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Abstract: The COVID-19 epidemic has made on-
line video conferencing extremely popular throughout
the world, with many schools, companies and govern-
ment sectors using video conferencing applications (e.g.,
Zoom, Google Meet) in a daily basis. These applications
also provide local or cloud recording services, which al-
low the replay or sharing of video conference record-
ings (VCRs) in a later time. Such convenience, however,
can easily cause infringement of privacy as meeting par-
ticipants’ personally identifiable information (e.g., face,
name, voice) may be exposed to the public without
their awareness or consent. While privacy regulation and
training can help relieve the situation, efficient and effec-
tive tools are also highly desired to protect the privacy-
sensitive users in the VCRs before their public releases.
In this work, we propose the first Privacy-Preserving
Publishing system (ZoomP3) that automatically pro-
cesses video and audio information in VCRs for privacy
protection. Besides leveraging and integrating multiple
state-of-the-art computer vision and audio processing
tools seamlessly into our system, a number of optimiza-
tion algorithms are proposed to improve the scalability
of the system, enabling it to protect the privacy of long
video conferences. We have conducted various tests with
short and long videos, and the results (with online de-
mos) verified that ZoomP3 system is suitable for large-
scale use. It may be applied as an online service, e.g.,
by Zoom, or by large organizations such as universities,
research institutes and government sectors.
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1 Introduction
Due to the impact of the COVID-19 epidemic, more
and more schools, companies, and government sectors
have migrated to work online [1]. Consequently, online
video conferencing has become the main vehicle for peo-
ple to communicate in this special period. While people
enjoy the convenience, online video conference applica-
tions also bring up a number of potential security and
privacy issues [19]. For instance, zoombombing is a fa-
mous security attack, where attackers break into other
people’s zoom rooms and disrupt the meeting by mak-
ing noises or adding insulting annotations to the shared
screen [5, 20]. Keystroke inference attacks [36] are also
reported, where an attacker tries to infer the keystrokes
of a video conference participant from one’s observable
body movements in the video. Security solutions have
also been introduced, e.g., by adding password authen-
tication and waiting rooms, adding end-to-end encryp-
tion, etc.

However, privacy issues have not received sufficient
attention and understanding yet. Different from many
emerging attacks impacting the online conferencing, the
consequences of privacy violations are not immediate.
The potential of privacy leaks may exist for a long time
after the meeting is over, and the victims may not be
aware of the privacy risk. Participants are revealed when
the video recordings are released into public domains
such as YouTube [28]. For example, when schools offer
online courses using Zoom, video conference recordings
(VCRs) can be easily shared among students or posted
on public websites such as YouTube. These videos con-
tain a large amount of facial information about students,
and there is a high potential of privacy-violation once
an attacker collects lots of video data. Moreover, schools
often have privacy rules, stating that if students appear
in a class VCR, one may not share the VCR beyond the
current semester for the purpose of protecting students’
privacy. Consequently, professors are unable to reuse or
disclose videos of online courses that include students.
While this rule solves the student privacy issue, it also
increases the repetitiveness of the professor’s lectures.
It is compelling to have a holistic solution, by which
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neither students’ privacy nor course video sharing is af-
fected.

Actually, a recent study has shown that VCRs are
ideal for attackers to collect user data [28]. If public
VCRs are not protected, an attacker can crawl a large
number of VCRs to extract facial information and cor-
responding participants’ names, determine the partici-
pants’ age and gender through machine learning (ML)
and collect their phone, email, social network account
by searching the name, which will result in a huge
database with participants’ personally identifiable in-
formation (PII). It is an urgent need for an automated
and efficient video privacy-preserving solution.

In practice there are lots of challenges to build a
privacy-preserving system for VCRs. For example, how
can one continuously and automatically locate the sensi-
tive areas in the VCR for privacy-sensitive participants
despite the frequent switching of view modes in an on-
line conference? how can one locate privacy-sensitive
participants in the audio and also the displayed names
of privacy-sensitive participants in the VCRs? how can
one automatically and effectively protect the various
kinds of sensitive information in VCRs? how can one
make the whole process of privacy protection scalable
and also conveniently fix the missed protection from au-
tomatic processing, if any? Although a number of novel
systems have emerged over the years as a result of the
boom in computer vision and computer speech technolo-
gies [26, 31, 34, 35, 37, 39], they have different applica-
tion scenarios, some for surveillance systems, some for
virtual reality systems, and so on. Currently, there is
not an automatic privacy protection solution for online
VCRs.

In this paper, we propose a Privacy-Preserving
Publishing system (ZoomP3) for online VCRs. ZoomP3

system can run on both the user side and on the cloud
as a cloud service. Compared to professional video edi-
tors that need a lot of expertise to edit videos in order
to protect privacy, ZoomP3 system is more user-friendly
by making the system mostly automatic. A number of
performance optimizations (e.g., exploring the visual
similarity of adjacent frames, efficient view switching
detection, parallelization) are introduced to enable the
privacy protection of long videos. We also propose a
semi-automatic patching system, which makes it easy
for users to quickly fix any missed protection due to
the imperfection of computer vision algorithms under-
lying our automatic system. A proof-of-concept system
is implemented and tested in various scenarios. The ex-
perimental results show that ZoomP3 meets the design
goals and helps users generate privacy-protected videos

quickly and efficiently. In summary, this work makes the
following contributions:
– Motivated by the increasing privacy concerns in

prevalent use of online video conferencing, we pro-
pose ZoomP3, a system for efficient and effective
privacy protection of privacy-sensitive participants
in VCRs. To the best of our knowledge, ZoomP3

system is the first system of its kind.
– Besides leveraging and integrating multiple state-of-

the-art computer vision (face detection, face recog-
nition, OCR) and audio processing tools (speaker
diarization) seamlessly into a single system, a num-
ber of optimization algorithms are proposed to im-
prove the scalability of the system, making it possi-
ble to protect the privacy of long video conferences.

– We have conducted various benchmark tests with
short and long videos, and the results (with online
demos [17]) show that ZoomP3 system is feasible
for large-scale use; hence, it may be provided as an
online cloud service.

2 Preliminaries

2.1 Background on Video Encoding and
Video Conferences

A video consists of two tracks, the video track and the
audio track. The two tracks are independent of each
other, but integrated in a single file called a container.
The most commonly used containers are MP4, AVI,
MKV, etc. Containers, however, do not indicate how a
video is organized and encoded, but how to store the en-
coded video in a certain format on the hard drive. Inside
a container there are also some metadata, such as the bit
rate, frame per second (FPS), and length of the video.
As for video encoding formats, the common industrial
standards are H.264, H.265, AV1, etc. These encoding
formats determine the encoding algorithms for video
compression (i.e., how to compress a video frame-by-
frame). The most common audio encoding formats are
MP3, AAC, and the audio track information is stored
inside the same container as the video track informa-
tion. To process video and audio separately, we usually
need to separate the video and audio tracks.

There are typically three display modes in the
recording of a video conference [18], as shown in Fig. 1.
The active speaker view mode (Fig. 1a) displays only the
current speaker’s face in the screen. The second is the
gridview, also called gallery view mode (Fig. 1b), which
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on one screen displays multiple users’ thumbnail views
in a grid layout. The gridview may be dynamic as peo-
ple join or leave the conference at any time and there
is a maximum of number participants on one screen.
When the number of participants in a conference is be-
low the max number, the gridview expands and con-
tracts as participants join and leave the meeting. The
third mode is the shared screen mode (Fig. 1c), which
displays the shared screen of the speaker (e.g., Pow-
erPoint slides). In this mode, the host may also con-
figure the recording settings to record one or multiple
thumbnail views, which are normally shown on the right
side of the shared screen. Irrespective of the mode, the
host may also set up to record participants’ names (also
called display name or name tag) in the recording, which
appear at the bottom left corner of each participant’s
window view. Moreover, a participant may choose a vir-
tual background (Fig. 1d) instead.

Note that although a participant or a host can
choose various kinds of layouts for personal views, the
recorded video layouts are basically the above three
types, which are independent of the personal view
modes chosen by the participants.

(a) Speaker View (b) Grid View

(c) Shared Screen View (d) Virtual Background

Fig. 1. Screenshots from NBC Saturday Night Live (SNL) Zoom
Video [16].

