eling Password Guessability. In USENIX Security 2015: 24th
USENIX Security Symposium, Jaeyeon Jung and Thorsten
Holz (Eds.). USENIX Association, Washington, DC, USA,
463–481.

[40] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John
Langford. 2003. CAPTCHA: Using Hard AI Problems for
Security. In Advances in Cryptology – EUROCRYPT 2003
(Lecture Notes in Computer Science, Vol. 2656), Eli Biham
(Ed.). Springer, Heidelberg, Germany, Warsaw, Poland, 294–
311. https://doi.org/10.1007/3-540-39200-9_18

[41] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David
Abraham, and Manuel Blum. 2008. recaptcha: Human-based
character recognition via web security measures. Science
321, 5895 (2008), 1465–1468.

[42] Ding Wang, Haibo Cheng, Ping Wang, Xinyi Huang, and
Gaopeng Jian. 2017. Zipf’s law in passwords. IEEE Trans-
actions on Information Forensics and Security 12, 11 (2017),
2776–2791.

[43] Ding Wang, Gaopeng Jian, Xinyi Huang, and Ping Wang.
2014. Zipf’s Law in Passwords. Cryptology ePrint Archive,
Report 2014/631. http://eprint.iacr.org/2014/631.

[44] Ding Wang and Ping Wang. 2016. On the Implications
of Zipf’s Law in Passwords. In ESORICS 2016: 21st Eu-
ropean Symposium on Research in Computer Security,
Part I (Lecture Notes in Computer Science, Vol. 9878),
Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Kat-
sikas, and Catherine A. Meadows (Eds.). Springer, Hei-
delberg, Germany, Heraklion, Greece, 111–131. https:
//doi.org/10.1007/978-3-319-45744-4_6

[45] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi
Huang. 2016. Targeted Online Password Guessing: An
Underestimated Threat. In ACM CCS 2016: 23rd Confer-
ence on Computer and Communications Security, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna,
Austria, 1242–1254. https://doi.org/10.1145/2976749.2978
339

https://doi.org/10.1145/3243734.3243769
https://doi.org/10.1109/MSP.2011.150
https://doi.org/10.1109/MSP.2011.150
https://doi.org/10.1145/3133956.3133989
https://doi.org/10.1145/3133956.3133989
https://doi.org/10.1145/3319535.3363204
https://doi.org/10.1145/586110.586133
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://doi.org/10.1007/3-540-39200-9_18
http://eprint.iacr.org/2014/631
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1145/2976749.2978339
https://doi.org/10.1145/2976749.2978339

DALock: Password Distribution-Aware Throttling 534

[46] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh
Jha. 2017. Locally Differentially Private Protocols for Fre-
quency Estimation. In USENIX Security 2017: 26th USENIX
Security Symposium, Engin Kirda and Thomas Ristenpart
(Eds.). USENIX Association, Vancouver, BC, Canada, 729–
745.

[47] Daniel Lowe Wheeler. 2016. zxcvbn: Low-Budget Pass-
word Strength Estimation. In USENIX Security 2016: 25th
USENIX Security Symposium, Thorsten Holz and Stefan
Savage (Eds.). USENIX Association, Austin, TX, USA, 157–
173.

[48] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu,
Yansong Feng, Pengfei Xu, Xiaojiang Chen, and Zheng
Wang. 2018. Yet Another Text Captcha Solver: A Gener-
ative Adversarial Network Based Approach. In ACM CCS
2018: 25th Conference on Computer and Communications
Security, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON,
Canada, 332–348. https://doi.org/10.1145/3243734.
3243754

A Simulating Users’ Mistakes
In this section, we include the complete flowchart used
to simulate typos and recall errors — see figure 6. The
first node in the flowchart simulates recall errors, and
we set this probability to be 2.4%, a number we derived
based on empirical data from [12, 13]. When simulat-
ing a recall error we randomly select pw′ from one of
the five other passwords we previously selected for our
simulated user (the passwords represent the user’s other
accounts). At this point in the flow chart we simulate
whether or not the user miss-types his intended pass-
word (5%) or enters it in correctly (95%) — the number
5% was derived from empirical data collected in [12, 13].
When simulating a typo we further follow the empiri-
cal data in Table 2. Notice that our simulated user can
make both mistakes. e.g., recall the wrong password pw’
and misstype the password pw’.

For example, suppose that the user’s actual pass-
word is letmein. The simulated user will recall the
correct password and type it correctly with probabil-
ity 0.976 × 0.95 ≈ 0.927, and the simulated user will
enter LETMEIN (CAPSLOCK error) with probability
0.976× 0.05× 0.04 ≈ 0.002. Suppose that the simulated
user has 5 other passwords and one of them is 123456.
In this case the simulated user would enter 123456 with
probability 0.024 × (1/5) × 0.95 ≈ 0.0046 — the (1/5)
term is the conditional probability of recalling 123456
when simulating a recall error.