2.2 Application Scenarios

Our system is designed as a generic solution for privacy-
preserving publishing of VCRs. Its input is any kind of
recorded conference videos, recorded by Zoom, Webex,
Google Meet or similar tools, together with small ex-
amples of personally identifiable information (PII) to
be protected. It is a post-processing system instead of
a real-time protection system. Certainly, in the future,

conference recording software may provide certain fea-
tures for better privacy control during the recording
time, but it will be unlikely to address all the PII leakage
problem beforehand in all real-world applications. On
the other hand, while video and audio privacy protection
can be handled by a post-production editor (e.g., Pre-
miere and Audition), post-production editing is a very
time-consuming and labor-intensive task. Our ZoomP3

system aims to automate and speed up the process.
ZoomP3 system has two basic working modes, one

is whitelist mode and the other is blacklist mode. The
whitelist mode fits such application scenarios as online
teaching. A professor, say Bob, may teach a 50-minute
session course via Zoom. After the class, the professor
may need to publish the recorded video to a public web-
site or reuse it for a future semester. To conform to uni-
versity privacy policies, he needs to protect any PII of
the students so that the viewers would not know which
students participated in the class. In this case, Bob can
whitelist himself in the video. Specifically, he may select
a picture of himself in the video and choose a few sec-
onds of lecture that only includes his speech. ZoomP3

will automatically classify all the faces and voices in the
video into two categories: Bob or non-Bob. It will pro-
tect the face and voice of anyone who is not Bob.

The second mode is the blacklist mode, which ap-
plies to the scenario where a participant, say Alice, ex-
plicitly asks the meeting host to remove her PII from the
video. Following the same method by selecting a frame
containing Alice’s face and a few seconds of video seg-
ments including her speech, ZoomP3 system will learn
to identify her in the entire video and protect her PII
accordingly. With the support of the above two basic
working modes, ZoomP3 can also handle the cases when
multiple users need to be blacklisted or whitelisted.
When a user Bob chooses one of the two modes for his
VCR, by default, the other participants who are not
explicitly whitelisted (or blacklisted) will be blacklisted
(or whitelisted).

2.3 Design Goals and Research Challenges

As face and voice information has been widely used
for user authentication or identification, each of them
is considered as PII to be protected in ZoomP3 system.
Besides, some VCRs may also contain name tags of par-
ticipants, which should also be protected.
Threat Model In our threat model, we consider out-
side attackers who crawl and collect VCRs from pub-
lic domains like YouTube to extract the aforementioned
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PII, as described in the recent study [28]. We do not con-
sider an insider attack where an attacker is either a par-
ticipant of the same video conference (e.g., as classmates
or colleagues) or someone with extra knowledge about
a participant (e.g., knowing his/her unique background
or virtual background or clothing). Especially, we con-
sider user-identification attack, by which the outside at-
tacker tries to identify a user by his facial biometric or
name tag, or user-linking attack, by which an outside at-
tacker tries to link users in different videos by accurately
matching their voice signals. We will present the ratio-
nale shortly. With our application scenarios and threat
model in mind, we discuss the specific design goals and
research challenges below.
High Accuracy To protect the PII of privacy-sensitive
users in VCRs, one may apply covering, blurring, mor-
phing, swapping or through other appropriate meth-
ods. In this study, for the purpose of demonstration,
we choose to blur faces, morph voice and cover name
tags of privacy-sensitive users. As image search has be-
come a very powerful tool to identify a person with the
input of a face image if the user has personal photos
posted somewhere (e.g., social networks, personal web-
pages), the exposure of a face in a single video frame
could result in a total failure of protection, even if the
face is protected in all other frames. This can be con-
sidered as an all-or-nothing property for visual privacy.
In other words, false negatives are not tolerable in our
system. On the other hand, we may live with some false
positives, that is, (mistakenly) hiding the faces of public
users (i.e., privacy insensitive people) in a few frames,
although it is unnecessary. The same arguments on false
positives and false negatives also applies to name tag
protection. The high-accuracy protection of sensitive
faces and name tags are necessary for defeating user
identification attack.

However, for efficiency, our current design does not
target very high accuracy on audio information pro-
tection. In the past, fingerprint has been commonly
used for user authentication/identification, and facial
authentication has also been deployed for a few civil ap-
plications such as train/airplane boarding in some coun-
tries. However, as far as we know there is no large-scale
collection of voice biometrics to build an authentica-
tion database that is accessible to the public. Compa-
nies like Google and Amazon may collect some audio
information from their users through their voice assis-
tant devices, such audio information may not be shared
to the public due to privacy laws. On the other hand,
voice-based authentication or identification is mostly for
individual users to log into their smart devices and the

voice biometric is stored securely in the devices. Hence,
we do not assume the attacker can build or steal a large
voice biometric dataset for user identification or lever-
age an existing search engine. We do not consider the
voice based user-identification attack by an outside at-
tacker, but focus on defeating the user-linking attack.
That is, our design goal is to achieve the best protection
accuracy instead of perfect accuracy for audio signals so
that an attacker will not be able to link users in different
videos through automatic matching of voice signals.
High Efficiency Unlike manual video editing, which
is often a very time consuming and tedious process, we
will develop highly efficient automated detection and
protection methods based on deep learning. However,
deep learning algorithms themselves could be very time
consuming, negating their advantages over manual edit-
ing. Therefore, we aim to optimize the performance so
that given a video recording, our privacy protection sys-
tem will finish the processing in a timely fashion. This
will make our system scalable enough to be hosted as a
network service in the cloud to serve many users.

3 System Architecture and
Design

3.1 Architectural Overview

Figure 2 shows the high-level workflow of ZoomP3 sys-
tem. Each rectangle with a solid border is a process-
ing module, each text with an icon is the input and
output of the processing module, and the inside of the
dashed rectangle indicates that this processing is op-
tional. The input video first goes through the module
of target participants selection, where the target partic-

Fig. 2. High Level Workflow of ZoomP3.
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Fig. 3. Video Processing Flow of ZoomP3.

ipant’s facial area and a segment of the target partici-
pant’s voice interval are manually labeled in the original
video. The labeled result and the original video are both
used as input to the privacy protection module, the out-
put is a privacy protected video. Ideally, the privacy pro-
tected video shall have all privacy sensitive participants
protected so that the public cannot identify them by
faces or voices. The privacy protection process is based
on deep learning; however, there is no deep learning
that can guarantee 100% accuracy. Therefore, a semi-
automatic video patching system is added. If the output
video does not protect the privacy sensitive users with
100% accuracy, then the patching system is employed
to patch the video for additional privacy protection.

Figure 3 shows the processing flow of our system.
Given a VCR (e.g., Zoom video), ZoomP3 first sepa-
rates it into the video track and the audio track. The
video track is then processed by our video privacy pro-
tection module, which blurs sensitive faces in all frames,
and the audio track is processed by our audio privacy
protection module, which morphs sensitive voices, re-
spectively. These two processes are executed in paral-
lel. Finally, the system resembles the privacy-protected
video track and the privacy-protected audio track to
output the privacy protected video for direct sharing or
patching (if necessary).

3.2 Video and Audio Separation and
Reassembly

There are a few well-known video encoding formats like
H.264, HEVC, AV1, and audio encoding formats like
AAC and MP3. For instance, Zoom video recording
uses H.264 and AAC encoding. When separating and
reassembling video and audio tracks, if the format of
the original input is different from the output format,
transcoding will happen. Transcoding one format to an-
other format takes a long time. To improve usability and

efficiency, in our system design we make sure transcod-
ing will never happen.

Specifically, even though there are mature video op-
eration libraries (e.g., MoviePy [8]) that can qualify the
separation and reassembling job, they do not process
videos at the low level, so transcoding will happen with
such libraries. In ZoomP3 system, FFmpeg [4] is selected
in the “copy” encoding mode to process videos at a low
level to avoid transcoding.

3.3 Video Processing Module

The goal of our video processing module is to automat-
ically identify the privacy-sensitive participants in the
video and then protect them. To achieve the goal, the
first step is window view segmentation. Each frame is
broken into individual views where each view contains
one participant, no matter whether the frame is in grid
view or speaker view mode. Then in each frame we iden-
tify the exact view where a privacy-sensitive participant
is located, and accordingly protect his/her entire view.
In this way, nothing about this individual will be visible,
hence achieving perfect visual privacy.

Technically, Hoffman transform may be employed,
which is designed to detect specific shapes (in our case
rectangles). However, the Hoffman transform requires
a clear boundary to ensure accuracy, whereas in video
conferencing, all participant views are next to each other
and a view window does not necessarily have a clear
border (e.g., when the background of a user is dark or
the large margins of a user’s view window are black
when a user joins a meeting through phone), so it will
lead to low accuracy when performing window segmen-
tation. We have also considered using heuristics (man-
ually labeling a view to provide view size information
for window segmentation), they do not work in a dy-
namic session where people may join and leave at any
time. Also there are switchings between grid layout and
speaker layout, causing the change of view window size.

Due to the above challenges, instead of protect-
ing the entire view of a privacy-sensitive individual,
ZoomP3 system turns to face detection and recognition
techniques and protect only the faces.

3.3.1 Face Detection, Recognition and Classification

In ZoomP3 system, one of the major design require-
ments is a high face detection/recognition accuracy.
Participants may have different light conditions, differ-
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ent face sizes in the views, change facial expression, and
may keep moving and turning their heads. From privacy
protection point of view, no matter how many partici-
pants (and faces) appear in a video, they fall into two
classes, the sensitive class (S-class) and the public class
(P -class). Depending on the mode of operation (black-
list or whitelist), ZoomP3 system assigns the output of
face recognition to these two classes, and only the faces
in the S-class will be protected later on.

3.3.2 Greedy Backward Processing

An intuitive way for video processing is to process the
video frame-by-frame, where face detection is applied
to each frame of the video, followed by face identifi-
cation. If a sensitive face identified in a frame, it will
be blurred. While it is conceptually simple, frame-by-
frame processing is computationally expensive and very
time consuming. A possible optimization is to leverage
object tracking in videos, which is often more computa-
tionally efficient than continuous object detection. How-
ever, when multiple faces need to be protected (e.g., in
the gridview model), the advantage of object tracking
over continuous objection/identification may disappear.
Moreover, object tracking may fail in some scenarios,
such as switching between gridview mode and speaker
view mode.

We propose a Greedy Backward Processing (GBP)
method for efficient face protection by exploring the pos-
sible similarity between adjacent frames in a conference
video. Specifically, GBP divides a video into groups of
fixed-length L consecutive video frames, and selects one
frame, named keyframe, in each group to represent the
group. Assume the video frame rate is F FPS, then the
time duration of each group Tg is L/F second. For ex-
ample, when F = 30 and L = 6, Tg = 0.2 second. A
keyframe can be any frame in the group as long as all
the groups choose the same relative position (e.g., the
last frame) as their keyframes. Face detection and iden-
tification are only conducted on the keyframe in each
group and a very lightweight heuristic algorithm is ap-
plied to protect the frames between keyframes. Thus,
we drastically reduce the amount of computation.

To quickly get an intuition of our heuristic algo-
rithm, let us assume a simplified scenario with one face
only in each frame. GBP algorithm can be easily ex-
tended to the gridview mode with multiple faces. As-
sume there are two participants, a privacy sensitive par-
ticipant S and a public one P . As mentioned earlier, no
matter how many faces are there in the video, they can

be classified into two classes. When no face is detected
in a frame, the frame is considered as a P frame.

Our GBP algorithm is based on the following obser-
vations. First, as long as group size L is not too large, if
two adjacent keyframes contain the same face, it is rea-
sonable to assume there is no change of faces in between.
Second, if the face is changed either from S to P , or from
P to S in these two keyframes, we can make a conser-
vative estimation by assuming all the non-keyframes in
between contain the face of S instead of P . Because false
positives (i.e., P is mistreated as S) does not affect pri-
vacy or hurt usability in a very short time between two
adjacent keyframes, whereas false negatives (i.e., mis-
treating S as P ) will cause the break of privacy.

In above cases, as long as a keyframe contains
S, GBP will simply protect the same face area as
that of S in all the non-keyframes between S and
its proceeding keyframe as well as between S and
its following keyframe without performing face detec-
tion/identification on them. This is our face protection
rule (R1). Since faces may move slightly in the views
between two adjacent keyframes, we will enlarge the
face areas to be protected (e.g. 1.5 times of the default
face area returned by the underlying face detection al-
gorithm). In Appendix (Section 10.1) we give a running
example of our GBP algorithm with L = 3.

The GBP algorithm is very conservative by assum-
ing all the L− 1 non-keyframes between two keyframes
contain S instead of P whenever one of the two
keyframes contains S. In Appendix (Section 10.2), we
further present two optimization algorithms (based on
binary search algorithm and perceptual hash, respec-
tively) for accurate identification of the non-keyframe
where speaker changes.

3.3.3 Processing in Gridview Mode and Shared
Screen View Mode

Next we explain how GBP algorithm works in the grid-
view mode and shared screen mode. The shared screen
mode can be actually considered as a special case of
gridview mode with one or multiple thumbnail views on
the right side of the shared screen.

GBP algorithm works in the same way in the grid-
view mode as in the speaker view mode except that
in the gridview mode the face detection/identification
algorithms on the keyframes return multiple faces in
different locations of the screen. If a sensitive user is
identified in a grid in the current keyframe, GBP al-
gorithm is applied to this sensitive grid instead of full
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screen in speaker view mode. As a result, the same area
in each of the proceeding L−1 non-keyframes as the de-
tected face area in this sensitive grid will be protected
blindly. Similar to the case of speaker mode, due to the
conservative name of GBP, in the gridview mode over-
protection can happen in this sensitive grid. If there are
multiple sensitive participants, GBP will do the same
to all such participants one-by-one. Our GBP algorithm
works the same when switching between different view
modes happens although the sizes of faces are different
in the gridview mode and the speaker view mode.

3.3.4 Name Tag Protection

The vast majority of online conferencing systems display
a name tag at the bottom left corner of each individual’s
window view. The conference host may select the op-
tion to record name tags in the account settings. Name
tags reveal information about attendees [28]. Especially,
when attendees use their real names, an attacker may
search through many videos to find exactly which con-
ferences a real-name user has participated. As the name
tags vary in content, size and sometimes appear translu-
cently, it is difficult to detect them accurately through
existing object detection methods like matchtemplate()
in OpenCV.

Our solution is to leverage the optical character
recognition (OCR) technology, which, given an image,
outputs all the embedded texts as well as the coordi-
nates of the bounding box for each character (in the
case of English, also for each string of characters). Then,
sensitive names can be identified and protected. Specif-
ically, in the blacklist mode when sensitive names are
given for protection, our system simply searches them
in the OCR-extracted texts in a video frame. When a
match is found, the bounding box of the identified name
is blurred in the frame.

However, it is more challenging to handle the
whitelist mode. The user may provide some names that
should be open to public whereas all other names should
be protected. While it is easy to simply blur all the
text areas except the whitelisted name that is matched
in a frame, it mostly likely destroys the normal textual
contents in a screen, as a screen may contain multi-
ple types of texts in different locations (e.g., texts in
shared screen). To avoid the mistake of over-protection,
we need to tell name tags from the other irrelevant texts.
Our system uses the given name (either for blacklist or
for whitelist) as the anchor to locate other name tags. In
the gridview mode all the name tags are also organized

in grid layout. Based on the location of the anchor name
and its font size, we can heuristically locate the other
name tags in the same row and the same column as the
anchor name, and further repeatedly locate all the other
name tags in the entire screen. We do not use the above
heuristic for grid segmentation because the recording of
name tags is optional, up to the record setting by the
host.

In Zoom, when a participant turns off the camera
but with audio on, the name will typically appear in
the center of the view with black background. A simple
heuristic is adopted to address this corner cases. Based
on our observation, such names are displayed in white
color with font size larger than that of name tags, and
we can detect its black background by checking whether
there are at least 20 black pixels surrounding each side
of the displayed name.

ZoomP3 system does not need to perform OCR
for every frame in a video stream; otherwise, it could
be computationally too expensive. Instead, by treating
each identified name tag as either a P-class or a S-class
object as it treats faces, our system only performs OCR
to the keyframes and uses the same GBP (or BSP) al-
gorithm to protect the name tags in the non-keyframes.
For efficiency, name-tag protection and face protection
are combined in each iteration instead of processing the
entire video twice separately.

3.3.5 Performance Gain Leveraging Parallelism

All our algorithms can be executed in parallel in a multi-
core CPU for higher efficiency. Specifically, suppose we
employ K threads to process a video with group size
L. With the GBP algorithm, in each round a thread
processes one group of frames by applying face detec-
tion/identification on the keyframe in its current group.
Depending on the label (P or S) of its keyframe and that
of the previous keyframe, accordingly it will process the
L−1 non-keyframes in between. Once the current round
is completed, next K groups of frames will be processed
in parallel.