Login

Attempt

Recall

different

password pw’

w.p. 2.4%

Typo pw’

w.p. 5%

Transposition

w.p. 4%

CAPLOCK

w.p. 14%

Others

w.p. 8%

Type pw’

correctly

w.p. 95%

Recall

Correct

Password pw

w.p. 97.6%

Typo pw

w.p. 5%

Type pw

correctly

w.p. 95%

Transposition

w.p. 4%

CAPLOCK

w.p. 14%

Others

w.p. 8%

Fig. 6. Flow Chart for Simulating Users’ mistake

Typo Mistake % (Rounded)
CapLock On 14

Shift First Char 4
One Extra Insertion 12
One Extra Deletion 12

One Char Replacement 31
Transposition 4
Two Deletions 3
Two Insertions 3

Two Replacements 10
Others 8

Table 2. Typo Distributions[13]

B More Experimental Results
In this section, we provide more detailed experimental
results for readers to understand the underlying details
of DALock. Figure 7 plots the unwanted locked rate (us-
ability) vs. compromised accounts (security) for vari-
ous instantiations of DALock as the hit-count parame-
ter varies: Ψ ∈ {2−8, 2−9, 2−10, 2−11, 2−12}. Note: The
plot is similar to Figure 3 except that the banlist size
is B = 103 in Figure 7 while B = 104 in Figure 3. Ad-
ditional experimental plots are available in the full ver-
sion of the paper including usability/security plots for
B ∈ {0, 10, 100, 104, 105, 106}. In the full version, we also
evaluate the performance of the differentially private
count sketch as the privacy budget ε ∈ {0.1, 0.5, 1.0,∞}
and subsampling rate {1%, 5%, 10%, 100%(all)} vary. In-
tuitively, ε = 0.1 provides the strongest privacy guaran-
tee and ε = ∞ indicates no differential privacy. Briefly,
we found that the differentially private count-sketch
performs sufficiently well even when using the smallest
privacy budget ε = 0.1. Thsu, due to space limitations,

https://doi.org/10.1145/3243734.3243754
https://doi.org/10.1145/3243734.3243754

DALock: Password Distribution-Aware Throttling 535

we only show our results with the subsampling rates 5%
and 100% (all) fixing ε = 0.1 (strongest privacy).

Figure 8 (resp. Figure 9) plots the number of com-
promised accounts (resp. number of unwanted lockouts)
vs. banlist size to illustrate the security (resp. usabil-
ity) of DALock under various instantations. The plot is
similar to Figures 4 and 5 from the main body except
that we include additional password datasets and we
evaluate DALock with different hit-count parameters.

We begin by discussing the pros and cons of each
frequency oracle based on our results, and then provide
our recomendations on how to deploy DALock.
PCFG/NeuralNet/Markov/HashCat/Min
When adoping one of these models as a frequency
oracle for DALock one can achieve better usability than
the 3-strikes mechanism as long as Ψ ≥ 2−9. When the
ban-list size |B| is small we find that the the security
is also improved. However, as the ban-list size increases
compromised account rate for 3-strikes drops slightly
below DALock when instantated with a frequency oracle
based on guessing numbers derived from these models
(PCFG/NeuralNet/Markov/HashCat/Min) — security
is still better than the classical 10-strikes mechanism.
Based on these observations we recommend against in-
stantiating DALock with these frequency oracles as one
can obtain better performance with other frequency
oracles.
ZXCVBN If it is not feasible to implement DALock
with a differentially private count sketch we recommend
deploying DALock with Ψ = 2−9 using ZXCVBN as our
frequency oracle. We find that ZXCVBN offers better
security and usability in comparison to the classical 3-
strikes mechanism even when the banlist size B is larger.
Our results show that adopting any Ψ ≤ 2−8 results in
security advantage (compared to the 3-strikes mecha-
nism) across all datasets even with a large ban-list; how-
ever, we do observe that ZXCVBN overestimate many
rare passwords. Thus, we recommend setting Ψ ≥ 2−9

to avoid uncessary lockouts (usability). When setting
Ψ ≥ 2−9 and using a moderately size banlist (e.g.,
B = 103) we find that usability is close to the much-
less-secure 10-strikes mechanism while security is better
than the much-less-usable 3-strikes mechanism.
Differentially Private Count Sketch We find that
usability/security performance of DALock is best when
we implement with a count-sketch frequency oracle pro-
vided that we have sufficient data to train the dif-
ferentially private count-sketch. Tunning Ψ for opti-
mal security/usability trade-off on a differentially pri-
vate Count Sketch is a less challenging task compared
to other frequency oracles. Our results show that 0.1-