3.4 Audio Processing Module

This module has two major tasks: (T1) classify voices
into two classes (i.e., P-class and S-class), and (T2) pro-
tect the S-class. A key technique to solve T1 is Speaker
Diarization (Diarisation), which is a process to parti-
tion an audio stream with multiple people into homo-
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geneous segments based on speaker identity. Its output
is a list of who-spoke-when [14]. UIS-RNN [42], UIS-
RNN-SML [22] are well-known diarization algorithms
based on RNN. If a video has two speakers, Alice (sensi-
tive) and Bob (public), the above two algorithms collect
lots of audio samples of Alice and Bob as the training
dataset to train a classification model, which outputs
the list of who-spoke-when. Unfortunately, they do not
work when samples are few, because we may have only
one video to process. Furthermore, the training process
often takes a long time, which will hurt user experience.
We need an algorithm that only labels a speaker once
and does not require heavy training. Therefore, our sys-
tem instead adopts Resemblyzer [13] to derive a high-
level representation of a voice through a deep learning
model (e.g., LSTM). Given a small audio segment, it
creates a summary vector (embedding) of 256 values to
summarize the characteristics of the spoken voice. In-
tuitively, we may first divide a given audio stream into
small segments and employ Resemblyzer to extract the
embedding for each segment. Then, we can apply a clus-
tering algorithm such as K-means to cluster these seg-
ments into K groups if the audio is known to contain K
speakers.

However, the above intuitive idea does not solve
task T1 for three reasons. First, it is difficult to pre-
determine the number of speakers in a VCR before us-
ing our system to process it; second, we are dealing with
a binary speaker classification problem, which divides
each audio segment into either the P-class or the S-class,
instead of identifying each individual speaker; third,
given a speaker to be whitelisted or blacklisted, our sys-
tem needs to identify that speaker; that is, speaker iden-
tification is required for some participant(s) but not for
all. To address the above new problems, we propose the
following process to classify speakers.

For each whitelisted (or blacklisted) speaker, say
Bob, we create a reference embedding for him based on
a few seconds of his audio (manually labelled). Then,
the audio stream of the VCR is divided into small seg-
ments, and for each segment (no matter if it contains
one speaker or more), we compute its embedding and
match it with each reference embedding vector. If the
similarity (confidence) score is greater than or equal to
a pre-defined threshold θ, we claim that the segment be-
longs to that reference speaker. The sequential segments
of the same speaker form a sentence, and sentences are
separated by a brief silence.

Here we need to answer two questions: what is the
appropriate segment length and what is the appropriate
threshold θ? Using smaller segment (i.e., more segments

Fig. 4. Visualization of Diarization Result (whitelist mode, seg-
ment length 67ms and θ = 0.7).

per second) will lead to a more accurate diarization re-
sult but introduce more burden on computation. Based
on our empirical study, we find 15 segments per sec-
ond (i.e., 67 ms per audio segment) can balance accu-
racy and efficiency well. Our empirical study also finds
that θ = 0.7 is a good threshold to balance false pos-
itives and false negatives in audio protection. Figure 4
shows an example result of speaker diarization with two
speakers, Alice and Bob. We start by first manually la-
belling an audio segment (a few seconds) for Bob (this
is the whitelist mode, blacklist mode works similarly).
Through diarization, the system reports the confidence
score for Bob on each segment. With θ = 0.7, most of
the segments are predicted accurately.

The example also shows two types of mis-
classifications errors. The first is to mis-classify a P-
class user to a S-class user, resulting in over-protection.
In Fig. 4, the 4th segment has the similarity score 0.6
for Bob, which is below the threshold 0.7, so it will be
protected. The second error is to mis-classify a S-class
user into a P-class user, leading to under-protection. For
the 6th segment in Fig. 4, the system predicts the sim-
ilarity score 0.7 for Bob, but the ground truth is that
this segment belongs to Alice. As a result, this segment
of Alice will not be protected.

To reduce mis-classification errors, the adjacent seg-
ments are used to correct the mis-identified or non-
identified segments in a small gap. This is based on a re-
alistic assumption that speakers rarely speak for a very
short time interval with meaningful and identifiable con-
tent. Therefore, whenever a small gap is detected in a
speaker’s speech, we treat the audio segments in the gap
as that of the speaker. We empirically set the threshold
gap length as 5 segments (i.e., 5/15 = 0.33 second). As
such, the 4th segment will be correctly assigned to Bob.
Moreover, as our segment size is very small, the effect
of such errors would be very small unless the same type
of error lasts in a continuous sequence of segments (e.g.,
a few seconds long).
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Regarding task T2, there are two ways to protect
voice: mute or morph. The mute method is preferable
when the speech of a sensitive user contains the identi-
fiable information of the speaker or of some other sen-
sitive users. The drawback is that it may more or less
disrupt the conversational flow, although this is less of
an issue when sensitive users do not talk much, for ex-
ample, in a low-interaction classroom setting. The voice
morph method has the advantage of preserving the con-
versational flows. There are different ways to change the
voice; for instance, commercial software like Morphvox
Pro [7] can even naturally change voice across genders
and age groups, plus adding vocal effect. In this work,
for the purpose of demonstration, we prototype a sim-
ple and efficient albeit less natural voice change method
in Section 4. Due to its simplicity, this method is not
designed to be cryptographically strong but rather an
obfuscation method to prevent the user-linking attacks
mentioned in our threat model (Section 2.3).

3.5 Semi-Autonomous Video Patching

At present, machine learning or deep learning based
models cannot guarantee an accuracy of 100%. This re-
ality imposes a potential risk to our system in which
perfect face protection is required for privacy-sensitive
users. Therefore, a final patching is needed as the last
defense line to avoid the exposed faces that should be
protected. There are several scenarios in which protec-
tion may fail. First, during face detection, if the system
does not detect any face in a video frame where faces
actually exist, then this is a missed detection. This hap-
pens mostly because a participant’s face is too small
(e.g., far away from the camera in the 7x7 grid layout)
or blurred (due to drastic movement). This may or may
not be a privacy concern depending on the sensitivity
level of the face. It leads to a privacy leakage only for a
sensitive face.

Another type of failure happens due to face recog-
nition errors. As mentioned earlier, each keyframe will
go through face detection/identification, and each face
output from the process is classified into either the P-
class or the S-class (i.e., a binary classification problem).
Our system does not require 100% face recognition ac-
curacy as long as a face is classified into the correct class
(P-class or S-class). If a face of P-class is mis-classified
into S-class (P → S) it will not be a privacy concern al-
though it may degrade the visual effect. If the opposite
S → P happens, however, it will result in privacy leak-
age. The likeliness of protection failure is highly relevant

to the video quality and the movement of the faces in
a video. Moreover, due to the imperfection of speaker
recognition algorithms, protection failures may occur in
the audio channel, although the privacy risk is mostly
less of an issue.

Because of these potential errors, a review and semi-
automatic patching process is introduced as the final
stage of our system. A simple graphic user interface is
developed, which is similar to a video editor to review
and process the video output from the previous pro-
cesses. Two types of effort is made here to minimize
the manual workload for the users. First, based on cer-
tain heuristics, our system will report the areas and the
frames where the protection failures may occur. Users
can review them and fix the problem or ignore them
as false alarms. For instance, if Alice’s face appeared
(especially in a grid) in a keyframe, and there was no
face detected (in the same grid) in the next frame or
next few keyframes, but Alice’s face is detected again
in the next frame after that, then probably the system
has missed the detection of Alice’s face in the middle
keyframe. Second, the user is allowed to patch the un-
protected faces by simply (click-and-drag) selecting the
unprotected face area in a frame, and our system will au-
tomatically apply object tracking to track the face area
and protect it in the surrounding frames. In this way,
one simple patching operation will help the protection
in multiple continuous frames with the same problem.

4 Prototype Implementation
To run our proposed algorithms, we first need to pre-
pare the input for them, which are the face templates
for whitelisting or blacklisting, certain metadat of voice
templates and name tags for targeted participants. Due
to the page limit, we present our preparation tool in
Appendix (Section 10.3). Next we focus on the imple-
mentation details of the algorithms proposed above.

4.1 Video Processing Module

Many face detection algorithms have been designed, like
OpenCV with HOG cascade or Haar Cascades [9], Fast-
RCNN [33], and YOLO [32]. However, they cannot fully
meet our requirements. HOG and Haar have difficulty
in detecting side faces [38]. Fast-RCNN and YOLO only
make face detection and they require heavy GPU com-
putation. In our work, therefore we adopt SeetaFace [29]
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as the solution for both detection and identification.
SeetaFace has high scalability and can perform face de-
tection and identification without using a GPU. Fur-
thermore, we leverage the parallelism in computing to
increase the efficiency of the system. When our system
performs video processing tasks in parallel, due to the
Global Interpreter Lock (GIL) problem [6] in Python, it
is not possible to run multi-thread computation; hence,
we replace it with multi-process computation, and the
algorithm’s logic remains unchanged.