CS-all can achieve strictly better security and usabil-
ity than the 3-strikes mechanism for Ψ ∈ [2−8, 2−10]
on all datasets and with all ban-list sizes. In addition,
we observe that 0.1-CS-all reaches approx. 0% lockout
rate if 100 or more passwords are banned when Ψ ∈
[2−8, 2−10]. To investigate how many users one needs to
accurately build a differentially private count sketch, we
train count sketches with subsampled datasets - DU1% ,
DU5% , and DU10% - in addition to DU . Our simulation
results show that lower sampling rates can adversely
impact security as A can take advantage of underesti-
mated passwords. We also observe that 0.1-CS-10%/0.1-
CS-5%/0.1-CS-1% are nearly as accurate as 0.1-CS-all
when we have more than 2/6/32 millions users in the
DU (see clixsense/csdn/RockYou). This result empiri-
cally shows organizations need approx. 0.2-0.3 million
users to train a sufficiently accurate differentially private
Count Sketch. In summary, if the organization has more
than 0.3 million users we recommend deploying DALock
with a ε = 0.1-differentially private count sketch and Ψ
∈ [2−8, 2−10].

Notation Description
(K, Ψ)-DALock DALock with strike threshold K

and hit count threshold Ψ
A Adversary
U A set of Users
u A user u ∈ U
P The set of all potential user Passwords
DU ⊆ P a multiset of N sampled passwords for

users u1, . . . , uN ∈ U
pwu User u’s password
pwr The r’th most likely password in DU ⊆ P
CS Count (Median) Sketch data structure
F (pw,DU) Frequency of password pw in dataset DU
P (pw) Empirical probability of password pw

Estimate(pw) Estimated frequency of password pw

p(pw) Estimated probability of password pw

Ψ Hit count threshold
Ψu Cumulative hit count threshold on u’s account.

The account gets locked out if Ψu exceeds Ψ
K Traditional strike threshold.
Ku Cumulative strike threshold on u’s account.

The account gets locked if Ku exceeds K.

Table 3. Notation Summary

C Encrypted Password Cache
Previously we mentioned that it may be desireable to
maintain an encrypted cache of incorrect login attempts
so that we can avoid unecessarily incrementing Ψu if

DALock: Password Distribution-Aware Throttling 536

Fig. 7. Usability/Security Trade-off(Banlist Size = 1000)

Fig. 8. Security Measurement of DALock (All Datasets)

Fig. 9. Usability Measurement of DALock(All Datasets)

DALock: Password Distribution-Aware Throttling 537

there are many login attempts with the same incorrect
password e.g., the user’s old password. We want to en-
sure that the encrypted password cache can only be de-
crypted when the user provides the correct password. In
this section we briefly review a solution of Chatterjee et
al.[13] as part of their personalized typo corrector.

As described in [13], we can generate a pub-
lic/private key pair (pku,sku) for each user u and de-
rive a symmetric secret key Ku = KDF(pwu) from
the user’s password pwu. The authentication server will
store the public key pku along with a symmetric en-
cryption c = EncKu

(sku) of the corresponding secret
key sku. Now whenever we see an incorrect login at-
tempt pw′ we can encrypt pw′ using the public key pku
and the resulting ciphertext c′ = PKEncpku

(pw′) can
be decrypted when the user provides the correct pass-
word i.e., given pwu we can recover Ku = KDF(pwu),
decrypt sku = DecKu

(c) to recover the secret key sku
and finally decrypt pw′ = PKDecsku

(c′). . However,
since sku, Ku and pwu are not stored on the server the
encrypted cache could only be decrypted when the user
authenticates with the correct password. The encrypted
cache could be used as part of a personalized typo cor-
rector [13] and could also be used to avoid penalizing
repeat mistakes [13, 36]. One potential downside to this
approach is that the cache might inadvertently contain
credentials from other user accounts, making cached
data valuable to the attacker. More empirical studies
would be needed to determine the risks and benefits of
maintaining such a cache.

	DALock: Password Distribution-Aware Throttling
	1 Introduction
	2 Related Work and Background
	3 Preliminaries
	3.1 Notation Summary
	3.2 Count Sketch
	3.3 Differential Privacy

	4 The DALock Mechanism
	4.1 DALock
	4.2 DALock Authentication Server

	5 Experimental Design
	5.1 Experimental Datasets
	5.2 Modeling Users
	5.2.1 Simulating Users’ Password Choices
	5.2.2 Simulating User's Login Patterns
	5.2.3 Simulating Users' Mistakes

	5.3 Modeling the Authentication Server
	5.3.1 Differentially Private Count Sketch Estimator
	5.3.2 Frequency Oracle from Password Models

	5.4 Modeling the Attacker

	6 Experimental Results
	6.1 Usability/Security Tradeoff
	6.2 Impact of Ban-List Size
	6.3 Summary and Discussion

	A Simulating Users' Mistakes
	B More Experimental Results
	C Encrypted Password Cache