Since name tags are displayed in screen by the con-
ference system in a standard font, most deep learn-
ing OCR algorithms are over-qualified. After some ex-
ploration, Paddle OCR [10], a recently released open
sourced OCR, is selected, which provides high-quality
pre-trained models and supports recognition of over 25
language (including English, Korean, Japanese, Ger-
man, French, Chinese, etc.), digit recognition, verti-
cal text recognition, and long text recognition. With a
lightweight network (weight file size only 8.6MB), Pad-
dle OCR can achieve 57 milliseconds per image under
GPU acceleration. This extreme low overhead makes it
suitable for our system to process keyframes for name-
tag protection.

4.2 Audio Processing Module

For speaker diarization, an open source project Resem-
blyzer [13] is selected. As Resemblyzer is originally de-
signed for real-time applications, we modified its real-
time interactive parts to turn it into a post-processing
tool for video recordings. Every second of audio is di-
vided into 15 segments (67ms each) and each segment
is matched to its speaker. Here we (implicitly) assume
that an informative speech in a meeting lasts at least
67ms (1/15).

Specifically, the speaker diarization process outputs
a number of sentences for a given audio file. To protect a
sensitive sentence with a voice morph method, we divide
its corresponding audio clip into r pieces. Each piece,
represented as a one dimensional vector in time domain,
is fed into a Fast Fourier Transform (FFT) process, and
the frequency domain output is then multiplied by a
factor f . Finally, an inverse Fast Fourier Transform is
performed to generate the corresponding morphed au-
dio piece. In the same way, the entire sensitive sentence
is morphed. To prevent an attacker from recovering the
original audio from a morphed audio clip, randomness
is added into the morphing process by choosing r and f
randomly for each sentence. Our empirical study shows

that the range of r can be a real number in [5.0, 10.0]
and the range of f can be a real number in [1.1, 1.5].
An attacker may be able to separate morphed sentences
correctly from the published video but it is very diffi-
cult, if not impossible, to recover the original audio clip
for each individual sentence without knowing the exact
values of r and f used during the morphing process. In
this way, this simple obfuscation method will thwart the
user-linking attack because an attacker will have diffi-
culty to automatically match the voice signals of the
same user in multiple videos that were morphed under
different parameters.

4.3 Patch Processing Module

For the implementation of our semi-automatic patching
system, OpenCV’s selectROI function is used to enable
interactive selection of target areas, that is, selecting a
rectangular area with mouse. Then, the patching sys-
tem leverages the Kernelized Correlation Filter (KCF)
algorithm [27] to automatically track the selected face
area in the adjacent frames. After the tracking is fin-
ished, the patching system will blur the identified face
areas in these frames with the target missing.

Fig. 5. Video Patching Screenshots

More specifically, after the video processing mod-
ule, the system saves all keyframe results (e.g. the user’s
area and name in the current keyframe). These saved re-
sults will be used by the patch system to automatically
check for missed protections. Figure 5 shows an exam-
ple of the usage of the patch system. Here, Alice is a
privacy-sensitive user. In three consecutive keyframes,
her face was successfully detected, recognized and pro-
tected in keyframes 1 and 3, respectively, but there is a
missed protection in keyframe 2. In this example, there
is only one keyframe with missed protection. The sys-
tem can modify the parameters to increase the size of
the missing interval. By analyzing the face information
in these consecutive keyframes, the patch system finds
that Alice’s face is in the same area in the 1st and 3rd
keyframes, but her face suddenly disappeared in the cor-
responding area in the 2nd keyframe (mostly due to the
failure of face detection or face recognition tools). Our



ZoomP3: Privacy-Preserving Publishing of Online Video Conference Recordings 640

patch system considers this an unlikely case and pre-
dicts the possible face area in keyframe 2 based on the
face areas in keyframes 1 and keyframe 3. In this exam-
ple, the predicted area is automatically labelled by our
patch system in the red rectangle in keyframe 2. If such
a prediction is inaccurate, the user can manually click
and drag over the correct facial area. After this, our
patch system will use the tracking algorithm to track
the same face area in the adjacent frames and protect
them accordingly.

5 Evaluation

5.1 Experiment Setup

Extensive experimental study has been conducted to
evaluate the performance of our system. The testing en-
vironment is configured as follows: the CPU is Ryzen
3900x, the RAM size is 32GB and the OS is Ubuntu
20.04. The major libraries and their supported versions
are Python 3.7, FFmpeg 4.2.4, OpenCV 4.4.0, and Torch
1.6. For all the examples in this section, corresponding
videos (both original and after-protection) are available
on our demo website [17].

As we did not find any existing VCR dataset, we
searched and selected public Zoom videos from YouTube
and made video clips to test our system. Table 4 in our
appendix (Section 10.4) lists 10 video clips, including
the three videos (the top three highlighted in blue color)
that are presented with details in the main body of our
evaluation and seven other types of videos (e.g., class
meetings and business meetings).

5.2 Evaluation of Accuracy

In ZoomP3, the GBP algorithm is built upon face detec-
tion and identification algorithms for accurate face pro-
tection, so we start by evaluating the accuracy of face
detection and identification in the context of video con-
ferences. While we have downloaded many Zoom record-
ings from YouTube for testing, they are mostly differ-
ent in terms of the number of faces in the VCRs and
the length of videos. Unlike the case of testing face de-
tection/identification algorithms over static images one-
by-one, measuring protection accuracy for such diverse
videos is very difficult because labeling all faces frame
by frame in all videos is simply infeasible. Besides, many
VCRs contain very simple scenarios (few faces, mostly

stationary). While testing against a lot of such VCRs
can easily give us very good performance reports, it will
not reflect the full potential as well as the limitations of
our system. Therefore, we turn to evaluate the accuracy
with a few representative videos and present the results
at greater details.

We start evaluation from the detection accuracy of
SeetaFace [29] in the gridview mode with different num-
bers of participants in one screen, gradually increasing
from 1 (minimum) to 49 (maximum). While it is not
an easy task to find a suitable video for this test, we
were fortunate to find one in Zoom Incorporation’s own
YouTube channel [15]. This video stream includes 625
1080P frames in total, with participants gradually join-
ing the meeting. Figure 6 shows a screenshot from the
video (with face detection by SeetaFace). Note that this
is not a video recording by Zoom itself but a record-
ing by an external camera because the bottom menu
bar and the margins are also shown. The actual video
recording (by Zoom) for this video should have the grid
views occupying the entire screen.

Figure 7 illustrates the average width and height
of a face in the gridview mode with different number
of faces. The smallest size (with 49 grids) is 39 × 50.
The minimal detectable face size reported by Seetaface
is 20 × 20, so the size of face is generally not the bar-
rier for accurate face detection even in the 49-grid view
case. Figure 8 further shows the maximum, median and
minimum numbers of faces detected by SeetaFace vs.
the actual number of faces, respectively. In this specific
video, one face is not detected starting from around 20
faces. It is due to the third face in the first row shown
in Fig. 6, which is small because the lady sat a bit far
from the camera and the background color is close to her
skin color. In the worst case, there are four undetected
faces in a certain frame. Clearly, the detection accuracy
depends on face size, light, and the background. As men-
tioned earlier, this demo video is smaller than the actual
Zoom recording that should be full-screen without the
menu bars and the black margins.

While the test shows that SeetaFace is not the most
ideal candidate to detect very small faces, there are al-
ternative algorithms. Another relatively new face de-
tection algorithm called DBFace [2] is tested, which is
able to detect all the 49 faces shown in Fig. 6. However,
our testing also reveals that DBFace is not as good as
SeetaFace in detecting large faces (e.g., when the num-
ber of faces is below nine), and it does not have face
recognition capability as SeetaFace does. In practice,
therefore, we can integrate these two algorithms to han-
dle various applications scenarios.
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Fig. 6. A screenshot from a demo video in
Zoom’s Youtube channel [15] with face detec-
tion by SeetaFace

Fig. 7. Face width and height under
different number of faces

Fig. 8. Number of detected faces vs.
actual number of faces

As our system performs binary face classification
into P and S classes, it does not require a perfect face
recognition accuracy. For the above Zoom video [15], we
whitelist the host and protect all the others. The classi-
fication accuracy was 100%, neither over-protection nor
under-protection was observed for this video.

To further showcase the protection accuracy of our
system against challenging scenarios, we pick the NBC
Saturday Night Live (SNL) Zoom Video [16] as an ex-
ample. This example video was the most challenging
one we could find online. As shown in Fig. 1, this video
covers switching among grid view and speaker view,
shared screen view, multiple people taking turns to
speak and speaking at the same time, and using vir-
tual backgrounds and real backgrounds. It also covers
some unusual scenarios such as a participant turned off
the camera to show predefined avatar photos, a par-
ticipant hand-held the camera and kept walking, and
multiple participants showed exaggerated facial expres-
sions. Figure 9 shows three screenshots corresponding
to three view modes.

(a) Grid View Result (b) Speaker View Result

(c) Screen Share Result

Fig. 9. Visual Effect of Facial Protection on Demo Video

As can be seen in our demo (Demo1-before-
patching [17]), our system protected almost all the sen-
sitive faces perfectly except in a very short moment (in
a few frames) one participant turned her face around 90
degree to the left, which caused the face detection algo-
rithm to fail. We then used our semi-automated system
to patch it (Demo1-after-patching [17]).

5.3 Evaluation of Proposed Algorithms

Multiple video records may be used to measure the time
performance of our system. However, the processing
time varies along with the length of video, the number
of people in a video and the frequency of scene switch-
ing differ among videos. As such, we choose to measure
the performance overhead of each individual module of
our system with the SNL demo video. The measurement
results can be used as the basis to roughly estimate the
processing times of other videos of different lengths and
with different number of faces. Table 1 lists the details
of this demo video.

Table 1. Demo Video Information

Video Encoding H.264 (AVC1)
Video Bitrate 1502 kb/s
Audio Encoding AAC (mp4a)
Audio Bitrate 127 kb/s
Resolution 1920x1080
FPS 30
Total Frames 2832
Total Length 94.4 Seconds
Scene Switching 25 Times
Max Number of People in One Frame 7
Total Number of Participants 6
Avatar and Virtual Background 2
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Table 2. Time and Memory Use of All Components

Separate Video and Audio Tracks 0.055 s
Merge Video and Audio Tracks 0.075 s
Maximum Memory for Audio Processing 2.25 GB
Time to Read a Frame from File to Memory 0.0018 s
Face Detection Time for One Frame 0.16 s
Time to Extract Features from One Face 0.04 s
Face Matching with One Reference User 0.000015 s
Video Encoding Time with CPU 20.44 s
Video Encoding Time with GPU 10.92 s
Max Memory for Video Processing per Process 1.13 GB
KCF Tracking Time for One Frame 0.064 s
Audio Diarization 6.32 s
Speaker Protection via Voice Morphing 1.04 s

5.3.1 Overall Performance

Table 2 shows the median time delay and maximum
memory uses of processing steps in our system. The first
two items are the time costs, 0.055 and 0.075 seconds,
for separating and merging video and audio tracks with
FFmpeg, respectively. They are negligible compared to
the time for the overall system, which is 62.5 seconds
as shown in Table 3. The time for face detection (with
Seetaface) on one video frame is 0.16 seconds and it is
mostly independent of the actual number of faces in the
frame. Once the system detects a face, it extracts facial
features (0.04 second per face) and then match against
that of each participant for face recognition (negligible
time). The most time consuming operation is video en-
coding (20.44 seconds in CPU), which, taking all the
processed video frames as input, encodes them into the
video track and finally writes it out to the disk. This
operation can also be done in GPU, with about 50%
time cost (10.92 seconds). Finally, audio diarization is
another time consuming process, which takes 6.32 sec-
onds. The voice morphing process takes about one sec-
ond. Note that the video and audio tracks are processed
in parallel, so the overall time is determined by the video
processing time.

Table 3 highlights the time costs of major operations
and the whole system, which demonstrate efficiency of
our algorithms in terms of processing time. Without our
optimization algorithms (i.e., frame-by-frame process-
ing), it took 800 seconds to process the demo video,
which is about 8.5 times of the original video length.
With our GBP algorithm, at group sizes L = 5 and
L = 10, the time costs are reduced by a factor of 4.5 and
7.7, respectively. The time cost is sublinear to the group
size. Furthermore, applying our parallel algorithms over
the multi-core processor reduces the processing time sig-

nificantly. For instance, it takes only 62.5 seconds with
L = 5 on a quad core processor, which is 2/3 of the
video length.

To show the scalability of our system w.r.t. the video
length, we replicate 38 copies of the 94.4 second long
demo video to extend it into one hour long video. It
would be more difficult to see the clear relationship with
a different video. Our measurement shows that the time
costs are about 38 times of those in Table 3 for the orig-
inal video, and the total time is about 39 mins with
L = 5 and Quad core, which indicates the linear re-
lationship. We believe this time cost is reasonable for
video processing.

In real world applications, the number of faces and
the frequency of scene switching vary. However, a rough
estimation on the time cost is obtained based on the
data in Table 3. The main time cost that is linear to the
number of faces is that for extracting features from one
face. In the worst case if this demo video were in the 7×7
gridview mode (49 faces) at all times, we may roughly
estimate the total time would be around 328 seconds.
On the other hand, in the best case if there were only
one face at all times, the total time cost would be around
48 seconds. A server with more CPU cores or a larger
group size L can be applied to reduce the time cost.
Because our GBP algorithm conservatively treats all
the non-keyframes between a sensitive keyframe and a
non-sensitive keyframe as sensitive, this over-protection
could increase the chance of public participants being
protected at a larger group size, slightly losing the vi-
sual friendliness.

5.3.2 Audio Processing Module

For our demo video shown in Table 2, audio diarization
took a total of 6.32 seconds, and voice processing took
1.04 seconds, which includes voice morphing and writing
the audio file to the hard drive. One can see and hear
the effect of privacy protection in our demo video [17].

5.3.3 Name Tag Protection

Another online zoom meeting VCR with name tags is
chosen to test the effectiveness and efficiency of our
Paddle-OCR based name tag protection algorithm. As
shown in Fig. 10, the top-left user and the bottom user
are selected to be whitelisted. This result validates our
algorithm that successfully blur all the others’ name
tags as desired. The corresponding demo video is also
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Table 3. Time Costs of Major Video Processing Algorithms (Demo Video 94.4 Seconds, 2832 Frames, L is group size in our GBP algo-
rithm)

Frame by Frame GBP (L = 5) GBP (L = 10) GBP (L = 5, Dual Core) GBP (L = 5, Quad)
Read All Frames 5.22 s 5.15 s 5.26 s 2.61 s 1.3 s
Face Detection 459.62 s 91.82 s 45.92 s 46.73 s 24.05 s
Face Recognition 314.72 s 61.53 s 31.47 s 31.62 s 16.58 s
CPU Video Encoding 20.44 s 20.35 s 20.95 s 20.48 s 20.57 s
Total Time 800 s 178.85 s 103.6 s 101.44 s 62.5 s

Fig. 10. Name Tag Protection (District Promotions Committee
meeting [3] in Waipa District Council, New Zealand).

available [17]. Paddle OCR can achieve 57 milliseconds
per video frame under GPU acceleration. The extracted
texts are then matched against either whitelisted or
blacklisted reference names based on our heuristic al-
gorithm. As name tag protection is done together with
our GBP algorithm in a single round instead of a sepa-
rate round, the time overhead is small compared to that
of the video processing algorithms.

5.3.4 Patch Processing Module

Due to the imperfection of machine learning based face
detection and face recognition algorithms, for videos
recorded in challenging situations (e.g., with small, un-
clear, moving faces), a final patching is applied to pro-
tect missed faces. Our semi-automatic patching system
leverages the KCF algorithm to track a user selected
facial area in adjacent frames to patch the missed faces,
if any. Table 2 shows that the time for tracking a facial
area in one frame is 0.064 second, which is small, con-
sidering that missed protection is not common for most
conference recordings. We did not evaluate the time for
manually selecting a missed facial area as it depends on
the familiarity of the user with our system.

5.3.5 Overall Time Complexity

Here we report the overall time we spent to process the
SNL video. In the input preparation phase, it took us
less than 10 seconds for selecting and saving the face
template for the whitelisted speaker, and less than 10
seconds to select an audio range for him. Since the SNL
video does not have name tags, we did not spend time
on generating the nametag file for it (we spent a few sec-
onds to input two whitelisted names for the other video
shown in Figure 10). As shown above, the total time for
our proposed protection algorithms is 62.5 seconds for
the SNL video clip. Finally, we patched the video twice
and it took us about 20 seconds.

To sum up, if assuming that we already knew which
faces and which audio segments to choose as templates,
and, if necessary, which frames to patch, and also as-
suming there were no break time (gap) between the op-
erations, the total time was about 2 minutes for the
SNL video. We acknowledge that the actual time will
be more because of other subjective factors such as de-
cision making and familiarity with our tools. Neverthe-
less, our protection algorithms normally take the most
time, especially for a long video.

6 Discussions and Limitations
Applicability: Our ZoomP3 system is compatible with
most online conferencing systems, such as Google Meet-
ing, Microsoft Teams, Tencent Meeting, as shown in

(a) Google Meet (b) Microsoft Teams (c) Tencent Meeting

Fig. 11. Online Conferencing Application Screenshots from
Google Search
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Fig. 11. These systems use the same video encoding
method (H.264 AVC1) as Zoom, and they also have
speaker view mode and grid view mode, so our system
can be directly applied to them for visual privacy. In-
deed, because our system uses the FFmpeg decoder, not
only can it process online video recordings, but also han-
dle videos recorded by 3rd party software.
Scope and Limitations of Visual Protection: In a
VCR, sensitive faces may be from actual participants,
from virtual backgrounds or from a photo in the shared
screen mode. Our system protects all sensitive faces
and voice in a VCR regardless of scenarios because the
face detection/recognition algorithms do not differenti-
ate the scenarios. Specifically, in the whitelisting mode,
all other faces are considered sensitive (including those
faces in the backgrounds or in the shared screens), and
they are all blocked. The blocking of faces in the back-
ground happened in our SNL demo. In the blacklisting
mode, the other faces are not blocked. In this case, if the
background contains a sensitive face, one may blacklist
it by choosing a snapshot of the face area as the input
to our system.

Currently our system does not handle other sensi-
tive texts in shared screens. If such information is rare,
a user may protect it with the function of our patching
system. That is, a user may select the region containing
the sensitive texts and object tracking will help locate
the same region in the adjacent frames. However, if there
are a lot of sensitive texts, we may use our OCR-based
name tag protection method. The idea is to treat all
sensitive texts as blacklisted name tags. When process-
ing each frame, they are compared against all the OCR-
extracted texts. The bounding box of any matched texts
can be blurred accordingly.
Scope and Limitations of Audio Protection: In
our demo implementation, we employ the simple FFT-
based voice morphing method for voice protection
against user-linking attacks that leverage frequency do-
main features. However, speakers may be linked by their
accents/dialects or lexical/syntactical features. There-
fore, our simple voice morphing approach cannot handle
such attacks. Moreover, in our current implementation,
the voice morphing effect is not natural. More advanced
methods (e.g., Morphvox Pro [7]) exist to morph voice
naturally and they can also defeat the above attacks by
changing the voice of each sensitive user into that of a
random character, although they are more costly. Note
that voice morphing alone cannot address the privacy
leakage problem caused by the content of speech, which
needs manual identification and removal. For this rea-

son, if user-friendliness is not a key factor here, simply
muting all sensitive speakers is a better option.

Currently, our system does not examine the con-
tent of speech. As a result, if a non-sensitive participant
says sensitive information, one may manually mute that
part of voice. An automated tool may be designed to
handle such issues with the text input of sensitive infor-
mation. The high-level idea is to first make the audio-
to-text transcription of the audio track (indeed Zoom
recently provided the recording option for audio tran-
script, which will produce a separate audio transcript
file for the audio track), then locate the sensitive text,
and finally mute the voice at the same position in the
audio. The requirement is that the audio-to-text tran-
scription tool has very good accuracy.

We notice that for conference tools like Zoom, once
enabled in the setting of recording, the chat log and
audio transcript are saved in two separate files other
than the video file. To avoid any privacy leakage from
the chat log and live transcript, the user should publish
the video file only.

7 Related Work
Video Conferencing Security and Privacy: A re-
cent research showed that it was relatively easy to col-
lect a large number of public conference videos and ex-
tract from them personal information such as facial fea-
tures, age, gender, names and usernames of the partic-
ipants [28]. A data-driven analysis of calls for zoom-
bombing attacks on social media indicate that the vast
majority of calls for zoombombing are not made by at-
tackers bruteforcing their meeting ID, but rather by
insiders who have legitimate access to the meetings.
Drawing from literature on crisis communication and
the shared user experiences in the Zoom CEO’s blog
post, Young [41] showed that Zoom’s privacy crisis was
not only caused by technical issues but also the com-
pany’s underestimation on users’ privacy expectation.
Surveillance Cameras Privacy: A system named Vi-
sor [31] was proposed that focuses on protecting the
surveillance camera video stream when the cloud ser-
vice is compromised. Another system was proposed [39]
for live video analytics. Data from surveillance cameras
can be used for environmental analysis. If uploading
the raw data directly to the cloud for analysis, there
will be privacy issues. Their proposed solution is to per-
form facial recognition, block the person and then up-
load it to the cloud for analysis. A Privacy-preserving
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Surveillance as an Edge service (PriSE) method [23, 24]
takes advantages of a hybrid architecture comprising
a lightweight foreground object scanner and a video
protection scheme that operates on edge cameras and
fog/cloud-based models to detect privacy attributes like
windows, faces, and perpetrators. These approaches are
all for surveillance camera privacy and only consider im-
age privacy, which does not consider voice privacy. It is
different from our system, which protects both image
and voice privacy of an online video conferencing.
Privacy Protection: To our knowledge, existing com-
mercial tools only protect either faces or voice. There is
no integrated tool for the protection of faces, voice and
name tags altogether. Well-known tools such as Adobe
Premiere-Pro and YouTube Face Blurring allow a user
to manually choose a face to blur with different masks
(oval, rectangle or other shapes) and apply an object
tracking algorithm for continuous protection of the same
face in the video. However, somewhat similar to our
patching mechanism, they provide local protection, be-
cause they rely on object tracking to identify the same
face in adjacent frames. The protection will break if the
face is temporally blocked and reappears later. The user
needs repeat the same process for the same lost face.

The visual protection function of our tool is differ-
ent from these tools in two major ways. First, it can
support both blacklist and whitelist modes, which are
very useful for protecting VCRs with many participants.
Second, it can protect faces throughout the entire video
despite the switching of modes among grid view, shared
screen view and speaker view modes, which would easily
break object tracking. The reason is that our tool is spe-
cially designed for VCRs (although it should also work
for other types of videos) and it is built upon different al-
gorithms and tools. On the other hand, we acknowledge
that these tools can be used for local patching as needed
in our system and provide more features on blurring ef-
fects (e.g., various shapes of blurring) than that offered
by our prototype implementation. As for voice protec-
tion, people may use commercial audio editing tools
such as Adobe Audition, Audacity or smartphone apps
to manually edit an audio file, e.g., cut or split. How-
ever, none of them does automatic speaker-based voice
processing. Built upon speaker diarization tool Resem-
blyzer, our tool is able to protect an individual speaker’s
voice throughout the entire video. As far as we know,
there is no existing tool for name tag protection.

There is also some work from the research commu-
nity. A system is proposed to recognize human activ-
ity under an extreme low resolution video [35]. Based
on GAN [26], researchers proposed a system to gen-

erate pixel-level modifications to anonymize faces [34].
Specifically, the privacy for minors attracted attention
from the community and lightweight privacy-preserving
methods are customized for edge computing environ-
ments [25]. In addition, a deep learning audio-visual
model is suggested for isolating a single speech signal
from a mixture of sounds such as other voices [21].
We may adopt it for more accurate audio protection
at higher time cost.
Audio-Visual Biometric Authentication Face and
voice biometrics are the common technology used to ver-
ify a person’s identity using his/her unique facial and
vocal attributes, respectively. In addition to many in-
dustrial products, many new techniques have been pro-
posed by the research community over the years. Com-
prehensive surveys can be found in [30, 40]. In our re-
search, we integrate the state-of-the-art technology on
face detection, face identification, speaker diarization
seamlessly to achieve our research goal of building an ef-
ficient privacy-preserving VCR publishing system. The
efficiency and accuracy of our system will improve with
the advance of these research fields.

8 Conclusions
In this work, we introduced ZoomP3, a practical
privacy-preserving publishing system for protecting
both video and audio of privacy-sensitive participants
in online meeting VCRs. The videos can be reused or
shared publicly without infringing the privacy rights of
such users. Besides leveraging and integrating multiple
state-of-the-art computer vision and audio processing
tools seamlessly into our system, a number of optimiza-
tion algorithms are proposed to improve the scalability
of the system, making it possible to protect the privacy
of long video conferences. To the best of our knowledge,
ZoomP3 system is the first of this kind to protect both
video and audio privacy of online conference videos. It
may be provided as an online service, e.g., by Zoom,
or by large organizations such as universities, research
institutes and government sectors.
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10 Appendix

10.1 A Demo Example of our GBP
Algorithm

Figure 12 shows a simple example with six frames in to-
tal and we choose L = 3. Since the first frame of the first
group is always a keyframe, we have three keyframes at
positions 1, 3, and 6, respectively. Here Alice is a sen-
sitive participant and Bob is a public participant. GBP
processes the first frame with face detection and iden-
tification and knows that it is a public participant, so
there is no need for face protection. The second frame is
not a keyframe, so there is no need to process the frame
at this moment. The third frame is a keyframe with a
sensitive participant Alice. According to our protection
rule R1, no matter whose face it is in frame #2, #4,
#5, they will all be protected. Frame #6 is a keyframe
with Bob, so there is no need to protect his face. In the
end, all the faces in frames 2-5 are protected.

10.2 Optimization Algorithms for Video
Processing

10.2.1 Binary Search Backward Processing

The above GBP algorithm is very conservative by
assuming all the L − 1 non-keyframes between two
keyframes contain S instead of P whenever one of the
two keyframes contains S. For a small L (e.g., L = 6,
corresponding to 0.2 second for 30 FPS videos), the false
positives (i.e., over-protection) caused by treating P as
S will not introduce noticeable degradation of visual

effect, but the saving on computation is still not sig-
nificant enough as the number of keyframes in a long
video could still be large. On the other hand, a larger
L will save more on computation because there will be
less keyframes. For example, when L = 30, which cor-
responds to 1 second for 30 FPS videos, only 1/30 of
frames will be processed as keyframes. For a video with
relative stable views (e.g., a speaker in the speaker view
keeps talking for tens of seconds or more), most of the
keyframes do not change (i.e., S → S, or P → P be-
tween two adjacent keyframes), a larger L saves more
computation without introducing false positives in most
of the time. Now, when a change occurs between two ad-
jacent keyframes (e.g., P → S or S → P ), it will be more
visually friendly with less “smear effect” by treating the
L−1 non-keyframes in between more accurately instead
of blindly treating all of them as S frames for a large L.

An accurate protection requires to detect the exact
non-keyframe between two adjacent keyframes where
speaker changes happen. We call this process speaker
change detection. A simple way of implementing speaker
change detection is to process frame-by-frame with face
detection/identification for all the L− 1 non-keyframes.
Clearly, this is inefficient. Therefore, a binary-search-
like processing (BSP) algorithm is adopted in our sys-
tem. The search continues recursively in the half whose
leftmost and rightmost frames contain one P frame and
one S frame. In this way, additional dlog2(L−1)e frames
are processed for accurate protection. Certainly, a fur-
ther tradeoff can be made by stopping the BSP algo-
rithm when the interval of the current half falls below a
threshold (e.g., 5).

10.2.2 Perceptual Hash based Speaker Change
Detection

To reduce the computational cost with improved accu-
racy in the GBP algorithm, an optimization method is
proposed for speaker view mode, which is a more effi-
cient yet accurate way to solve the speaker change de-
tection problem. The rationale behind the new method
is that in the speaker view mode, only when the speaker
is changed, there will be a dramatic change in two
adjacent frames due to differences in faces and back-
grounds. For the same speaker, even though his/her
head may move, the overall visual change in adjacent
frames should be much smaller than that caused by the
switching of speakers. As such, as long as we detect a
significant visual change between two adjacent frames,
we can report it as a speaker changing frame.
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Fig. 12. Example of Greedy Backward Processing (L = 3)

Table 4. 10 Zoom Videos Tested by Our System

Video Clip Title Video URL
Zoom 7x7 View https://www.youtube.com/watch?v=BP2VdBZtZ6Q
Zoom Call - SNL https://www.youtube.com/watch?v=3byTN8NTCkc

Extraordinary District Promotions Committee
- Zoom Invite https://www.youtube.com/watch?v=EiDcZoEcRRk

Zoom Catch-Up - SNL https://www.youtube.com/watch?v=vdqsMY5Z8E8
Extraordinary Te Awamutu Community Board Meeting

- Annual Plan Submission https://www.youtube.com/watch?v=Nt_1PgTLxTY
Ask Eric: Zoom Platform Security Updates https://www.youtube.com/watch?v=SHw9QcK5R_g
Calculus Class Zoom Meeting 4/8/2020 https://www.youtube.com/watch?v=mjWxYI4oTTw

Demo of Online Meeting via Zoom with Participants
from Around the World https://www.youtube.com/watch?v=261OCjeg9GI

Zoom Class Meeting Downing Soc 220-001 1/21/2021 https://www.youtube.com/watch?v=gWwdGGG4Pkc
Finance Meeting for April 20, 2020 https://www.youtube.com/watch?v=Fa-hbpZx6OQ

To detect visual change efficiently, we use a percep-
tual hash function called pHash [11], which is an image
hash that outputs 64 bits given an image as the in-
put. The difference between a perceptual hash and a
cryptographic hash is that a perceptual hash can tol-
erant small changes in the input. If an input image is
changed slightly, its perceptual hash value may be the
same or only change by a few bits. In contrast, a sin-
gle bit change in the input to a cryptographic hash can
cause random changes in the output due to an avalanche
effect. Therefore, if the hamming distance between the
perceptual hash values of two adjacent non-keyframes is
greater than a certain threshold, a speaker change case
is detected.

An experiment has been conducted to verify this
rationale. We record two zoom videos in speaker view
mode, both of which have 123 frames and switch from
one speaker to another speaker in the middle. The main
difference between the two videos is the virtual back-
grounds used by two speakers. In one video (Video #1),
both speakers use the same background (solid white)
and in the other video (Video #2) they use their own

image virtual background (a Golden Bridge view vs. a
mountain-forest-lake view). We wanted to estimate the
visual differences caused by speakers only and by both
the speaker and the background, respectively.

Figure 13 depicts the changes of perceptual hashes
between a frame and its previous frame (i.e., the ham-
ming distance between the pHash values of two adjacent
frames) for both videos. The green line and the red line
represent the cases of video #1 and video #2, respec-
tively. Each line has a spike (over 25), which corresponds
to the moment of speaker switching, while the change
due to the movement of head and visible body is sta-
ble and much lower (below 13). Therefore, based on the
experimental study a threshold of 20 is selected in our
system to detect speaker changes.

Since perceptual hashing is extremely efficient, it
can be employed for frame-by-frame processing to en-
hance the accuracy of our GBP algorithm. It is worth
noting that our perceptual hash based speaker change
detection is best suitable to speaker view mode, because
in gridview mode, it is in general difficult to determine
the exact position of the window view each participant
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Fig. 13. Hamming distance between each frame and its previous
frame.

is located in due to the dynamics of the views in the
screen.

10.3 Our Tool for Input Preparation

Before running our algorithms, we first need to produce
the face templates, certain metadata of voice templates,
and name tags for the participants to be whitelisted or
blacklisted in a VCR. For users’ convenience, we devel-
oped a preparation tool for video processing, audio pro-
cessing and name tag input. The tool plays a video with
basic functions such as play, pause, drag bar (mainly im-
plemented with an OpenCV api “videoCapture.read()”
to read frame-by-frame). After locating a frame with a
target face, we select with mouse the rectangular area
surrounding the face (implemented by OpenCV’s selec-
tROI function) and the selected facial area is automat-
ically saved into a PNG image file, which is the face
template file for this user.

The audio processing part of our tool is imple-
mented by an open source library named Pydub [12]. It
enables us to manually select the range (start and end)
of a short voice segment (e.g., a few seconds of Bob’s
speech as his voice template) for each of the speakers
to be explicitly whitelisted or blacklisted. It writes all
the range information (start, end) into a single template
file, which will be the input to the speaker diarization
tool Resemblyzer. Finally, the tool provides a simple
UI (implemented by Python input() function) for users
to input the names to be blacklisted or whitelisted, and
the result is written into a nametag file for the following
OCR-based name tag protection.

10.4 Videos Tested by ZoomP3

Table 4 lists 10 videos tested by our system, which cover
a variety of application scenarios as well as extreme
demo videos.
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